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Abstract

Dark pools are equity trading systems that do not publicly display orders. Dark pools

offer potential price improvements but do not guarantee execution. Informed traders

tend to trade in the same direction, crowd on the heavy side of the market, and face a

higher execution risk in the dark pool, relative to uninformed traders. Consequently,

exchanges are more attractive to informed traders, and dark pools are more attractive

to uninformed traders. Under certain conditions, adding a dark pool alongside an

exchange concentrates price-relevant information into the exchange and improves price

discovery. Improved price discovery coincides with reduced exchange liquidity.
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Dark pools are equity trading systems that do not publicly display orders. Some

dark pools passively match buyers and sellers at exchange prices, such as the midpoint

of the exchange bid and offer. Other dark pools execute orders by their price and

time priority. According to the Securities and Exchange Commission (SEC 2010), as

of September 2009, thirty-two dark pools in the United States accounted for 7.9% of

total equity trading volume. As of mid-2011, industry estimates from the Tabb Group,

a consultancy, and Rosenblatt Securities, a broker, attribute about 12% of U.S. equity

trading volume to dark pools. The market shares of dark pools in Europe, Canada, and

Asia are smaller but are quickly growing (see Section 1 and International Organization

of Securities Commissions 2010).

Dark pools have raised regulatory concerns in that they may harm price discovery.

The European Commission (2010), for example, remarks that “[a]n increased use of

dark pools . . . raise[s] regulatory concerns as it may ultimately affect the quality of the

price discovery mechanism on the ‘lit’ markets.” The International Organization of

Securities Commissions (2011) similarly worries that “the development of dark pools

and use of dark orders could inhibit price discovery if orders that otherwise might

have been publicly displayed become dark.” According to a survey conducted by the

CFA Institute (2009), 71% of respondents believe that the operations of dark pools are

“somewhat” or “very” problematic for price discovery. The Securities and Exchange

Commission (2010), too, considers “the effect of undisplayed liquidity on public price

discovery” an important regulatory question. Speaking of nondisplayed liquidity, SEC

Commissioner Elisse Walter commented that “[t]here could be some truth to the crit-

icism that every share that is crossed in the dark is a share that doesn’t assist the

market in determining an accurate price.”1

In this paper I investigate the impact of dark pools on price discovery. Contrary

to misgivings expressed by some regulators and market participants, I find that under

natural conditions adding a dark pool improves price discovery.

My inquiry into dark pools builds on a model of strategic venue selection by in-

formed and liquidity traders. Informed traders hope to profit from proprietary infor-

mation regarding the value of the traded asset, whereas liquidity traders wish to meet

their idiosyncratic liquidity needs. Both types of traders optimally choose between an

exchange and a dark pool. The exchange displays a bid price and an ask price and

executes all submitted orders at the bid or the ask. The dark pool uses exchange prices

and match orders at the midpoint of the exchange bid and ask. Unlike the exchange,

the dark pool has no market makers through which to absorb excess order flow and

1“Speech by SEC Commissioner: Opening Remarks Regarding Dark Pools,” October 21, 2009.
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thus cannot guarantee execution. Sending an order to the dark pool therefore involves

a trade-off between potential price improvement and the risk of no execution.

Execution risk in the dark pool drives my results. Because matching in the dark

pool depends on the availability of counterparties, some orders on the “heavier” side

of the market—the side with more orders—will fail to be executed. These unexecuted

orders may suffer costly delays. Because informed orders are positively correlated with

the value of the asset and therefore with each other, informed orders are more likely to

cluster on the heavy side of the market and suffer lower execution probabilities in the

dark pool. By contrast, liquidity orders are less correlated with each other and less likely

to cluster on the heavy side of the market; thus, liquidity orders have higher execution

probabilities in the dark pool. This difference in execution risk pushes relatively more

informed traders into the exchange and relatively more uninformed traders into the

dark pool. Under natural conditions, this self-selection lowers the noisiness of demand

and supply on the exchange and improves price discovery. Moreover, the reporting of

trading volume in dark pools further improves price discovery above and beyond the

self-selection mechanism.

This price-discovery effect of dark pools complements their “size discovery” function,

by which large institutional orders are executed without being revealed to the broad

market.2 This size-discovery benefit of dark trading has been widely acknowledged by

market participants and regulators, and today only a handful of dark pools execute

large orders (Securities and Exchange Commission 2010; Ready 2012)

The potential improvement in price discovery by dark pools should be balanced by

a few other considerations. First, although dark pools tend to improve price discovery

on average, they may occasionally exacerbate misleading inferences of the asset value,

especially in the unlikely event that liquidity traders push the net order flow far op-

posite of the informed traders. Second, better price discovery need not coincide with

higher liquidity. Indeed, more informative orders tend to worsen adverse selection on

the exchange, leading to wider spreads and higher price impacts. Third, the longer

the horizon of private information, the less effective the dark pool is in improving

price discovery. Fourth, for analytical tractability I have abstracted from some of the

trading practices that are applied in dark pools, such as “pinging,”3 order routing,4

2Investors who reveal their trading intentions to the market may be subject to “predatory trading,” as modeled
by Brunnermeier and Pedersen (2005) and Carlin, Lobo, and Viswanathan (2007).

3“Pinging” orders are marketable orders that seek to interact with displayed or nondisplayed liquidity. Pinging
is sometimes used to learn about the presence of large hidden orders.

4Order routing means sending orders from venue to venue, typically by algorithms. For example, if a dark pool
cannot execute an order because there is no counterparty, the dark pool can route the order to another dark pool,
which may further route the order into the market.
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“indication of interest” (IOI),5 and fair access.6 These practices may well contribute to

controversies surrounding dark pools. Moreover, insufficient or inaccurate disclosure by

dark pools of their operating mechanisms may prevent investors from making informed

decisions of order execution.7

I do not claim that dark pools improve welfare. The welfare implications of dark

pools depend not only on the trade-off between price discovery and liquidity, but also

on how price discovery and liquidity affect production decisions, asset allocation, and

capital formation.8 Although a thorough model nesting all these elements is outside

the scope of this paper, the results of this paper can naturally serve as a building block

for future research on the welfare implications of dark pools.

My theoretical results yield a number of empirical implications. For example, the

model predicts that a higher volatility increases informed participation in dark pools,

but can reduce dark-pool market share; and that the addition of a dark pool tends

to increase order informativeness, spreads, and price impacts on exchanges. These

predictions are broadly consistent with recent empirical evidence, as I discuss in more

5An IOI is an electronic message that contains selected information (such as the ticker) about an order and is
sent by a trading venue (such as a dark pool or a broker) to a selected group of market participants to facilitate
a match. The Securities and Exchange Commission (2009) proposes to treat actionable IOIs—IOIs containing the
symbol, size, side, and price of an order—as quotes, which must be disseminated to the broad market immediately.
Buti, Rindi, and Werner (2011a) model a market in which selected traders are informed of the state of the dark
pool.

6A trading venue has fair access if it allows all broker-dealers to participate. Fair access involves the subtle
trade-off between excluding certain market participants and leaking information of institutional orders. In a speech
on April 19, 2010, SEC Deputy Director James Brigagliano observed that “some dark pools attempt to protect
institutional trading interest by raising access barrier to the sell-side or certain hedge funds.” Results from Boni,
Brown, and Leach (2012) indicate that the exclusion of short-term traders in a dark pool improves the execution
quality of institutional orders. Foster, Gervais, and Ramaswamy (2007) theoretically illustrate that setting a volume
threshold in the dark pool—that is, the dark pool executes orders only if trading interests on both sides of the
market reach that threshold—can sometimes prevent impatient traders or informed traders from participating in
the dark pool.

7For example, in October 2011, SEC finds that Pipeline, a dark-pool operator that claimed to only al-
low buyside firms to participate, had filled the majority of customer orders through its own trading af-
filiate (see www.sec.gov/news/press/2011/2011-220.htm). In October 2012, the SEC charged eBX for fail-
ing to protect confidential information of its subscribers (see www.sec.gov/news/press/2012/2012-204.htm).
In May 2013, the Financial Industry Regulatory Authority (FINRA) requested information from a num-
ber of dark pools regarding their operation mechanisms and practice of handling customer orders (see
www.finra.org/Industry/Regulation/Guidance/TargetedExaminationLetters/P268091). In a survey of 64 institu-
tional investors, Bennett, Colon, Feng, and Litwin (2010) find that on many occasions dark pools do not disclose
sufficient information of their operations to the customers. The International Organization of Securities Commis-
sions (2010) also observes that “[l]ack of information about the operations of dark pools and dark orders may result
in market participants making uninformed decisions regarding whether or how to trade within a dark pool or using
a dark order.”

8For example, O’Hara (2003) argues that price discovery and liquidity have important implications for asset
prices. Bond, Edmans, and Goldstein (2012) survey the extensive literature on the effect of financial market for the
real economy; they point out that information revealed in financial markets helps managers make real decisions,
and this feedback effect can potentially explain many market phenomena that otherwise may seem puzzling.
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detail in Section 4.

To the best of my knowledge, this paper is the first to show that adding a dark

pool can improve price discovery. My finding stands in contrast to that of Ye (2011),

who studies the venue choice of a large informed trader in the Kyle (1985) framework

and concludes that the addition of a dark pool harms price discovery on the exchange.

Ye (2011), however, assumes that only the informed trader can freely select trading

venues, whereas I allow both informed and liquidity traders to select venues.

A couple of existing models of dark pools focus on questions other than price dis-

covery. Degryse, Van Achter, and Wuyts (2009) build a dynamic model of a dark pool

and analyze how various transparency requirements for dark-pool orders affect traders’

behavior and welfare. Buti, Rindi, and Werner (2011a) model the competition between

an open limit order book and a dark pool, and focus on the interaction between dark-

pool trading and characteristics of the limit order book, such as quote depths. Because

these two papers do not model asymmetric information regarding the asset value, their

results and mine are complementary.

Finally, my results complement those of Hendershott and Mendelson (2000) (HM),

who model the coexistence of a dealers’ market (similar to the exchange in this paper)

and a “crossing network” (similar to the dark pool in this paper). HM have the im-

portant insight that traders in dark pools impose positive (“liquidity-begets-liquidity”)

and negative (“crowding out”) externalities on each other. My focus on price discovery

complements HM’s focus on liquidity externality.

My model differs from HM’s in the behavior of exchange prices and informed traders.

Specifically, informed traders in HM’s model use a corner strategy: either they all go

to the exchange immediately, or they all try the dark pool before the exchange. This

behavior is a result of HM’s assumption that, if informed traders fail to execute their

orders in the dark pool, dealers are still willing to execute the leftover orders at the

original quotes.9 By contrast, in my model, informed traders who fail to cross in the

dark pool will face a new, potentially worse price on the exchange. This distinction

regarding price risk is important for price discovery and generates evidently different

empirical predictions. First, HM predicts that depending on information horizon, all

9More specifically, HM model the cost of dark-pool execution as a fraction 1 − δ of a trader’s gain from trade.
In their model, either all informed traders have δ = 0 (with the probability γ), or all informed traders have δ = 1
(with probability 1 − γ). In the former case (i.e., short-lived information), all informed traders immediately go to
the exchange by assumption; in the latter case (i.e., long-lived information), all informed traders go to the dark
pool because exchange prices do not change later. Put differently, by going to the dark pool, informed traders in
HM lose either none of their information advantage or all of their information advantage. In addition, the exchange
spread in HM is set once and does not change over time. In my model, informed traders choose their trading venue
in a more endogenous fashion, and exchanges prices change over time.
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informed traders only use one venue at a time; my model predicts that informed traders

(partially) use both venues regardless of information horizon. Second, in HM, informed

traders’ strategies are invariant to market conditions, such as volatility; in my model

informed traders’ strategies endogenously respond to volatility and other market con-

ditions. Third, HM predict that if private information expires sooner, then informed

traders use the exchange more, and the exchange spread becomes narrower; I show

that the opposite can happen in my model. Finally, in HM the exchange spreads do

not change after a dark pool crosses, whereas in my model they do. These distinct

predictions can be tested empirically.

1 An Overview of Dark Pools

This section provides an overview of dark pools. I discuss why dark pools exist, how

they operate, and what distinguishes them from each other. For concreteness, I tailor

this discussion for the market structure and regulatory framework in the United States.

Dark pools in Europe, Canada, and Asia operate similarly.

