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In this paper we develop an approach to dynamic pricing that combines ideas from data-driven and robust

optimization to address the uncertain and dynamic aspects of the problem. In our setting, a firm offers

multiple products to be sold over a fixed discrete time horizon. Each product sold consumes one or more

resources, possibly sharing the same resources among different products. The firm is given a fixed initial

inventory of these resources and cannot replenish this inventory during the selling season. We assume there is

uncertainty about the demand seen by the firm for each product and seek to determine a robust and dynamic

pricing strategy that maximizes revenue over the time horizon. While the traditional robust optimization

models are tractable, they give rise to static policies and are often too conservative. The main contribution of

this paper is the exploration of closed-loop pricing policies for different robust objectives, such as MaxMin,

MinMax Regret and MaxMin Ratio. We introduce a sampling based optimization approach that can solve

this problem in a tractable way, with a confidence level and a robustness level based on the number of

samples used. We will show how this methodology can be used for data-driven pricing or adapted for a

random sampling optimization approach when limited information is known about the demand uncertainty.

Finally, we compare the revenue performance of the different models using numerical simulations, exploring

the behavior of each model under different sample sizes and sampling distributions.
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1. Introduction

In many industries, managers are faced with the challenge of selling a fixed amount of inventory

within a specific time horizon. Moreover, the firm offers an array of different products which will

consume a shared set of resources. Examples include the case of airlines selling flight tickets, hotels

trying to book rooms and retail stores selling products for the current season. All these cases share

a common trait: a fixed initial inventory that cannot be replenished within the selling horizon. The

firm’s goal is to set prices at each stage of the given selling horizon that will maximize revenues

while facing an uncertain demand.

As in most real-life applications, the intrinsic randomness of the firm’s demand is an important
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factor that must be taken into account. Decisions based on deterministic forecasts of demand can

expose the firm to severe revenue losses or fail to capture potential revenues. In the pricing prob-

lem, demand is usually modeled as a function of the prices set by the firm. To model uncertainty

in demand, we represent some parameters of this function as random. These random parameters

can be modeled assuming a fixed distribution, as in the stochastic optimization literature, or using

the distribution-free framework of robust optimization. In the stochastic optimization approach,

demand uncertainty is given by a certain probability distribution and the firm’s objective is to find

prices that maximize its expected revenue. A disadvantage of this approach is that it requires full

knowledge of the demand distribution, often requiring the uncertainty to be independent across

time periods. Note that the dynamic programming formulation used to solve the stochastic opti-

mization model will have a serious dimensionality problem if there are many types of resources

or if demands are correlated. On the other hand, in the robust optimization approach, one does

not assume a known distribution for the demand uncertainty, but assumes only that it lies within

a bounded uncertainty set. The goal in this case is to find a pricing policy that robustly maxi-

mizes the revenue within this uncertainty set, without further assumptions about the distribution

or correlation of demands across time periods. Nevertheless, as a drawback, the robust solution

is often regarded as too conservative and the robust optimization literature has mainly focused

on static problems (open-loop policy). The dynamic models that search for closed-loop policies,

i.e. which account for previously realized uncertainty and adjust the pricing decisions, can easily

become intractable. Our goal in this paper is to come up with an approach that can tackle these

two issues, by developing a framework for finding non-conservative and adjustable robust pricing

policies.

In order to achieve this goal, we are going to develop pricing optimization models that are based

on sampled scenarios of demand. At first, using the assumption that we have access to historical

samples of demand, we will develop a data-driven robust approach to pricing. Furthermore, in the

case these samples are not available, we will develop a framework to generate random scenario

samples using mild assumptions on the demand distribution and still obtain a sampling based

robust solution. We will also provide theoretical bounds on the number of samples required to

obtain a given confidence level about our solutions and develop numerical examples to demonstrate

how to apply this methodology in a practical setting and to obtain managerial insights about these

pricing models.
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1.1. Literature Review

A good introduction to the field of revenue management and dynamic pricing would include the

overview papers of Elmaghraby and Keskinocak (2003), Bitran and Caldentey (2003) and the book

by Talluri and van Ryzin (2004). The revenue management literature in general assumes a fixed set

of pre-determined prices and tries to allocate capacity for different price levels. This problem can

be traced back to Littlewood (1972), who first tackled the network capacity control problem. The

complexity of solving these large network models led to the development of numerous heuristics.

Belobaba (1987, 1992) later developed heuristics such as EMSR-a and EMSR-b which performed

very well in practice for solving the capacity control problem. Talluri and van Ryzin (1998) further

developed the concept of bid-price controls. Bertsimas and Popescu (2003) solved this problem

by approximating the revenue-to-go function and Bertsimas and de Boer (2005) introduced an

algorithm based on stochastic gradient. Akan and Ata (2009) recently developed a martingale

characterization of bid-price controls. On the other hand, the dynamic pricing literature attempts

to solve a similar problem, but does not assume fixed prices, rather it assumes that we can choose

different prices at each period. In that case, we also assume that the aggregate demand seen by

the firm is a function of the price.

Most of the revenue management and pricing literature uses the stochastic optimization frame-

work, which makes distributional assumptions on the demand model and often doesn’t capture

correlation of the demand uncertainty across time periods. Avoiding such problems, there are two

different approaches prominent in the literature that will be most relevant for our research: data-

driven and robust optimization. So far, these approaches have been studied separately and the

modeling choice usually depends on the type of information provided to the firm about the demand

uncertainty.

The operations management literature has explored sampling based optimization as a form of

data-driven nonparametric approach to solving stochastic optimization problems with unknown

distributions. In this case, we use past historical data, which are sample evaluations coming from

the true demand distribution. In revenue management, this approach has been pioneered by van

Ryzin and McGill (2000) who introduced an adaptive algorithm for booking limits. Bertsimas and

de Boer (2005) and van Ryzin and Vulcano (2008) developed a stochastic gradient algorithm to

solve a revenue management problem using the scenario samples. Another typical form of data-

driven approach is known as Sample Average Approximation (SAA), when the scenario evaluations

are averaged to approximate the expectation of the objective function. Kleywegt et al. (2001) deal

with a discrete stochastic optimization model and show that the SAA solution converges almost



Lobel and Perakis: Dynamic Pricing Through Sampling Based Optimization
4

surely to the optimal solution of the original problem when the number of samples goes to infinity

and derive a bound on the number of samples required to obtain at most a certain difference

between the SAA solution and the optimal value, under some confidence level. Zhan and Shen

(2005) apply the SAA framework for the single period price-setting newsvendor problem. Levi et al.

(2007) also apply the SAA framework to the newsvendor problem (single and multi-period) and

establish bounds on the number of samples required to guarantee with some probability that the

expected cost of the sample-based policies approximates the expected optimal cost and Levi et al.

(2010), using the assumption that the demand distribution is log-concave, develop a better bound

on the number of samples to obtain a similar guarantee as in Levi et al. (2007). More specifically in

the dynamic pricing literature, the data-driven approach has been used by Rusmevichientong et al.

(2006), to develop a non-parametric data-driven approach to pricing, and also more recently by

Eren and Maglaras (2009). Besbes and Zeevi (2008) assume there is no prior data and develop an

approach that requires an exploration phase to obtain data and an exploitation phase to generate

revenue. Other relevant work on the subject of revenue management with demand learning is by

Araman and Caldentey (2009) and by Farias and Van Roy (2009).

The fairly recent field of robust optimization proposes distribution-free modeling ideas for mak-

ing decision models under uncertainty. This area was initiated by Soyster (1973) and it was further

developed by Ben-Tal and Nemirovski (1998, 1999, 2000), Goldfarb and Iyengar (2003) and Bert-

simas and Sim (2004). A robust policy can be defined in different ways. In this paper we will

explore three different types of robust models: the MaxMin, the MinMax Regret (or alternatively

MinMax Absolute Regret) and the MaxMin Ratio (or alternatively MaxMin Relative Regret or

MaxMin Competitive Ratio). In inventory management, the MaxMin robust approach can be seen

in Scarf (1958), Gallego and Moon (1993), Ben-Tal et al. (2004), Bertsimas and Thiele (2006).

The following papers by Adida and Perakis (2005), Nguyen and Perakis (2005), Perakis and Sood

(2006), Thiele (2006), Birbil et al. (2006) are examples of the MaxMin robust approach applied to

the dynamic pricing problem. This approach is usually appropriate for risk-averse managers, but it

can give quite conservative solutions. For this reason we will explore the regret based models, which

were originally proposed by Savage (1951). Lim and Shanthikumar (2007) and Lim et al. (2008)

approach this problem from a different angle, where the pricing policies are protected against a

family of distributions bounded by a relative entropy measure. In the broader operations manage-

ment literature, Yue et al. (2006) and Perakis and Roels (2008) use the MinMax Absolute Regret

for the newsvendor problem. A comparison of MaxMin and MinMax Absolute Regret for revenue

management can be found in Roels and Perakis (2007). An alternative approach is the relative
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regret measure, also known as the competitive ratio. In revenue management and pricing, Ball and

Queyranne (2006) and Lan et al. (2006) use this MaxMin Ratio approach.

