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ABSTRACT

Aggregate airline industry earnings have exhibited large amplitude cyclical behavior since
deregulation in 1978. To explore the causes of these cycles we develop a behavioral
dynamic model of the airline industry with endogenous capacity expansion, demand,
pricing, and other feedbacks; and model several strategies industry actors have employed
in efforts to mitigate the cycle. We estimate model parameters by maximum likelihood
methods during both partial model tests and full model estimation using Markov chain
Monte Carlo methods to establish confidence intervals. Contrary to prior work we find
that the delay in aircraft acquisition (the supply line of capacity on order) is not a very
influential determinant of the profit cycle. Instead we find that aggressive use of yield
management—varying prices to ensure high load factors (capacity utilization)—may have
the unintended effect of increasing earnings variance by increasing the sensitivity of profit
to changes in demand.

KEYWORDS: Earnings cycles, Profit cycles, Airlines, Operational leverage, Capacity supply
line, Yield management

* Corresponding author: kpierson@willamette.edu



Introduction

Researchers in system dynamics have studied cyclicality in industries and the economy for
decades (Forrester, 1961; Meadows, 1970; Mass, 1975), and have generally concluded
that profit cycles are caused by a failure to fully account for delays in the negative
feedbacks controlling inventory, capacity acquisition, or other resources. Unfortunately,
the low salience of capacity on order (Sterman, 1989; Sterman, 2000) together with long
capacity lifetimes and high fixed costs often limit the implementation of strategies to
mitigate the cycle, because managers can be reluctant to accept that such important
decisions could have been detrimental (Ghaffarzadegan and Tajrishi, 2010; Goncalves,
2003).
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Figure 1: US airline industry operating profit and operating margin (profit/revenue)

Since deregulation in 1978 aggregate earnings of the US airline industry have fluctuated
with an average peak-to-peak period of approximately ten years and a long run mean very
close to zero (Hansman and Jiang, 2005), as shown in Figure 1. The amplitude of the cycle
in profit margin (operating profit/revenue, a scale-free measure of profit fluctuations), has
not diminished in the 35 years since deregulation. In this paper we build a model of the
airline industry that examines the origin of the cycle. Airline industry cyclicality has been



addressed in the system dynamics literature (Liehr et al., 2001; Lyneis, 2000), but we
expand the boundary of these models® to include an endogenous account of feedbacks
omitted from some earlier work, including price setting, wages, and air travel demand.
Including these feedbacks allows us to more closely represent the structure of the industry
so as to better test policies designed to moderate the cycle. The model also includes
structures representing yield management, mothballing, and ancillary revenues (e.g.,
baggage check fees) to address how existing strategic decisions influence profits and profit
variability.

The airline industry is an excellent setting for research on profit cycles. The
government requires airlines to report detailed information about their operations, and
makes these data available to the public. By avoiding proprietary sources of data, we
provide a fully documented model that scholars and industry professionals can use to
better understand the dynamics of earnings cycles in general. We estimate model
parameters via maximum likelihood methods, using both partial model tests (Homer,
2012) and full model estimation, and show how standard errors can be estimated
efficiently in multivariate system dynamics models using Markov chain Monte Carlo
methods.

Airlines are also advantageous as a research setting because of their importance.
The Federal Aviation Administration (2011) estimates that commercial aviation
contributes $1.2 to $1.3 trillion per year to the economy and generates between 9.7 and
10.5 million jobs in the US. Yet despite the importance of the industry, consistent
profitability has been elusive. Industry analysts and experts are not blind to this pattern of
behavior. Like their peers in other cyclical industries, they consistently argue either that
specific events were the cause of the cycle turning points (e.g., recessions or terrorist
attacks) or that new strategies will dampen the cycle in the future (Doganis, 2002). These
arguments persist in the face of a history of strategies, such as mergers, leasing, yield
management, and mothballing that have failed to stabilize aggregate profits.>

Consistent with prior system dynamics work, we find that the cycle arises from
delays in negative feedbacks involving the mutual regulation of demand, capacity, load
factor (capacity utilization), and prices. Unlike prior work, we find evidence that the cycle
in capacity is strongly moderated by airline pricing policies, specifically the use of yield
management, which increases the responsiveness of prices to variations in demand
relative to capacity and boosts average load factors. However, sensitivity tests varying the
strength of the yield management feedback suggest that in the aggregate, airline pricing
decision rules increase operational leverage and the variance in profitability, and may
place the industry near a global minimum of the risk-return space.

! Lyneis (2000) has a similar model boundary but is proprietary.
zYieId, the industry term for dollars per revenue passenger mile, and price are used interchangeably in this

paper. Yield management is the process of “finding the optimal tradeoff between average price paid and
capacity utilization” (Weatherford and Bodily, 1992).



Model simulations, together with the low average price to earnings ratio of airline
stocks and the high incidence and cost of airline bankruptcies, suggest that airlines could
potentially improve long-run shareholder value by adopting policies that pursue less
vigorous yield management. The feasibility and full impacts of such policies for individual
airlines may depend on competitive dynamics beyond the level of aggregation of the
model however, so we close by discussing the limitations of our analysis and suggestions
for future research to build on the results here.

Model Structure

Figure 2 shows a high level causal diagram summarizing the principal feedbacks captured
by and the exogenous influences to the model.
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Figure 2: Overview of the model feedback structure and boundary.



Table 1 provides a summary of the model boundary, listing the main endogenous,
exogenous and excluded variables.

Endogenous Variables

Exogenous Variables

Excluded Variables

Airline Capacity

Average Load Factor
Average Ticket Price
Average Wages for Airlines
Cancellation of Capacity
Capacity Ordering

Cost per Available Seat Mile
Demand for Air Travel
Demand Forecasting
Mothballing of Capacity
Operating Profit

Orders for Capacity
Reporting of Flow Variables
Supply Line of Capacity
Total Employment by Airlines

Ancillary Fee Revenue
Consumer Price Index
Employee Productivity

Fuel Efficiency

Gross Domestic Product

Hours per Day Flown per Plane
Jet Fuel Price per Gallon

Miles per Hour a Plane Travels
National Average Wage
National Unemployment Rate
Normal Load Factor
September 11" Shock

United States Population

Yield Management Introduction

Advertising

Aircraft Construction Capacity
Aircraft Rental Costs
Communication Costs
Corporate Taxes

Depreciation Expense

Food and Beverage Costs
Insurance

Interest and Debt

Landing Fees

Non-Aircraft Ownership Costs
Passenger Commissions
Professional Services

Utilities

Table 1: Model boundary diagram highlighting the most important endogenous, exogenous and excluded
variables in the model. To the extent that excluded expenses vary with inflation they are indirectly

represented in the model.

