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Abstract

Songbirds have emerged as an excellent model system to understand the neural basis of vocal and motor learning. Like
humans, songbirds learn to imitate the vocalizations of their parents or other conspecific ‘‘tutors.’’ Young songbirds learn by
comparing their own vocalizations to the memory of their tutor song, slowly improving until over the course of several
weeks they can achieve an excellent imitation of the tutor. Because of the slow progression of vocal learning, and the large
amounts of singing generated, automated algorithms for quantifying vocal imitation have become increasingly important
for studying the mechanisms underlying this process. However, methodologies for quantifying song imitation are
complicated by the highly variable songs of either juvenile birds or those that learn poorly because of experimental
manipulations. Here we present a method for the evaluation of song imitation that incorporates two innovations: First, an
automated procedure for selecting pupil song segments, and, second, a new algorithm, implemented in Matlab, for
computing both song acoustic and sequence similarity. We tested our procedure using zebra finch song and determined a
set of acoustic features for which the algorithm optimally differentiates between similar and non-similar songs.
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Introduction

Songbirds learn to sing by imitating the vocalizations of their

parents or other conspecific birds to which they are exposed at a

young age [1,2,3]. Song production and learning are under the

control of complex social and behavioral factors [4,5] and are

mediated by cortical and basal ganglia circuits with a striking

homology to similar circuits underlying motor learning in the

mammalian brain [6,7]. Thus, songbirds have emerged as a

tractable model system to study the neural mechanisms underlying

the generation and learning of complex behaviors acquired

through practice, such as speech and musical performance [8].

The most commonly used songbird for laboratory studies of

vocal learning is the zebra finch, which produce bouts of singing

lasting from 1–5 seconds. The song of adult zebra finches consists

of a sequence of 3–7 distinct song syllables called a motif. The

order of the syllables within the motif, as well as the acoustic

structure within each syllable, is typically produced in a fairly

stereotyped fashion across song renditions.

Like all songbirds, zebra finches learn to sing in a series of

stages, beginning with an exposure to a tutor song while still in the

nest. During this stage, the young bird forms a memory of the

tutor song, called a song template [3]. At around 30 days post

hatch (dph), zebra finches begin to babble, producing highly

variable vocalizations called subsong. Over the course of 4–6

weeks of practice, during the plastic song stage, the song of a

young zebra finch gradually becomes more structured and more

similar to the tutor song [9]. Vocal variability gradually decreases

[10] until, at sexual maturity (80–90 dph) the song achieves the

highly stereotyped structure of adult song.

The mechanisms underlying vocal learning are not yet fully

understood. Vocal learning and maintenance in songbirds is

dramatically disrupted by deafening or other hearing impairments

[11,12,13,14], leading to the view that vocal learning requires the

integration of auditory feedback with vocal/motor commands

[15]. According to one model of vocal learning, a comparison of

the bird’s own song with the song template provides an ‘error

signal’ that can be used to reinforce song variations that were a

better match to the template [7,16,17,18]. Another model suggests

that auditory feedback may be used during babbling to learn the

relation between motor commands and vocal output. Such an

‘inverse model’ could then be used to reconstruct the sequence of

motor commands needed to produce a good match to the song

template [19,20]. To test models such as these, it is necessary to

study the effects of different behavioral, neuronal or other

manipulations on song learning or song production

[21,22,23,24,25]_ENREF_26.

Early efforts at quantifying song imitation were made using

visual inspection of song spectrograms [4,24]. However, the

difficulty of assessing song similarity visually, as well as the need for

a uniform metric across research labs, spurred the development of

computerized methods of song comparison. In one approach [26],

the song spectrum is represented at each moment by a small

number of spectral features, and the similarity of two sounds is

measured as the Euclidean distance in this low-dimensional space.

Song imitation is assessed by, first, manually selecting a segment of

pupil song and a segment of tutor song. Then, using the feature-

based distance metric, regions of high similarity between the

segments of pupil and tutor songs are identified, and the results are

aggregated into a global measure of acoustic similarity and

sequence similarity. Typically, the song segments chosen for such a
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comparison are song motifs of both the pupil and tutor birds. This

approach to the analysis of song similarity is the basis of a widely-

used software package (Sound Analysis Pro, SAP).

In the process of using SAP to analyze the extent to which

young birds had imitated their tutors, we discovered several

challenges. Young birds, as well as those that had undergone

experimental manipulations, produced songs that were less

stereotyped than normal adult songs, and contained vocal

elements that could not be easily identified as components of a

motif. As a result, it was unclear exactly which parts of a song bout

to include in the analysis, raising concerns about possible

inconsistencies and experimenter bias in the selection process.

Here we have developed a well-specified automated procedure for

selecting segments of pupil song, thus reducing the potential for

experimenter bias.

Existing algorithms for evaluating the acoustic and sequence

similarity of pupil and tutor song depend on the segmentation of

song into syllables and silent gaps. The variability of juvenile songs

makes such segmentation highly unreliable, and motivated us to

develop a new algorithm for evaluating song similarity that treats

pupil song as a continuous stream of sound, without segmenting it

into syllables and gaps. We have tested this algorithm with

different sets of acoustic features to determine which ones

maximize the contrast between similarity scores of different

renditions of the same bird and similarity scores between different

birds. We also compared this measure of contrast to that achieved

by SAP software for a database of adult zebra finch songs, and

examined the performance of this algorithm on quantifying the

development of song imitation in juvenile birds. The algorithm

was implemented in Matlab, and is made available in Supple-

mentary Materials (File S1).

Results

As noted above, one important concern is that analyzing song

imitation typically involves manual selection of the segments of

pupil song to compare with the tutor motif. If the pupil has

reached adulthood and produces a stereotyped song motif, then it

is usually straightforward to hand select a representative selection

of motifs on which to carry out the comparison with the tutor

motif (Figure 1A). However, in pupil birds with limited or variable

imitation of the tutor motif, different song sections may be more or

less similar to the tutor (Figure 1B, solid and dashed green bars,

respectively). The outcome of the comparison to the tutor song will

depend on the method used to select pupil song segments for

comparison. This clearly raises the possibility that comparisons

between experimental and control groups could be affected by

experimenter bias, and complicates comparisons of experimental

outcomes across different laboratories.