Irrespective of the demand uncertainty models described above, multi-period decision models

can also be categorized between (i) closed-loop policies, where policies use feedback from the actual

state of the system at each stage, and (ii) open-loop policies, where the entire policy is defined

statically at the beginning of the time horizon. The initial robust framework discussed in the papers

above does not allow for adaptability in the optimal policy. This open-loop robust framework has

been applied to the dynamic pricing problem in Perakis and Sood (2006), Nguyen and Perakis

(2005), Adida and Perakis (2005) and Thiele (2006). Moving towards closed-loop solutions, Ben-

Tal et al. (2004) first introduced adaptability to robust optimization problems. Ben-Tal et al.

(2005) propose an application of adjustable robust optimization in a supply chain problem. More

specifically, they advocate for the use of affinely adjustable policies. Recent work by Bertsimas

et al. (2009) was able to show that optimality can actually be achieved by affine policies for a

particular class of one-dimensional multistage robust problems. Unfortunately this is not our case,

therefore we must admit that the affine policies we are using will only achieve an approximation

to the fully closed-loop policy. Zhang (2006) develops a numerical study of the affinely adjustable

robust model for the pricing problem using an MIP formulation. In this paper, we present a model

that introduces an affinely adjustable approach to the dynamic pricing problem and uses sampling

based approach to solve the robust problem.

As mentioned by Caramanis (2006), the sampling approach to the adaptable robust problem

puts aside the non-convexities created by the influence of the realized uncertainties in the policy

decisions. The natural question that arises is how many scenarios do we need to have any confidence

guarantees on our model’s solution. To answer this question, Calafiore and Campi (2005, 2006)

define the concept of an ε-level robust solution and provide a theoretical bound on the sample

size necessary to obtain this solution. The bound was later improved in Campi and Garatti (2008)

and Calafiore (2009), which is provably the tightest possible bound for a class of robust problems

defined as “fully-supported” problems. Recently Pagnoncelli et al. (2009) suggested how to use this

framework to solve chance constrained problems.

As for the numerical experiments, we will compare the out-of-sample revenues of our sampling-

based pricing models by using Monte Carlo-based performance measures. Chiralaksanakul and

Morton (2004) and Bayraksan and Morton (2006) proposed Monte Carlo-based procedures to access

the quality of stochastic programs, building sampling-based confidence intervals for the optimality

gap of the solution. To compare our pricing models, we will conduct paired tests and use similar
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concepts of sampling based confidence intervals around the average and worst-case difference in

revenues.

1.2. Contributions

The main goal of this paper is to solve the multi-item dynamic pricing problem in a practical way.

In particular, we develop a methodology that is easy to implement, uses directly available data in

the price optimization model, and at the same time is justified from a theoretical point of view. We

accomplish this by using a sampling based optimization approach, which allows for a wide range

of modeling complexity such as adjustable pricing policies, nonlinear demand functions, network

effects, overbooking and salvage value. The solution concept that motivates our model is the robust

pricing problem. Nevertheless this problem becomes intractable as we introduce all the modeling

components mentioned before. We show in this paper how this new combined robust sampling

based framework is tractable, performs very well in numerical experiments and is theoretically

grounded as a good approximation to the original robust problem, depending on the number of

samples used.

More specifically, most robust approaches to the pricing problem use an open-loop model, where

the information obtained by observing past demand is not used in the pricing decision of future

periods. A key challenge, when introducing adjustability to dynamic pricing, is that the model

easily turns into a non-convex problem, which is intractable to solve even when using traditional

robust optimization techniques. Instead we propose a sampling based approach where we solve

the problem using only a given set of demand scenarios. The new problem becomes a convex

program and can be efficiently solved. The question that arises from this approach is how many

samples do we need in order to have a performance guarantee on our sampling based solution. To

answer this question, we define a notion of ε-robustness and show the sample size needed to achieve

an ε-robust solution with some confidence level. Nevertheless, this type of data-driven approach

uses the assumption that we have a large set of historical data available, which comes from the

true underlying distribution of the uncertainty. This assumption can be quite restrictive in many

real applications, for example when releasing a new product. For these cases, we introduce a new

concept of random scenario sampling, where we use an artificial distribution over the uncertainty

set to generate random sample points and apply the sampling based optimization framework. We

are able to show bounds on the sample size required for the random sampling solution using a

relatively mild assumption on the unknown underlying distribution, which we refer to as a bounded

likelihood ratio assumption.
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Although fairly general, the bounded likelihood ratio assumption can be seen as too abstract

and hard to quantify in a practical setting. For this reason we further developed a method to

obtain this likelihood ratio measure using more commonly used assumptions, which can be more

easily verified by the firm. More specifically, using the assumption that the uncertain parameter

of the demand follows a log-concave distribution, independent across products and time periods

and with a known standard deviation, we obtain the likelihood ratio bound on the true unknown

distribution, relative to a uniform random sampling distribution. Therefore we can use the bound

developed before to determine the sample size that needs to be generated to obtain any level of

robustness for the pricing problem.

The random scenario sampling framework we introduce is a rather powerful concept, given

that we are now able to use a data-driven methodology to solve a robust problem without any

actual historical data. Data-driven and robust optimization have been generally considered two

separate fields, since they use very different initial assumptions of information about the problem.

The bridge we develop between data-driven optimization and robust optimization has not been

widely explored. We start with an intractable robust model and illustrate how to solve a close

approximation to the robust solution using only randomly generated scenarios.

Another contribution of this work comes from the numerical experiments, where we study the

simulated revenue performance of our dynamic pricing models. Our first experiment will provide

empirical evidence that the sample size bound we present in this paper is in fact tight for our

dynamic pricing problem. In the other experiments, we will compare the performance of the robust

pricing models, using three different types of robust objectives (MaxMin, MinMax Regret, MaxMin

Ratio) and a Sample Average Approximation (SAA) model, which is more common in the stochastic

optimization literature. When compared to the SAA benchmark, the robust models will usually

obtain a smaller average revenue but will do significantly better in the lower revenue cases. On

the other hand, when the number of samples provided are small, the robust models have shown to

perform just as well as the SAA on average, while still maintaining a less volatile revenue outcome.

Comparing between the robust models, we show that the traditional robust (MaxMin) is usually

dominated by the regret based models, both in average and worst-case revenue. The two regret-

based models (MinMax Regret and MaxMin Ratio) have a relatively similar performance, but the

first one tends to be more robust and conservative than the second.

We also show in this paper how to apply our methodology in practice, using a case study with

actual airline data. Without considering competition effects, we will show how our robust pricing

models might achieve significant improvements in the revenues per flight.
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The remainder of the paper is structured as follows. In Section 2, we introduce the modeling

approach that we will consider and discuss the implementation issues. In Section 3, we show the

simulated performance of the proposed models and interpret the numerical results. In Section 4, we

develop an airline case study. Finally, in Section 5, we conclude with a summary of the discussions

mentioned before and give possible directions for future work.

The online appendices provide supplementary content to the reader that were omitted from the

paper for conciseness. Appendix A provides a summary of the notation used. Appendices B-F

display the proofs of our theoretical results in Section 2. Appendices G-J provide information about

the numerical experiments displayed Section 3, as well as additional experiments.

2. The Model

Before introducing the general model we propose in this paper, we motivate the problem with the

following example. Suppose a firm sells only one product over a two period horizon, with a limited

inventory of C. Moreover, suppose the firm has a set of N historical data samples of demand and

prices for each period of the sales horizon. We will assume for this example the demand is a linear

function of the price plus δ, which is a random noise component: Demandt = at − btPricet + δt.

After estimating the demand function parameters (a1, a2, b1, b2) using the N data points, we are

left with a set of estimation errors δ
(1)
t , ..., δ

(N)
t for each time period t= 1,2. A typical robust pricing

approach would define an uncertainty set from which these errors are coming from and choose

prices that maximize the worst case revenue scenarios within that set. It is not clear how one should

define this uncertainty set given a pool of uncertainty samples and the resulting problem can also

become too hard to solve, as we will show later in this section. The direct use of the uncertainty

samples δ
(i)
t in the price optimization is what characterizes a sampling based optimization model,

which we advocate for in this paper. Our goal, as seen in the following model, is to find a pricing

strategy that robustly maximizes the firm’s revenue with respect to the N given observations of

demand uncertainty:

max
p1,p2≥0

min
i=1,...,N

p1(a1− b1p1 + δ
(i)
1 ) + p2(a2− b2p2 + δ

(i)
2 )

s.t. (a1− b1p1 + δ
(i)
1 ) + (a2− b2p2 + δ

(i)
2 )≤C, ∀i= 1, ...,N

Note that the given uncertainty samples δ
(i)
t will approximate the uncertainty set from the tra-

ditional robust optimization approach. The major theoretical challenge now is to determine how

many samples are needed for the sampling based model to approximate the original robust problem.

On the modeling aspect of the problem, one of the main problems with the solution concept

presented above is that this MaxMin robust approach can often be too conservative. For this reason,
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we will propose other types of robust modeling. Another problem in this example is that the second

period price p2 does not depend on the uncertainty realized on the first period δ1, which is what

we call an open-loop model. Ideally, the second period pricing policy should be a function of the

new information obtained in the first period, p2(δ1), which is known as a closed-loop model.