The model is organized into four principal sectors: Capacity, Demand, Prices and Costs.
Here we describe the formulations for several critical variables. The online supplement
(OS4) contains full model documentation using SDM-Doc (Martinez-Moyano, 2012) and all
model, simulation, and experimentation documentation requirements (Rahmandad and
Sterman, 2012).

Aggregate airline capacity is reported in available seat-miles per year. Each seat is
assumed to fly a constant average number of miles per year determined from historical
data for aircraft utilization. Airline capacity, the number of seats in the fleet, is modeled
with a modified version of the standard stock control structure in the system dynamics
literature (Sterman, 2000, Ch. 17). The stock of aircraft in service (Figure 3) s
disaggregated into three vintages, with a mean aircraft lifetime of thirty years. The
aircraft acquisition delay is assumed to be third order, with a mean acquisition time of two
years (Airbus, 1998). Airlines are assumed to place orders to replace retirements of old
aircraft and adjust capacity to demand given the normal load factor, while accounting for
the supply line of aircraft on order, any returning to service from mothballing, and the
expected rate of growth in demand (eq. 1 through 5):

Orders = Max(0, DCA + SLA + SLA; — RS) (1)



DCA=R+CA; + (DC—-C) /1, (2)
SLA = (DCA *1,,, — SL)/7s (3)
SLA; =S -w-ge (4)

CAy =C-w-g, (5)

Aircraft orders are the sum of desired capacity acquisition (DCA), the supply line
adjustment (SLA), and the two growth adjustments (CA; and SLA,), less capacity returning
to service from the stock of mothballed aircraft (RS). DCA is the sum of retirements (R),
CA¢, and a capacity adjustment based on the difference between desired capacity (DC)
and current capacity (C). The strength of that capacity adjustment is controlled by T, the
estimated time to adjust capacity. Similarly, the supply line adjustment, SLA, is the gap
between the desired and actual supply line, divided by the supply line adjustment time, ;.
The desired supply line is determined, following Little’s Law, by the product of the desired
capacity adjustment, DCA, and the delay in manufacturing a plane (t,,).
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Figure 3: Overview of capacity and capacity acquisition.



We assume that airlines may plan for the growth of air travel demand. The growth
adjustments, CA; and SLA,, increase orders based on g, the expected fractional growth
rate in demand, with a weight, w, representing the extent to which the airlines actually
account for the growth in demand when ordering capacity. The growth adjustments
assure that under constant exponential growth there is no steady state error (if w =1). A
proof is available in the online supplement (0S2). The expected rate of growth is based on
past growth rates using a standard trend function (Sterman, 2000, ch. 16).

Demand for air travel is modeled as depending on population and air travel
demand per capita. Population is exogenous. Per capita air travel demand depends on
GDP per capita, the national unemployment rate, ticket prices, congestion, and an
exogenous shock that captures the impact of the 9/11 terrorist attacks.

Demand = Dg - Pop - Egpp ° EUnemp “Eprice ECong ’ E9/11 (6)

Air travel demand rises with growing incomes (Schafer, 1998), with an income elasticity
Sepp to be estimated:

GDP per capita Scop
p p ) (7)

Eaor = (
GDP Reference GDP per Capita

Unemployment is a common independent variable in regressions used to forecast air
travel demand, even when income effects are also included (Carson et al., 2011). We
normalize unemployment by its historical average as shown below:

(8)

1 — Unemployment Rate )SUD

Eunemp = (
Unemp 1 — Reference Unemployment

The unemployment rate is exogenous.
The effects of air travel prices and system congestion, measured by load factor,

Price \°7?
Eprice = 3o — (9)

Priceger

are:

Perceived Load Factor Sep
). Teon) (10

Faong = (smooth
cong Smoo Normal Load Factor

Sep is the price elasticity of demand, and reference price is the initial ticket price, scaled by

inflation. The normal load factor has changed over the last 40 years with improvements in

system operations and information technology. We model the reference load factor as



the best-fit quadratic for historical load factor®, and Scp is the sensitivity of demand to
congestion. There is a delay in the public’s perception of congestion, so perceived load
factor is modeled by first order smoothing. Since there is also a delay before congestion
changes flying habits the ratio of perceived to normal load factor is smoothed again, with
an adjustment time t .

The terrorist attacks of September 11" 2001 immediately reduced air travel
demand, with an effect that lingered for several years. The details of this formulation can
be found in the online supplement (0S4).

Ticket prices are modeled with a standard price-discovery, hill-climbing
formulation (Sterman, 2000, Ch. 13). Current ticket prices adjust with a delay to the
indicated ticket price, which anchors on the current price and adjusts to pressures from
profit margins, costs, and load factor:

Price — Price
Price = f Ind + Py (12)
Tp
Price;,q = Price " Ecpsr * ELp (12)

Expected Passenger Cost - (1 + Target Profit Margin) (13)

EC =
ost .
Price

Expected Passenger Cost
Total Costs-Ancillary Fees (14)

- Available Seat Miles*Normal Load Factor

(15)

Load Factor Sspp
LF = ( )

Normal Load Factor

Airlines in the model calculate their expected costs per passenger, on a seat mile basis,
using current costs less any fees collected. Net cost is divided by the expected passenger
volume, given by capacity and the normal load factor, to yield the expected cost per seat-
mile, which is then marked up by the target profit margin. Total operating costs are the
sum of costs from wages, costs from fuel, and other costs. Both fuel prices and fuel
efficiency are exogenous. Other costs are modeled as an initial dollar amount per seat
mile that grows with the Consumer Price Index.

Airline ticket prices also respond to imbalances between demand and supply, as
indicated by load factor (Kimes, 1989). At the level of an individual carrier low load factors
indicate that prices for the flight in question should fall. In the short term this will
increase demand for that flight, and for the individual firm. Naturally, however, firm-level

3The quadratic approximation for normal load factor fits well over the period from 1970 to 2010, with an R’
of 95.6%. The regression estimates are statistically significant at the 1% level. Omitting the quadratic term
significantly degrades the endogenous model’s fit for demand.



demand elasticity is much higher than industry-level demand elasticity (Oum et al., 1990),
so most of the increase in the individual carrier’s load factor comes at the expense of their
rivals, who will respond with similar fare reductions. In the aggregate this causes prices to
fall when load factors are low and rise when planes are relatively full. This relationship is
captured in Equation 15.

While most yield management research is focused on pricing at the level of
individual firms, in industry-level models such as the one developed here it is necessary to
model the evolution of industry average prices, a common practice in system dynamics,
including Meadows’ (1970) commaodity cycle model, Mass’ (1975) business cycle model,
Forrester’s National Model (Forrester, 1979), many models of the oil industry (e.g.,
Davidsen et al., 1990), shipping industry (e.g., Randers and Goluke, 2007), electric utility
industry (e.g. Ford, 1997), and others, including prior airline industry models (Liehr et al.,
2001; Lyneis, 2000).