Before 2005, dark pools had low market share. Early dark pools were primarily

used by institutions to trade large blocks of shares without revealing their intentions

to the broad market, in order to avoid being front-run. A watershed event for the U.S.

equity market was the adoption in 2005 and full implementation in 2007 of Regulation

National Market System, or “Reg NMS” (Securities and Exchange Commission 2005),

which abolished rules that had protected the manual quotation systems of incumbent

exchanges. In doing so, Reg NMS encouraged newer and faster electronic trading cen-

ters to compete with the incumbents. Since Reg NMS came into effect, a wide variety

of trading centers have been established. As of September 2009, the United States had

about 10 exchanges, 5 electronic communication networks (ECNs), 32 dark pools, and

over 200 broker-dealers (Securities and Exchange Commission 2010). Exchanges and

ECNs are referred to as transparent, or “lit,” venues; dark pools and broker-dealer in-

ternalization are considered opaque, or “dark,” venues. In Europe, the adoption in 2007

of the Markets in Financial Instruments Directive (MiFID) similarly led to increased

competition and a fast expansion of equity trading centers.10

Figure 1 shows the consolidated volume of U.S. equity markets from July 2008 to

June 2011, as well as the market share of dark pools during the same periods, estimated

10For example, according to the CFA Institute (2009), European equity markets had 92 regulated markets (ex-
changes), 129 “multilateral trading facilities” (MTFs), and 13 “systematic internalizers” as of September 2010. For
more discussion of MiFID and European equity market structure, see the European Commission (2010).
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Figure 1: U.S. equity trading volume and the market share of dark pools
The left axis plots the daily consolidated equity trading volume in the United States, esti-
mated by Tabb Group. The right axis plots the market shares of dark pools as a percent-
age of the total consolidated volume, estimated by Tabb Group and Rosenblatt Securities.
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by Tabb Group and Rosenblatt Securities. According to their data, the market share

of dark pools roughly doubled from about 6.5% in 2008 to about 12% in 2011, whereas

consolidated equity volume dropped persistently from about ten billion shares per day

in 2008 to about seven billion shares per day in 2011. A notable exception to the

decline in consolidated volume occurred around the “Flash Crash” of May 2010.

Dark pools have gained market share for reasons that go beyond recent regulations

designed to encourage competition. Certain investors, such as institutions, simply need

nondisplayed venues to trade large blocks of shares without alarming the broad market.

This need has increased in recent years as the order sizes and depths on exchanges

have declined dramatically (Chordia, Roll, and Subrahmanyam 2011). Further, dark

pools attract investors by offering potential price improvements relative to the best

prevailing bid and offer on exchanges. Finally, broker-dealers handling customer orders

have strong incentives to set up their own dark pools, where they can better match

customer orders internally and therefore save trading fees that would otherwise be paid

to exchanges and other trading centers.

An important commonality among dark pools is that they derive execution prices

from lit venues. For example, a typical, classical form of dark pools matches customer

orders at prices derived from lit venue, such as the midpoint of the national best bid

and offer (NBBO) or the volume-weighted average price (VWAP). These dark pools

7



are typically operated by “agency brokers” (broker-dealers without proprietary order

flows) and exchanges. Examples include ITG Posit and Liquidnet (see also Ready 2012

for a discussion of these two dark pools), as well as midpoint dark order types offered

by NASDAQ, BATS, and DirectEdge. By taking lit-venue prices as given, these dark

pools do not provide direct price discovery. The model of this paper is based on this

trading mechanism.11

In addition to those “midpoint” dark pools, a second group of dark pools can provide

limited price discovery. Mostly operated by large broker-dealers, these dark pools are

essentially continuous nondisplayed limit order books, where the execution prices are

bounded between the National Best Bid and Offer. Yet a third group of dark pools

operate as electronic market makers that accept or reject customer orders at high

speed. To preserve space, I delegate the discussion of these dark pools, as well as

additional institutional details of dark liquidity, to the Online Appendix of this paper.

Overviews of dark pools and nondisplayed liquidity can also be found in Johnson (2010),

Butler (2007), Carrie (2008), Securities and Exchange Commission (2010), European

Commission (2010), CSA/IIROC (2009), and International Organization of Securities

Commissions (2011).

2 Modeling the Exchange and the Dark Pool

This section presents a two-period model of trading-venue selection. As mentioned

in Section 1, the dark pool modeled in this paper passively matches orders at the

midpoint of the exchange’s bid and ask. A glossary of key model variables can be

found in Appendix A. All proofs are provided in Appendix B.

2.1 Markets and traders

There are two trading periods, denoted by t = 1, 2. At the end of period 2, an asset

pays an uncertain dividend v that is equally likely to be +σ or −σ. Thus, σ > 0 is

the volatility of the asset value. The asset value v is publicly revealed at the beginning

of period 2. (Longer-lived information is considered in Section 3.2.) For example, this

revelation of private information may represent an earnings announcement.

Two trading venues operate in parallel: a lit exchange and a dark pool. The ex-

change is open in periods 1 and 2. On the exchange, a risk-neutral market maker sets

11This type of dark pool is also the prototype of existing models, including Hendershott and Mendelson (2000),
Degryse, Van Achter, and Wuyts (2009), Ye (2011), and Buti, Rindi, and Werner (2011a).
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competitive bid and ask prices. Market orders sent to the exchange arrive simultane-

ously. Exchange buy orders are executed at the ask; exchange sell orders are executed

at the bid. After period-1 orders are executed, the market maker announces the vol-

ume Vb of exchange buy orders and the volume Vs of exchange sell orders. The market

maker also announces the exchange closing price P1, which is the expected asset value,

conditional on Vb and Vs. (In Section 3.1, the market maker also uses the dark pool

trading volume to calculate P1.) The closing price P1 is also the price at which the

market maker is willing to execute a marginal order at the end of period 1. A key

objective of this section is to analyze price discovery, that is, the informativeness of

these announcements, in particular P1, for the fundamental value v of the asset.

The dark pool executes (or “crosses”) orders in period 1 and is closed in period 2.

Closing the dark pool in period 2 is without loss of generality because once the dividend

v is announced in period 2, exchange trading is costless. An order submitted to the

dark pool is not observable to anyone but the order submitter. The execution price of

dark pool trades is the midpoint of the exchange bid and ask—also known simply as the

“midpoint” or “midmarket” price. In the dark pool, orders on the “heavier side”—the

buyers’ side if buy orders exceed sell orders, and the sellers’ side if sell orders exceed

buy orders—are randomly selected for matching with those on the “lighter” side. For

example, if the dark pool receives QB buy orders and QS < QB sell orders, all of the

same size, then QS of the QB buy orders are randomly selected, equally likely, to be

executed against the QS sell orders at the midmarket price. Unmatched orders are

returned to the order submitter at the end of period 1. As described in Section 1, this

midpoint execution method is common in dark pools operated by agency brokers and

exchanges.

For-profit traders and liquidity traders, all risk-neutral, arrive at the beginning of

period 1. There is an infinite set of infinitesimal traders of each type. For-profit

traders have a mass of µ̄ > 0 and can potentially trade one unit of the asset per capita.

(Trading one unit per capita simplifies the exposition, and the equilibrium applies to

any finite order size per capita, with minor adjustment; see Lemma 1 below.) For-

profit traders can acquire, at a cost, perfect information about v, and thus become

informed traders. These information-acquisition costs are distributed across for-profit

traders, with a differentiable cumulative distribution function F : [0,∞)→ [0, 1]. After

observing v, informed traders submit buy orders (in either venue) if v = +σ and submit

sell orders if v = −σ. For-profit traders who do not acquire the information do not

trade. I let µI be the mass of informed traders; their signed trading interest is therefore

Y = sign(v) · µI .
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Liquidity buyers and liquidity sellers arrive at the market separately (not as netted).

The mass Z+ of liquidity buy orders and the mass Z− of liquidity sell orders are

nonnegative, independent, and identically distributed on [0,∞) with positive and finite

density functions, and are infinitely divisible. Infinite divisibility means that, for each

integer n, the total liquidity buy orders Z+ can be viewed as the aggregate demand

by n liquidity buyers, whose order sizes are independently and identically distributed

random variables. A similar construction applies for the total liquidity sell orders Z−.

Thus, we can interpret a market with infinitely many liquidity traders as the “limiting

case” of a market with n liquidity buyers and n liquidity sellers as n → ∞.12 In

particular, because, in the limit, each liquidity trader’s order size has zero mean and

zero variance, the conditional joint distribution of Z+ and Z−, given this liquidity

trader’s order size, is the same as the unconditional joint distribution of Z+ and Z−.13

I denote by 0.5µz the mean of Z+ (and Z−) and by 0.5σ2
z the variance of Z+ (and Z−).

Liquidity traders incur delay costs if they do not complete their orders in period 1.

Specifically, for each liquidity trader i, the delay cost per unit of asset per capita is:

ci = γiσ, (1)

where the multiplicative constants {γi} represent the “types” of liquidity traders and

have a twice-differentiable cumulative distribution function G : [0,Γ) → [0, 1], for

some Γ ∈ (1,∞]. A linear delay cost simplifies the analysis and does not change my

main result regarding price discovery. (An equilibrium characterization under constant

12More specifically, for each integer n, Z+ can be constructed as the sum of n independently and identically
distributed random variables {Z+

in}. That is,

Z+ ∼
n∑

i=1

Z+
in.

Note that the distribution of Z+
in depends on n. I assume that the variance of Z+

in is finite. Similarly, there exist n
i.i.d. random variables Z−in such that

Z− ∼
n∑

i=1

Z−in.

In this setting, {Z+
in} and {Z−in} can be viewed as the order sizes of n liquidity buyers and n liquidity sellers. As

n→∞, the mean and variance of Z+
in and Z−in converge to zero, and liquidity buyers and sellers become infinitesimal.

13We denote the probability distribution of Z+ by Φ and show that, for each i, the conditional distribution of∑n
j=1 Z

+
jn, given Z+

in, converges to the prior distribution of Z+ as n→∞. That is, for all z > 0, Φ(z |Z+
in)→ Φ(z)

as n → ∞. By the independence of Z+
in and {Z+

jn}j 6=i, this amounts to showing that Z+
in converges to zero in

distribution. Indeed, for any z > 0, using Markov’s inequality and the fact that E(Z+
in) converges to zero as n→∞,

we have

P(Z+
in < z) = 1− P(Z+

in ≥ z) ≥ 1− E(Z+
in)

z
→ 1, as n→∞.

Similarly, the conditional distribution of Z−, given Z+
in, converges in n to the prior distribution of Z−. The proof

for a liquidity seller’s inference is symmetric.
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Figure 2: Time line of the two-period model.

Period 1 Period 2| |

Traders select venue
or delay trade

Orders executed

Exchange announces
closing price Value announcedv

Remaining orders
executed on exchange

Value paidv

delay costs is available in an Online Appendix.) This linear delay cost can come from

margin constraint or unmodeled risk aversion. In Brunnermeier and Pedersen (2009),

for example, the required margin on a trade is linearly increasing in the volatility of

the asset. The delay costs of informed traders, by contrast, stem from the loss of

profitable trading opportunities after v is revealed in period 2. (Clearly, if informed

traders were subject to additional delay costs, they would be even more likely to trade

on the exchange, strengthening my results.)

Finally, random variables v, Z+, Z−, and the costs of information-acquisition and

delay are all independent, and their probability distributions are common knowledge.

Realizations of Y , Z+ and Z− are unobservable, with the exception that informed

traders observe v, and hence know Y . Informed and liquidity traders cannot post

limit orders on the exchange; they can trade only with the exchange market maker or

by sending orders to the dark pool. Combining limit order books with dark pools is

analytically hard and is left for future research.14,15 Further, both venues do not charge

trading fees; this zero-fee assumption is made for tractability. Analyzing endogenous

trading fees, which can potentially interact with the self-selection mechanism, is left

for future research.

Figure 2 illustrates the sequence of actions in the two-period model.

14Limit order books are hard to solve under asymmetric information. Most models of limit order books have
pure private values and do not have asymmetric information regarding the asset value. Papers taking this approach
include Parlour (1998), Foucault (1999), Foucault, Kadan, and Kandel (2005), Goettler, Parlour, and Rajan (2005),
Rosu (2009), and Buti, Rindi, Wen, and Werner (2011), among others. Chakravarty and Holden (1995), Kaniel and
Liu (2006), and Goettler, Parlour, and Rajan (2009) allow informed traders, but incorporating a dark pool into
their models is far from trivial. For a literature review of limit order books, see Parlour and Seppi (2008).

15Although limit order books also feature the trade-off between price improve and execution risk, limit order
books are typically transparent. To the extent that informed traders post limit orders, depths on limit order books
may reveal information. Dark pools do not reveal information through depth. Therefore, the trade-off faced by an
informed trader in a dark pool is different from the trade-off in an open limit order book.
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2.2 Equilibrium

An equilibrium consists of the quoting strategy of the exchange market maker, the mar-

ket participation strategies of for-profit traders, and the trading strategies of informed

and liquidity traders. In equilibrium, the competitive market maker breaks even in

expectation, and all traders maximize their expected net profits.

Specifically, I let αe and αd be candidates for the equilibrium fractions of liquidity

traders who, in period 1, send orders to the exchange and to the dark pool, respectively.