After the motivating example illustrated above, we proceed to generalize the problem to include

components such as network effects, salvage/overbooking inventory and nonlinear demand mod-

els. Throughout this section we develop a solution approach that mitigates the modeling issues

described before. Further on, in Section 2.1, we will address the theoretical issue of the number of

samples required. We refer the reader to Appendix A for a summary of the notation that will be

used in this paper.

To address the network component of pricing problems, we consider the firm to have n products

(eg. itineraries) and m resources (eg. flight legs). The m×n incidence matrix M determines which

resources are consumed by each product sold. Also let T be the length of the time horizon. Define

pj,t as the price of product j at time t and the demand function as dj,t. We admit that the demand

dj,t can be a function of the prices of all the products at any time period. For the sake of clarity, we

will use demand functions that are affected only by the current product price dj,t(pj,t). This means

that a certain product’s demand will not be affected by the prices of the other products or by the

past prices. It is important to note that the modeling techniques and the results presented in this

paper can be easily implemented with cross product/time effects (which also allow us to use demand

models with reference prices). We are only restricting ourselves to effects of the current price to

avoid complicating the notation. The firm’s goal is to set a pricing policy for each product that

robustly maximizes the revenue of the firm,
∑T

t=1

∑n

j=1 pj,tdj,t(pj,t). For technical reasons, which

are discussed later, we require that the demand function satisfies the following convexity/concavity

assumption.

Assumption 1. Let dj,t(pj,t) be the nominal demand as a non-increasing function of the price

pj,t for a given set of demand parameters. We further assume that dj,t(pj,t) is convex in pj,t and∑T

t=1

∑n

j=1 pj,tdj,t(pj,t) is strictly concave in p.

For example, suppose we assume a linear demand function, dj,t(pj,t) = aj,t − bj,tpj,t, where aj,t

and bj,t are scalars. The intuition behind Assumption 1 is that we want the space of pricing

strategies to be a closed convex set and the objective function to be strictly concave, giving rise to

a unique optimal solution. Examples of demand functions that satisfy Assumption 1, besides the

linear demand function, which are common in the revenue management literature are the iso-elastic
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demand dj,t(pj,t) = a(pj,t)
−b for b ∈ [0,1], and the logarithmic demand dj,t(pj,t) =−a log(pj,t/b). In

the numerical experiment of Appendix H, we will illustrate our framework using the logarithmic

demand model.

Without considering demand uncertainty, the objective is to find the optimal set of prices that

maximizes the sum of the revenues for the entire horizon. The prices are nonnegative and the total

demand seen by the firm for a given resource l should be less than its total capacity Cl or else

the firm will pay an overbooking fee ol for every unit of resource sold above capacity of resource

l. For every unit of capacity not sold, the firm will get a salvage value of gl. We require that

ol > gl for all resources l = 1, ...,m to guarantee the concavity of the objective function. In most

practical applications, the salvage value is small and the overbooking fee is large, which makes this

assumption very easy to justify. Define wl as the difference between the number of units sold and

the capacity in each resource l, while w+
l = max(wl,0) and w−l = min(wl,0).

To capture the variability in demand, given the nominal demand function dj,t(pj,t), define

d̃j,t(pj,t, δj,t) as the actual demand for product j at time t, which is realized for some uncertain

parameter δj,t. For example, suppose we have a linear nominal demand function given by dj,t =

aj,t−bj,tpj,t. Then introducing an additive uncertainty we would have: d̃j,t(pj,t, δj,t) = aj,t−bj,tpj,t+

δj,t. In the literature, it is mostly common to use additive or multiplicative uncertainty. In our

framework, we admit any sort of dependence of the demand function on the uncertain parameters.

In general, δ = (δ1,1, ...δn,T ) is a random vector with one component δj,t for each product j and

each period t (it can be easily generalized for multiple uncertain components in each product or

time period). We assume that δ is drawn from an unknown probability distribution Q, with support

on the set U , which we call the uncertainty set. We do not make any assumptions about the

independence of δ across time or products, as opposed to most stochastic optimization approaches.

Although not required in our general framework, we will use an independence assumption when

giving an example of how to apply the random sampling approach (see Corollary 1).

In our framework, we assume there is a finite set of pricing decision variables s, which lie within

the strategy space S and define the prices pj,t(s, δ) for each product at each period. We assume

that S is a finite dimensional and compact set. In the case of static pricing (open-loop policies), s

is a vector of fixed prices decided before hand, independent of the realizations of demand. When

using adjustable policies (closed-loop), the actual price at time t must naturally be a function only

of the uncertainty up to time t− 1. For conciseness, we will express the actual realized prices as

pj,t(s, δ) for both cases, while pj,t(s, δ) is actually independent of δ in open-loop policies and in

closed-loop policies a function of δj,1, ..., δj,t−1, including all products j. Also to avoid redundancy
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in notation, define d̃j,t(s, δ) = d̃j,t(pj,t(s, δ), δj,t). In other words, the policy s and the uncertainty

δ determine the prices of all products at time t, therefore also determining the realized demand.

Define the net leftover inventory of resource l as a function of the pricing policy and the realized

uncertainty: w̃l(s, δ) =
∑T

t=1

∑n

j=1Ml,j d̃j,t(s, δ)−Cl.

As stated before, our goal is to find a pricing policy that will give a robust performance for all

possible realizations of demand. One can think of the robust pricing problem defined as a game

played between the firm and nature. The firm chooses a pricing policy s and nature chooses the

deviations δ ∈U that will minimize the firm’s revenue. The firm seeks to find the best robust policy

under the constraints that the pricing policy yields nonnegative prices and that the total demand

must be less than or equal the capacity (although relaxed by overbooking fees and salvage value).

To express the different types of robust objectives explored in this paper, define hobj(s, δ) as the

objective function realization for a given pricing strategy s and uncertainty δ. The index obj can be

replaced with one of three types of robust objectives that we consider in this work: the MaxMin,

the MinMax Regret and the MaxMin Ratio.

hMaxMin(s, δ) =
T∑
t=1

n∑
j=1

pj,t(s, δ)d̃j,t(s, δ)−
m∑
l=1

olw̃l(s, δ)
+ + glw̃l(s, δ)

−

hRegret(s, δ) =
T∑
t=1

n∑
j=1

pj,t(s, δ)d̃j,t(s, δ)−
m∑
l=1

olw̃l(s, δ)
+ + glw̃l(s, δ)

−

−max
y≥0

{
T∑
t=1

n∑
j=1

yj,td̃j,t(y, δt)−
m∑
l=1

olw̃l(y, δ)
+ + glw̃l(y, δ)

−

}

hRatio(s, δ) =

T∑
t=1

n∑
j=1

pj,t(s, δ)d̃j,t(s, δ)−
m∑
l=1

olw̃l(s, δ)
+ + glw̃l(s, δ)

−

max
y≥0

{
T∑
t=1

n∑
j=1

yj,td̃j,t(y, δt)−
m∑
l=1

olw̃l(y, δ)
+ + glw̃l(y, δ)

−

}
In the first robust concept, MaxMin, we try to find a pricing policy that gives us the best revenue

for all possible realizations of the uncertainty δ in the set U . More specifically, the actual rev-

enue realized for some policy s and deviation δ is given by Π(s, δ) =
∑T

t=1

∑n

j=1 pj,t(s, δ)d̃j,t(s, δ)−∑m

l=1 olw̃l(s, δ)
+ + glw̃l(s, δ)

−. Then for the MaxMin case, the objective function is simply given

by hMaxMin(s, δ) = Π(s, δ). As a drawback, the MaxMin approach often finds conservative pricing

policies. To avoid this issue, we also explore a robust approach called the MinMax Regret, also

known as absolute regret. In this case, the firm wants to minimize the regret it will have from

using a certain policy relative to the best possible revenue in hindsight, i.e. after observing the

realization of demand. In other words, define the optimal hindsight revenue Π∗(δ) as the optimal

revenue the firm could achieve, if it knew the demand uncertainty beforehand:
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Π∗(δ) = max
y,w

∑T

t=1

∑n

j=1 yj,td̃j,t(y, δ)−
m∑
l=1

olw
+
l + glw

−
l

s.t.
∑T

t=1

∑n

j=1Ml,j d̃j,t(y, δ)≤Cl +wl, ∀l= 1, ...,m

y≥ 0

(1)

The model above for the hindsight revenue Π∗(δ) is a deterministic convex optimization problem,

which can be efficiently computed for any given δ (either in closed form or using an optimization

package). Note that the capacity constraint can always be satisfied with equality in the opti-

mal solution, since left-over capacity can be shifted to wl while improving the objective function

because of the salvage value, gl ≥ 0. Therefore, at optimality, the left-over capacity variable from

the hindsight model above will have wl = w̃l(y, δ).

Define the absolute regret as the difference between the hindsight revenue and the actual revenue:

Π∗(δ)−Π(s, δ). To be consistent with the MaxMin formulation, we can define the objective function

for the MinMax Regret as hRegret(s, δ) = Π(s, δ)−Π∗(δ), which is the negative of the regret. We will

continue calling this MinMax Regret, since it is a more common term in the literature (although

this would be more precisely named MaxMin Negative Regret). Finally, the MaxMin Ratio,

which is also known as the relative regret or competitive ratio, tries to bound the ratio between

the actual revenue and the hindsight revenue. The objective function for the MaxMin Ratio can

be concisely written hRatio(s, δ) = Π(s,δ)

Π∗(δ) .