When yield management technology was introduced to the airline industry in 1985
ticket prices became much more responsive to load factor (Smith et al., 1992). To capture
this effect the sensitivity of prices to the supply demand balance, Sspp, is modeled as a
step increase in 1985, the size of which is estimated during model calibration.

To model average airline employee wages we again employ a standard hill-
climbing formulation in which wages respond to three pressures: profit margin,
unemployment, and outside opportunities (wages in other industries). If there were no
net effect from these pressures the average wage would increase with inflation.

Wage — Wage
Wage =f g In: & + W, (16)
w

where Ty is the delay in adjusting wages, and Wy is the initial average wage.
Wage,q = Wage - EProfit *Eynemw EOpp ' (1 + ACPI) (17)

Industry profitability is reported with a delay because it takes time for the parties in
collective bargaining negotiations (airlines and unions) to form expectations about profits
from past data. Wages tend to rise when airlines are relatively profitable and fall when
they are less profitable:
1+ Marginp,, \ "M%
Eprofic = (m) (18)
8Mpef
The reference margin in Equation 18 is the historical average margin for the industry,
calculated from the data. The perceived margin, Marging,, is modeled using first order
exponential smoothing of operating profit margin, with a delay time to be estimated,
along with the strength of the effect of profitability on wage negotiations, Smw.
Wages ought to rise faster (slower) when unemployment is below (above) normal.



10

We model normal unemployment as the average historical value over the horizon of the
model:

(19)

Unemployment Suw
Eynemw = ( )

Normal Unemployment

Wages should also respond to wages in other industries. Since there is a skill premium
offered for jobs in the airline industry, average airline wages are higher than the national
mean. We assume airline wages respond to the national average wage (NAvgWage)
adjusted by the average wage premium, with a sensitivity to be estimated.

(20)

Wage Sow
Eopp = (NAvg Wage*Wage Premium)
Consistent with the literature in system dynamics (e.g. Sterman, 2000), and the broader
literature in behavioral decision making and cognitive psychology (e.g. Stanovich, 2011),
the decision rules for pricing, wages, aircraft orders, mothballing, etc., are boundedly-
rational, behavioral heuristics, grounded in well-established evidence regarding the way
managers make decisions in complex dynamic systems.

The online supplement (0S4) provides full documentation of the model.

Airline Industry Data

The data for parameter estimation come from the Air Transport Association (ATA), the
nation's oldest and largest airline trade association, the Bureau of Transportation Statistics
(BTS), and MIT's Airline Data Project (ADP).* These data include available seat miles
(capacity), revenue passenger miles (demand), average ticket price per revenue passenger
mile (price), average wage per worker, including salary, benefits and other compensation
(wage), and aggregate operating profit (profit). Data for U.S. population comes from the
Census Bureau, while GDP data for the U.S. are from the Bureau of Economic Analysis and
measured in real, year 2000 dollars per capita. The CPI, national average wage, and
unemployment data come from the Bureau of Labor Statistics. Jet fuel prices per gallon
and employee productivity are obtained from the ATA. Ancillary fees come from the ADP.

Parameter Estimation

We estimated model parameters by minimizing the weighted sum of the squared error
between the model and the data simultaneously for each of the relevant data series:

4ATA: www.airlines.org; ADP: http://web.mit.edu/airlinedata/www/default.html. The ATA is now known as
Airlines for America.
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L0 - 6]
).

min N (21)
i=0 MSE(6,)

where the data series 0; include historical demand, prices, wages, operating profit, etc.,
depending on the particular partial model test or full model estimation performed. The
error from each series is weighted by the root mean square error of the model estimate
from the previous calibration run. The process is iterated until the weights and estimates
converge.

The sum of squared errors for each variable included in the estimation process is
weighted by the reciprocal of the root mean squared error between the simulated and
actual data series. Doing so assures, assuming normally distributed errors, that the total
estimation error will be distributed chi-square, allowing us to estimate confidence
intervals for each parameter using a Markov chain Monte Carlo (MCMC) method (Gelman
et al., 2003). We use MCMC to simulate the distribution of the log likelihood payoff
surface given joint changes in the parameters. The MCMC algorithm was implemented
using commercially available software and we provide a detailed description in the
appendix (A2). Convergence took approximately 1.2 million model runs, or close to 16
hours of desktop computer time.

Partial model testing (Homer, 2012) was the first stage of our parameter
estimation process. Each sector of the model was isolated and driven by historical data
for the inputs to that sector. In the partial model test of the demand formulation (eq. 6),
we use historical ticket prices and load factor rather than their endogenous values, along
with historical GDP, unemployment, and population, to estimate demand. The partial
model test for growth expectations uses historic demand to fit the trend function for
expected growth in demand (an input to the capacity decision) against ten years of FAA
demand forecasts. The partial model test of industry capacity replaced endogenous
demand and profit with historical demand and operating profit. The partial model test for
costs used historical wages and capacity together with exogenous fuel costs, efficiency,
and inflation. The partial model test for industry wages used historical operating profit
along with national unemployment, average wage, and inflation. The partial model test
for price setting used historical operating costs, demand and capacity instead of their
endogenous formulations.

The estimated parameters from partial model testing are reported in Table 2,
along with the 95% confidence intervals estimated by the MCMC method. Figure 4
compares the simulated and actual data for the partial model tests, and Table 3 reports
goodness of fit measures. Overall the partial model tests have low error as a percentage
of the mean and low bias, as shown by the Theil inequality statistics, indicating the errors
are generally unsystematic.

The estimated parameters in the partial model tests are reasonable. The structure
for the impact of the 9/11 terrorist attacks captures an immediate decline in air travel,
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and the subsequent reduction in demand due to fear and the resulting security measures,
which is assumed to gradually decrease over time. The estimated parameters suggest an
immediate drop of nearly 15% in demand and a decay time of approximately 9 years.
Sensitivity tests involving first order delays, higher order delays, and other specifications
for the effect of 9/11 on demand all showed time constants on the order of the one
reported here. The long decay time suggests the impacts of 9/11 have been persistent,
perhaps a result of later, failed attacks such as the shoe and underwear bombers, or the
inconvenience and costs of the security measures implemented since 2001. Alternatively,
it is possible that some other factors caused a shift in the demand for air travel after 2001.