The remainder, α0 = 1 − αe − αd, choose not to submit orders in period 1 and delay

trade until period 2. I let β be the period 1 fraction of informed traders who send

orders to the dark pool. The remaining fraction 1 − β of informed traders trade on

the exchange. (Obviously, informed traders never delay their trades as they will have

lost their informational advantage by period 2.) Once the asset value v is revealed in

period 2, all traders who have not traded in period 1—including those who deferred

trading and those who failed to execute their orders in the dark pool—trade with the

market maker at the unique period 2 equilibrium price of v.

I first derive the equilibrium exchange bid and ask, assuming equilibrium partici-

pation fractions (β, αd, αe). Because of symmetry and the fact that the unconditional

mean of v is zero, the midpoint of the market maker’s bid and ask is zero. Therefore,

the exchange ask is some S > 0, and the exchange bid is −S, where S is the exchange’s

effective spread, the absolute difference between the exchange transaction price and the

midpoint. For simplicity, I refer to S as the “exchange spread.” Given the participation

fractions (β, αd, αe), the mass of informed traders on the exchange is (1 − β)µI , and

the expected mass of liquidity traders on the exchange is αeE(Z+ + Z−) = αeµz. The

market maker breaks even on average over both buy and sell orders,16 so the spread

satisfies

0 = −(1− β)µI(σ − S) + αeµzS, (2)

which implies that

S =
(1− β)µI

(1− β)µI + αeµz
σ. (3)

The dark pool crosses orders at the midmarket price of zero.

Next, I derive the equilibrium mass µI of informed traders. Given the value σ of

information and the exchange spread S, the net profit of an informed trader is σ − S.

16In this sense, my setting is different from that of Glosten and Milgrom (1985), where the market maker breaks
even in expectation on each buy order and each sell order. This modeling choice simplifies the analysis without
affecting the main intuition of the paper.
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The information-acquisition cost of the marginal for-profit trader, who is indifferent

between paying or not paying for information, is also σ − S. Because all for-profit

traders with lower information-acquisition costs become informed, the mass of informed

traders in equilibrium is µ̄F (σ−S), by the exact law of large numbers (Sun 2006). We

thus have

µI = µ̄F (σ − S) = µ̄F

(
αeµz

(1− β)µI + αeµz
σ

)
. (4)

For any fixed β ≥ 0 and αe > 0, (4) has a unique solution µI ∈ (0, µ̄).

Finally, I turn to the equilibrium trading strategies. Without loss of generality, I

focus on the strategies of buyers. In the main solution step, I calculate the expected

payoffs of an informed buyer and a liquidity buyer, on the exchange and in the dark pool.

The equilibrium is then naturally determined by conditions characterizing marginal

traders who are indifferent between trading on the exchange and in the dark pool.

Suppose that αd > 0. Because informed buyers trade in the same direction, they

have the dark-pool crossing probability of

r− = E
[
min

(
1,

αdZ
−

αdZ+ + βµI

)]
, (5)

where the denominator and the numerator in the fraction above are the masses of

buyers and sellers in the dark pool, respectively. Liquidity buyers, on the other hand,

do not observe v. If informed traders are buyers, then liquidity buyers have the crossing

probability r− in the dark pool. If, however, informed traders are sellers, then liquidity

buyers have the crossing probability

r+ = E
[
min

(
1,
αdZ

− + βµI
αdZ+

)]
. (6)

Obviously, for all β > 0, we have

1 > r+ > r− > 0. (7)

Because liquidity buyers assign equal probabilities to the two events {v = +σ} and

{v = −σ}, their dark pool crossing probability (r+ + r−)/2 is greater than informed

traders’ crossing probability r−. In other words, correlated informed orders have a

lower execution probability in the dark pool than do relatively uncorrelated liquidity

orders.

If the dark pool contains only liquidity orders (i.e., β = 0), then any dark-pool buy
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order has the execution probability

r̄ = E
[
min

(
1,
Z−

Z+

)]
. (8)

For our purposes, r̄ measures the degree to which liquidity orders are balanced. Per-

fectly balanced liquidity orders correspond to r̄ = 1. Further, as we see shortly, in

equilibrium αd > 0 as long as σ > 0. Thus, the denominator and the numerator on the

right-hand side of (5) and (6) are never zero on the equilibrium path, and r−, r+, and

r̄ are well defined.

The expected profits of an informed buyer on the exchange and in the dark pool

are, respectively,

We = σ − S, (9)

Wd = r−σ. (10)

I denote by c the delay cost of a generic liquidity buyer per unit of asset position.

This buyer’s per-unit net payoffs of deferring trade, trading on the exchange, and

trading in the dark pool are, respectively,

X0(c) = −c, (11)

Xe = −S, (12)

Xd(c) = −r
+ − r−

2
σ − c

(
1− r+ + r−

2

)
. (13)

The terms on the right-hand side of (13) are the liquidity trader’s adverse selection

cost and delay cost in the dark pool, respectively. For β > 0, crossing in the dark pool

implies a positive adverse selection cost because execution is more likely if a liquidity

trader is on the side of the market opposite to that of informed traders.17 For β = 0,

this adverse-selection cost is zero. For simplicity, in the analysis below the net profits

and delay costs of liquidity traders refer to profits and costs per unit of asset, unless

otherwise specified. (It is without loss of generality to focus on the venue decision

based on per-unit payoffs; see Lemma 1 below.)

17For example, Sofianos and Xiang (2011) find that dark pools that have higher execution probabilities also have
slightly higher adverse selection (that is, they are more “toxic”). Næs and Odegaard (2006) provide anecdotal
evidence that filled orders in a dark pool are subject to short-term losses. Mittal (2008) and Saraiya and Mittal
(2009) emphasize that short-term adverse selection in dark pools can reduce execution quality of institutional
investors. Conrad, Johnson, and Wahal (2003), Brandes and Domowitz (2010), and Domowitz, Finkelshteyn, and
Yegerman (2009) examine execution costs in dark pools, although they do not explicitly measure the costs of adverse
selection.
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From (9) and (12), We −Xe = σ. For all delay cost c ≤ σ,

Wd −Xd(c) =
r+ + r−

2
σ + c

(
1− r+ + r−

2

)
≤ σ = We −Xe. (14)

That is, provided c ≤ σ, the dark pool is more attractive to liquidity traders than to

informed traders, relative to the exchange. In particular, (14) implies that a liquidity

trader with a delay cost of σ (or a type of γ = 1) behaves in the same way as an

informed trader. In addition,

Xd(c)−X0(c) = −r
+ − r−

2
σ +

r+ + r−

2
c. (15)

So a liquidity trader with a type of γ = (r+ − r−)/(r+ + r−) is indifferent between

deferring trade and trading in the dark pool.

Before stating the equilibrium, we emphasize that we do not restrict traders to send

orders to only one venue; rather, it is an equilibrium outcome. This result is formally

stated in the following lemma.

Lemma 1. If a trader does not delay trades, then it is an equilibrium that he sends

his entire order to only one venue with probability one.

The intuition for Lemma 1 is simple. Because each trader has a mass of zero, he

has no impact on prices or execution probabilities. Therefore, each trader’s optimal

strategy is to send his entire order to one venue. (If two venues give equal payoff to a

trader, sending the entire order to one venue is also optimal.) While this result relies on

the assumption of finite order size per capita, a finite order size is a standard assumption

in existing models of dark pools, such as Hendershott and Mendelson (2000), Degryse,

Van Achter, and Wuyts (2009), and Buti, Rindi, and Werner (2011a), as well as the

classic model of Glosten and Milgrom (1985) and extensions. A finite order size can

also be viewed as a substitute for (unmodeled) credit limit or capital constraint.18

We are now ready to characterize the equilibrium.

Proposition 1. There exists a unique threshold volatility σ̄ > 0 such that:

(1) If σ ≤ σ̄, then there exists an equilibrium (β = 0, αd = α∗d, αe = 1 − α∗d), where

18If an infinitesimal trader can trade an infinite number of shares per capita, then that trader can become “large”
and strictly prefer splitting his order to avoid “price impact” on the exchange. This size-discovery benefit of dark
pools is separate from the price-discovery focus of this paper, as we discussed in the introduction. So far, I have
not found a tractable model that combines price discovery and size discovery without making additional restrictive
assumptions. For example, Ye (2011) models both price discovery and price impact in the Kyle (1985) framework,
but he assumes exogenous venue choice of uninformed traders.
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α∗d ∈ (0, G(1)] and µ∗I solve

G−1(αd)(1− r̄) =
µI

µI + (1− αd)µz
, (16)

µI = µ̄F

(
(1− αd)µz

µI + (1− αd)µz
σ

)
. (17)

(2) If and only if σ > σ̄, there exists an equilibrium (β = β∗, αd = α∗d, αe = 1−G(1)),

where β∗, α∗d ∈ (0, G(1)], and µ∗I solve

r− = 1− (1− β)µI
(1− β)µI + (1−G(1))µz

, (18)

αd = G(1)−G
(
r+ − r−
r+ + r−

)
, (19)

µI = µ̄F

(
(1−G(1))µz

(1− β)µI + (1−G(1))µz
σ

)
. (20)

The proof of Proposition 1 is provided in Appendix B, but we outline its main

intuition here. If the volatility σ is sufficiently low, the exchange spread is low; thus,

the price-improvement benefit of the dark pool is lower than the cost of execution risk.

In this case, informed traders avoid the dark pool (i.e., β = 0). The equilibrium is then

determined by the marginal liquidity trader who is indifferent between trading on the

exchange and trading in the dark pool, as well as by the marginal for-profit trader who

is indifferent about whether to acquire the information.

If the volatility σ is sufficiently high, informed traders joint liquidity traders in

the dark pool to avoid the higher exchange spread. Thus, β ∈ (0, 1). In this case,

the equilibrium is determined by three indifference conditions. First, informed traders

must be indifferent between trading in either venue, as shown in (18). By (14), a

liquidity trader with a delay cost of σ is also indifferent between the two venues. Thus,

α0 +αd = G(1) and αe = 1−G(1). The second indifference condition (19) then follows

from (15). Here, the fraction α0 of liquidity traders who delay trade must be strictly

positive because informed traders introduce adverse selection into the dark pool. The

third condition (20) says that the marginal for-profit trader is indifferent about whether

to acquire the information.

Similarly, we can characterize an equilibrium for a market structure in which only

the exchange is operating and the dark pool is absent. This exchange-only equilibrium,

stated below, may also be interpreted as one in which a dark pool is open but no trader

uses it.
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Corollary 1. With only an exchange and no dark pool, there exists an equilibrium in

which β∗ = α∗d = 0, and µ∗I and α∗e ∈ (1−G(1), 1) solve

µI
µI + αeµz

= G−1(1− αe) (21)

µI = µ̄F

(
αeµz

µI + αeµz
σ

)
. (22)

2.2.1 Equilibrium selection. The equilibria characterized in Proposition 1 need

not be unique among all equilibria solving (16)–(17) and (18)–(20). For example,

under the condition σ ≤ σ̄ (derived from condition (B2) in the Appendix), both sides

of (16) strictly increase in αd. Similarly, both sides of (19) strictly increase in αd, and

both sides of (21) strictly decrease in αe. Thus, given the absence of a single-crossing

property, multiple equilibria may arise due to coordination: although no single trader

wishes to unilaterally deviate, the collective deviation of a sufficient mass of traders

may move the equilibrium. For example, if a sufficiently large mass of liquidity traders

are “perturbed” and move from the exchange to the dark pool, this movement may

increase the exchange spread so much that those perturbed liquidity traders will stay

in the dark pool.19 A different equilibrium may emerge.20

I use stability as an equilibrium selection criterion, which allows me to compute the

comparative statics of the selected equilibria. Among the equilibria characterized by

Case 1 of Proposition 1, I select that with the smallest liquidity participation α∗d in the

dark pool among those with the property that, as αd varies in the neighborhood of α∗d,

the left-hand side of (16) crosses the right-hand side from below.21 Under the condi-

tions of Proposition 1, this equilibrium exists and is robust to small perturbations.22

Moreover, selecting the stable equilibrium with the smallest α∗d provides a conservative

19In my model, a perturbation of a large mass of liquidity traders into the dark pool needs not increase the
execution probability in the dark pool. In Case 1 of Proposition 1, for example, if an extra fraction ε > 0 of
liquidity traders are perturbed into the dark pool, the dark-pool execution probability stays the same, r̄, because
there are infinitely many infinitesimal traders. In the model of Hendershott and Mendelson (2000), a larger number
of uninformed traders in the dark pool implies a higher execution probability because there are finitely many traders.

20One condition that guarantees the uniqueness of the equilibrium in Case 1 of Proposition 1 is that the distri-
bution function G of delay costs is linear. With a linear G, the condition (B2) in the Appendix is also necessary
for the existence of solutions to (16)–(17).