Consider the following model which we call the robust pricing model. We will go into details of

the different modeling techniques later in this section, but they all fall within the following general

framework:

max
s∈S,z

z

s.t.

{
z ≤ hobj(s, δ)
p(s, δ)≥ 0

}
∀δ ∈U

(2)

The inputs to the general robust model are: the structure of the pricing policy pt(s, δ), param-

eterized by the decision variables s; the demand functions d̃t(pt, δt) for any given price pt and

uncertainty δt; the objective function hobj(s, δ) and the uncertainty set U (which we will later

replace with uncertainty samples from U , as we can see in Section 2.1). The outputs are the set

of pricing decisions s and the variable z, which is a dummy variable used to capture the robust

objective value of the pricing policy.

To introduce adjustability in our model, we must find a pricing policy that is a function of the

previous realized uncertainties. On the other hand, searching over all possible functions is a rather

hard task. An approach used in the literature to introduce adaptability to the robust model is the

affinely adjustable robust optimization, where the search is limited to policies that are linear on
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the control variables. For example, define the price p using the variables u as the deterministic

component of the price and v as the effect that past demand uncertainty should have on current

prices. In this case s= (u, v). Then a typical pricing policy can be defined as:

pj,t(u, v, δ) = uj,t +
m∑
l=1

vj,l,t

n∑
j′=1

t−1∑
t′=1

Ml,j′δj′,t′ (3)

This policy (3) will be used in our numerical experiments in Section 3. In this policy example

above, we have an adjustable variable for each resource, where the summation
∑n

j′=1

∑t−1

t′=1Ml,j′δj′,t′

contains a lot of the inventory information necessary for our adjustable policy. As an intuition

for choosing this type of policy, observe that when using additive uncertainty the sum of past

uncertainties
∑n

j′=1

∑t−1

t′=1Ml,j′δj′,t′ is the amount of sales realized above or below the deterministic

level expected up to time t−1 for the resource l. If the firm has sold more than expected, we should

have an incentive to raise prices, given the reduced amount of inventory left. On the other hand, if

uncertainties are negatively correlated across time, a series of low demands could induce a higher

demand in the future, possibly giving the incentive to raise prices. Notice how static policies can

be overly conservative because they cannot adjust the prices according to the different levels of the

inventory, while the adjustable policies are more flexible. In the example above, we chose a pricing

policy that is linear on δ. In some situations, we might rather capture the effect of past deviations

in other forms, for instance δ2 or |δ|, depending on the structure of the demand function and the

uncertainty set. In the framework we propose, pricing policies can be any function of previous

realizations of δ, as long as the function is linear in the pricing decision variables for any given δ.

Assumption 2. Let pt(s, δ1, ..., δt−1) be the pricing policy at time t for a given set of pricing

decision variables s and uncertainties realized up to time t. We will restrict ourselves to policies

that are linear on s for any given δ. Nevertheless the dependence on δ can be nonlinear. We also

assume that s is restricted by the strategy space S, which is a finite dimensional, compact and

convex set.

The reason for Assumption 2 can be easily illustrated in the pricing policy in (3). When intro-

ducing this policy as an equality in the optimization model (2), we must guarantee that it defines

a convex set in p, u and v for any given δ. This convexity will hold if the pricing policy is linear

on the decision variables (u, v), as stated in Assumption 2.

Furthermore, the set S defined above captures only the constraints in the strategy space that

do not depend on the uncertainty. In general, we expect S to be a box set, with upper and lower
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bounds for the pricing variables. The finite dimensionality and compactness of set S are introduced

to guarantee the existence of a solution to the optimization problem.

Note that using adjustable policies, the inequality z ≤ hobj(p(u, v, δ), δ), which defines the objec-

tive function, is neither concave nor convex with respect to the deviations δ. In Appendix B, we

illustrate this with a simple instance of the adjustable MaxMin model. Because of this lack of

convexity or concavity, the traditional robust optimization methods (i.e. solve the exact robust

problem using duality arguments or simply searching over the boundary of uncertainty set) will

be intractable. Note the example in Appendix B uses a simple linear demand model and simple

objective function and it is not necessary to show that more complicated modeling will generally

not resolve the convexity issue. In the next section we introduce the sampling based approach that

we advocate for solving the robust pricing problem.

2.1. Sampling based optimization

Ideally, we would like to solve the exact robust pricing problem, but as we have seen in the previous

section this can easily become intractable. Instead, assume that we are given N possible uncertainty

scenarios δ(1), ..., δ(N), where each realization δ(i) is a vector containing a value for each time period

and product. We use the given sampled scenarios to approximate the uncertainty set, replacing

the continuum of constraints in (2) by a finite number of constraints. It is only natural to question

how good is the solution to the sampling-based problem relative to the original robust problem

that was proposed in the previous section. In order to discuss this issue, we will explore in this

section the theoretical framework needed to analyze the robustness of a sampling-based solution.

For clarity purposes, we again refer the user to Appendix A for a summary of the notation used in

this section to formulate the theoretical results. Define the following model as the sampling based

counterpart of the robust pricing model:

max
s∈S,z

z

s.t.

{
z ≤ hobj(s, δ(i))
p(s, δ(i))≥ 0

}
∀i= 1...N

(4)

The idea of using sampled uncertainty scenarios, or data points, in stochastic optimization models

is often called sampling or scenario based optimization. Note that from Assumptions 1 and 2, the

constraints in (4) define a convex set in (s, z) for any fixed vector δ. Therefore the scenario based

problem is a convex optimization problem and can be solved by any nonlinear optimization solver.

It is easy to argue that the exact robust problem that we initially stated in (2) has an optimal

solution (for a proof under more concise notation, see Appendix C). Also, from Assumption 1, it

follows that for any fixed uncertainty δ, there exist a unique optimal solution to the exact robust
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pricing problem. It remains to show how good is the approximation of the scenario based model

relative to the exact robust model. Depending on what type of demand information and historical

data that is initially provided to the firm, we propose two solution approaches: the Data-Driven

and the Random Scenario Sampling. The first approach, Data-Driven, assumes we are given a large

pool of uncertainty data drawn from the true underlying distribution, for example, from historical

data. The second approach, Random Scenario Sampling, assumes that we don’t have enough, if

any, data points from the true distribution, but instead we have a sampling distribution which can

be used to generate random data points.

Suppose we are given a large sample set of historical data of prices and demands. There are

many ways to estimate the parameters of the demand function using such data. As an example, in

the numerical study of Section 4, we used linear regression on the price-demand data to estimate

a linear demand model. To be consistent with our distribution-free approach, we should not rely

on hypothesis tests that use a normality assumption about the error. If such assumption can be

made about the estimation errors in the first place, then it could potentially be explored in the

optimization model. In this case, we use the linear regression simply as a tool to obtain estimates

of the demand parameters we need, even if we cannot validate the fit with statistical testing. The

estimation error obtained is the sample deviations δ in our model. Under the assumption that the

data points come from the true underlying distribution, we will show a performance guarantee on

how robust is the sampling based solution relative to the exact solution.

Define the set of decision variables x= (s, z), such that it lies within the domain x∈X, whereX =

S×< . Define c with the same dimension as x such that c= (0, ...,0,1). Also define the equivalent

constraint function with a scalar valued f such that: f(x, δ) = max
{
z−hobj(s, δ),−p(s, δ)

}
.

Since each constraint in the definition of f(x, δ) above is convex in x for any given δ, the maximum

between them is still convex in x. Moreover, f(x, δ)≤ 0 is equivalent to the constraint set defined

before in (2). Then problem (2) can be concisely defined as the following model (5):

max
x∈X

c′x, s.t.f(x, δ)≤ 0,∀δ ∈U (5)

Since we cannot solve the problem with a continuum of constraints, we solve the problem for a

finite sample of deviations δ(i) from the uncertainty set U , where i = 1, ...,N . Then the concise

version of the sampled problem (4) can be defined as the following model (6):

max
x∈X

c′x, s.t.f(x, δ(i))≤ 0,∀i= 1...N (6)

The following definition is required to develop the concept of ε-robustness which we will use

throughout the paper.
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Definition 1. For a given pricing policy x and a distribution Q of the uncertainty δ, define the

probability of violation VQ(x) as:

VQ(x) =PQ{δ : f(x, δ)> 0}.

Note that the probability of violation corresponds to a measure on the actual uncertainty realization

δ, which has an underlying unknown distribution Q. In other words, for the MaxMin case, given

the pricing policy x= (s, z), VQ(x) is the probability that the actual realization of demand gives

the firm a revenue lower than z, which we computed as the worst-case revenue, or that it violates

non-negativity constraints. In reality, the constraints are “naturally” enforced. The firm won’t set

a negative price, so if such a deviation occurs, the constraints will be enforced at a cost to the

firm’s revenue. Therefore, it is easy to understand any violation as an unexpected loss in revenue.

We can now define the concept of ε-robust feasibility.

Definition 2. We say x is ε-level robustly feasible (or simply ε-robust) if VQ(x)≤ ε.