Parameter Name Eq. # Lower Partial Upper
Bound of Model Bound of
95% ClI Estimate 95% ClI
Capacity
Time to Adjust Capacity (years) 2 0.124 0.132 0.1452
Supply Line Adjustment Time (years) 3 0.083 0.100 0.1106
Weight on Demand Forecast Orders (fraction) 4,5 0.554 0.683 0.8625
Demand
Reference per Capita Demand (seat*miles/year) 6 1039 1044 1047
Income Elasticity of Demand (dmnl) 7 1.01 1.12 1.19
Price Elasticity of Demand (dmnl) 9 -0.481 -0.406 -0.351
Sensitivity of Demand to Congestion (dmnl) 10 -0.524 -0.472 -0.404
Congestion Adjustment Time (years) 10 1.49 1.76 1.86
Strength of Unemployment Effect on Demand (dmnl) 8 1.90 1.93 2.00
Size of 9/11 Effect (fraction) (0N 0.129 0.146 0.164
Public Perception of Terrorism Decay Time (years) (0N 8.39 8.91 9.46
Price and Unit Costs
Initial Other Variable Costs (dollars/(seat*mile)) (0N 0.0190 0.0193 0.0195
Time to Adjust Ticket Prices (years)> 11 0.083 0.083 0.130
Target Profit per Passenger (dollars/(seat*mile)) 13 0.0274 0.0332 0.0393
Effect of Yield Management on the Sensitivity of Price to 15
Demand Supply Balance (dmnl) 2.57 3.02 3.48
Base Sensitivity of Price to Demand Supply Balance (dmnl) 15 0 0 0.172
Salary
Time to Change Worker Compensation (years) 16 1.06 1.07 1.08
Strength of Unemployment Effect on Wages (dmnl) 19 -0.0034 -0.0003 0
Strength of Margin on Worker Compensation (dmnl) 18 0.291 0.372 0.409
Strength of Outside Opportunities on Worker 20
Compensation (dmnl) 0 0.0007 0.0092
Margin Perception Delay (years) (0N 3.11 3.24 3.48

Table 2: Estimated parameters from partial model testing, with Markov chain Monte Carlo 95% confidence
intervals. The equation number “OS” indicates that the equation is reported in the online supplement (0S4),

not in the paper.

> The lower bound for all time constants was 0.083 years, approximately one month.
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Figure 4: Partial model test results plotted against historical data.
- p) 1Y S S
Variable R MAE/M RMSE/M U U U
Capacity 99.3% .0211 .0265 .0159 .1799 .8190
Demand 99.4% .0248 .0315 .0056 .0594 .9350
Wages 43.5% .0401 .0502 .0054 5137 .4809
Cost 99.6% .0260 .0368 .0708 .0574 .8718
Prices 86.4% .0398 .0481 .0079 .0075 .9846
Profit 56.4% N/A N/A .0011 .1799 .8190

Table 3: Partial model fits to historical data for 1977-2010. R is defined as one minus the ratio of the sum of
the squared error to the total sum of squares. MAE/M is mean absolute error divided by the mean of the
data. RMSE/M is the root mean square error divided by the mean of the data. U™, U°, and U® are the Theil
inequality statistics (Sterman, 2000, ch. 21), which partition the MSE into the fraction arising from bias
(unequal means of simulated and actual data), unequal variances, and unequal covariation, respectively.
MAE/M and RMSE/M are not reported for profit because average historical profit is very close to 0.
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The partial model tests indicate that the model reproduces sector-level behavior quite
well, with the exception of the average airline industry wage. The fit of the model to the
wage data is somewhat lower than the fit to the other variables. However, the mean
absolute error is only 4% of the average of the historical wage data and the bias is very
small. The fit of the model to the data, including the fit for wages, compares favorably
against other models in the system dynamics literature and in related modeling traditions
such as the forecasting literature. For example, Makridakis et al. (1982) examined the
performance of a wide range of forecasting and modeling methods, using data from a
large variety of systems. Typical calibration errors (assessed by the mean absolute
percentage error, MAPE), for a subsample of 111 data series, were about 20% for non-
seasonal methods applied to the raw data, about 11% for methods that accounted for
seasonal adjustments, and about 9% for the non-seasonal methods applied to the
seasonally adjusted data.

Nevertheless, additional research into the determinants of airline wages would
help to address the source of the unexplained variation in airline wages and whether
these sources are plausibly endogenous or reflect factors unrelated to the cycle in
aggregate profitability. For example, industry wages may be heavily influenced by
bankruptcies of individual carriers and labor actions such as strikes, both of which are
difficult to predict and not modeled here.

The partial model tests examine the ability of individual formulations to replicate
industry dynamics given the actual, realized values of the inputs to each formulation or
decision. However, the partial model tests cut important feedbacks in the system, so it is
also necessary to examine the ability of the full, endogenous model to fit the data.

Full model estimation results (Tables 4, 5; Figure 5) improve the fit for demand,
price, and operating profit compared to the partial model results. The fit for the other
variables remains similar. All series show low bias and, with the exception of wages, low
unequal variation. The estimated parameters are plausible and the MCMC confidence
bounds generally tight. The estimated values of a number of parameters are very similar
to the values in the partial model tests, for example, the size and decay time of the 9/11
effect. Several others, however, differ from the partial model estimates.

In particular, in the full system estimation the capacity sector of the model became
significantly less reactive, with longer time constants for capacity and supply line
adjustment, and a smaller response to demand forecasts. In the partial model test for
capacity acquisition the time constant controlling the adjustment for the supply line was
0.1 years, suggesting that airlines are keenly aware of and swiftly adjust the supply line of
aircraft on order as the desired number of aircraft they seek to acquire changes. Evidence
from experimental studies (e.g. Sterman, 1989; Aramburo et al., 2012; Croson et al.,
forthcoming), and from other industries (e.g., commercial real estate and shipbuilding, see
Sterman, 2000; Randers and Goéluke, 2007) suggests weak supply line adjustment and a
role for inadequate supply line control in the genesis of industry cycles. However, the high
price of aircraft, concentrated nature of the industry, and contractual terms for aircraft
orders may favor fully accounting for the supply line. The supply line adjustment time in
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the full model estimation is longer and more plausible, though at about 4 months, still
short enough to suggest that airlines are quite sensitive to the supply line of capacity on
order. Exploring this issue further would require data on order cancellations, aircraft

completion, and the supply line of planes, perhaps at the level individual
manufacturers, data that are not publicly available.
Parameter Partial Eq. Lower Full Upper
Model Bound of Model Bound of
Estimate 95% ClI Estimate 95% ClI