21Selecting the stable equilibrium corresponding to the smallest α∗d is arbitrary but without loss of generality. As
long as the selected equilibrium is stable, comparative statics calculated later follow through.

22If, for example, α∗d is perturbed to α∗d + ε for sufficiently small ε > 0, then the marginal liquidity trader has a
higher cost in the dark pool than on the exchange, and therefore migrates out of the dark pool. Thus, αd is “pushed
back” to α∗d and the equilibrium is restored. There is a symmetric argument for a small downward perturbation to
α∗d−ε. By contrast, if there is an equilibrium in which, as αd varies, the left-hand side of (16) crosses the right-hand
side from above, this equilibrium would not be stable to local perturbations.
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estimate of the effect of the dark pool.23 Once αd is determined in equilibrium, µI and

β are uniquely determined, too, as shown in the proof of Proposition 1.

Similarly, among equilibria characterized by Case 2 of Proposition 1, I select the

one with the smallest liquidity participation α∗d in the dark pool among those with the

property that, as αd varies in the neighborhood of α∗d, the left-hand side of (19) crosses

the right-hand side from below. In a market without a dark pool (Corollary 1), I select

the equilibrium with the largest liquidity participation α∗e on the exchange among those

with the property that, as αe varies in the neighborhood of α∗e, the left-hand side of

(21) crosses the right-hand side from below. By the argument given for Case 1 of

Proposition 1, these selected equilibria exist and are stable.

2.2.2 Discussion. My modeling approach and results complement a few branches

of prior literature. First, in prior microstructure models with multiple exchanges,

informed traders and liquidity traders tend to cluster by time (Admati and Pfleiderer

1988) or by location (Pagano 1989; Chowdhry and Nanda 1991). As modeled in this

paper, however, informed traders endogenously cluster less with liquidity traders in

the dark pool than on the exchange because of different execution risks in the dark

pool.24 Second, my model relies on self-selection, rather than on nonanonymity, to

separate, at least partially, informed traders from liquidity traders. Models that rely

on nonanonymity (explicitly or implicitly) to filter informed traders include those of

Seppi (1990), Benveniste, Marcus, and Wilhelm (1992), Easley, Keifer, and O’Hara

(1996), Madhavan and Cheng (1997), Grammig, Schiereck, and Theissen (2001), and

Garfinkel and Nimalendran (2003), among others. Third, my study of dark pools differs

from existing papers on nondisplayed markets that operate alone, such as Boulatov

and George (2013), Hendershott and Jones (2005), and Bloomfield, O’Hara, and Saar

(2012).

2.3 Market characteristics and comparative statics

I now investigate properties of the equilibria characterized by Proposition 1. Proposi-

tion 2 and Proposition 3 below aim to answer two questions:

(1) In a market with a dark pool and an exchange, how do market characteristics vary

with volatility σ?

23If another stable equilibria with a larger α∗d exists, using that equilibrium is likely to make my results stronger
by increasing the mass of liquidity traders in the dark pool.

24In a recent model by Guerrieri and Shimer (2012), investors trade multiple assets with different qualities, but
each type of asset only trades in one market; in my model, investors separate with a single asset by trading on
different venues.
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(2) Given a fixed volatility σ, how does adding a dark pool affect market behavior?

Proposition 2. In the equilibrium of Proposition 1:

(1) For σ ≤ σ̄, the dark pool participation rate αd of liquidity traders, the total mass

µI of informed traders, and the scaled exchange spread S/σ are strictly increasing

in σ. The exchange participation rate αe = 1 − αd of liquidity traders is strictly

decreasing in σ. Moreover, αd, µI , and S are continuous and differentiable in σ.

(2) For σ > σ̄, all of µI , βµI , r
+, and S/σ are strictly increasing in σ, whereas αd and

r− are strictly decreasing in σ. Moreover, β, αd, µI , S, r+, and r− are continuous

and differentiable in σ.

In the equilibrium of Corollary 1, µI and S/σ are strictly increasing in σ, whereas αe

is strictly decreasing in σ. Moreover, αe, µI , and S are continuous and differentiable

in σ.

Proposition 3. In the equilibria of Proposition 1 and Corollary 1:

(1) For σ ≤ σ̄, adding a dark pool strictly reduces the exchange participation rate αe

of liquidity traders and the total mass µI of informed traders. Adding a dark pool

strictly increases the exchange spread S and the total participation rate αe + αd

of liquidity traders.

(2) For σ > σ̄, adding a dark pool strictly reduces αe. Moreover, adding a dark

pool strictly increases the exchange spread S if and only if, in the equilibrium of

Proposition 1,

r− < 1− µI
µI + (1−G(1− r−))µz

. (23)

It is sufficient (but not necessary) for (23) that

G′′(γ) ≤ 0 for all 1− r̄ ≤ γ ≤ 1 and F (c)→ 1 for all c > 0. (24)

We now discuss the intuition and implications of Proposition 2 and Proposition 3.

Whereas the equilibria and comparative statics are characterized analytically, the so-

lutions of equilibrium variables are not in closed form. I solve them numerically using

the Matlab function fsolve.

2.3.1 Participation rates and exchange spread. The left-hand-side plot of

Figure 3 shows the equilibrium participation rates in the exchange and the dark pool.

For a small value of information, specifically if σ ≤ σ̄, informed traders trade exclusively

on the exchange because the exchange spread is smaller than the cost of execution risk

in the dark pool. An increase in σ widens the exchange spread, encouraging more
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Figure 3: Participation rates and exchange spread
The left-hand side plot shows the equilibrium participation rates (β, αd, αe) in a market with a
dark pool. The right-hand-side plot shows the scaled exchange spread S/σ. In both plots, the
vertical dotted line indicates the threshold volatility σ̄ at which the equilibrium of Proposition 1
changes from Case 1 to Case 2. Model parameters: µz = 60, σz =

√
60, µ̄ = 20, Z+ and Z− have

Gamma distributions with mean 30 and variance 30, G(s) = s/2 for s ∈ [0, 2], and F (s) = 1−e−s/2
for s ∈ [0,∞).
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liquidity traders to migrate into the dark pool. For σ > σ̄, informed traders use both

venues. Because informed participation in the dark pool introduces adverse selection,

liquidity traders with low delay costs migrate out of the dark pool, leading to a decline

in their dark pool participation rate αd.

We observe that informed dark pool participation rate β first increases in volatility σ

and then decreases. The intuition for this nonmonotonicity is as follows. A higher value

of information σ encourages additional for-profit traders to become informed. For a low

β, the dark pool execution risk is relatively low, and these additional informed traders

prefer the dark pool, raising β. For sufficiently high β, however, informed orders cluster

on one side of the dark pool and significantly reduce their execution probability. Thus,

these additional informed traders send orders to the exchange, reducing β. Nonetheless,

the total quantity βµI of informed traders in the dark pool is strictly increasing in σ.

The right-hand-side plot of Figure 3 shows the scaled exchange spread S/σ. Because

a higher value σ of information encourages more for-profit traders to become informed,

the scaled exchange spread S/σ increases in σ, whether or not a dark pool is present.

For σ ≤ σ̄, adding a dark pool raises S/σ by diverting some liquidity traders, but

none of the informed traders, off the exchange. For σ > σ̄, adding a dark pool in

this example also increases the scaled spread S/σ because the dark pool diverts more
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Figure 4: Expected trading volume on the exchange and in the dark pool
The left-hand plot shows the volume in the two venues and the market share of the dark pool.
The right-hand plot shows the dark pool market share as a function of the scaled spread S/σ. The
vertical dotted line corresponds to the threshold volatility σ̄. Parameters are those of Figure 3.
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liquidity traders than informed traders.

2.3.2 Dark pool market share. I now calculate the dark pool market share, that

is, the proportion of trading volume handled by the dark pool. The market share of the

dark pool is a direct empirical measure of dark pool activity. I assume that once the

dividend v is announced in period 2, informed traders who have not yet traded leave

the market, because they will not be able to trade profitably. When calculating the

exchange volume, I also include the transactions of liquidity traders in period 2. Thus,

the expected trading volumes in the dark pool, on the exchange, and in both venues

are, respectively,

Vd = βµIr
− + αdµz

r+ + r−

2
, (25)

Ve = (1− β)µI + αeµz + αdµz

(
1− r+ + r−

2

)
+ α0µz, (26)

V = Ve + Vd = µz + µI(1− β + βr−). (27)

Figure 4 illustrates the equilibrium behavior of dark pool market share. The left-

hand plot shows that for sufficiently small volatility (σ ≤ σ̄), the dark pool market

share is increasing in the volatility σ. This is because in Case 1 of Proposition 1,

a higher volatility increases the dark pool volume but reduces the exchange volume.

As the volatility σ increases beyond σ̄, however, the exchange volume Ve can increase

substantially, but the dark pool volume Vd may only increase mildly or even decline.
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Thus, the dark-pool market share can decrease in volatility σ for sufficiently large σ,

creating a hump-shaped relation between volatility and the dark pool market share.

The model also generates a similar relation between the scaled spread S/σ and the

dark-pool market share Vd/V , as shown on the right-hand plot of Figure 4.

2.4 Price discovery

Now I turn to price discovery, by which I mean the extent to which the period 1

announcements (P1, Vb, Vs) are informative of the fundamental asset value v. Because

the market maker observes the volume (Vb, Vs), the closing price P1 is

P1 = E[v |Vb, Vs]. (28)

Because v is binomially distributed, its conditional distribution after period 1 trading

is completely determined by its conditional expectation

E[v |P1, Vb, Vs] = E[E[v |Vb, Vs] |P1] = P1. (29)

That is, all period 1 public information that is relevant for the asset value v is conveyed

by the closing price P1. As we will make precise shortly, the “closer” is P1 to v, the

better is price discovery.

Clearly, P1 is uniquely determined by the log likelihood ratio

R1 = log
P(v = +σ |Vb, Vs)
P(v = −σ |Vb, Vs)

= log
φ
(
Z+ = 1

αe
[Vb − (1− β)µI ]

)
· φ
(
Z− = 1

αe
Vs

)
φ
(
Z+ = 1

αe
Vb

)
· φ
(
Z− = 1

αe
[Vs − (1− β)µI ]

) ,
(30)

where φ is the probability density function of Z+ and Z−. We have also used the fact

that the prior distribution P(v = +σ) = P(v = −σ) = 0.5.

Given R1, the market maker sets the period 1 closing price

P1 =
eR1 − 1

eR1 + 1
σ. (31)

Without loss of generality, I condition on v = +σ and consider price discovery to be

unambiguously “improved” if the probability distribution of R1 is “increased,” in the

sense of first-order stochastic dominance. Complete revelation of v = +σ corresponds

to R1 =∞ almost surely.

Using the log likelihood ratio R1, we can also calculate the scaled root-mean-squared
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error (RMSE):

√
E [(v − P1)2 | v = σ]

σ
=

√
E
[

4

(eR1 + 1)2
| v = σ

]
. (32)

Here, we scale the RMSE by σ to focus on the proportional pricing error, which is

always between 0 and 1, rather than dollar pricing error, which, as σ → ∞, can in

principal become arbitrarily large.

In general, we need to know the functional form of the density φ(·) in order to

calculate R1, P1, and the scaled RMSE. To make the intuition more explicit, and

without loss of generality, I take an example in which the density φ(·) is approximated

by N (0.5µz, 0.5σ
2
z) when µz and σ2

z are sufficiently large.25 Substituting the normal

density function into (30), we can approximate R1 by

Rnormal
1 =

2(1− β)µI
α2
eσ

2
z

(Vb − Vs), (33)

which is the counterpart of R1 under the normal distribution. Given that v = +σ,

Vb− Vs has a distribution close to that of N ((1− β)µI , α
2
eσ

2
z), so R1 has a distribution

close to that of

N
(

2

(
(1− β)µI
αeσz

)2

, 4

(
(1− β)µI
αeσz

)2
)
∼ N

(
2I(β, αe)

2, 4I(β, αe)
2
)
, (34)

where

I(β, αe) ≡
(1− β)µI
αeσz

(35)

is the “signal-to-noise” ratio, which is the mass of informed orders on the exchange

(“signal”) divided by the standard deviation of the imbalance of liquidity orders on the

exchange (“noise”).

Clearly, I(β, αe) is increasing in the scaled exchange spread S/σ = (1−β)µI/αe

(1−β)µI/αe+µz
.

Combining this fact with Proposition 3, we can immediately infer the effect of the dark

pool on price discovery, measured by I(β, αe). In addition, under the normal approxi-

mation, we can show analytically that a higher signal-to-noise ratio I(β, αe) corresponds

to a lower scaled RMSE. This result is summarized by the following proposition.