Note that the given set of scenario samples is itself a random object and it comes from the probabil-

ity space of all possible sampling outcomes of size N . For a given level ε∈ (0,1), a “good” sample is

one such that the solution xN = (sN , zN) to the sampling based optimization model will give us an

ε-robust solution, i.e., the probability of nature giving the firm some revenue below our estimated

zN is smaller than ε. Define the confidence level (1− β) as the probability of sampling a “good”

set of scenario samples. Alternatively, β is known as the “risk of failure”, which is the probability

of drawing a “bad” sample. Our goal is to determine the relationship between the confidence level

(1−β), the robust level ε and the number of samples used N .

Before we introduce the main result, there is one last concept that needs to be explained. Suppose

that we do not have samples obtained from the true distribution Q, i.e. we do not have enough

historical data. Instead we are given the nominal demand parameters and the uncertainty set U .

We would like to be able to draw samples from another chosen distribution P and run the sampling

based pricing model (6). In order to make a statement about the confidence level of the solution

and the sample size, we must make an assumption about how close P is to the true distribution

Q.

Definition 3. Bounded Likelihood Ratio: We say that the distribution Q is bounded by P

with factor k if for every subset A of the sample space: PQ(A)≤ kPP(A).

In other words, the true unknown distribution Q does not have concentrations of mass that are

unpredicted by the distribution P from which we draw the samples. If k= 1 then the two distribu-

tions are the same, except for a set of probability 0, and therefore the scenario samples come from
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the true distribution (which is usually the case in data-driven problems). Note that the assump-

tion above will be satisfied under a more restrictive, but perhaps more common, assumption for

continuous distributions of Bounded Likelihood Ratio
dPQ(x)

dPP (x)
≤ k.

At first glance, it seems hard for a manager to pick a bound k on the likelihood ratio that

would work for his uncertainty set and sampling distribution without any knowledge of the true

underlying distribution. In the following Theorem 1, we show how one can derive this ratio k from

the standard deviation σ, when the true uncertainty distribution belongs to the family of log-

concave distributions with bounded support and is independent across products and time periods.

In this case, the standard deviation of the demand, which is a very familiar statistic to most

managers, should be somehow obtained by the firm. Similar theorems could also be obtained by

using other statistics about the volatility of the demand. Also note that the family of log-concave

distributions, as defined by distributions where the log of the density function is concave, is a

rather extensive family, which includes uniform, normal, logistic, extreme-value, chi-square, chi,

exponential, laplace, among others. For further reference, a deeper understanding of log-concave

distributions and their properties can be seen in Bagnoli and Bergstrom (1989) and Bobkov (1999).

Theorem 1. Assume that the deviations δj,t for each product j = 1, ..., n and time period t =

1, ..., T are independent and bounded in a box-shaped uncertainty set: δj,t ∈ [lb, ub]. We do not know

the true distribution of δj,t, but we assume it belongs in the family of log-concave distributions.

Furthermore, the standard deviation of δj,t is known to be σ. We randomly sample points from a

uniform distribution supported over the uncertainty set, with density 1
ub−lb for each δj,t.

Relative to the uniform, the true distribution has a likelihood ratio bound k=
[
(ub− lb) e

√
6

σ
√

2

]nT
.

If we further assume symmetry for the distribution of δ, the bound will be k=
[
(ub− lb) 1

σ
√

2

]nT
.

For a proof of Theorem 1, see Appendix D. The following theorem develops a bound on the

probability that the solution of the sampled problem is not ε-robust, i.e. probability of drawing a

“bad” sample.

Theorem 2. Given the following scenarios of uncertainty δ(1), ..., δ(N), drawn from an artificial

distribution P, which bounds the true uncertainty distribution Q by a factor of k (see Definition 3

and Theorem 1). Let nx be the dimension of the strategy space X, xN be the solution of (6) using

the N sample points, and ε be the robust level parameter. Then define a “risk of failure” parameter

β(N,ε) as:

β(N,ε)
.
=

(
N

nx

)
(1− ε/k)N−nx

Then with probability greater than (1 − β(N,ε)), the solution found using this method is ε-level

robustly feasible, i.e.,
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PP((δ(1), ..., δ(N)) : VQ(xN)≤ ε)≥ (1−β(N,ε))

In other words, the level β(N,ε) is a bound on the probability of getting a “bad” sample of size

N for a robust level ε. Then 1− β(N,ε) is the confidence level that our solution is ε-robust. As a

corollary of Theorem 2, we can obtain a direct sample size bound for a desired confidence level β

and robust level ε.

Corollary 1. If the sample size N follows:

N ≥N(ε, β)
.
= (2k/ε) ln(1/β) + 2nx + (2nxk/ε) ln(2k/ε)

Then with probability greater than 1−β the solution to the sampled problem will be ε-level robustly

feasible.

The bound in Corollary 1 is not necessarily the tightest value of N that will satisfy Theorem 2 for

a given β and ε. Numerically solving for N the equation β =
(
N
nx

)
(1− ε/k)N−nx might give a smaller

sample size requirement. On the other hand, Corollary 1 offers a direct calculation and insight

about the relationship between the sample size and the confidence/robust level of the sampled

solution. Note that N(ε, β) goes to infinity as either ε or β go to zero, which is rather intuitive.

On the other hand the dependence on β is of the form ln(1/β) which means that the confidence

parameter β can be pushed down towards zero without significant impact on the number of samples

required. For implementation purposes, it allows us to keep a good level of confidence β and design

N based on the ε-level of robustness desired.

For proof of Theorem 2, see Appendix E. The proof of this theorem is similar to the proof of

Calafiore and Campi (2006) (Theorem 1), but the latter could not be directly applied in our case

since we generalized the input data to allow for the random sampling approach. Instead, we had

to carefully introduce the bounded likelihood ratio assumption to connect the true distribution to

the sampling distribution. Corollary 1 can be derived using algebraic manipulations by solving for

N the expression β ≤
(
N
nx

)
(1− ε/k)N−nx .

Note that this result can be quite useful in practice, specially if there is a small amount of data

or no data samples at all. It is common for managers to assume the demand to lie within a certain

range. If they can further make an assessment of the volatility of demand (standard deviation),

we can apply this result. From Theorem 1, we obtain a likelihood ratio bound k, which directly

implies the number of samples required to be drawn for a given confidence and robustness level,

according to Theorem 2. To the best of our knowledge, this is the first result that gives a robust

sampling size bound when using an artificial sampling procedure and such limited knowledge of

the true distribution (log-concavity, range and standard deviation).



Lobel and Perakis: Dynamic Pricing Through Sampling Based Optimization
19

In more recent literature, Campi and Garatti (2008) developed a better bound for the case where

the samples come from the true distribution, which we call the data-driven case (k = 1). In fact

they prove that this new bound is the tightest possible bound, since it holds with equality for the

special case of fully-supported problems. They also show how the new bound will always provide

a smaller sample size requirement than the one developed in Theorem 2. On the other hand, we

have not been able to generalize this result for the case of random scenario sampling with artificial

distributions (k > 1), which is a much more complicated problem. In Appendix F, we present

the result from Campi and Garatti (2008) and in the subsection Appendix F.1 we demonstrate

numerically that this bound is actually tight for an instance of the dynamic pricing problem. As

shown in Campi and Garatti (2008), the sample size bound in Corollary 1, when k = 1, requires

significantly more samples for the same β and ε levels than Corollary F.1 in the appendix.

In order to apply these confidence bounds to our pricing problem, we only need to know the

likelihood bound k, which is either data provided by the firm or calculated in a similar manner as

in Theorem 1, and the dimension of the strategy space nx, in other words, the number of decision

variables in the optimization model. The latter will depend on the functional form of the pricing

policy chosen. For example, in the case of static pricing, the number of decision variables is the

number of time periods T times the number of products n (one fixed price per product/period)

plus one for the robust objective variable: nx = Tn+ 1. For the pricing policy suggested in (3),

which we use in Section 3, nx = 1 + Tn+ (T − 1)nm. For instance, in the airline case study of

Section 4, we deal with a 3-period single product adjustable model, therefore nx = 6.

3. Numerical Results

In this section we present simulation results using the models described before. All optimization

problems discussed below were solved using AMPL modeling language. The experiments were made

on a server using a single core of 2.8GHz Intel Xeon processor with 32GB of memory.

The first experiment, in Section 3.1, is designed to compare the out-of-sample performance of

the multiple pricing models discussed in Section 2 in order to obtain managerial insights on the

effects of the models on the resulting pricing policies. In Section 3.2, we observe the performance

of the different models when the sampling distribution is not the same as the true underlying

distribution.

More specifically, we will compare the following models: MaxMin, MinMax Regret, MaxMin

Ratio, and Sample Average Approximation. A summary of all the optimization models used in

this section is available in Appendix G. Note that we are introducing here the Sample Average
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Approximation (SAA) approach only as a benchmark to our robust models and we will explain it

in detail later in this section and present the optimization model in Appendix G.

In Appendix H, we display the out-of-sample revenues between the static and the adjustable

policies. This experiment illustrates why we have not dedicated much time discussing the static

models in this paper, as it is clearly dominated by the adjustable counterpart. For this reason, all

other experiments in this paper use adjustable policies. In Appendix I we demonstrate an applica-

tion of the model using a network model with multiple products and resources and in Appendix J

we demonstrate the application of a nonlinear demand model. The qualitative conclusions of these

two cases (network and nonlinear demand) do not differ from the single product, linear demand

models of Section 3.1 and 3.2. To avoid redundancy, we will not dedicate much time to these

examples.