Capacity
Time to Adjust Capacity (years) 0.132* 2 0.459 0.476 0.490
Supply Line Adjustment Time (years) 0.100* 3 0.308 0.372 0.388
Weight on Demand Forecast Orders (fraction) 0.683* 4,5 0.173 0.211 0.242
Demand
Reference per Capita Demand (seat*miles/year) 1044* 6 1145 1146 1162
Income Elasticity of Demand (dmnl) 1.12 7 1 1.01 1.03
Price Elasticity of Demand (dmnl) -0.406* 9 -0.333 -0.325 -0.289
Sensitivity of Demand to Congestion (dmnl) -0.472* 10 -3.87 -3.01 -2.99
Congestion Adjustment Time (years) 1.76 10 1.24 1.36 1.59
Strength of Unemployment Effect on Demand 8
(dmnl) 1.93* 2.96 3.06 3.04
Size of 9/11 Effect (fraction) 0.146 (N 0.158 0.163 0.171
9/11 Impact Decay Time (years) 8.91 (6N 8.88 8.99 9.43
Price and Unit Costs
Initial Other Variable Costs (dollars/(seat*mile)) 0.0193* OS 0.0163 0.0187 0.0189
Time to Adjust Ticket Prices (years) 0.083* 11 0.132 0.222 0.271
Target Profit per Passenger (dollars/(seat*mile)) 0.0332* 13 0.0052 0.0112 0.0166
Effect of Yield Management on the Sensitivity of 15
Price to Demand Supply Balance (dmnl) 3.02 3.44 3.78 3.802
Base Sensitivity of Price to Demand Supply 15
Balance (dmnl) 0 0 0 0.033
Salary
Time to Change Worker Compensation (years) 1.07 16 1.08 1.10 1.11
Strength of Unemployment Effect on Wages 19
(dmnl) -0.0003 -0.0079 -0.0007 0
Strength of Margin Effect on Worker 18
Compensation (dmnl) 0.372* 0.073 0.116 0.131
Strength of Outside Opportunities Effect on 20
Worker Compensation (dmnl) 0.0007 0 0 0.0047
Margin Perception Delay (years) 3.24% (6N 3.60 3.68 6.45

Table 4: Estimated parameters from full model results, with Markov chain Monte Carlo 95% confidence
intervals, and partial model parameters for comparison. Partial model estimates marked with an asterisk (*)

are statistically significantly different from the full model estimates at the 5% level.
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Figure 5: Full model results plotted against the historical data.

Variable R’ MAE/M RMSE/M u" U’ U’
Capacity 99.4% .0207 .0249 .0011 .0557 .9432
Demand 99.8% .0148 .0179 .0010 .0008 .9981
Wages 50.83% .0407 .0497 .0098 .6257 .3645
Cost 99.6% .0278 .0360 .0852 .0331 .8818
Prices 90.76% .0300 .0384 .0176 .0304 .9520
Profit 62.8% N/A N/A .0085 .0894 9021

Table 5: Goodness of fit for full model, 1977-2010.

What accounts for the differences in parameter estimates between the partial and full
in the partial model tests, the payoff is the fit to
the focal variable in each sector: demand for the demand sector, capacity for the capacity
In the full model estimation, the likelihood
function is the sum of squared errors for all the key variables, specifically, demand,

models? First, the payoffs are different:

sector, total cost for the cost sector and so on.
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capacity, prices, profits, and average wages, weighted by 1/RMSE for each. Second, the
likelihood function for the full model appears to have a flat optimum. Over one million
MCMC runs were needed to arrive at stable estimates for the confidence bounds.
Further, to prevent convergence to local optima we used multiple starting points in the
parameter space. Many of these restarts discovered unique local maxima, indicating that
the global likelihood surface is relatively flat over the range of plausible values. Recent
work on parameter testing and model validation (Hadjis, 2011; Groesser and Schwaninger,
2012) use relatively simple models to advocate for particular approaches to parameter
identification, estimation and model testing. The airline industry context however, like
many policy relevant settings, involves common and troublesome issues arising from
endogeneity, collinearity, under-identification, and flat optima, rendering these
approaches potentially problematic and indicating a need for more research.

Model Analysis

Oscillations in dynamic systems arise from negative feedbacks with significant phase lag
elements (time delays). System dynamics models of earnings cyclicality have found that
delays in the negative feedbacks controlling inventory, capacity acquisition or other
resources are the underlying causes of cyclical movements in the economy and for many
industries and commodities (e.g., Meadows, 1969; Chen et al., 2000; Sterman, 2000, chs.
17, 19 and 20; and Randers and Goluke, 2007). Unsurprisingly, our results are consistent
with this mechanism: delays in the negative feedbacks regulating airline industry capacity
as demand and profitability change contribute to the oscillation observed in industry
profitability. However, many prior studies find that the amplitude and persistence of
industry cycles are increased by the failure of industry participants to account sufficiently
for the supply line of capacity on order. The failure to account for the supply line is well
supported by experimental, econometric, and field evidence (e.g., Sterman, 1989;
Sterman, 2000, Ch. 17; Randers and Goluke, 2007), and previous models of the airline
industry (Liehr et al., 2001) also highlight the role of the supply line in profit instability.
However, supply line adjustment is only one of many delayed negative feedbacks
in the airline industry. Our estimation results provide little evidence for failure to account
for the supply line of aircraft on order as a source of the cycle in airline industry
profitability. If industry participants, particularly the aircraft manufacturers, were
unresponsive to the supply line of unfilled orders, then the estimated time constant for
supply line adjustment would be very long, and longer than the capacity adjustment time.
Instead, the supply line adjustment time we estimate is about the same as the capacity
adjustment time in both the partial and full model tests. The result is plausible compared
to, say, the real estate industry, where evidence suggests very low salience and
responsiveness to the supply line (Sterman, 2000, Ch. 17.4.3). The real estate market is
characterized by many producers, low barriers to entry, and therefore low experience
among developers, and heterogeneity in building location, quality and price. It also is
difficult to measure the supply line in real estate since it includes potential projects and
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projects in various stages of permitting and financing, not only those under construction,
and these projects differ by location, size, and other attributes that lower their
comparability.

In contrast, the airline market is characterized by a small numbers of producers,
high barriers to entry, and a small number of product variants. The supply line of capacity
on order is well known to both manufacturers and their customers. These conditions
favor a more complete accounting for the supply line in ordering decisions.

While our model suggests that airlines and manufacturers are unlikely to
underweight the supply line in ordering decisions substantially, other feedbacks and time
delays cannot be accounted for so easily. The role of these compensating feedbacks in the
genesis of the cycle can be illuminated using the response of the fully endogenous model
to a 1% step increase in population from an initial equilibrium® (Table 6, Figure 6).

Base Case: Supply Line
Test Supply Line Adjustment (SLA) SLA Time: SLA Time:
Adjustment Time: 1 year 10° years
(SLA) Time: 0.083 years
0.372 years
Percent Undershoot 23.5% 13.2% 26.6% 20.1%
10% Settling Time 2.67 years 2.16 years 3.27 years 6 years
Damping Ratio 0.419 0.542 0.386 0.455
Oscillation Period 3 years 2.6 years 3.6 years 8 years

Table 6: Step response tests of the model. Operating profit is the output in each case. Undershoot is
measured relative to the steady state value of profit at the end of the model run. The damping ratio (DR)

was calculated by treating the model as a second-order system so that DR = \/(ln %U)2/[m? + (In%U)?],
where %U is the percent undershoot. (Brown, 2007)