25We can show this approximation as follows. Fix a small δ > 0 such that m = µz/δ is an integer. By infinite
divisibility, Z+ can be represented as the sum

∑m
i=1 Z

+
im, where {Z+

im} are i.i.d. random variables with mean δ and
variance δσ2

z/µz. Fixing δ, the central limit theorem implies that the distribution of Z+ is approximately normal
when m is large, that is, when µz and σ2

z are large.
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Figure 5: Two measures of price discovery, as functions of volatility σ
The left-hand plot shows the signal-to-noise ratio, and the right-hand plot shows scaled RMSE.
The true asset value is v = σ, and other model parameters are those of Figure 3.
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Proposition 4. Under the normal approximation of φ, in the equilibria of Proposition 1

and Corollary 1:

(1) For σ ≤ σ̄, adding a dark pool strictly increases the signal-to-noise ratio I(β, αe) on

the exchange and strictly decreases the scaled RMSE
√

E [4(eR1 + 1)−2 | v = σ].

(2) For σ > σ̄, if the condition specified in Case 2 of Proposition 3 holds, adding a

dark pool strictly increases the signal-to-noise ratio I(β, αe) on the exchange and

strictly decreases the scaled RMSE
√

E [4(eR1 + 1)−2 | v = σ].

Figure 5 plots the two measures of price discovery, signal-to-noise ratio and scaled

RMSE, as functions of σ, with and without a dark pool. We can see that the addition

of a dark pool raises the signal-to-noise ratio and reduces the scaled RMSE. For a

σ close to zero, few for-profit traders become informed. In this case, the exchange

order flow contains little information about v, and the market maker’s pricing error is

close to 100% of the volatility, regardless of whether the dark pool is present. For a

large σ, however, many for-profit traders become informed, and the dark pool starts

to concentrate informed traders on the exchange. In this case, adding a dark pool

significantly reduces the market maker’s percent pricing error from 7.1% to 2.6%.

So far, we have used a single statistic (the signal-to-noise ratio or the scaled RMSE)

to capture the average effect of the dark pool for price discovery. The realized exchange

closing price P1, however, also incorporates the unexpected order imbalance of the

liquidity traders. My next step is to examine the probability distribution of the realized
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Figure 6: Probability density functions of R1 and |P1 − σ|/σ, with and without a dark pool
The distributions are calculated by setting v = σ̄ and drawing 2× 107 realizations of Z+ and Z−.
The model parameters are those of Figure 3.
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log likelihood ratio, R1, and the realized absolute pricing error scaled by σ:

|P1 − σ|
σ

=
2

|eR1 + 1| . (36)

This exercise would shed light on the following question: does the dark pool improve

price discovery path-by-path?

Figure 6 plots the probability density functions of R1 and |P1 − σ|/σ with and

without a dark pool. The value σ of information is set as the threshold value σ̄, so

that β = 0 in the equilibria with a dark pool as well as the equilibria without a dark

pool. We see that on average, the addition of a dark pool shifts the probability density

of R1 to the right and the probability density of |P1− σ|/σ to the left. Price discovery

is thus improved in expectation, as we have seen in Figure 5. Nonetheless, the dark

pool also “fattens” the left tail of R1 and the right tail of |P1 − σ|/σ, harming price

discovery in the extreme and unlikely events that R1 becomes sufficiently negative (or

P1 becomes sufficiently close to −σ). This tail effect has a simple intuition. When the

trading interests of liquidity traders are sufficiently large and opposite in direction to

the informed—such as under a large liquidity shock—the exchange order flow gives the

market maker an incorrect inference regarding the trading direction of the informed

traders. Conditional on an incorrect inference, the larger is the signal-to-noise ratio,

the larger is the realized pricing error. Therefore, by increasing the signal-to-noise

ratio, the dark pool can harm price discovery in those tail events, while improving

price discovery in most cases and on average.
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A natural next question is whether, on average, adding a dark pool always improves

price discovery. The answer is “not always,” as I illustrate through an example. My

objectives of constructing this example are twofold. First, the example sharpens my

theory by illustrating the limitations of the self-selection mechanism. Second, I use this

example to reiterate that my results should not be taken as unqualified “favoring” of

dark pools as a policy recommendation. I put this example in the Online Appendix to

preserve space, but let me outline the intuition for the construction.

Recall that the key mechanism of my model is self-selection: once a dark pool is

introduced, under certain conditions liquidity traders migrate to the dark pool more

than informed do, improving price discovery on the exchange. If a dark pool were to

harm price discovery, this self-selection mechanism needs to be shut down or limited.

A convenient way to limit self-selection is to assume a discontinuous (e.g., binomial)

distribution of delay costs of liquidity traders. This discontinuity creates the possibility

of a “corner solution,” in which one type of liquidity traders is “stuck” on the exchange

and the other type is “stuck” in the dark pool (or delays trades). At a corner solution

like this, introducing the dark pool moves informed traders, but not liquidity traders,

off the exchange and harms price discovery. At a technical level, this construction is

analogous to “endogenizing” the key modeling assumption of Ye (2011) that liquidity

traders have exogenously assigned trading venues. That said, to the extent that several

recent empirical studies have found evidence consistent with the predictions of my

model (see Section 4), but not those of Ye (2011), the self-selection mechanism of my

model is relevant and important in reality.

3 Robustness

In this subsection I examine the robustness of my results in Section 2 in two aspects:

dark-pool volume reporting and information horizon.

3.1 Reporting dark pool volume

So far, the market maker does not use the dark-pool trading volume in determining

the closing price P1. In practice, dark pool volumes are reported fairly quickly, if not

always in real time.26 Suppressing the information contained in dark pool trading

volume clearly understates the benefit of the dark pool for price discovery. The next

26In the United States, dark pools are required to report trades as soon as possible, but within 90 seconds;
currently more than 99% of trades are reported within 30 seconds (see Securities and Exchange Commission 2010).
In Canada, dark pool trades are reported in real time.
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result shows that the dark-pool volume, combined with the exchange buy and sell

volumes, can reveal almost all information of informed traders. Intuitively, once the

dark pool reports volume, the market maker can infer three unknown variables (v, Z+,

and Z−) from the three observed volumes (exchange buy volume, exchange sell volume,

and the dark pool volume).

Proposition 5. Suppose that the dark pool reports its trading volume immediately

after period 1 trading. Then, there exists null sets (i.e., sets with measures of zero)

Cσ ∈ R+ and Cz ∈ R2
+, such that if σ is not in Cσ and (Z+, Z−) is not in Cz, the trading

volumes on the exchange and the dark pool perfectly reveal v.

3.2 Information horizon

So far, information in Section 2 is short term: it is revealed immediately in the beginning

of period 2. In this section, I study the effect of adding a dark pool for price discovery

if private information is long lived. To be conservative, I assume that the dark pool

does not report volume after period 1. Proposition 5 suggests that shutting down the

dark pool volume is likely to understate my results.

As in Section 2, the traded asset has the value v = σ or v = −σ with equal

probabilities, and there are two trading periods, t ∈ {1, 2}. The main difference from

Section 2 is that the private information about v can potentially live for two periods.

Specifically, v is announced at the beginning of period 2 with probability π ∈ [0, 1],

and is announced at the end of period 2 (i.e., after period 2 trading) with probability

1 − π. The precise timing of the announcement is unknown to anyone, including the

informed traders. The announcement time is independent of all else in the model. We

can interpret π as the horizon of private information; the smaller is π, the longer is the

information horizon.

The possibility of long-term information enriches and complicates the equilibrium

analysis. The modeling choice of this section is to introduce information horizon while

keeping as many elements of Section 2 as possible. To do this, I make the following

assumptions:

Assumption 1. (1) The dark pool does not report period 1 trading volume by the

beginning of period 2.

(2) The dark pool is closed in period 2, and traders who wish to trade in period 2

send market orders to the exchange.

(3) In period 1, the exchange market maker determines in advance a period 2 trading

fee S2 > 0. In period 2, if no information is announced before trading, the market
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maker executes all orders at the price P1 but charges the fee S2 per share. If v is

announced at the beginning of period 2, the market maker executes all orders at

the price v at no fee.

Clearly, Part 1 of Assumption 1 shuts down learning by dark-pool volume and

understates the effect of dark pools on price discovery. Although Parts 2 and 3 of

Assumption 1 can appear restrictive, they isolate the effect of information horizon in

a simple way: conditional on π = 1 (i.e., short-lived information), the model of this

section reduces to that in Section 2. The trading fee S2 charged in period 2 is analogous

to the spread S in period 1.

The other elements of the model, including the mass of informed traders, the mass

and direction of liquidity traders, and their costs of information acquisition and delay,

are the same as in Section 2. I also keep all endogenous variables of Section 2, including

the traders’ strategy variables (β, α0, αd, αd), the period 1 exchange spread S, and the

dark-pool crossing probabilities (r+, r−).

To characterize the equilibrium, I work backward in time. Given traders’ strategies,

the market maker sets the fee S2 such that he breaks even in expectation; that is, the

total expected trading fee collected should be equal to the expected adverse-selection

cost. Because the mass of informed traders who fail to trade in the dark pool is

βµI(1− r−), the expected adverse-selection cost of the market maker in period 2 is

E
[
βµI(1− r−)(σ − P1) · Iv=+σ + βµI(1− r−)(σ + P1) · Iv=−σ

]
= βµI(1− r−) [0.5(σ − E[P1 | v = σ]) + 0.5(σ + E[P1 | v = −σ])]

= βµI(1− r−)(σ − E[P1 | v = σ]), (37)

where the last equality follows by symmetry.

If v = σ, the expected mass of liquidity buyers who fail to cross in the dark pool is

αdE
[
Z+

(
1−min

(
1,

αdZ
−

αdZ+ + βµI

))]
≡ αdµ

−
z , (38)

and the expected mass of liquidity sellers who fail to cross in the dark pool is

αdE
[
Z−
(

1−min

(
1,
αdZ

+ + βµI
αdZ−

))]
≡ αdµ

+
z . (39)

Thus, if v = σ the total expected mass of liquidity traders who trade in period 2 is

α0E[Z+ + Z−] + αdµ
−
z + αdµ

+
z = α0µz + αd(µ

−
z + µ+

z ). (40)
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A symmetric calculation shows that, if v = −σ, the expected mass of liquidity traders

in period 2 is also α0µz + αd(µ
−
z + µ+

z ). Therefore, to break even in expectation, the

period 2 trading fee must be

S2 =
βµI(1− r−)

βµI(1− r−) + α0µz + αd(µ−z + µ+
z )

(σ − E[P1 | v = σ]). (41)

Again, the fee S2 is levied only if v is not announced at the beginning of period 2.

We now turn to the profits of traders. Recall that a liquidity trader of type γ has

the delay cost of γσ. Thus, the per-unit profits of this liquidity trader under the three

strategies are defined similarly as in Section 2:

Xe = −S, (42)

X0(γ) = −γσ − (1− π)S2, (43)

Xd(γ) = −r
+ − r−

2
σ −

(
1− r+ + r−

2

)
(γσ + (1− π)S2) . (44)

For exposition simplicity in this section, I let γd (resp. γ0) be the highest (i.e., most

impatient) type of liquidity trader who sends orders to the dark pool (resp. delays

trade) in period 1. By construction,

α0 = G(γ0), αd = G(γd)−G(γ0), αe = 1−G(γd). (45)

An informed buyer’s profits for sending the order to the exchange and to the dark

pool are, respectively,

We = σ − S, (46)

Wd = r−σ + (1− r−)(1− π) (σ − E [P1 | v = σ]− S2) . (47)

As in Section 2, it is without loss of generality to focus on the case of v = +σ.

The equilibrium with long-term information can be characterized in a similar way

as in Section 2. If β = 0, then α0 = 0. If β > 0, then α0 can be zero or positive.

Intuitively, if β > 0 and π < 1, even a liquidity trader with a zero delay cost would

face a positive cost in period 2 (recall that X0(γ) = −γσ − (1− π)S2). This liquidity

trader may prefer the dark pool to delaying trade. Thus, there are three possible cases

of equilibrium, as stated in the next proposition.

Proposition 6. In a market with an exchange and a dark pool, there are three possible

cases of equilibrium.
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(1) An equilibrium that has β = 0, αd > 0 and α0 = 0 is characterized by the solution

(α∗e, µ
∗
I) to the following equations

µI
µI + αeµz

= (1− r̄)G−1(1− αe), (48)

µI = µ̄F

(
αeµz

µI + αeµz
σ

)
, (49)

subject to the incentive-compatibility condition We > Wd, i.e.,

αeµz
µI + αeµz

σ > r−σ + (1− r−)(1− π) (σ − E[P1 | v = σ]) . (50)

(2) An equilibrium that has β > 0, αd > 0 and α0 > 0 is characterized by the

indifference conditions We = Wd, X0(γ0) = Xd(γ0), and Xd(γd) = Xe. That is,

the equilibrium is given by the solution (β∗, µ∗I , γ
∗
d , γ

∗
0) to the equations

αeµz
(1− β)µI + αeµz

σ = r−σ + (1− r−)(1− π)(σ − E[P1 | v = σ]− S2), (51)

µI = µ̄F

(
αeµz

(1− β)µI + αeµz
σ

)
, (52)

(1− β)µI
(1− β)µI + αeµz

σ =
r+ − r−

2
σ +

(
1− r+ + r−

2

)
(γdσ + (1− π)S2) , (53)

r+ − r−
r+ + r−

σ = γ0σ + (1− π)S2. (54)

(3) An equilibrium that has β > 0, αd > 0 and α0 = 0 are characterized by the solution

(β∗, µ∗I , γ
∗
d) to equations (51), (52) and (53), subject to the incentive-compatibility

condition
r+ − r−
r+ + r−

σ < (1− π)S2. (55)

The equilibrium without the dark pool can be characterized in a similar way. To

conserve space I put it in Section B.8.