To illustrate the extent to which hand-selection of song material

can impact the outcome of a similarity measurement, we

compared an analysis run on manually-selected song segments

with an analysis run, by the same algorithm, on randomly-selected

song segments. We assessed the outcomes by quantifying the

contrast between measurements of similarity between different

songs of the same bird (self-similarity) and measurements of song

similarity between different adult birds in our colony (cross-

similarity). The contrast is defined as the difference between the

self-similarity score and cross-similarity score divided by the sum of

these two scores (see Methods). Multiple song motifs were

manually selected from 21 adult birds in our colony and a

similarity analysis was carried out with Sound Analysis Pro (batch

comparison). As expected, we observed high acoustic similarity

between songs produced by the same bird, and low acoustic

similarity between songs of different birds (SAP similarity scores of

91% and 34%, respectively, Figure 1C,D).

We then ran an automated procedure that extracted motif-

length song segments from bouts of song. This was done by

splitting bouts into non-overlapping segments, each having the

duration of a song motif. The extracted segments were confirmed

to include only song vocalizations (see Methods), and were then

loaded into SAP to carry out the same similarity analysis used for

the manually-selected song segments. This selection process

resulted in a significantly lower acoustic similarity between songs

from the same bird (self-similarity: 68% as compared to 91%,

Wilcoxon rank-sum test, p,1024), and a higher acoustic similarity

between songs of different birds (cross-similarity: 41% as

compared to 34%, Wilcoxon rank-sum test p = 0.014). Taken

together, the contrast between self-similarity and cross-similarity

(their difference divided by their sum, see Methods) was reduced

by almost a factor of two for automated song selection compared

to manual selection (0.25 as compared to 0.46; Figure 1D,

Wilcoxon rank-sum test p,1024, paired t-test p,1026; note that

the acoustic similarity computed by the SAP algorithm is designed

to be insensitive to the sequence of syllables)

We also examined the impact of automated versus manual song

selection on measures of song sequence similarity. The contrast

between song sequence similarity within each bird and sequence

similarity across birds also decreased significantly when the song

renditions were automatically selected (Figure 1E,F. contrast 0.14

and 0.06, manual and automatic selection, respectively; Wilcoxon

rank-sum test p = 0.011, paired t-test p,1024). Note that the

contrast measures for sequence similarity using both manual and

automatic selection were significantly smaller than the contrast

measures for acoustic similarity (both paired t-test p,1024).

These findings suggest that even bouts of normal adult zebra

finches song can contain variations in vocal structure that are not

captured when hand-selecting motifs. Indeed, visual inspection of

song spectrograms reveal that this arises from a combination of

variations in song sequence as well as the presence of song vocal

elements (syllables) not part of the canonical song motif. Thus,

measures of song similarity will depend strongly on the method of

selecting song segments used in the analysis. This effect is likely to

be even more pronounced when analyzing young or experimen-

tally-manipulated pupil birds with highly variable songs. Since

manual selection inevitably involves subjective decisions on how to

handle song variations, we conclude that it is better to use an

automated process for selecting segments of pupil song. The most

important benefit of using an automatic selection method is that it

is precisely specified, and can be consistently applied across all

data sets.

Another difficulty in assessing song similarity, imposed by the

presence of song variability, is related to the identification of silent

gaps between syllables. Clearly, the timing of gaps within the song

is a crucial component of song structure, and any measure of song

similarity must incorporate gaps. On the other hand, silent gaps

naturally have a high mutual similarity because their song spectral

features have a characteristic value. Thus a direct comparison of

pupil gap and tutor gaps do not meaningfully contribute to a

measure of song similarity.

One approach is to segment the songs to syllables and silent

gaps, and carry out only syllable-to-syllable comparisons — simply

eliminating gaps from the process. However, this approach would

fail if the identification of syllables and gaps is unreliable, for

example, because of variability in the duration of a short gap. If

two adjacent sound sequences are sometimes segmented into one

syllable and sometimes segmented into two syllables (Figure 1G),

this would result in very different syllable similarity scores. Such
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Figure 1. Selection of tutor and pupil songs for similarity analysis. A) Example of tutor song showing stereotyped motifs. B) Examples of pupil
song bouts, showing variable song structure including motifs and other irregular vocal elements. Some segments of pupil song are more similar to the
tutor motif than others. Green bars represent apparent motifs. C–F) The effect of manual (blue) versus automatic (black) selection of song segments on
similarity analysis (computed with Sound Analysis Pro, SAP). C) The songs of each bird are compared to other songs of the same bird (self-similarity) or to
songs of other adult birds in the colony (cross-similarity). Each point in (C) plots the self-similarity vs cross-similarity score for one bird based on the
acoustic similarity of the songs. D) Contrast between self- and cross-similarity, computed for acoustic similarity scores. Each point is one bird. E)
Sequence self-similarity versus sequence cross-similarity. F) Contrast between self- and cross-similarity, computed for sequence similarity scores. Each
line in figures D,F connects results from the same birds, carried out either by manually or automatically selecting song segments. G) Examples of
inconsistent segmentation of song into syllables and silent gaps. For panels A-B, G: top, song spectrogram; middle, segmentation of the song into
syllables (red bars); bottom, sound amplitude (log power).
doi:10.1371/journal.pone.0096484.g001
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unreliability in segmentation could have a particularly deleterious

impact on measures of sequence similarity.

To avoid these concerns, the SAP algorithm does not carry out

syllable-to-syllable comparisons, but instead detects ‘islands of

similarity’ between the two songs. While this approach allows

flexibility in capturing similarities in spite of possible merging or

splitting of syllables, it also allows different parts of a segmented

pupil syllable to be matched to completely different (non-

sequential) parts of the tutor song, even if a reasonable match to

the complete syllable exists. Therefore, this approach may result in

overall overestimation of the similarity, which decreases the

contrast between songs that are indeed similar and those that are

not. It also reduces the reliability of the sequencing score.

The Algorithm

We set out to devise an algorithm that measures the similarity

between the songs of one bird with potentially highly variable

songs (for example a pupil bird) and the song of another bird that

has a stereotyped song motif (for example a tutor bird). First we

will specify a procedure for selecting segments of tutor and pupil

for comparison. Second, we will describe an algorithm to compute

the similarity between the selected segments.