In the base case using the full model parameter estimates a step change in population
causes an oscillatory response of operating profit, with a roughly 3 year period, settling
time of 2.67 years and damping ratio of about 0.4 years. When the supply line adjustment
time is increased to 1 year, three times longer than the estimated capacity adjustment
time, the cycle period extends to 3.6 years, the settling time lengthens by about 0.6 years,
and the damping ratio falls slightly, as seen in Table 6. Fully disabling the supply line
adjustment feedback by setting the adjustment time to an essentially infinite value (one
billion years) lengthens the cycle period further, to about 8 years, and lengthens the
settling time, while increasing damping compared to the base case. Similarly, dramatically
shortening the supply line adjustment time, to 1 month, shortens the cycle period by 0.4
years, cuts the settling time by about 6 months, and increases the damping ratio, but the
cycle is not eliminated. The results show that the extent to which airlines account for the

® Al exogenous time series were set to their initial values and initial conditions for the state variables were
set to start the model in dynamic equilibrium.
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supply line of capacity on order matters to stability, but also that the oscillation in airline
profitability is not solely created by the failure of industry actors to account for the supply
line. Other negative feedbacks in the model, such as yield management, congestion, and
capacity adjustment all contribute to the oscillation regardless of the strength of the
supply line adjustment loop.
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Figure 6: The response of operating profit to a 1% step increase in demand. The base case uses the
parameters estimated during full model calibration, the infinite adjustment case sets the supply line
adjustment time to 10° years, the slow adjustment case sets the supply line adjustment time to 1 year, and
the fast adjustment case sets the supply line adjustment time to 0.083 years.

Interestingly, yield management is a particularly important determinant of the stability of
profit in our model. The yield management feedback acts when increases in demand
cause higher load factors, raising average industry ticket prices, which then decrease
demand in a negative feedback.

The step responses reported in Table 7 and Figure 7 show how dramatically varying
the sensitivity of price to the demand supply balance (Eq. 15) influences system stability
and the variability of both profit and capacity. Eliminating yield management from the
price setting heuristic worsens every measure of system stability; whereas doubling the
sensitivity of price to the demand supply balance increases the stability of the system
substantially.
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Test Base Case No Yield Management More Yield Management
(Sspp = 0) (Sspp = 2x base case)

Percent Undershoot 23.5% 45.8% 1.2%

10% Settling Time 2.67 years 7.3 years 2.3 years

Damping Ratio 0.419 0.241 0.816

Oscillation Period 3 years 2.6 years N/A

Operational Leverage7 172% 87% 209%

Table 7: Step response tests of the model varying the sensitivity of price to the demand supply balance (Eq.
15). Operational leverage is calculated by determining percentage change in profit between equilibrium and
the first peak in the step response. That quantity is then divided by the percentage change in demand (1%).
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Figure 7: Step response of the model varying the sensitivity of price to the demand supply balance (yield
management). Top: Impact on operating profit. Bottom: Impact on capacity (seat miles of capacity per
capita).

The logic behind this result is straightforward. Because the estimated time to adjust ticket
prices (eq. 13) is very short (0.083 years, our lower bound for time constants) compared to
the lags in capacity acquisition, yield management acts as an effectively first-order
negative loop that damps the oscillatory response of capacity and other variables to
demand shocks. The stronger the effect of load factors on price, the greater the

7 . . . . .
Operational leverage is measured using the peak instantaneous value observed in our step response tests.
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stabilizing effect of the price-demand feedback. Consider an analogy to the mass-spring-
damper system. The damping force is proportional to the velocity of the mass, completing
a first-order negative feedback around velocity (higher velocity, more opposing force,
lower acceleration, lower velocity) that attenuates the amplitude of the oscillation.
Stronger damping increases the stability of the system.

Yield management works in much the same way. With strong yield management,
average airline ticket prices will rise much more quickly than capacity when there is a
positive demand shock. Because demand for air travel is elastic this increase in price
works to oppose the change in demand. The stronger this demand “friction” the more
damped the system will be.

The stabilizing influence of yield management can also be seen in the step
response of capacity. When demand increases at time zero the adequacy of capacity falls.
In the base case capacity slowly recovers, with a slight overshoot and oscillation, to its
equilibrium value. Increasing the strength of yield management slows this approach to
equilibrium and eliminates the overshoot, while removing yield management dramatically
reduces damping.

Thus, stronger yield management improves system stability by increasing damping.
However, traditional measures of system stability are not the only metrics that matter to
the airlines and other stakeholders. Stronger yield management increases damping but
also increases the magnitude of the change in operating profit resulting from the demand
shock (Figure 7). The response of profit to changes in demand is known as operational
leverage in managerial accounting and is an important indicator of risk.

Accountants use the ratio of the fixed and variable costs of an enterprise to
calculate operational leverage. A higher ratio of fixed to total costs implies higher
operational leverage, since only variable costs change with the number of units sold and
therefore the jump in demand will cause revenue to increase by much more than costs.
Higher operating leverage indicates higher inherent risk, since a decrease in demand
under high operational leverage reduces costs much less than it reduces revenue.

Recent research has suggested that high operational leverage can justify
implementation of revenue management8 for firms (Huefner and Largay, 2008). The
argument is that revenue management, by increasing unit sales, will have a greater impact
on profit if operational leverage is high because incremental revenue contributes more to
the bottom line.

However, such arguments typically don’t consider the impact of revenue (yield)
management on the volatility of profits.

Consider an unanticipated, positive demand shock. Profits rise as load factor rises.
If price also rises in response to the increase in demand (and if the aggregate demand

® Revenue management is the more general term for yield management. The word “yield” is used primarily
in the airline industry.
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elasticity is less than one’) then profits will increase even further, because each seat is
sold at a higher average price. Hence, the stronger the effect of yield management on
prices, the greater the operational leverage of the industry. Figure 7 shows that stronger
yield management stabilizes the fluctuations in capacity and increases damping, but the
initial response of profit to the demand shock is much larger. So, while yield management
increases the damping of the system, it simultaneously increases the short run volatility of
profits, and hence the risk investors face, as the industry responds to demand shocks.

To explore the relationship between yield management, operational leverage, and
risk more thoroughly, Figure 8 maps average profit as it depends on the strength of the
two factors affecting price in the model: the sensitivity of price to costs (markup) and the

sensitivity of price to load factors (yield management). The height of the surface is
average profit over each model run.
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Figure 8: Average annual operating profit between 1977 and 2010 as a function of the sensitivity of prices to
load factor and to costs. The black circle indicates the estimated parameters for the full model.

Over most of the surface, including the neighborhood of the estimated parameters, the
gradient indicates that higher sensitivity to load factor and lower sensitivity to costs raises
average profit. That is, more aggressive yield management boosts average profitability.
This suggests one reason why the industry has steadily evolved towards greater reliance
on the use of yield management, including more categories of fares, more frequent fare

® The estimated elasticity of air travel demand with respect to price is much less than 1 (about 0.32 in the
full model), and other studies find similarly low values (Oum, Waters, and Yong, 1990).
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changes, and more sophisticated models to predict future demand during the reservations
window (Belobaba, 1987). As shown in Figure 9, greater reliance on, and more effective,
yield management technology has enabled the average load factor of the fleet to rise
steadily, from about 0.6 in the 1980s to more than 0.8 in the last decade.
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Figure 9: Average load factor since deregulation has climbed steadily, aided by better technology for
reservations and increasing use of yield management to balance demand with available capacity.