I now discuss some of the comparative statics with respect to the information hori-

zon π. Whereas the equilibrium is characterized analytically, the solutions are solved

numerically using the Matlab function fsolve. It is desirable to prove the comparative

statics in closed form, but the comparative statics of Proposition 6 are not as tractable

as those of Proposition 1, so I resort to numerical illustrations. As in any numerical

exercise, I cannot claim that the results below apply to all parameter values. Nonethe-

less, these illustrations reveal a number of interesting properties of informed trading

and price discovery, not all of which are obvious ex ante.
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Figure 7 plots the mass of informed traders in the dark pool, βµI , the fraction of

liquidity traders on the exchange, αe, and the scaled exchange spread in period 1, S/σ.

(For the case with no dark pool, I plot the mass of informed traders who delay trading.)

This plot reveals two interesting patterns. First, without a dark pool, informed traders

send all orders to the exchange, regardless of the information horizon. Liquidity traders’

strategies and the exchange spread are invariant to information horizon π as well.

Intuitively, although information may not be announced immediately, the competition

among informed traders will drive the price P1 close to v. Effectively, information will

be revealed by order flows, so all informed traders use the exchange immediately. This

intuition is consistent with the result of Holden and Subrahmanyam (1992) that even

long-term information can be revealed in a very short time by informed traders who

compete aggressively.

The second observation from Figure 7 is that adding a dark pool encourages in-

formed traders and liquidity traders to move away from the exchange, widening the

spread. Somewhat surprisingly, the longer the information horizon (i.e., the smaller

is π), the fewer informed traders who go to the dark pool. This result may appear

counterintuitive at first: why don’t informed traders use the dark pool more for longer-

lived information? The reason is the following. The longer is the information horizon

(i.e., a smaller π), the less likely is the market maker to set a zero spread in period

2. Anticipating a smaller decrease in trading cost in period 2, and because of delay

cost, more liquidity traders use the exchange in period 1. Consequently, the exchange

spread S/σ shrinks, encouraging more informed traders to move from the dark pool to

the exchange. This result is opposite to that of Hendershott and Mendelson (2000),

where long-lived information implies that all informed traders use the dark pool, as

well as a higher exchange spread.27

As in Section 2, we use the signal-to-noise ratio, I(β, αe) = (1 − β)µI/(αeµz), and

scaled root-mean-squared error (RMSE),
√
E[(P1 − v)2 | v = σ]/σ, to measure price

discovery at the end of period 1. Figure 8 plots the two measures as functions of

π, with and without a dark pool. Without a dark pool, in equilibrium all informed

27See Proposition 11 of HM. The intuition of HM’s result is as follows. (For simplicity, let us drop dealers’
fixed costs and inventory costs in HM’s model.) In HM, a shorter information horizon implies that all informed
traders go to the exchange. Because traders generate liquidity externality in the dark pool (i.e., “liquidity begets
liquidity”), the more informed traders use the exchange, the lower is the dark pool volume, and the higher is the
exchange volume. Because the exchange prices are fixed over time, the exchange spread is proportional to the ratio
between the buy-less-sell exchange order imbalance, say BuyLessSell, and the total buy-plus-sell exchange volume,
say BuyP lusSell. The numerator BuyLessSell is fixed (the dark pool has no effect on total order imbalance), and
the denominator BuyP lusSell is higher if the exchange volume is higher, that is, if the information is short-lived.
Therefore, in HM, short lived information implies that all informed traders go to the exchange and a narrower
exchange spread, opposite of the pattern shown in Figure 7.
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Figure 7: Strategies as functions of information horizon π
Left: Mass of informed traders in the dark pool, βµI (if there is no dark pool, I plot the mass
of informed traders who delay trade). Middle: Fraction of liquidity traders on the exchange,
αe. Right: Scaled exchange spread in period 1, S/σ. In this plot, σ = exp(1), and other model
parameters are the same as in Figure 3.
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Figure 8: Price-discovery measures as functions of information horizon π
The left-hand plot shows the signal-to-noise ratio, I(β, αe). The right-hand plot shows the scaled
root-mean-squared error,

√
E[(P1 − v)2 | v = σ]/σ. In both plots, σ = exp(1), and other model

parameters are the same as in Figure 3.

0 0.2 0.4 0.6 0.8 1
1.8

1.9

2

2.1

2.2

2.3

2.4

π

S
ig

na
l−

to
−

no
is

e 
ra

tio

 

 
lit only
lit + dark

0 0.2 0.4 0.6 0.8 1

0.2

0.25

0.3

0.35

π

S
ca

le
d 

R
M

S
E

 

 

Lit only
Lit + Dark

traders submit orders to the exchange in period 1, so information horizon has no effect

on the equilibrium outcome. With a dark pool, Case 2 of Proposition 6 is obtained in

equilibrium. Figure 8 demonstrates that the signal-to-noise ratio is higher if the dark

pool is present. This improvement, however, is smaller if the information horizon is
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longer (i.e., if π is smaller). Similarly, the scaled RMSE is lower if a dark pool is added;

conditional on having a dark pool, the RMSE is larger if the information horizon is

longer (i.e., if π is smaller).

A final observation is that information horizon relates to the frequency at which

the dark pool crosses orders. Although crossing frequency is not explicitly modeled in

this paper, intuition suggests that for a given information horizon (e.g., a fixed π), a

dark pool that crosses orders less frequently poses a higher execution risk for informed

traders. That is, the lower the crossing frequency, the more effective we expect the

dark pool to be in improving price discovery. This result is shown in an earlier version

of the paper (using a slightly different model) and is available upon request.

4 Empirical Implications

In this section I discuss the empirical implications of my model, both in light of re-

cent empirical evidence and in relation to the current policy debate on the impacts of

dark pools on price discovery and liquidity. In these predictions, the degree of adverse

selection (or volatility σ), the addition of a dark pool, or the horizon of information

serve as the exogenous variation and thus “cause” the effect being predicted. Whereas

such causality naturally arises from an equilibrium model, identifying it in the data

is more difficult. To be conservative, in the discussion below I adopt a “correlation”

interpretation of recent empirical evidence. This conservative interpretation is likely to

understate the results of those empirical studies and, whenever the empirical evidence

is consistent with my model, understate my results as well. For a comparison of pre-

dictions from different theories of dark pools, including my model and those discussed

in the introduction, see Ready (2012).

Prediction 1. All else equal, if adverse selection (or volatility) is low, then a higher

adverse selection (or volatility) causes a higher dark pool market share. If adverse

selection (or volatility) is high, then a higher adverse selection (or volatility) can cause

a lower dark pool market share.

Prediction 1 follows from Proposition 2 (and Figure 4), where adverse selection (or

volatility) is defined as the parameter σ. In my model, the first half of Prediction 1

applies when no informed traders use the dark pool, and the second half of Prediction 1

applies when at least some informed traders use the dark pool.

A robust finding in existing empirical papers is that dark pool market share is lower

when volatility is higher. For example, in a sample of two block-crossing dark pools
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(Liquidnet and Posit), Ready (2012) finds that institutions are less likely to route

orders to dark pools for stocks that have a higher adverse selection (defined as the

component of volatility not attributable to public announcements). Using data from

eleven dark pools, Buti, Rindi, and Werner (2011b) find that for a given stock, dark

pool market share is higher on days with lower intraday volatility and lower absolute

returns. Ye (2010) find that his sample of eight dark pools have higher market shares

for stocks with lower volatility. To the extent that dark pools are used at least partially

by informed traders in practice, these empirical results are consistent with the second

half of Prediction 1.

Prediction 2. All else equal, a higher adverse selection (or volatility) causes more

informed orders in the dark pool.

Prediction 2 also follows from Proposition 2 (i.e., βµI is increasing in σ) and is

consistent with recent evidence documented by Nimalendran and Ray (2013) using

data from an anonymous dark pool. They infer the trading direction of each dark-pool

transaction by comparing the execution price with the prevailing market midpoint. A

trading strategy that follows the directions of aggressive dark-pool orders is profitable

when spreads are wide but unprofitable when spreads are narrow. To the extent that

exchange spreads are proxy measures for adverse selection, Prediction 2 is consistent

with their results.

Prediction 3. All else equal, adding a dark pool alongside an exchange can con-

temporaneously cause a higher order informativeness, wider spreads, and higher price

impacts of trades on the exchange.

Prediction 3 follows directly from Proposition 3 and Proposition 4, which provide a

sufficient condition for the prediction to hold. This prediction of my model is driven by

the endogenous venue choices of both informed and liquidity traders, and is opposite

to that of Ye (2011), who only allows informed traders to choose a trading venue.

An explicit test of Prediction 3 is to compare market quality before and after the

introduction of a dark pool. In Canadian equity market, Foley, Malinova, and Park

(2013) exploit the introduction of “dark orders” on the Toronto Stock Exchange, which

was implemented in phases.28 Using a difference-in-difference test, they find that the

introduction of dark orders widened exchange spreads. Prediction 3 is consistent with

their results.

28Dark orders are fully hidden orders on exchanges. In the sample of Foley, Malinova, and Park (2013), about two-
thirds of dark orders on the Toronto Stock Exchange were pegged at the market midpoint. The trading mechanism
of midpoint pegged orders is similar to that of midpoint dark pools.
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In U.S. and European equity markets, empirical studies typically use the dark pool

market share as a right-hand variable and examine its effect on price discovery, liquidity,

and other measures of market quality. Prediction 3 is consistent with Degryse, de Jong,

and van Kervel (2011), Jiang, McInish, and Upson (2011), Weaver (2011), Comerton-

Forde and Putnins (2012), and Nimalendran and Ray (2013). A generic result of all

these studies is that higher market shares of dark pools (or dark venues) are associated

with higher spreads and price impacts on exchanges. The first four studies document

this result using consolidated measures of dark trading in the United States (Jiang,

McInish, and Upson 2011; Weaver 2011), the Netherlands (Degryse, de Jong, and van

Kervel 2011), and Australia (Comerton-Forde and Putnins 2012). Nimalendran and

Ray (2013) use transaction-level data in an anonymous dark pool and find that spreads

and price impacts tend to increase after dark-pool transactions.

In addition, using data from BrokerTec, an electronic trading platform for U.S.

Treasury securities, Fleming and Nguyen (2013) find that transparent orders are more

informative than dark orders. (Resembling a dark pool, BrokerTec’s dark trading

mechanism, called “workup,” matches orders at the transaction price of the last market

order.) The evidence in Fleming and Nguyen (2013) is also consistent with Prediction 3.

Not all empirical studies reach the same conclusion, however. For example, Buti,

Rindi, and Werner (2011b) find that higher dark pool trading activity tends to be

associated with lower spreads and lower return volatilities. O’Hara and Ye (2011) also

conclude that higher fragmentation of trading is associated with faster execution, lower

transaction costs, and more efficient prices.

A number of reasons may contribute to this disagreement. First, the studies cited

above use a wide variety of data samples, and completely correcting for endogeneity is

difficult. Second, the spread in my model is entirely driven by asymmetric information

regarding the asset value, whereas spreads in the data can be partly driven by the

level of competition and inventory cost. For example, a higher competition among

trading venues or a lower inventory cost may simultaneously increase dark pool market

share and reduce exchange spreads. Third, and more subtly, a higher current adverse

selection on the exchange can improve price discovery so much that it reduces future

spreads (hence the word “contemporaneously” in Prediction 3). In sum, Prediction 3

can explain some of the empirical evidence, but not all of it.

Prediction 4. All else equal, a shorter horizon of private information can cause a

more aggressive use of dark pools by informed traders, as well as a wider exchange

spread. The shorter is the information horizon, the more effective is the dark pool in

improving price discovery on the exchange.
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Prediction 4 follows from Section 3.2 and is based on numerical calculations. As

discussed in Section 3.2, the first part of Prediction 4 may appear surprising, but it

is perfectly consistent with the equilibrium behavior of traders. A shorter information

horizon makes delay more appealing for liquidity traders, driving up exchange spread;

therefore, informed traders would use the dark pools more aggressively in order to

save on the spread. This prediction is opposite to that of Hendershott and Mendelson

(2000), where a shorter information horizon means that all informed traders send orders

to the exchange immediately, and that the exchange spread becomes narrower. This

distinction can be tested empirically. To the best of my knowledge, Prediction 4 has

not been tested in the data.29

5 Concluding Remarks

Dark pools have become an important part of equity market structure. This paper

provides a model of dark-pool trading and their effects on price discovery and liquidity.