3.1. Using true distribution sampling: data-driven approach

In order to isolate the differences between the models, we will reduce the problem to a single product

case (n=m= 1) and linear demand functions with additive uncertainty. The reader should note

that this is used here for simplicity of notation only and the use of other demand and uncertainty

models can be easily incorporated.

Define the MaxMin model as in the optimization problem formulated in (G.1), in Appendix

G. For the regret-based models, we can solve the hindsight revenue Π∗(δ(i)) from (G.2) for each

data point δ(i) of the uncertainty sample by solving a simple convex optimization problem. The

MinMax Regret is defined in (G.3) by subtracting the term Π∗(δ(i)) from the right hand side in

the objective constraint (the first constraint). Similarly, the MaxMin Ratio is defined by dividing

the right hand side by the term Π∗(δ(i)), as in the optimization problem (G.4).

Robust optimization is often criticized for generating very conservative policies. In other words, it

provides good performance in the worst-case revenue (or regret/competitive ratio), but bad overall

average performance. For this reason, we will compare the solution of our robust models with a

more traditional stochastic optimization framework, where we want to maximize the expected value

of the revenue. If we define the pricing decision as a function of the previous realized uncertainty,

we have an adjustable stochastic optimization problem, which is the same as the adjustable robust

models above, except that the objective approximates the expected value of the revenue by taking

the average of each revenue point: 1
N

∑N

i=1

[∑T

t=1

∑n

j=1 pj,t(at− btpj,t + δ
(i)
t )−

∑m

l=1 olwl
+ + glwl

−
]
.

This solution concept is what we refer to as Sample Average Approximation (SAA) and we detailed

the optimization model (G.5).
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Figure 1 Example of out-of-sample revenue distribution for single product case. Sample sizes vary from 5 to 200

samples.

In Figure 1, we observe the out-of-sample revenue performance of our four proposed models

with different sample sizes varying from 5 to 200. The revenue ‘boxplots’ displayed throughout this

section can be explained as follows: The middle line indicates the median; The boxes contain 50% of

the observed points (25% quantile to the 75% quantile); The lines extending from the boxes display

the range of the remaining upper 25% and lower 25% of the revenue distribution. Not much can

be concluded from this particular instances’ revenue snapshot, but it illustrates how the revenue

outcomes can be quite different between models when sample sizes are too small. The intrinsic

volatility of the revenues creates too much noise for us to make precise qualitative judgements

between the different models. This issue can be fixed by performing paired tests between different

models, which compares the difference in revenues between models taken at each data sample. In

these paired tests, the intrinsic volatility of revenues is reduced by the difference operator, which

allows us to compare the models’ performances.

Using the paired comparisons, we will measure the average difference in revenues and construct

an empirical confidence interval in order to draw conclusions about which model performs better

on the average revenue.
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Another useful statistic to measure robust models is known as Conditional Value-at-Risk (CVaR),

which is also known in finance as mean shortfall. Taken at a given quantile α, the CVaRα is the

expected value of a random variable conditional that the variable is below it’s α quantile. This

statistic is as a way to measure the tail of a distribution and determine how bad things can go when

they go wrong. Since we are not looking at one particular revenue distribution, but instead the

difference between two revenues, it is only natural to look at the positive tail of the distribution,

when the second comparing model is at risk. In a slight abuse of notation, define for the positive

side of the distribution, α> 50%, the CVaRα to be the expected value of a variable conditional on

it being above the α quantile.

For α≤ 50%, CVaRα(X) =E [X|X ≤ α]
For α> 50%, CVaRα(X) =E [X|X ≥ α]

Another important issue to be observed is how the different models behave when provided small

sample sizes versus large sample size. For this reason, we will perform the experiments in the

following order, starting with N = 5 and increasing until N = 200:

1. Take a sample of size N uncertainty data points;

2. Optimize for different models to obtain pricing policies;

3. Measure out-of-sample revenues for 2000 new samples, keeping track of pairwise differences

in revenues;

4. Record statistics of average difference and CVaR of the difference in revenues for each pair of

models;

5. Repeat from steps 1-4 for 1000 iterations to build confidence intervals for the average difference

and CVaR of the difference;

6. Increase the sample size N and repeat 1-5.

Figure 2 Paired comparison between SAA and MaxMin Ratio
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In the first test we compare the revenues of the SAA and the MaxMin Ratio model. In Figure 2,

we display a histogram of the difference of out-of-sample revenues for a particular instance of the

single product problem, using N = 200 samples. More specifically, for each of the 2000 out-of-sample

revenue outcomes generated, we calculate the difference between the revenue under SAA policy

minus the revenue under MaxMin Ratio model. By calculating the statistics of this histogram, we

obtain a mean revenue difference of 133 and standard deviation of 766. In fact, we observe there is

an indication that the SAA obtains a small revenue advantage on a lot of cases, but can perform

much worse in a few of the bad cases.

We also obtained CVaR5% =−2233 and the CVaR95% = 874. One can clearly see that the down-

side shortfall of using the SAA policy versus the MaxMin Ratio can be damaging in the bad cases,

while in the better cases the positive upside is quite limited.

Up to this point, we have only demonstrated the revenue performances for a single illustrative

instance of the problem. The next step is to back-up these observations by repeating the experiment

multiple times and building confidence intervals for these estimates. We are also interested in

finding out if these differences appear when the number of samples changes. More particularly,

we want to know if the average revenue difference between the SAA and the MaxMin Ratio is

significantly different from zero and if the CVaR5% of this difference is significantly larger than

CVaR95% (in absolute terms).

Figure 3 Average of the revenue difference: SAA - MaxMin Ratio

In Figure 3, we plot the distribution of the average difference in the SAA revenue minus the
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MaxMin Ratio revenue. More specifically, for each sample size N , we sampled 1000 times the set of

in-sample data of size N . Each one of these data sets is what we call an iteration of the experiment.

For each of these iterations, we solved the pricing policies and evaluated the revenues for another

2000 out-of-sample data points and evaluated the difference in revenues between the policies for

each of these points. This average difference obtained over those 2000 points correspond to one

particular iteration. The histograms in Figure 3 show the distribution of this average difference

obtained over all 1000 iterations of this experiment.

One can initially observe that for N = 200 the average difference lies clearly on the positive

side of the histogram, showing that the SAA performs better on average than the MaxMin Ratio.

When N is reduced, the histograms move closer to zero. When N = 5, the average difference seems

to lie somewhere around zero, with a bias towards the negative side, implying that when the

sample size is small the MaxMin Ratio will often perform better on average. These observations are

confirmed by Table 1, where we display the mean average difference in the second column, with a

90% confidence interval (third column) calculated from the percentile of the empirical distribution

formed over 1000 iterations. When N = 5 and N = 10, the average difference in revenues between

the SAA and the Maxmin Ratio is in fact negative on the average of all iterations of the experiment,

although not statistically significant, since the confidence interval contains zero. In other words,

the confidence intervals suggest that there is not enough evidence to say the average difference in

revenues is either positive or negative. On the other hand, when N = 150 or N = 200, we can see

that with a 90% confidence level, the average difference is positive, meaning the SAA policy will

provide better average revenues than the MaxMin Ratio.

Average 5% CVaR 95% CVaR
N Mean 90% CI Mean 90% CI Mean 90% CI
5 -79 [-1763,909] -2686 [-11849,-198] 2469 [676,6437]
10 -29 [-837,549] -2345 [-7195,-348] 2113 [609,4115]
50 78 [-115,324] -2260 [-4798,-382] 962 [300,1953]
100 103 [-17,252] -2355 [-4124,-735] 773 [310,1372]
150 122 [8,253] -2378 [-3758,-992] 721 [344,1174]
200 130 [31,249] -2418 [-3606,-1257] 691 [363,1068]

Table 1 Average and CVaR of the difference: Revenue SAA - Revenue MaxMin Ratio

In Table 1, we also present the lower 5% and upper 95% tails of the revenue difference dis-

tribution. We can observe in this case that when the sample size is small, the two sides of the

distribution behave rather similarly. As N increases, we can observe the lower tail of the revenue

difference distribution is not very much affected and the length of the confidence interval seems
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to decrease around similar mean values of CV aR5%. The upper tail of the distribution, on the

other hand, seems to shrink as we increase N. When N = 200, the upside benefits of using SAA

rather than MaxMin Ratio will be limited by an average of 691 on the 5% better cases, while the

5% worst cases will fall short by an average of -2418. Moreover, with a 90% confidence level, we

observe that the CV aR5% will be larger in absolute value than the CV aR95%, since the confidence

intervals do not intersect. In other words, we have a statistically significant evidence that the SAA

revenues will do much worse than the MaxMin Ratio in the bad cases, while not so much better

in the better cases.