Song selection
It is assumed that tutor songs are sufficiently stereotyped that

song imitation can be quantified using a small number of

representative song motifs, and that these can be hand selected

in an unbiased way by the experimenter. Thus, tutor song motifs

were manually selected and segmented to syllables and silent gaps

(using our Song-GUI software tool). For tutor birds that had a

highly stereotyped song motif, at least 3 motif samples were

collected. For tutor birds that had a small number of different

‘versions’ of their motif, 3 samples of each version were collected.

In contrast to the manual selection of tutor song segments, the

pupil song segments are selected automatically from within bouts

of song by the software. Pupil song is treated as a continuous

signal, without segmenting it into syllables and silent gaps. The

steps of this procedure are as follows:

First, pupil song bouts were extracted (using Song-GUI),

excluding only introductory notes and non-song vocalizations,

such as distance calls, that occurred between bouts. In an effort to

minimize experimenter bias, we kept continuous streams of

vocalization intact in these segments, even if they contain vocal

elements that were not easily identifiable as song syllables. The

software then automatically partitions extracted pupil song bouts

into non-overlapping adjacent segments. Each segment is twice the

length of the tutor motif, and as many segments are extracted from

the pupil bout as possible. To ensure proper sampling of different

time alignments, the first segment is not drawn from the beginning

of the bout, but starts at a random time after the bout onset,

ranging between zero and the duration of a tutor motif.

Acoustic and sequence similarity scores
To compute acoustic similarity, we adopted the approach of

Tchernichovski [26] in representing songs by a small set of spectral

features, each of which is computed from the song spectrum

computed in short (9 ms) time slices of the sound pressure signal.

The spectral features we consider are: Wiener entropy, frequency

modulation (FM), pitch, pitch goodness, gravity center, and

spectral width (Figure 2, see Methods). Each feature was mean-

subtracted and scaled so that the absolute median difference from

its mean is one (see Methods). In the following descriptions, the

notation f1, f2, f3, … fNf represents the set of Nf mean-subtracted

and normalized song features. The notation fk(i) represents the

value of the kth feature at the ith time point.

Construction of the similarity matrix
The method of calculating a similarity matrix was adopted from

Tchernichovski et al [26]. The detailed steps are as follows: First,

we construct a distance matrix in which each bin represents the

Euclidean distance in the feature space between time windows in

the tutor and pupil songs. Let D (M, N) be a rectangular matrix

where M is the number of time points in tutor song and N is the

number of time points in the pupil song. The distance between the

set of features in bin i of the tutor song and bin j of the pupil song

is:

Figure 2. Spectral features for representation of song. We
consider the following 6 features for representing song acoustic
structure: Top to bottom: gravity center, spectral width, Weiner entropy,
pitch goodness frequency modulation and pitch.
doi:10.1371/journal.pone.0096484.g002

An Automated Evaluation of Song Imitation

PLOS ONE | www.plosone.org 4 May 2014 | Volume 9 | Issue 5 | e96484



Figure 3. Computation of acoustic and sequence similarity from the similarity matrix. A) Pupil song segment (spectrogram at top), tutor
motif (at left) and matrix of similarities between all time points in the two songs. For each of the tutor syllables at left, the red diagonal line represents
the best match in the pupil song. The yellow circle marks the diagonal with the highest scores (computed as the integral along the diagonal). This
represents the selected best match to that tutor syllable. B–E) The best-matched tutor syllable and section of pupil song are removed from the
similarity matrix. B) The best matches to the remaining tutor syllables are recomputed. The yellow circle marks the diagonal with the largest score. C–
E) The best-matched tutor syllable and pupil song section are removed from the similarity matrix and the process is reiterated until all tutor syllables
have been matched. F) Computation of sequence score. Top panel: For syllable ‘d’ the best matching is shown by a red diagonal and, for illustration,
the matched pupil song fragment is denoted here by dpupil. The algorithm then measures the similarity between the next tutor syllable (‘e’) and the
fragment of pupil song which follows dpupil. This area of interest is marked by a dashed red box, below and to the right of the red diagonal. The
algorithm finds the highest-scoring diagonal within the area of interest, denoted here by cyan diagonal, and this is the partial sequence score for
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Because the matrix of distances calculated in short time

windows is too noisy to reliably identify regions of high song

similarity, like Tchernichovski et al, we compute a separate

distance matrix containing the weighted average along diagonals

of the distance matrix D. The RMS average distance is computed

along diagonals 25 ms on either side of each point (i,j):

L(i,j)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

50

X25

t~{25

D Aizt,Bjzt

� �2

vuut

Finally, the distance matrices D and L were transformed into

similarity matrices. The approach used by Tchernichovski et al,

which we adopt here, is to relate each entry in the distance matrix

D or L to the probability of observing that value. This is done as

follows: A set of distance matrices were computed for pairwise

comparisons of the songs of 10 unrelated adult birds, and the

cumulative distribution of distance values in D and L was

computed across these birds. The cumulative distributions are

stored, and allow us to assign a probability, P(Di,j) and P(Li,j), of

observing a distance value less than each observed Di,j and Li,j in

our actual tutor-pupil song comparison.

Finally, a similarity matrix is computed using the distance

matrices D and L, incorporating the probability distributions

described above. This is done in two stages: In the first step,

regions of similarity are determined from the distance matrix L,

and are defined as bins (i,j) for which the probability P(Li,j) of

observing a smaller distance in unrelated songs is less than 0.05

(namely, P(Li,j),0.05). In the second step, the value of the

similarity matrix Si,j is assigned as Si,j = 1-P(Di,j) if the bin i,j is

within a region of similarity, otherwise Si,j is set to zero. Thus, the

similarity matrix S ends up containing bins of non-zero value only

in regions of high similarity (as determined from the L distance

matrix). However, the numerical values of S are not determined

from L, but are given by Si,j = 1-P(Di,j).

Acoustic similarity score
The computation of acoustic similarity score from the similarity

matrix treats the tutor syllables as independent entities, while

treating the pupil song as a continuous stream, without consid-

eration of its syllable and gap structure. Thus, the similarity matrix

is composed of horizontal bands corresponding to tutor syllables.