I show that under natural conditions the addition of a dark pool concentrates informed

traders on the exchange and improves price discovery. The reporting of dark-pool

volume further improves price discovery beyond the self-selection mechanism. The

results of this paper challenge the conventional wisdom that dark trading is by definition

harmful for price discovery. Rather, through a self-selection mechanism, adding a dark

pool can improve price discovery on the exchange.

The effect of dark pools on price discovery should be balanced by a few observa-

tions. First, improved price discovery on the exchange coincides with reduced exchange

liquidity, leading to ambiguous welfare implications. Second, some specifications of the

delay costs can prevent liquidity traders from freely moving between the two venues,

limiting the self-selection mechanism. Third, the effect of the dark pool for price dis-

covery can become weaker the longer is information horizon. Fourth, although the dark

pool can improve price discovery on average, it can harm price discovery in some rare

realizations of uninformed order imbalance.

That said, evidence from several recent empirical studies reveals that the self-

selection mechanism of this paper is relevant and important in reality. The evidence

includes that (1) dark-pool market shares decrease in volatility, (2) trades in dark

29One possible proxy for information horizon is the time distance between trading and some scheduled news
announcement, such as earnings. In this context, a corollary of Prediction 4 would be: as a news announcement be-
comes more imminent, exchange spread widens, and informed participation in dark pools increases. Here, informed
trading can be measured by the extent to which inferred dark-pool trading ahead of a news announcement is in the
same direction as the unexpected part of news announcement.
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venues are less informative than those in lit venues, and (3) a higher dark pool market

share is associated with a higher spread and a higher price impact on the exchange.

These empirical patterns are consistent with my main result that dark pools tend to at-

tract relatively uninformed orders and, through this self-selection mechanism, improve

price discovery on the exchange.
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Appendix

A List of Model Variables

This appendix summarizes key variables used in Sections 2 and 3.2.

Variable Description

Variables introduced in Section 2
v, σ Asset value v is either +σ or −σ, for σ > 0
µ̄, µI Total masses of for-profit traders and informed traders
F Cumulative distribution function (c.d.f.) of information-acquisition cost
Y Signed informed trading interests: Y = sign(v) · µI
Z+, Z−, φ Liquidity buy quantity Z+ and liquidity sell quantity Z− have p.d.f. φ
µz, σ

2
z Total mean and variance of liquidity trading interests Z+ + Z−

c, γ, G Delay cost of a liquidity trader is c = σγ per unit of asset, and γ has c.d.f. G
αe, αd, α0 Fractions of liquidity traders who trade on the exchange, trade in the dark

pool, and defer trading, respectively
β Fraction of informed traders who trade in the dark pool
S Exchange (effective) spread; bid is −S and ask is S
r̄ Dark pool crossing probability if no informed traders go to the dark pool
r−, r+ Dark pool crossing probabilities conditional on informed traders being on the

same and opposite side, respectively
σ̄ Maximum volatility for which informed traders avoid the dark pool
µ̂I(σ) Knife-edge mass of informed traders, defined by (B1)
We, Wd Expected profits of an informed buyer on the exchange and in the dark pool
X0(c), Xe, Xd(c) Per-unit payoff of a liquidity buyer with a delay cost of c who defers trading,

trades on the exchange, and trades in the dark pool, respectively
R1 Period-1 log likelihood ratio of {v = +σ} versus {v = −σ}
P1 Period-1 closing price on the exchange
I(β, αe) Signal-to-noise ratio of period-1 exchange order flow
RMSE Root mean squared error
Vb, Vs Period-1 realized buy volume and sell volume on the exchange, respectively
Vd, Ve, V Expected volumes in the dark pool, on the exchange, and both, respectively

Variables introduced in Section 3.2
S2 Period-2 trading cost, if v is not announced at the beginning of period 2
γ0, γd The marginal types of liquidity traders. γ0 = G−1(α0), γd = G−1(1− αe).
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B Proofs and Details

B.1 Proof of Lemma 1

Recall that we have assumed that each infinitesimal trader can only execute a finite

number of shares per capita. Without loss of generality, we consider an informed trader

who can trade up to M units of shares, where M ∈ (0,∞). (In the main model section,

M = 1.) Since this trader is infinitesimal, his maximum order mass—the product of

order size per capita and his mass—is M × 0 = 0. Therefore, this informed trader has

no effect for the exchange price or the dark-pool execution probability. Suppose that

he sends Me shares to the exchange and Md = M −Md shares to the dark pool. His

profit is then MeWe +MdWd, where We and Wd do not depend on the split (Me,Md).

Clearly, if We > Wd, the optimal strategy is to set Me = M ; if Wd > Wd, the optimal

strategy is to set Md = M . If, however, We = Wd, then it is still optimal for the

informed trader to set either Me = M or Md = M , although splitting is also optimal.

B.2 Proof of Proposition 1

I define µ̂I : [0,∞)→ [0, µ̄] by

µ̂I(s) = µ̄F

(
(1−G(1))µz

µ̂I(s) + (1−G(1))µz
s

)
. (B1)

Given the value σ of information, µ̂I(σ) is the unique “knife-edge” mass of informed

traders with the property that all informed traders and a fraction 1−G(1) of liquidity

traders send orders to the exchange.

To prove the proposition, I show that a Case 1 equilibrium exists if

r̄ ≤ 1− µ̂I(σ)

µ̂I(σ) + (1−G(1))µz
, (B2)

and that a Case 2 equilibrium exists if and only if

r̄ > 1− µ̂I(σ)

µ̂I(σ) + (1−G(1))µz
. (B3)

Then I show that the condition (B2) is equivalent to σ ≤ σ̄ for some σ̄, and that the

condition (B3) is equivalent to σ > σ̄.

Clearly, β < 1; otherwise, the exchange spread would be zero and informed traders

would deviate to trade on the exchange. Thus, in equilibrium either β = 0 or 0 < β < 1.
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We first look for an equilibrium in which β = 0. By (15), α0 = 0 and αe =

1−αd. The indifference condition of the marginal liquidity trader is given by (16). For

notational simplicity, we write the left-hand side of (16) as −X̃d(αd) and the right-hand

side as −X̃e(αd). For each αd, µI is uniquely determined by (17). We have

− X̃d(0) = 0 < −X̃e(0),

− X̃d(G(1)) = 1− r̄ ≥ µ̂I(σ)

µ̂I(σ) + (1−G(1))µz
= −X̃e(G(1)),

where the second inequality follows from (B2), (17), and (B1). So there exists a solution

α∗d ∈ (0, G(1)] that satisfies (16).

Now we look for an equilibrium in which β > 0, that is, informed traders are

indifferent between the exchange and the dark pool. What remains to be shown is that

the incentive-compatibility conditions (18)–(20) have a solution. For simplicity, we

write the left-hand side of (18) as W̃d(β) and the right-hand side of (18) as W̃e(β). For

each β ≥ 0, µI is unique determined by (20) and is increasing in β. Under condition

(B3) and for each αd > 0,

W̃d(0) = r̄ > 1− µ̂I(σ)

µ̂I(σ) + (1−G(1))µz
= W̃e(0),

W̃d(1) = r− < 1 = W̃e(1),

where the first inequality follows from (B2), (17), and (B1). So there exists a solution

β∗ ∈ (0, 1) to (18), as a function of αd. Because µI increases in β, we see that W̃ ′
d(β) < 0

and W̃ ′
e(β) > 0, holding αd fixed. Thus, the solution β∗ to (18) is unique for each αd.

Moreover, (18) implies that in equilibrium r− is bounded away from 0. So there

exists some r0 > 0 such that r− > r0. So for sufficiently small αd > 0,

G(1)−G
(
r+ − r−
r+ + r−

)
> G(1)−G

(
1− r0

1 + r0

)
> αd.

So there exists a solution α∗d ∈ (0, G(1)] to (19). The equilibria characterized by (18)–

(20) thus exist. To show that (B3) is necessary for the existence of equilibria in which

β > 0, suppose for contradiction that (B3) does not hold. Then, for all αd and β > 0,

W̃e(β) > W̃e(0) ≥ W̃d(0) > W̃d(β), which implies that all informed traders wish to

deviate to the exchange, contradicting β > 0.

Finally, by (B1), increasing the value σ of information raises the knife-edge mass

µ̂(σ) of informed traders, which in turn tightens the condition (B2) under which in-
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formed traders avoid the dark pool. Thus, there exists some unique volatility threshold

σ̄ at which (B2) holds with an equality. That is, the equilibrium in Case 1 exists if

σ ≤ σ̄, and the equilibrium in Case 2 exists if σ > σ̄.

B.3 Proof of Proposition 2

Because β, αd, αe, µ, S, r+ and r− are implicitly defined by differentiable functions in

each case of Proposition 1, they are continuous and differentiable in σ in each of the

two intervals [0, σ̄] and (σ̄,∞). At the volatility threshold σ = σ̄, differentiability refers

to right-differentiability in Case 1 of Proposition 1, and left-differentiability in Case 2.

Have a dark pool and σ ≤ σ̄

For σ ≤ σ̄, β = 0. Total differentiation of (16)–(17) with respect to σ yields[
dG−1(αd)

dαd
(1− r̄)− ∂(S/σ)

∂αd

]
︸ ︷︷ ︸

>0

dαd
dσ
− ∂(S/σ)

∂µI︸ ︷︷ ︸
>0

dµI
dσ

= 0, (B4)

[
1− µ̄F ′(σ − S)

∂ (σ − S)

∂µI

]
︸ ︷︷ ︸

>0

dµI
dσ

= µ̄F ′(σ − S)
∂(σ − S)

∂αd︸ ︷︷ ︸
<0

dαd
dσ

+ µ̄F ′(σ − S)

(
1− S

σ

)
︸ ︷︷ ︸

>0

,

(B5)

where the first term of (B4) is positive because of equilibrium selection. If dαd/dσ ≤ 0

at, say, some σ0, then (B5) implies that dµI/dσ > 0 at σ0. But then (B4) cannot hold.

Thus, dαd/dσ > 0, dµI/dσ > 0, and d(S/σ)/dσ > 0, by (16).

Have a dark pool and σ > σ̄

Now suppose that σ > σ̄. I denote by r+′ and r−
′

the derivatives of r+ and r− with

respect to βµI/αd. We have r+′ > 0 and r−
′
< 0. Total differentiation of (18)–(20)
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with respect to σ yields(
r−
′ 1

αd
− ∂(1− S/σ)

∂(βµI)

)
︸ ︷︷ ︸

<0

d(βµI)

dσ
=
∂(1− S/σ)

∂µI︸ ︷︷ ︸
<0

dµI
dσ

+ r−
′ βµI
α2
d︸ ︷︷ ︸

<0

dαd
dσ

, (B6)

[
1−G′

(
r+ − r−
r+ + r−

)
2(r+′r− − r−′r+)

(r+ + r−)2

βµI
α2
d

]
︸ ︷︷ ︸

>0

dαd
dσ

= −G′
(
r+ − r−
r+ + r−

)
2(r+′r− − r−′r+)

(r+ + r−)2

1

αd︸ ︷︷ ︸
>0

d(βµI)

dσ
,

(B7)[
1− µ̄F ′(σ − S)σ

∂(1− S/σ)

∂µI

]
︸ ︷︷ ︸

>0

dµI
dσ

= µ̄F ′(σ − S)σ
∂(1− S/σ)

∂(βµI)︸ ︷︷ ︸
>0

d(βµI)

dσ
+ µ̄F ′(σ − S)

(
1− S

σ

)
︸ ︷︷ ︸

>0

,

(B8)

where the first term of (B7) is positive because of equilibrium selection.

We can show that dαd/dσ cannot switch signs in [σ̄,∞). To see why, suppose

otherwise, and dαd/dσ switches signs at some σ0. By continuity, at σ0, dαd/dσ = 0.

But (B7) and (B6) imply that d(βµI)/dσ = 0 = dµI/dσ at σ0 as well, which contradicts

(B8). Thus, dαd/dσ cannot switch signs in [σ̄,∞); nor can it be zero.

At σ = σ̄, β = 0 and dβ/dσ ≥ 0. Then, by (B7),

d(βµI)

dσ

∣∣∣
σ=σ̄

= µI
dβ

dσ

∣∣∣
σ=σ̄
≥ 0 =⇒ dαd

dσ

∣∣∣
σ=σ̄
≤ 0.