To summarize the paired comparison between the SAA and the MaxMin Ratio, we observed that

in small sample sizes, the MaxMin Ratio seems to perform both better on average and in the worst

cases of the revenue distribution, but the statistical testing for these results can’t either confirm

or deny this conclusion. For large sample sizes, the results are more clear: with 90% confidence

level, the SAA will obtain a better average revenue than the MaxMin Ratio, but will pay a heavy

penalty in the worst revenue cases. This last conclusion can be viewed as intuitive, since the SAA

model tries to maximize average revenues, while the robust models like the MaxMin Ratio try to

protect against bad revenue scenarios. On the other hand, the better performance of the robust

model over the SAA using small sample sizes is not intuitive and understanding this behavior leads

to interesting directions for future research.

Before proceeding to the next experiments among the robust models, we should make a note that

similar paired tests of the the SAA with the other robust models (MaxMin and MinMax Regret)

were also performed and produced similar results as the ones displayed above using the MaxMin

Ratio. In the interest of conciseness, we decided not to display them here as they would not add

any additional insight.

In the following experiments we will perform paired comparisons between the different robust

models. In Figure 4, we display the histogram of the paired comparison between the revenues of the

MaxMin Ratio and the MaxMin models. This histogram displays the distribution over 2000 out-

of-sample data points in the difference in revenues for one particular iteration of the experiment.

Although the distribution seems skewed towards the negative side, the average is actually positive,

due to the long tail in the right-hand side. We would like to know for multiple iterations of the

experiment if this average remains positive and if the tail of the distribution is much larger on the

positive side, as displayed in this histogram. Moreover, we would like to compare these results for

multiple initial sample sizes.
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Figure 4 Paired comparison between the MaxMin Ratio and the MaxMin

Average 5% CVaR 95% CVaR
N Mean 90% CI Mean 90% CI Mean 90% CI
5 577 [-322,2454] -1369 [-4072,-245] 3912 [997,10884]
10 341 [-202,1126] -1178 [-2847,-400] 3382 [1556,7367]
50 80 [-266,472] -1149 [-1924,-614] 3267 [2014,5132]
100 50 [-200,381] -1125 [-1619,-655] 3025 [1914,4116]
150 21 [-206,310] -1109 [-1522,-687] 3031 [1981,4079]
200 23 [-204,289] -1107 [-1481,-713] 2934 [1848,3925]

Table 2 Average and CVaR of the difference: Revenue MaxMin Ratio - Revenue MaxMin

The results of Table 2 show that the MaxMin Ratio does have a consistently better average

performance than the MaxMin model for all sample sizes tested, but it is a small margin and the

confidence intervals cannot support or reject this claim. Also, we can see that the MaxMin Ratio

is more robust than the MaxMin, as the 5% best cases for the MaxMin Ratio (95% CVaR column)

are significantly better than the 5% best cases of the MaxMin (5% CVaR column). Note that for

N ≥ 50 the confidence intervals for the 95% and 5% CVaR do not intersect, suggesting that with

a 90% confidence level, the MaxMin Ratio is in fact more robust than the MaxMin under this 5%

CVaR measure.

In summary, the MaxMin Ratio model outperforms the MaxMin in all areas. It displayed better

average revenues and shortfall revenues (5% CVaR) than the MaxMin for all sample sizes. It is

rather counter intuitive that the MaxMin Ratio model can be at the same time more robust and

have better average performance. This could be a result of the sampling nature of these models.

More specifically, the worst case revenues for the pricing problem are usually located in the borders

of the uncertainty set, which is a hard place to estimate from sampling. When using regret based

models, like the MaxMin Ratio, we adjust the revenues by the hindsight revenues. This shift in

the position of the worst-case deviations of demand can make it easier for a sampling procedure
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Figure 5 Paired comparison between the MaxMin Ratio and the MinMax Regret

to work.

In the next experiment, we compare the two regret-based robust models: MaxMin Ratio and

MinMax Regret. Figure 5 displays the difference distribution in revenues from the MaxMin Ratio

and MinMax Regret for one particular iteration of the experiment. We can see that there is a strong

bias towards the positive side, showing that the MaxMin Ratio performs better on average than

the MinMax Regret, but there is a small tail on the left with much higher values. When observing

the difference in revenues of these two models for 1000 iterations, we obtain the following Table 3

of statistics.

Average 5% CVaR 95% CVaR
N Mean 90% CI Mean 90% CI Mean 90% CI
5 -16 [-97,32] -232 [-796,-25] 106 [10,321]
10 -13 [-90,41] -341 [-2847,-91] 138 [29,350]
50 15 [-48,100] -483 [-1924,-231] 296 [76,415]
100 54 [-6,140] -458 [-1619,-267] 240 [94,386]
150 68 [9,159] -456 [-1522,-292] 260 [102,405]
200 83 [19,163] -462 [-1481,-309] 285 [115,409]

Table 3 Average and CVaR of the difference: Revenue MaxMin Ratio - Revenue MinMax Regret

We should first note that the scale of the numbers in Table 3 is much smaller than in the previous

paired tests, as we would expect the two regret models to share more common traits than the other

models we compared with the MaxMin Ratio.

The average difference between the MaxMin Ratio and the MinMax Regret is initially negative,

for small sample sizes. It later becomes positive for large samples and we notice the 90% confidence

interval for this average difference is strictly positive at N = 200. In other words, for large samples

the MaxMin Ratio performs better on average revenues than the MinMax Regret. On the other
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hand, the 5% CVaR is approximately twice as large (in absolute value) as the 95% CVaR, although

without the statistical validation from the confidence intervals. This suggests the MinMax Regret

could be the more robust model between the two regret-based models.

3.2. Using random scenario sampling

In this experiment, we observe the behavior of the scenario based models when the sampling

distribution is not the same as the true underlying distribution. Consider the following parameters

for the model: T = 2, n = m = 1, a = [200,200], b = [0.5,0.5], C = 120, o = 1000, s = 10. For

simplicity, we will also consider a box-type uncertainty set, where U = {δ : |δt| ≤ 15,∀t = 1,2}.

In fact these are the same parameters as in the previous section. In contrast with the previous

section, in this experiment we will use a truncated normal distribution with a biased average as the

true underlying distribution. More specifically, as the uncertainty set is defined with a box-shaped

set δt ∈ [−15,15], the underlying true distribution is sampled from a normal with mean 5 and

standard deviation 7.5 and truncated over the range [−15,15]. On the other hand, we will assume

this is not known to the firm and we will be sampling scenarios from a uniform distribution over

the uncertainty set. These uniformly sampled points will then be used to run our sampling based

pricing models.

Average 5% CVaR 95% CVaR
N Mean 90% CI Mean 90% CI Mean 90% CI
5 -165 [-3753,1649] -3620 [-15124,-318] 2997 [903,6895]
10 -6 [-1726,925] -2400 [-8952,-401] 2720 [760,5236]
50 -88 [-472,112] -1462 [-3748,-262] 1195 [280,2588]
100 -31 [-192,59] -941 [-2848,-200] 961 [285,2117]
150 -21 [-118,36] -692 [-2008,-203] 827 [177,1849]
200 -29 [-158,19] -872 [-2370,-195] 670 [200,1474]

Table 4 Using artificial sampling distribution: Average and CVaR of the difference Revenue SAA - Revenue

MaxMin Ratio

Table 4 displays the paired comparison of the SAA revenues minus the MaxMin Ratio revenues, in

a similar fashion as the comparisons performed in Section 3.2. Note that the average of the difference

in revenues favors the negative side, i.e. the side where MaxMin Ratio solution outperforms the

SAA, suggesting that this robust solution will perform better than the SAA even on the average.

This result, although counter intuitive, appears consistent for both small and large sample sizes,

with the confidence intervals moving away from the positive side as the sample size increases. The

CVaR comparisons, on the other hand, are inconclusive.
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Average 5% CVaR 95% CVaR
N Mean 90% CI Mean 90% CI Mean 90% CI
5 875 [-417,2704] -1326 [-4438,-227] 4064 [1156,10306]
10 701 [22,1601] -1385 [-3824,-447] 3603 [2020,6349]
50 580 [247,1077] -1191 [-2603,-703] 3052 [1722,4614]
100 644 [355,1089] -1001 [-1553,-737] 2989 [1727,4718]
150 672 [361,1098] -962 [-1194,-724] 3015 [1764,4753]
200 659 [389,1082] -987 [-1338,-798] 2995 [1702,4783]

Table 5 Using artificial sampling distribution: Average and CVaR of the difference Revenue MaxMin Ratio -

Revenue MaxMin

Table 5 displays the results of the paired comparison of the revenues in the MaxMin Ratio

model minus the MaxMin model. We can clearly see that in this case, where we used an artificial

sampling distribution, the MaxMin Ratio performs both better on average and in the worst-cases.

The confidence interval of the average difference in revenues is positive even for the small sample

size of N = 10, distancing away from zero as N increases. As for the CVaR comparision, note that

for N ≥ 100 the 5% better cases of the MaxMin Ratio are on average better by 2989, while the

5% better cases for the MaxMin are only better by an average of 1001. Note that the confidence

intervals around these values do not overlap, strongly suggesting that the MaxMin Ratio is more

robust than the MaxMin. Since the MaxMin is clearly dominated by the MaxMin Ratio, we will

not expose here the comparison of the MaxMin with the other models.