Each band is bounded above and below by regions, corresponding

to silent gaps in the tutor song, which are not considered in the

analysis. Within this framework, the procedure matches each tutor

syllable with a fragment of the pupil song to which it is most

similar. The process utilizes a greedy strategy, starting with the

tutor syllable that has the best match in the pupil song, and,

working iteratively, ends with the syllable that has the worst match

(see Figure 3). Note that this process is based on matching

individual complete tutor song syllables, rather than the ‘islands’ of

similarity used by Tchernichovski et al.

The procedure starts by finding, for each of the tutor syllables,

the best-matched fragment in the pupil song as follows: For each

tutor syllable (e.g. syllable ‘a’) the procedure finds the diagonal in

the horizontal band of the similarity matrix (e.g. for syllable ‘a’)

that maximizes the sum of similarity scores along it. One can think

of this as ‘sliding’ a diagonal line over the horizontal band and

finding the position at which the sum is maximal (red diagonal

lines in Figure 3). The maximal sum defines a similarity score for

each tutor syllable (termed ‘partial similarity score’). Because the

sum is always computed over the whole diagonal, the highest

partial similarity score is obtained when the fragment of pupil song

matches the entire tutor syllable. Note that, if a short and long

syllable are equally well imitated, the longer syllable is matched

first.

Next, the procedure identifies the tutor syllable and the

matching fragment of pupil song that have the highest partial

similarity score (Figure 3A, red diagonal in syllable ‘d’, marked by

a yellow circle). Once this selection is made, the similarity matrix is

modified to prevent re-matching the identified pupil song

fragment with any of the remaining tutor syllables in later

iterations of the algorithm. Specifically, the regions of the

similarity matrix corresponding to the matched tutor syllable

and pupil song fragment are set to zero. In the example, matching

syllable ‘d’ (Figure3A), results in zeroing the appropriate rows and

columns, as shown in Figure3B.

Once the similarity matrix is updated, the steps above are

iterated. The sum over all the diagonals is recomputed for all the

remaining tutor syllables. The tutor syllable that has the largest

diagonal sum (best match) is selected, and the similarity matrix is

updated again. This process continues until each of the tutor

syllables is matched to a pupil song fragment (Figure 3B–E). The

overall acoustic similarity score is the sum of the partial similarity

scores for all tutor syllables, normalized by the sum of the lengths

of all syllables in the tutor motif. The details of this procedure are

described in Methods.

Sequence similarity score
The overall sequence similarity score between a tutor and pupil

song is computed as the average of ‘partial sequence similarity

scores’ for each of the tutor syllables. For each tutor syllable, the

partial sequence similarity score is defined to be the acoustic

similarity of the pupil song with the next tutor syllable. Tutor

syllable ‘d’, for example, would receive a high partial sequence

similarity score if, after a good imitation of syllable ‘d’, the pupil

then immediately produces a good imitation of syllable ‘e’. In

Figure 3F (top panel), the fragment of pupil song that best matches

tutor song ‘d’ is identified (we refer to this fragment of pupil song

as ‘dpupil’). The partial sequence score for tutor syllable ‘d’ is

defined as the acoustic similarity between tutor syllable ‘e’ and the

fragment of pupil song that immediately follows dpupil. This is

computed from the maximal diagonal in an area of interest in the

similarity matrix (dashed red rectangle). The boundaries of this

area of interest are made broad enough to allow some flexibility in

the precise alignment of the potential imitation of syllable ‘e’ (see

Methods). This method produces a ‘soft’ punishment for pupil

syllables that are sufficiently misaligned as to extend outside the

area of interest. The step-by-step process for computing the

sequence similarity score is described in Methods.

syllable d. Other panels: partial sequence scores for the other syllables. The overall sequence score is the average over the partial sequence scores for
all syllables.
doi:10.1371/journal.pone.0096484.g003
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A composite measure of similarity, referred to as the similarity

index (SI), is defined as the product of the acoustic similarity score,

described above, and the sequence similarity score.

Selecting an optimal set of features
Because of the high degree of stereotypy of zebra finch song, an

algorithm for evaluating of song similarity should clearly assign a

high similarity between different renditions of songs from the same

bird (‘self-similarity’). Likewise, the large diversity of zebra finch

songs should result in a low similarity between songs of unrelated

birds in the colony (‘cross-similarity’). We set out to optimize the

parameters of our model with respect to the contrast between self-

similarity and cross-similarity, as measured by our algorithm.

Contrast is defined as the difference between these two measures,

normalized by their sum (see Methods). This metric has the

advantage that it is invariant to overall changes in the scale of the

similarity scores. Ideally, the contrast should be as large as

possible, up to its maximal value of one.

We set out to find a set of spectral features that maximally

distinguishes between similar and dissimilar songs, according to

the contrast metric. To do this, we tested the performance of our

software with different subsets of features. All possible combina-

tions of four, five or six spectral features out of the six described

above were tested. For each combination of features we computed

the self-similarity of multiple songs of the same bird and the cross-

similarity of songs of unrelated birds (n = 21 adult birds). A self-

similarity and cross-similarity scores were computed separately for

each bird, using the Similarity Index (SI) computed by our

algorithm (incorporating both acoustic and sequence similarities,

see Methods). Figure 4A shows the detailed results of three of the

feature combinations. This analysis suggested that some sets of

features were more sensitive to the differences in the songs of

different birds.

To quantify the effectiveness of different feature sets, we then

computed the contrast between self-similarity and cross-similarity

scores for each bird, as described above, and analyzed the

distribution of contrast values obtained with different feature sets

(see inset). A multiple comparison analysis (using the Tukey–

Kramer method and 5% confidence) showed that sets of feature

that included ‘frequency modulation (FM)’ performed significantly

more poorly than other feature sets. In contrast, we found that

feature sets that included ‘Gravity center’, but excluded FM,

performed better than other sets. The best performance was

obtained using the four parameters ‘Gravity center’, ‘Spectral

width’ ‘Pitch goodness’ and ‘Weiner entropy’, but combinations

that also included ‘Pitch’ performed nearly as well.