However, while aggressively cutting prices to fill empty seats boosts average profit, it also
increases the response of profit to demand shocks and other perturbations. Figure 10
shows the standard deviation of profit over the same parameter space shown in Figure 8.

Pricing policies that generate higher average profits in Figure 8 also induce higher
variability in profits in Figure 10, suggesting that the benefits of yield management are less
clear: while higher average profits are obviously desirable, greater variability in profits
increases the risk premium investors demand, makes bankruptcy more likely during
industry downturns, and exacerbates demands for salary increases during boom periods
and the likelihood of layoffs and labor problems during downturns.

To explore the risk-return tradeoff inherent in the implementation of yield
management, Figure 11 shows average profit divided by the standard deviation of profit,
analogous to the Sharpe ratio (Sharpe, 1994). The risk-adjusted return surface suggests
that the industry’s current pricing policy, as indicated by the full model estimates, which
capture the extensive use of yield management, may be close to the “worst of both
worlds” by delivering higher profit volatility than a policy that prices based on unit cost,
but lower average profit than a policy that exclusively uses yield management.

Of course what’s best for the industry is not necessarily what’s best for individual
carriers. The game theoretic and competitive issues here are important, but beyond the
scope of the present model and paper. Future work should consider disaggregating the
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Figure 10: Standard deviation of annual operating profit between 1977 and 2010 as a function of the
sensitivity of prices to load factor and to costs. The black circle indicates the estimated parameters for the
full model.

Scaled Profit Under Different Pricing Rules

f e eesececccccssesccsnanas

Figure 11: Risk-adjusted return, given by the Sharpe ratio (average profit divided by the standard deviation
of profit), between 1977 and 2010 as a function of the sensitivity of prices to load factor and to costs. The
black circle indicates the estimated parameters for the full model.
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model to represent competition among carriers, including price setting, entry, exit,
bankruptcy, and interactions between the carriers and financial markets that supply
needed capital. Nevertheless, our results suggest that the airline industry may currently
be decreasing risk-adjusted profit as an unintended consequence of the effort to boost
profitability by filling otherwise empty seats.

Limitations and Extensions

The model, like all models, could be extended and improved. As discussed above, one
possibility is to disaggregate to the level of individual airlines to examine the competitive
dynamics that take place in the context of the overall industry cycle. Another concerns
the period of the profit cycle we measure. The observed period of airline profit cycles is
on the order of 10 years (Hansman and Jiang, 2005), yet, with the best-fit parameters the
step response of the model exhibits a period of approximately 3 years.

Of course the period of the cycle observed in the data cannot be compared directly
to the period of the step response. The observed period is the response of the industry to
perturbations spanning a wide range of frequencies, from short-term noise to longer-term
cyclical movements in demand induced by the business cycle to even slower changes in
demographics, airport capacity, and other determinants of air travel demand. The
behavior of a dynamic system responding to shocks is the convolution of the closed-loop
frequency response of the system with the power spectrum of the noise inputs. Because
there is significant power in the low frequency components of the perturbations in
demand, the observed cycle period will be longer than the period observed in the step
response. Given that the full model fits the data well with plausible parameters, there is
no evidence to suggest that the period of the oscillatory response to the idealized step
input is problematic. However, future research should explore this issue further.

A related issue concerns aircraft manufacturing capacity. We have modeled the
delay in acquiring new aircraft as a constant, implicitly assuming that aircraft
manufacturing is uncapacitated. In reality, aircraft manufacturing capacity can constrain
the delivery of new aircraft, lengthening the aircraft acquisition delay and potentially
increasing the natural period of the endogenous industry cycle. The online supplement
(0S3.2) reports a structural sensitivity test that adds manufacturing capacity constraints
and endogenous manufacturing capacity to the model. Under certain parameterizations
(long delays in the response of manufacturing capacity to changes in aircraft orders), the
inclusion of capacitated deliveries lengthens the period of the profit cycle observed in the
step response. Importantly, however, the inclusion of endogenous manufacturing
capacity does not change our findings concerning yield management: even with
endogenous manufacturing capacity constraints, stronger yield management helps
stabilize the capacity cycle but at the expense of higher operational leverage and profit
volatility, lowering risk-adjusted profitability. Given the purpose of our model, the
model’s excellent fit to airline capacity, and the lack of publicly available data concerning
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the aircraft supply line we chose not to include the structure for manufacturing capacity in
our base model, but recognize it as an important issue for future research.

As discussed above, the wage sector could be elaborated to improve the fit of the
model to the data for industry wages. Although the model fit to the data for wages
exhibits an acceptable mean absolute error and low bias, it is the least accurate fit. During
partial model testing we implemented several structures to attempt to improve the fit,
including an experience chain to model the average tenure of the workforce. Since
compensation rises as employees gain more years of experience, changes in the age
distribution of the workforce would change average wages even if the wage at each pay
step on the scale was constant. However, we found that average tenure was uncorrelated
with the unexplained variation in average wages and therefore cut this structure from the
model in the interests of parsimony. Determining what additional causal links, especially
plausibly endogenous ones, would better model wages remains an opportunity for future
research.

Similarly, we currently model the determinants of costs by representing jet fuel
costs, average fuel efficiency, and wages explicitly because that level of aggregation is
sufficient to fit total costs well. For example, since advertising has remained a very stable
percentage of total operating expenses we did not need to include an explicit structure to
represent the way advertising budgets are set. However, endogenous advertising
decisions and related marketing efforts such as loyalty (frequent flyer) programs, might
complete an interesting feedback with demand that we have omitted, especially in a
model that portrayed individual airlines.

Conclusion

We develop an industry level model of airline profits that expands the boundary of prior
models by including endogenous capacity, demand, prices, wages, costs, and profit.
Methodologically our results document the first implementation of Markov chain Monte
Carlo methods to estimate standard errors in a system dynamics model and highlight
important limitations in current approaches to calibrating larger models.

Substantively, we find that price setting feedbacks play a surprisingly important
role in determining industry profit stability. In particular, yield management strengthens a
fast acting negative loop that damps the industry cycle in capacity, revenue and profit, but
increases operational leverage and the volatility of profit. The net effect is to lower risk
adjusted return compared to what would be possible using other pricing heuristics.
Operational leverage is an important consideration in assessing risk-adjusted profit, but
has not typically been modeled dynamically. While our model is not rich enough to
address important dynamics that might arise from the implementation of different pricing
rules at the inter-firm level, it provides a publicly-available platform for future researchers
to explore these and other issues.