Because dαd/dσ cannot be zero, it must be strictly negative for all σ ∈ [σ̄,∞). By

(B7)–(B8), for all σ ∈ [σ̄,∞), βµI and µI are both strictly increasing in σ. Then, (18)

implies that
d(S/σ)

dσ
= −dr

−

dσ
= −r−′ d

dσ

(
βµI
αd

)
> 0.

The spread itself, S = σ · (S/σ), obviously increases in σ as well. Finally,

dr+

dσ
= r+′ d

dσ

(
βµI
αd

)
> 0,

dr−

dσ
= r−

′ d

dσ

(
βµI
αd

)
< 0.

No dark pool

The comparative statics for Corollary 1 are similar to that for the first case of Propo-

sition 1 and are omitted.
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B.4 Proof of Proposition 3

Have a dark pool and σ ≤ σ̄

For σ ≤ σ̄, adding a dark pool is equivalent to increasing r̄. Total differentiation of

(16)–(17) with respect to r̄ yields[
(1− r̄)∂G

−1(αd)

∂αd
− ∂(S/σ)

∂αd

]
︸ ︷︷ ︸

>0

dαd
dr̄

= G−1(αd) +
∂(S/σ)

∂µI︸ ︷︷ ︸
>0

dµI
dr̄

, (B9)

[
1− µ̄F ′(σ − S)

∂

∂µI
(σ − S)

]
︸ ︷︷ ︸

>0

dµI
dr̄

= µ̄F ′(σ − S)
∂(σ − S)

∂αd︸ ︷︷ ︸
<0

dαd
dr̄

, (B10)

where the first term on the left-hand side of (B9) is positive because of the equilibrium

selection. If dαd/dr̄ ≤ 0 at any σ0, then (B10) implies that dµI/dr̄ ≥ 0 at σ0. But that

contradicts (B9). Thus, dαd/dr̄ > 0 and dµI/dr̄ < 0. Adding a dark pool, which is

equivalent to an increase in r̄, raises αd and reduces αe = 1−αd. The total participation

rate of liquidity traders in either the dark pool or the exchange is αd + αe = 1, higher

than a market without a dark pool. Moreover, by (17), a lower µI implies a wider

spread S on the exchange.

Have a dark pool and σ > σ̄

Now suppose that σ > σ̄. In a market with a dark pool, αe = 1 − G(1), a constant.

Substituting it into (21) and we have

µI
µI + (1−G(1))µz

< 1.

So the equilibrium αe without a dark pool resides in the interval (1 − G(1), 1). That

is, adding a dark pool reduces αe.

Moreover, adding a dark pool increases the exchange spread if and only if αe in the

equilibrium of Corollary 1 is larger than (1−G(1))/(1−β), where β > 0 is determined

in Proposition 1. By the equilibrium selection rule and by (18),

αe >
1−G(1)

1− β ⇐⇒ G−1

(
1− 1−G(1)

1− β

)
>

µI
µI + µz(1−G(1))/(1− β)

= 1− r−,
(B11)
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where the µI is given by

µI = µ̄F

(
(1−G(1))µz

(1− β)µI + (1−G(1))µz

)
.

We rearrange (B11) and obtain

β <
G(1)−G(1− r−)

1−G(1− r−)
.

On the other hand, because the left-hand side of (18) is decreasing in β and the right-

hand side is increasing in β, the above condition is equivalent to (23).

As F (c) → 1 for all c > 0, (20) implies that µI → µ̄, a constant. Holding µI = µ̄

fixed, we now show that if G′′(1 − r−) ≤ 0, then (23) holds for all r− ∈ [0, r̄]. At

r− = r̄, we have σ = σ̄ and (23) holds by the definition of σ̄. At r− = 0, (23) also

holds trivially. Take the first and second derivatives of the right-hand side of (23) with

respect to r− and we obtain

d[rhs(23)]

dr−
=

µ̄µzG
′(1− r−)

[µ̄+ (1−G(1− r−))µz]2
> 0,

d2[rhs(23)]

d(r−)2
= µ̄µz

G′′(1− r−)[µ̄+ (1−G(1− r−))µz]− 2µz[G
′(1− r−)]2

[µ̄+ (1−G(1− r−))µz]3
< 0.

Thus, the right-hand side of (23) is concave and (23) holds for all r− ∈ [0, r̄].

B.5 Proof of Proposition 4

We first show that, under the normal approximation, a higher signal-to-noise ratio

I(β, αe) corresponds to a lower scaled RMSE
√
E [4(eR1 + 1)−2 | v = σ]. We denote by

Y the standard normal random variable with mean zero and variance one. Conditional

on v = σ, R1 has the same distribution as 2I2 + 2IY . For simplicity, in the calculation
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below I write I(β, αe) as I and write R1 as R. Direct calculation yields:

d

dI
E
[

1

(exp (R) + 1)2

]
= E

[
−2
(
exp

(
2I2 + 2IY

)
+ 1
)−3 · d

dI

{
exp

(
2I2 + 2IY

)
+ 1
}]

=E
[−2 exp (2I2 + 2IY ) · (4I + 2Y )

(exp (2I2 + 2IY ) + 1)3

]
= E

[
−2 exp (2I2 + 2IY ) ·

(
2I + 1

I
(2I2 + 2IY )

)
(exp (2I2 + 2IY ) + 1)3

]

=E

[(
−4I − 2

I
R
)

exp (R)

(exp (R) + 1)3

]
=

∫
R

(
−4I − 2

I
R
)

exp (R)

(exp (R) + 1)3

(
1√

2π4I2
exp

(
−(R− 2I2)

4I2

))
dR

=
exp (−I2)√

2π4I2

∫
R

(
−4I − 2

I
R
)

exp
(

2R− R2

4I2

)
(exp (R) + 1)3 dR

<
exp (−I2)√

2π4I2

∫
R

(
−2
I
R
)

exp
(

2R− R2

4I2

)
(exp (R) + 1)3 dR

= − 2

I

exp (−I2)√
2π4I2

∫ 0

−∞

R exp
(

2R− R2

4I2

)
(exp (R) + 1)3 dR +

∫ ∞
0

R exp
(

2R− R2

4I2

)
(exp (R) + 1)3 dR


= − 2

I

exp (−I2)√
2π4I2

∫ ∞
0

−R exp
(
−2R− R2

4I2

)
(exp (−R) + 1)3 dR +

∫ ∞
0

R exp
(

2R− R2

4I2

)
(exp (R) + 1)3 dR


= − 2

I

exp (−I2)√
2π4I2

∫ ∞
0

[
exp (2R)

(exp (R) + 1)3 −
exp (−2R)

(exp (−R) + 1)3

]
︸ ︷︷ ︸

>0

R exp

(
−R

2

4I2

)
dR

< 0.

Thus, if adding the dark pool increases I, it also decreases the scaled RMSE.

Under the normal approximation, the discussion proceeding Proposition 4 estab-

lishes that I(β, αe) is increasing in S/σ (since both are increasing in (1 − β)µI/αe).

The effect of adding a dark pool for signal-to-noise ratio follows directly from Propo-

sition 3. The effect of adding a dark pool for scaled RMSE follows from the above

calculation.

B.6 Proof of Proposition 5

The proof strategy is to show that, conditional on the exchange trading volumes Vb and

Vs, the dark pool trading volume cannot be equal between the two events {v = +σ}
and {v = −σ}, unless σ and (Vb, Vs) are in some null sets (i.e. sets with measure zero).

Conditional on v = σ, the market maker infers that Vb = αeZ
+ + (1 − β)µI and

Vs = αeZ
−, from which the market maker calculates Z+ and Z−. The single-counted
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dark pool trading volume, min(αdZ
+ + βµI , αdZ

−), reduces to

Ṽd(v = +σ) =
1

αe
min (αdVb + µI(αeβ − αd(1− β)), αdVs) . (B12)

Conversely, conditional on v = −σ, a similar calculation implies that the single-counted

dark pool trading volume is

Ṽd(v = −σ) =
1

αe
min (αdVb, αdVs + µI(αeβ − αd(1− β))) . (B13)

For the two possible dark pool volumes Ṽd(v = +σ) and Ṽd(v = −σ) to be equal,

there are two cases: (i) Vb = Vs, or (ii) µI(αeβ − αd(1− β)) = 0. The first case implies

that Z ≡ Z+ − Z− = ± (1−β)µI
αe

, which, ex ante, happens with probability zero because

the distribution of Z has no point mass. For the second case, if 0 < σ ≤ σ̄, then

β = 0 and µI(αeβ − αd(1 − β)) < 0; if σ > σ̄, then Proposition 2 implies that αd/αe

is decreasing in σ, which means that the equation αd/αe = β/(1 − β), implicit in σ,

can only have a finite number of roots. Thus, Ṽd(v = +σ) = Ṽd(v = −σ) only if σ and

(Z+, Z−) are in some null sets. Outside those null sets, Ṽd(v = +σ) 6= Ṽd(v = −σ),

and the market maker can perfectly infer v. This completes the proof.

B.7 Proof of Proposition 6

There are three possible cases. If β = 0, then the dark pool has no adverse selection.

Liquidity traders who have sufficiently small delay-cost type γ will use the dark pool,

implying αd > 0 and α0 = 0. If β > 0, then αd > 0; otherwise, informed traders would

not use the dark pool as they are on the same side. There are two cases for β > 0,

depending on γ0 = 0 or γ0 > 0. As before and without the loss of generality, the proof

is written for informed buyers.

Case 1. β = 0, αd > 0, α0 = 0. The marginal liquidity trader, who has type γd,

must be indifferent between the dark pool and the exchange. This indifference condition

is given by (48). The marginal for-profit trader who is indifference between buying

information or not is characterized by (49). To be consistent with the initial conjecture

of β = 0, (50) says that informed traders’ profit on the exchange, σ − S = αeµz
µI+αeµz

σ,

must be higher than their profit in the dark pool, r−σ+(1−r−)(1−π)(σ−E[P1 | v = σ]).

Note that given β = 0, S2 = 0.

Case 2. β > 0, αd > 0, α0 > 0. In this case, there are three indifference conditions

and one equation for the marginal for-profit trader. (51) is the indifference condition of

a marginal informed buyer who is indifferent between the exchange and the dark pool.
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(53) is the indifference condition of a marginal liquidity trader (with type γd) who is

indifferent between the exchange and the dark pool. (54) is the indifference condition of

a marginal liquidity trader (with type γ0) who is indifferent between the dark pool and

delaying trade. In all three equations, note that a trading fee S2 is charged if v is not

announced at the beginning of period 2, which happens with probability 1−π. Finally,

(52) is the indifference condition of the marginal for-profit trader who is indifferent

between buying information or not.

Case 3. β > 0, αd > 0, α0 = 0. Under long-lived information, the expected

period-2 trading cost is no longer zero, but (1 − π)S2. If (1 − π)S2 >
r+−r−
r++r−

σ, then

a liquidity trader with type 0 (no delay cost) would prefer the dark pool to delaying

trade. This incentive condition is exactly (55). As before, the indifference conditions of

the marginal informed trader, the marginal for-profit trader, and the marginal liquidity

trader are given by (51), (52), and (53), respectively.

B.8 Equilibrium for long-lived information and exchange only

In this appendix we characterize the equilibrium when information is potentially long-

lived and when there is only an exchange. Without the dark pool, αd = 0 by construc-

tion. I denote by β0 the fraction of informed traders who delay trading in period 1; the

remaining fraction 1−β0 of informed traders send orders to the exchange immediately.

Note that without a dark pool and under long-term information, it might be possible

for informed traders to delay trading. The equilibrium characterization is very similar

to that of Proposition 6, so the proof is omitted.

Corollary 2. In a market with only an exchange but no dark pool, there are potentially

three cases of equilibrium.

(1) An equilibrium that has β0 = 0 and α0 > 0 is characterized by the solution (α∗e, µ
∗
I)

to the equations

µI
µI + αeµz

= G−1(1− αe), (B14)

µI = µ̄F

(
αeµz

µI + αeµz
σ

)
, (B15)

subject to the incentive-compatibility condition

αeµz
µI + αeµz

σ > (1− π) (σ − E [P1 | v = σ]) . (B16)
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(2) An equilibrium that has β0 > 0 and α0 > 0 is characterized by the indifference

conditions Wd = We and X0(γ0) = Xe. That is, the equilibrium is given by the

solution (β∗, µ∗I , γ
∗
0) to the equations

αeµz
(1− β0)µI + αeµz

σ = (1− π) (σ − E[P1 | v = σ]− S2) , (B17)

µI = µ̄F

(
αeµz

(1− β)µI + αeµz
σ

)
, (B18)

(1− β0)µI
(1− β0)µI + αeµz

σ = γ0σ + (1− π)S2, (B19)

(3) An equilibrium that has β0 > 0 and α0 = 0 is characterized by solutions (β∗0 , µ
∗
I)

to equations (B17) and (B18), subject to the incentive condition

(1− β0)µI
(1− β0)µI + µz

σ < (1− π)S2. (B20)
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