Comparison to Sound Analysis Pro (SAP)
To further assess the performance of the SI algorithm, we

compared the contrast scores obtained from SI with the contrast

scores obtained from SAP. Since SAP software reports acoustic

similarity and sequence similarity scores separately, we compare

these separately in the following analysis (Figure 4B,C and

Figure 4D,E for acoustic and sequence similarity, respectively,

and Figure S1). Self- and cross-similarity scores used to compute

contrast were obtained using the ‘similarity batch’ tool in SAP. We

compared the contrast scores obtained from SAP to those obtained

from the SI algorithm, first using the optimal set of features in the

SI algorithm to compute the self- and cross-similarity scores. In

this case, the contrast obtained with the SI algorithm (average

acoustic similarity contrast = 0.41, red asterisks) was significantly

higher than that reported by SAP (averaged acoustic similarity

contrast = 0.156, blue asterisks) for the same dataset (Figure 4B,C,

paired t-test p,1026,Wilcoxon rank-sum test, p,1025). An even

more profound difference was found when comparing the contrast

in sequence scores (0.55 for SI compared to 0.173 for SAP paired

t-test p,10-7,Wilcoxon rank-sum test, p,1027). The comparisons

described above were based on the contrast metric; similar

findings were obtained for the difference between cross- and self-

similarity scores (not normalized by the sum) (Figure S1).

To determine how much of this improvement in performance of

the SI algorithm was due to the optimized feature set, we repeated

this analysis using the SI algorithm with the same set of features

used by SAP (Weiner entropy, frequency modulation, pitch and

pitch goodness). Even when using the SAP feature set, the SI

algorithm still reported a larger contrast metric (cyan asterisks,

Figure 4B–E, acoustic similarity contrast = 0.29, sequence

similarity contrast = 0.37, paired t-test, both p,0.001).

The analysis described above may have underestimated the

performance of SAP. The contrast reported by the SAP algorithm

(in comparing similar and non-similar songs) degrades when using

pupil song segments that are longer than the tutor motif, since this

results in an overestimate of similarity. (In the analysis above, both

SAP and SI were forced to use the same data set, in which pupil

segments were twice the length of the tutor motif.) Indeed, when

the above analysis is run with pupil segments equal in length to the

tutor motif (a more optimal configuration for SAP), both self- and

cross-similarities are smaller, and the contrast increases signifi-

cantly (comparison to data in Figure 1C–F black: Wilcoxon rank-

sum test p = 0.04 and p = 0.02, paired t-test p = 0.003 and

p = 0.001 for acoustic and sequence similarity, respectively). Even

for this case, the SI algorithm produced a significantly higher

contrast than SAP (p,10-4 for both acoustic and sequence

contrast, Wilcoxon rank-sum test).

Last, we demonstrate the performance of our algorithm in

assessing the development of tutor imitation. We measured the

extent of tutor imitation in young birds (n = 4, see Methods) at

three stages of vocal development: at age 60 days post hatch (dph),

when song imitation is in its early stages, at age 75, and at 90 dph,

when song is relatively mature. Imitation was assessed by

measuring the acoustic and sequence similarity between tutor

song and juvenile song. Change in imitation scores over this period

were determined by subtracting the scores at age 60 dph (Figure 5).

Acoustic and sequence similarity scores were computed using both

the SI algorithm, with automatically-selected pupil song segments,

and using the SAP algorithm with manually-selected pupil song

segments. Both the SI and SAP algorithms showed a consistent

and significant increase in acoustic similarity during song

development (Figure 5A, age 90 dph: t-test p = 0.016 and 0.02

for SI and SAP respectively). Note that the increase in acoustic

similarity scores using SI was significantly larger than in SAP

Figure 4. Comparison of different methods of measuring acoustic similarity. A) Selecting the optimal set of features. For each bird we
measured the similarity of extracted song bouts to its own song motif (self-similarity) and to the motif of other birds (cross-similarity). These were
computed using different combinations of spectral features (indicated with different colors and symbols). Inset: The contrast between self-similarity
and cross-similarity, shown for each different subset of features tested. B-E) The SI algorithm yields higher contrast than the SAP software. Acoustic (B)
and sequence (D) self-similarity versus cross-similarity computed using the Similarity Index (SI) algorithm with the optimal features (red), using the SI
algorithm with the set of features used by SAP (cyan), and using SAP software (blue). The contrast was significantly larger using the SI algorithm with
optimal features, both for the acoustic similarity scores and sequence similarity scores (C and E, respectively).
doi:10.1371/journal.pone.0096484.g004
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(paired t-test p = 0.03, 75 dph and 90 dph days combined). In

terms of sequence similarity, the SI algorithm revealed a

significant increase in sequence scores for all four birds between

60 and 90 dph (t-test p = 0.01), while SAP detected a significant

increase in only two of the birds (t-test p,0.05). Furthermore, the

SI algorithm revealed a significant trend in sequence scores across

all four birds (p = 0.001), while SAP did not detect a significant

overall trend (p = 0.43). Visual inspection of the songs revealed

that all four birds exhibited improvements in sequence imitation

during development (Figure 5C–F).

Figure 5. Changes in acoustic and sequence similarity through vocal learning. Quantification of tutor imitation in a set of four juvenile
birds at early, middle and late stages of vocal learning. For each juvenile bird, song similarity to the tutor song was quantified on days corresponding
to 60, 75 and 90 days of age (days post hatch, dph). Acoustic similarity and sequence similarity were quantified separately, and developmental
changes were computed by subtracting the similarity scores at 60 dph. (A) Change in acoustic similarity at 75 and 90 dph. Shown are scores
computed using the SI algorithm (black) and the SAP algorithm (grey), both of which show significant developmental increase in similarity to tutor
song. B) Change in sequence similarity at 75 and 90 dph. The SI algorithm reveals significant development of sequence imitation. The SAP sequence
scores exhibit no significant correlation with age. C–F) For each of the four birds songs early and late in development. Each figure corresponds to one
bird top to bottom: tutor song; bird song recorded at age 90 dph; two examples of bird song recorded at age 60 dph.
doi:10.1371/journal.pone.0096484.g005
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Discussion

The quantification of song imitation is an important tool for

understanding the mechanisms of vocal learning in songbirds.