The methodological contributions of the work are less central, but there are
several techniques that we fully document for the first time. In particular our paper is the
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first to show how MCMC methods provide system dynamics research with a
computationally efficient, general tool for determining the confidence intervals around
parameter estimates. While the supply line adjustment for growth (0S2) and the data
reporting structure (A1) that we use are not novel, the documentation we provide may be
helpful for others who implement them.

Since deregulation more than thirty years ago airline profits have been close to
zero on average and have experienced large amplitude cycles. Looking to the future, the
increasingly commoditized nature of air travel, the rising costs of fuel, and the growing
pressure to reduce industry greenhouse gas emissions suggest that airlines will likely face
continued challenges to profitability. Our model is offered in the hope that it will be
useful in the attempt to stabilize airline industry profits so that airlines can continue to
provide a vital service in the global economy.
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Appendix Al: Data Reporting Macro

One of the challenges when fitting models to reported data is that data are typically
reported at discrete intervals such as a month, quarter or year, while system dynamics
models represent the underlying continuous dynamics of the system. Directly comparing
reported data with the model's computed values can be problematic because the
instantaneous value is not the same as the reported variable, which typically measures the
average or accumulated value of a flow over some reporting period. For example, the
instantaneous value of a corporation’s revenue, net income, and other flow variables on a
particular day will generally differ from the reported values on the income statement for
the last quarter, since the reported values are the accumulated total for the period. The
resulting errors can be substantial, and introduce the possibility of systematic bias in
parameter estimation, particularly if there are trends in the data (for example,
instantaneous sales and profit will be higher than the reported values for the last quarter
when sales and profits are growing).

The model includes a structure, implemented as a Vensim macro, which replicates
the data reporting process for a given'® data reporting period. The data reporting
structure is shown in Figure A1l.

1 The data reporting period must divide into 1 time unit with no remainder, e.g., 0.25 would represent four
quarters/year.
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The figure shows the example for the flow variable revenue (S/year). The
instantaneous, simulated revenue flows into the stock labeled “accumulated reported
variable”. When the check reporting flag indicates that end of the reporting interval, say
one quarter year, has been reached, the entire accumulated revenue over the quarter is
removed from the stock. The value is then converted from the amount per reporting
period to the amount per time unit used in the model by multiplying it by the reporting
period (annualized when time is measured in years).

<Reporting <Time>
Period> '/
<Revenue> \ chec.k
reporting

Accumulated

X » Y
New R@ported 3;;2;:?: Drained AReported
Variable Variable
<TIME STEP>
Reported
Variable /
Reporting
Period

Figure Al: The data reporting structure implemented in the model

The Vensim macro that implements the data reporting structure is reproduced
below:

:MACRO:Report Variable(Simulated Data, Reporting Period)
Report Variable = Drained Reported Variable*TIME STEPS/Reporting Period
~ Simulated Data
~ |
Drained Reported Variable=IF THEN ELSE(Check Reporting=0, Accumulated
Reported Variable/TIME STEPS, 0)
~ Simulated Data
~ |
Check Reporting=MODULO(TimeS, Reporting Period)
~ Reporting Period
~ |
Accumulated Reported Variable = INTEG(Simulated Data-Drained Reported
Variable,0)
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~ Simulated Data*Reporting Period

~ |

:END OF MACRO:

Appendix A2: Markov chain Monte Carlo Standard Errors

Markov chain Monte Carlo (MCMC) standard errors are a recently implemented option for
optimization in Vensim version 6. The algorithm assumes that the user has first found the
globally optimum best-fitting parameters, and will return an error if it detects a set of
parameters with a better payoff than its starting point.

During the process Vensim defines a region of parameter space that is “close” to
the global optimum and selects new parameters following a random walk to efficiently
find the range of values that jointly determine the confidence interval. The method
requires two things. First, the payoff surface to be a likelihood or log likelihood; and
second, the algorithm must run for long enough to adequately explore the space. The
payoff function can be univariate or a weighted sum of the errors between simulated and
actual data for multiple variables.

Defining a payoff as a log likelihood can be accomplished by setting the weight of
the errors with respect to each dimension of the payoff to the reciprocal of the root mean
square error of the simulated data (1/RMSE). (Gelman et al., 2003).

Doing so necessitates an iterative approach to optimization, because the mean
square error between the data and the model isn’t known until the model has run. We
defined a variable in the model that calculated 1/RMSE using the existing RMSE
calculation in the summary statistics structure documented by Sterman (2000, Ch 21).
Starting with arbitrary weights (we chose the inverse of the variance of the historical
data), we ran a Powell optimization with multiple restarts and selected the set of
parameters that fit best. We then replaced the weights on each data series with the
realized inverse of the RMSE from that best fit. We then ran the Powell optimizer from
this point without restarts, measured new weights given the resulting parameters, and
started the optimizer again using the most recent parameters and weights. After
approximately ten optimizations the process settled so that the changes in the parameters
were much smaller than the threshold of three significant figures we set for precision.
The estimated parameters at that point were declared the optima and the weights for
running the MCMC algorithm were calculated using them.

Currently one must edit the .voc (vensim optimization control) files manually, using
a text editor, to run the MCMC tests. Future versions of Vensim may implement MCMC
within the user interface, but that work is not complete in version 6.1. Once the .voc file is
edited manually, do not open it again from within the user interface or your manual edits
will be lost. The following constitute the set of changes we made to the .voc files. There
are many additional options inside of Vensim that can tune this process. The online
documentation for version 6.1 (http://www.vensim.com/documentation/mcmc_sa.htm)
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gives an extensive description and is a more complete resource than this appendix.

:OPTIMIZER=0ff

[Comment: turns off the Powell optimizer since you’ve already located the
global optimum]

:SENSITIVITY=Payoff MCMC=2

[Comment: Tells vensim to use the MCMC payoff, 2 is the boundary in the
payoff space where vensim will define the 95% confidence interval and relies
on your setting the payoff definition weights to 1/RMSE]

:MCLIMIT= #number#

[Comment: This is optional, and if you set it to a negative number the optimizer
will run until you turn it off.]

:MCBURNIN= #number#

[Comment: This is also optional, and will discard a certain number of runs
before attempting calculation of the MCMC distribution. The documentation
recommends setting this to zero in most cases and then potentially increasing
it if you run into strange results, but some burn-in is generally desirable.]

While the MCMC algorithm is running it will report potential scale reduction factors (PSRF)
for each of your variables periodically. These diagnostics are used to determine when the
MCMC has run for a sufficient time to be certain of the distribution. PSRF’s are always
greater than 1, and every variable should have a PSRF less than 1.2 before the process is
terminated (Kim et al., 2011).

Two files will be output by Vensim once the payoff is complete.
Runname_MCMC.tab reports the parameters and 95% confidence intervals.
Runname_MCMC.dat has many additional diagnostics and a full report of the results.