Advances in methods for analyzing the spectral structure of

vocalizations [27] have recently led to an automated algorithm,

available as a widely-used software package (Sound Analysis Pro;

SAP), for computing the similarity of pupil and tutor songs [26]. In

this method, a short (,0.5–1 s) segment of pupil song and of tutor

song are manually selected and passed to the program, which then

computes a scalar measure of similarity. An overall similarity score

is computed as the average over many of these comparisons across

different segments of pupil and tutor song.

Selection of song segments for comparison poses a significant

challenge for quantification of song imitation. If we imagine the

simplest case in which both the tutor and pupil bird produce a

perfectly stereotyped song motif, then selecting song segments

would be trivial: simply manually extract a single example each of

the tutor song motif and of pupil song motif. However, in

laboratory studies of vocal learning, the pupil is typically a juvenile

or young adult bird that may have undergone some experimental

manipulation, and thus may have a quite variable song, perhaps

even lacking a motif structure [24]. In contrast, the tutor is most

often an adult bird with a fairly stereotyped song motif. In the

procedure described in this paper, we have primarily addressed

the problem of pupil song variability, and assumed that the tutor

song is largely stereotyped. We will return later to the problem of

tutor song variability.

Manual selection of pupil song segments can reasonably be used

in the presence of small amounts of pupil song variability, but is

problematic when the variability is large. If the pupil only rarely

produced song variants, these might be safely ignored as ‘outliers’.

Even if the pupil bird produced a small number of easily-identified

motif variants, a manual selection process could still be used to

choose the different variants for comparison. However, under

conditions in which the pupil produces unreliable motifs, highly

variable syllables or even syllables that have an acoustic structure

not typical of zebra finches [24,25], the process of manually

selecting song segments could lead to an overestimate of song

similarity, particularly if the selection process is biased toward

‘normal’ looking vocal sequences, as shown in Figure 1.

To avoid the need to hand-select segments of pupil song, the SI

software automatically cuts continuous bouts of singing into equal-

length segments for comparison to the tutor motif. Bouts of pupil

song were extracted manually from recorded song files using Song-

GUI. However, care was taken not to break up continuous streams

of vocalization, even if the bout appeared to contain atypical

vocalizations that were not obviously part of the motif. Only

introductory notes, and calls that occurred outside of singing, were

excluded. In principle, this process could be further automated.

We found that the songs of our adult tutor birds were relatively

well-structured and, therefore, that variation in the motif, and its

segmentation into syllables and gaps, can be captured by a few

representative samples: thus, we used Song-GUI to manually select

tutor song motifs. This may not always be the case however, and

one can imagine automating the process of selecting tutor song

segments, much like we have described for pupil songs. For

example, they could be selected automatically by breaking up

bouts of tutor singing into roughly one-second segments. It should

be noted that our algorithm would still treat tutor song and pupil

song in a fundamentally different way: tutor song is segmented into

distinct syllables such that gaps are not analyzed, while pupil song

is maintained as a continuous stream of sound.

While our procedure assumes that tutor songs contain only one

motif, with perhaps a small number of minor variants, some adult

zebra finches may have substantial variability in their motifs, or

may even lack a highly stereotyped motif structure. Such

variability can cause a problem for our algorithm, as we have

described it. First, tutor song variability, captured by including

multiple samples of different tutor songs in the comparison, will

reduce the measure of song acoustic similarity, even when the bird

makes a good copy of the tutor song. To see this, imagine using

our algorithm to analyze the imitation of a hypothetical bird that

sings three different motif variations - 1, 2, and 3. A pupil bird that

perfectly imitates all three variations should ideally get a very high

imitation score. However, our algorithm, as currently specified,

will give this hypothetical bird a middling imitation score because

it averages the similarity of matching motifs (1,1; 2,2, and 3,3)

together with comparisons of non-matching motifs (1,2; 1,3; 2,3).

Such concerns could be addressed by basing the overall imitation

score not on the average of imitation scores across multiple

comparisons of song segments, but rather on the 90th percentile of

imitation scores. In this way, the algorithm would be quantifying

the ‘best match’, rather than the average match of the pupil song

segments to the tutor.

In addition to specifying a procedure for selecting song

segments, we have also modified the method of calculating the

similarity of these segments to the tutor. First, because of the

unreliability of segmenting highly variable song, pupil song

segments are maintained in continuous form. In contrast, tutor

songs are more stereotyped, and therefore more reliably segment-

ed. Because we eliminated tutor gaps from the similarity

calculation, our algorithm avoids problems inherent in computing

the acoustic similarity between silent gaps. Furthermore, because

pupil songs are not segmented into syllables and gaps, tutor song

can be matched to the pupil song on the basis of entire syllables.

This avoids introducing excessive flexibility in the assignment of

regions of similarity, which can lead to an overestimate of the

similarity of unrelated songs. The additional constraint imposed by

the SI algorithm, of matching entire tutor syllables, also likely

accounts for the increased sensitivity to changes in sequence

similarity. This increased sensitivity was apparent in our quanti-

fication of song imitation during song development in juvenile

birds.

Finally, we tested different combinations of features to find the

set that performs best. Our objective assessment for performance

was the contrast between similarities of bird song motif to its own

song as compared to songs of unrelated adult birds. Optimally, the

algorithm should differentiate well between these measures and

produce high contrast. We included in our pool the features pitch,

pitch goodness, wiener entropy and frequency modulation (FM),

that are thought to bear a close relation to sound production (Ho

et al. 1998). In addition, we added two new spectral features:

gravity center and spectral width. The optimal subset of features

included gravity center, spectral width, pitch goodness and wiener

entropy, thus excluding pitch and FM. In our experience, these

features seemed to be hard to estimate and tended to be unstable.

SAP chose to expand the definition of pitch as both the frequency

of the single tone (whistle) and the fundamental frequency

(harmonic stack). SAP uses the Cepstrum [28] or the YIN [29]

algorithm to detect harmonic pitch, and dynamically shift to

gravity center when harmonic pitch is undetectable. However,

many sounds are neither a harmonic stack nor a single tone. In

these cases the pitch and FM are noisy signals that contribute little

to the representation of the sound and can result in underestima-

tion of similarity between such sounds. Indeed, including pitch and

FM in our analysis resulted in favoring similarity between
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harmonic stacks over other sounds. We did not attempt to change

the weights assigned to each acoustic feature and its contribution

to the similarity. It is very much possible that a certain set of

weights performs better (i.e. higher contrast). However, given the

large space of possibilities we decided to simply give equal weights

to measures from all features analyzed.

While our motivation in developing our algorithm was to assess

the extent to which pupil bird has imitated the songs of its tutors, it

can also be used to examine the stability of songs after a

manipulation, such as deafening, that causes the gradual

degradation of song acoustic and temporal structure. In this case,

the song motif produced before the manipulation is treated as the

‘tutor’ motif, and songs produced on each day after the

manipulation are treated as the pupil song.

Note that, while our procedure for quantifying song imitation

captures one measure of syllable order, namely the sequence

similarity, there are other aspects of song sequence it does not

capture. For example, Scharff and Nottebohm (1991)[24] quan-

tified sequence linearity and sequence consistency, which describe

the transitions between different song syllables. These analyses

require that individual pupil song syllables be segmented and

labeled (‘a’, ‘b’, ‘c’, etc) in order to identify specific transitions. In

principle, the SI algorithm could be extended to automate the

labeling of pupil song fragments by their similarity to tutor song

syllables, and the resulting labels used to compute the linearity and

consistency scores.

Conclusions

Starting from the algorithm described by Tchernichovski et al

[26], we have made a number of modifications designed to assess

song imitation in birds with poor imitation and high song

variability. First, we have described an automated method for

selecting segments of pupil song, thus reducing subjective bias.

Second, we have described a new algorithm for computing the

similarity between continuous streams of pupil song vocalizations

with the tutor motif. We have also optimized the set of acoustic

features to improve the contrast between comparisons of similar

and dissimilar songs.

Methods

Subjects
Subjects were adult male zebra finches (120–350 days post

hatch, dph). Birds were obtained from the Massachusetts Institute

of Technology zebra finch breeding facility (Cambridge, Massa-

chusetts). Animal care was carried out in accordance with

guidelines of the National Institutes of Health guidelines and

approved by the Massachusetts Institute of Technology Commit-

tee on Animal Care (protocol 0712-071-15).

Song recording: Zebra finches were placed singly in a cage within a

sound-attenuating chamber. Songs were digitized and recorded

using Aardvard Direct Pro 24/96 and SAP sound analysis

recorder software.

Song spectral features
Song spectral features were computed from the song spectro-

gram as follows: The sound was first band-passed between 500 and

8600 Hz. It was then sampled in 9 ms windows in 1 ms sliding

steps. The spectrogram was computed using multitaper spectral

analysis [30] (time-bandwidth product, p = 1.5; number of tapers,

k = 2). The song spectral features were computed for each short

time window of the spectrogram. Each feature used in our

algorithm was first mean-subtracted and normalized by the

standard deviation of the distribution of that feature, as measured

from a sample of 100 different songs recorded from 10 different

adult birds from our colony.

Wiener entropy (also known as spectral flatness): A measure of

sound randomness in which the width and uniformity of the power

spectrum are evaluated. By definition, it is a number between 0–1.

However, we measure it in logarithmic scale to expand the range.

Therefore, it ranges from zero, for white noise, to minus infinity,

for complete order (such as a single tone).

Frequency modulation: A measure of the slope of the frequency

contours. It is computed by the angle between the time and

frequency derivatives of the song power across frequencies.

Pitch is the perceived tone of sounds and a measure of the period

of the sound oscillations. For sounds with multiple harmonics, it is

the fundamental frequency, which was evaluated using Fourier

transform of the log spectrum, a method known as the cepstrum

[28], as used by SAP.

Pitch goodness is a measure of how well the pitch is defined. It is

computed by the power, in the cepstrum, of the pitch. Therefore,

it is a good detector for sounds with multiple harmonics, for which

the Fourier transform of the log power spectrum has a distinctive

peak.

In addition to these standard SAP features, we considered two

additional spectral features:

Gravity center: The power spectrum at each time point is a

distribution of weights along the frequency axis. The gravity center

is the unique frequency point where the weighted relative distance

of the power spectrum sums to zero. This is the first moment of the

power spectrum.

Let bi, i = 1,…,B, be the discrete frequency points in the

spectrum, and pi the power at each frequency. Then the center of

gravity

G~
1PB

i~1 pi

XB

i~1

pibi

Spectral width: Measure of the extent to which the power is

distributed around the gravity center. Mathematically, it is the

second moment of the power spectrum. Following the notation

above, the spectral width is computed as:

1PB
i~1 pi

XB

i~1

pi(bi{G)2

Procedure for computing acoustic and sequence
similarity score

Acoustic similarity score. The following contains a step-by-

step description of the algorithm for computing the acoustic

similarity score from the similarity matrix:

1. For each tutor syllable k (k = 1..Nsyll), find the fragment of

pupil song that has the highest partial similarity to tutor syllable k.

This is carried out in the following steps, where tutor syllable k

starts at time bin Ik
1 and stops at time bin Ik

2 and has a length of

Nk = Ik
2–Ik

1 bins:

a. Compute the partial similarity SP
k(j) of tutor syllable k with

each fragment of pupil song beginning at pupil song time bin j and

ending at pupil song time bin j+Nk. The sum of diagonals in the

similarity matrix is given by:
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Sk
p (j)~

XNk

m~0

S
Ik
1
zm, jzm

b. Find the bin j* for which the fragment of pupil song has the

largest partial similarity Sk
max(j*) = maxjSpk (j). This says that tutor

syllable k is best matched to the fragment of pupil song beginning

at bin j* and extending to j*+Nk. The partial similarity score of this

match is Sk
max = SP

k(j*).

2. From all the tutor syllables, choose the syllable k* with the

highest partial similarity score.

3. Set rows Ik*
1 through Ik*

2, inclusive, to zero. The boundaries

of the matched pupil fragment are j* and j*+Nk*. Set the columns

of the similarity matrix between these values, inclusive, to zero.

The removal of these rows and columns ensures that, once a song

segment is found to have a best match, it will not be matched

again. Save the boundaries of the matched pupil fragment for the

tutor syllable k* in the following vectors: Jk*
1 = j* and Jk*

2 = j*+Nk*.

4. Return to step 1, discarding all previously calculated partial

similarity scores. If a best match has been found for all syllables,

then continue to the next step.

5. The final similarity score is a weighted average of partial

similarities of all syllables.

S~
1

PNsyll

k~1

Nk

�
XNsyll

k~1

Sk
max

Sequence similarity score. Following the annotations

above for each syllable k, we compute the similarity between

tutor syllable k+1 and the fragment of pupil song between Jk
2 and

Jk
2+ (Ik+1

2–Ik
2) +50 ms. Thus, the area of interest starts at the end

of the pupil fragment matching syllable k. It has a length equal to

50 ms plus the interval between the offset of tutor syllable k and

the offset of tutor syllable k+1. The additional 50 ms is intended to

provide greater flexibility to the temporal alignment of sequential

syllables. The sequencing score for syllable k is the maximal sum

along a diagonal in the area of interest. Only the parts of the

diagonals that are inside the area of interest are summed up.

Therefore, different diagonals have different lengths according to

their position relative to the borders of the area. Note that the

partial sequence similarity score of a tutor syllable will not be

computed if: 1) it is the last syllable in the tutor motif, or 2) it is

matched to a pupil fragment too close to the end of the pupil song

segment. The overall sequence score, SEQ, is the average over all

the applicable syllable sequencing score.

Calculation of self-similarity and cross-similarity
To assess the effects of different methods of sampling song

segments and different acoustic features (Figure 1C–F and

Figure 4), we computed the similarity between segments of song

extracted from one bird and song motifs from the same bird (self-

similarity), or song motifs from other birds (cross-similarity). Adult

zebra finch songs can be highly stereotyped; thus comparisons

between different songs of the same bird provide a natural means

to quantify the performance of an algorithm at the upper bound of

song imitation. In contrast, the songs of unrelated adult birds can

be quite different, and provide a natural means to quantify the

performance of an algorithm at the lower limits of song imitation.

Twenty-one unrelated adult birds from our colony were used for

this analysis. For each bird, song motifs and song bouts were

extracted and saved using Song-GUI. Details of the comparisons

carried out for the different analyses of self-similarity and cross-

similarity in each figure is explained below.

Figure 1C–F: For each bird in the database (n = 21 birds), 10

motifs were manually selected and roughly 20 song bouts were

extracted, both using Song-Gui. For computing contrast between

manually-selected song segments (blue), self-similarity was com-

puted between all pairwise combinations of the 10 selected song

motifs. For each bird, a set of 10 other birds was selected randomly

for carrying out a cross-similarity comparison. For each point in

Figure 1C–F, the cross-similarity scores were averaged over these

10 birds. For each cross-similarity comparison, the following steps

were taken: For manual selection (blue), the comparisons were

made between all pairwise combinations of the 10 manually-

selected motifs using Sound Analysis Pro (SAP). For automatic

selection (black), comparisons were made (using SAP) between all

combinations of 10 manually-selected motifs and 25 motif-length

segments, automatically extracted from the song bouts. For this

calculation, the automatically extracted segments were chosen to

be the duration of one song motif (rather than two song motifs

described for the tutor-pupil imitation score). This was done to

ensure that the manual/automatic comparisons were made on

segments of the same length.

Figure 4 (all panels): Song bouts were saved using Song-GUI.

Segments were extracted automatically by SI algorithm from

within song bouts. Each song segment was twice the length of the

song motif used in the comparison. For each set of features, and

for each bird, self-similarity score was computed by randomly

choosing 25 song segments and comparing them with randomly

chosen 3 song motifs from the same bird, using SI algorithm.

Cross-similarity was computed for each bird, by randomly

choosing 25 song segments and comparing them with song motifs

from 10 randomly selected birds.

Contrast
We evaluated the performance of the SI algorithm and the SAP

algorithm using two different metrics. First, we measured the

contrast between the self-similarity and cross-similarity scores,

defined as follows:

Contrast~
similarityself {similaritycross

similarityself zsimilaritycross

where the self- and cross-similarity scores were computed as

described above. We also examined the difference between self-

and cross-similarity scores as a metric of performance (Figure S1).

We note, however, that the contrast metric has the advantage that

it is invariant to overall scale. Thus, if two algorithms produce

similarity scores that differ only by a constant factor, the contrast

metric will indicate that the two algorithms have the same

performance, while the difference metric will indicate that the

algorithm with higher scores performs better.

Tutor imitation through development
Male juvenile birds were maintained in the aviary in their home

cages with both parents until age 44–45 days post hatch (dph), at

which point they were transferred to isolated sound proof

chambers where they were maintained. Songs were recorded

continuously until they reached the age of 90 dph. Adult father

(tutor) birds were transferred temporarily to sound isolation cages

and their undirected songs were recorded. Acoustic and sequence
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similarities to the tutor song were measured using songs recorded

on days corresponding to ages 60, 75, and 90 dph. At least 25

songs from each bird were used on each day. Comparisons of tutor

motif to songs of juvenile birds were carried out using both the SI

algorithm and using SAP. For SI algorithm, song bouts were

extracted and comparisons to tutor motifs were computed using

the Song-GUI software. For SAP analysis, motif-length song

sections were manually extracted using Song-GUI and the sound

segments were transferred to SAP for acoustic and sequence

comparison. Changes in song similarity during development were

determined by subtracting, for each bird, the score at age 60 dph

from the scores at the later days. The analysis was carried out

separately for acoustic similarity and sequence similarity scores.

Supporting Information

Figure S1 Comparing the performance of SI and SAP
algorithms using the difference between self-similarity
and cross-similarity. SI algorithm with the optimal features

(red), SI algorithm using with the set of features used by SAP

(cyan), and SAP software (blue). The difference was significantly

larger using SI algorithm with optimal features, both for (A) the

acoustic similarity scores and (B) sequence similarity scores

(Tukey–Kramer method with 5% confidence).

(TIF)

File S1 Implementation of the SI algorithm in Matlab.
The software includes a manual and user friendly interface

Song_gui.

(ZIP)
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