Average 5% CVaR 95% CVaR
N Mean 90% CI Mean 90% CI Mean 90% CI
5 -33 [-157,57] -312 [-926,-50] 147 [15,479]
10 -35 [-133,51] -434 [-1205,-155] 227 [47,582]
50 2 [-86,82] -532 [-931,-376] 296 [124,419]
100 22 [-48,98] -526 [-801,-415] 327 [232,417]
150 31 [-26,92] -518 [-708,-446] 349 [266,409]
200 31 [-17,93] -533 [-682,-434] 390 [308,410]

Table 6 Using artificial sampling distribution: Average and CVaR of the difference Revenue MaxMin Ratio -

Revenue MinMax Regret

In the experiment of Table 6, we display the results for the revenues of the MaxMin Ratio model

minus the MinMax Regret model. Note that the MinMax Regret model appears to obtain a better

average difference than the MaxMin Ratio for sample sizes up to 10. As the sample size increases to

50 and above, the MaxMin Ratio performs better on average. Besides this initial evidence, either

one of these results cannot be fully supported by the confidence intervals, which are containing zero

in all instances of sample size. On the other hand, we notice that theses confidence intervals are

moving away from the negative side as the sample size increases, which agrees with our conclusion.
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On the other hand, the CVaR comparison indicates that the MinMax Regret is in general more

robust than the MaxMin Ratio, as the 5% better cases of the MinMax Regret (negative side) are

on average larger than the 5% better cases of the MaxMin Ratio. This result is in fact supported

by the confidence intervals, which do not overlap (in absolute value) for sample sizes of N = 150

and N = 200.

We should mention that comparing the MinMax Regret model with the SAA led to the same

results as the comparison between MaxMin Ratio and the SAA and therefore these results are not

displayed here as they do not add any additional insight.

To summarize the experiments performed using the artificial sampling distribution, where the

samples provided come from a uniform distribution, while the true distribution is a biased truncated

normal, we observed that the SAA usually performs worse than the MaxMin Ratio on the average

revenue. The MaxMin Ratio model clearly outperforms the MaxMin model, both in average and

worst-case differences in revenues. When comparing the two regret type models, we have evidence

that the MaxMin Ratio should perform better on average than MinMax Regret for large enough

sample sizes, but the MinMax Regret is clearly more robust than the MaxMin Ratio.

4. Testing the model with real airline data

In this section we perform a study using real airline data, collected from a flight booking website.

Tracking a specific flight with capacity of 128 seats over a period of two months for 7 different

departures dates, we acquired the posted selling price and the inventory remaining for that given

flight. We assumed there is no overbooking allowed and salvage value is zero, since we don’t have

any information about these parameters. Note that for each departure date, we have the same

product being sold over and over again. To make the data more consistent, we aggregated this data

into 3 periods of time: 6 or more weeks prior to departure; 5-3 weeks; and 1-2 weeks. For each of

these 3 periods, we averaged the observed price and derived from the inventory data the demand

observed by the company during the respective period. To summarize, we obtained 7 observations

of price and demand for a 3 period horizon. Figure 6 displays the data points observed and a

possible model estimation using a linear demand model. By multiplying price times demand for

each period in each flight we obtain an estimate for the flight’s revenue of $29,812±3,791 (notation

for Average ± Standard Deviation). Note here that since we have few data points, it does not make

sense to talk about the CVaR measure that was previously used to measure robustness in Sections

3.1 and 3.2. Instead, the concept of sample standard deviation will be used to express volatility of

the revenue outcomes and therefore some form of robustness.
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Figure 6 Price x Demand Estimation

Model Average Standard Deviation

Actual Revenue 29,812 3,791

MaxMin 31,774 1,740
MinMax Regret 31,891 1,721
MaxMin Ratio 31,906 1,713

Sample Average Approximation 31,848 1,984
Table 7 Airline case: Revenue performance for each pricing model

Using these 7 sample points, we perform a leave-one-out procedure to test the performance of

our pricing models, where for each iteration we select one of the samples to be left out for testing

and the remaining 6 points are used for training. During the training phase, a linear demand-price

relation is estimated for the 6 training points and the residuals will be the deviation samples δ(i),

used to find the respective pricing strategies in our sample-based models. Using the test point that

was left out, we obtain the difference between the point and the line estimated with the 6 training

points, defining the out-of-sample deviation. It is important to emphasize that the estimation of

the demand curve needs to be redone every time we leave a point out of the sample in order to

obtain the independence between the testing sample and the estimated demand function. After

solving the pricing models for each demand function, we can measure the out-of-sample revenue

for each pricing strategy using the left-out demand point. By repeating this procedure 7 times, we

obtain 7 out-of-sample revenue results, which are summarized in Table 7.

The MaxMin Ratio outperformed all other models, demonstrating the highest out-of-sample

average revenue and lowest standard deviation. Compared to the actual revenue of the airline,

assuming there are no external effects, the MaxMin Ratio obtained a 7% increase in the average

revenue and a 55% decrease in standard deviation.

This study demonstrates, in a small scale problem, the procedure for applying our models on

a real-world situation. On the other hand, there are some aspects of the airline industry that
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were not captured in this data set and are not considered by our models. When airlines make

their pricing decisions, they take into consideration, for example, network effects between different

flights and competitors’ prices, which should be incorporated in future extensions of this model.

A few other facts that we overlook is the aggregation done over the periods of time, due to the

lack of data, or the fact that not every seat is sold at the same price at any given time, given that

some people choose to buy their tickets with or without restrictions and connections. Therefore,

these price-demand points are not an exact depiction of customers’ response to price, but it is the

best approximation we can achieve given the information that was collected. For these reasons, we

cannot claim a 7% actual increase for the revenue of this flight, but instead this study suggests

that there may be room for improvement in the current pricing techniques used by the airline.

For instance, the methodology proposed here can be an easy improvement over the deterministic

models that are used to approximate revenue-to-go functions in revenue management heuristics.

5. Conclusions

In this paper, we developed a framework to solve the network dynamic pricing problem using a

sampling based approach to find approximate-closed-loop robust pricing policies.

Throughout the paper, we have shown how the adjustable robust pricing problem can easily

turn into a non-convex problem, which is intractable to solve using traditional robust optimization

techniques. Instead we proposed the sampling based approach where we can easily solve the sampled

problem as a convex optimization model. One question that arises from this approach is how many

samples do we need to have a performance guarantee on our scenario-based solution. To answer

this question, we introduced the notion of ε-robustness and found the sample size needed to achieve

an ε-robust solution with some confidence level. Moreover, we were able to extend this result from

the data-driven optimization framework to a random scenario sampling approach using a relatively

mild assumption on the underlying distribution.

Notice how the random scenario sampling bound is a powerful concept, given that we are now able

to use a data-driven methodology to solve a robust problem. Data-driven and robust optimization

have been generally considered two separate fields, since they use very different initial assumptions

of information about the problem. In this research, we are building a bridge between data-driven

optimization and robust optimization, which has not been explored very much. We started with an

intractable robust model and illustrated how to solve a close approximation to the robust solution

without any previous data, only with a likelihood bound on the underlying distribution.

Besides the theoretical guarantees mentioned above, we explored numerically the revenue perfor-

mance of the different models. Some of the key managerial insights of our numerical experiments

are:
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• The SAA has a risk-neutral perspective, therefore maximizing average revenues, regardless

of the final revenue distribution. It gets the best average revenue performance if the number of

samples is large enough and if they are reliably coming from the true uncertainty distribution. On

the other hand, the revenue outcome is subject to the largest amount of variation, with a large

shortfall in the bad revenue cases when compared to the robust models.

• The MinMax Regret model presented the more robust revenue performance when compared

with other models. The MaxMin Ratio model strikes a balance between the conservativeness of

the robust MinMax Regret and the aggressiveness of the SAA.

• All the Robust models, namely the MaxMin, MinMax Regret and MaxMin Ratio, will perform

just as well as the SAA in average revenues for small sample sizes. For large sample sizes, the

robust models will have smaller average revenues, but also with smaller shortfalls for the extreme

revenue cases, in other words good for risk-averse firms. This advantage of having more stable

revenue distributions are present even for small sample sizes.

• The MaxMin model tends to be too conservative. It is usually dominated by the MaxMin

Ratio model both in worst-case revenue performance and in average revenues.

• The MaxMin Ratio and MinMax Regret have the most consistent performance when the data

set provided does not come from the true underlying distribution of the demand uncertainty. As in

the previous case, where the sampling distribution was the true distribution, the MinMax Regret

appears to be more conservative than the MaxMin Ratio.

Note that the methodological framework presented in this paper is quite general and is not

limited to dynamic pricing. For instance, Perakis (2009) developed a dynamic traffic assignment

model using a very similar framework. Because of the practicality of these models, we believe these

sampling based optimization models can easily be applied to many more application areas.

It would also be interesting to further research the Sample Average Approximation approach,

by possibly finding a theoretical performance guarantee based on the number of samples used and

comparing this with the bounds for the robust framework. We find that a specially promising

direction of research will be to better understand the differences in behavior between the robust

and the SAA models when using small sample sizes. Also, more research can be done on showing

under which conditions can the affine policies achieve the optimal value of the fully closed-loop

solution.
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Appendix A: Notation.

We summarize here the notation that will be used in throughout the paper:

C : Vector of initial inventories for each resource.
T : Length of the time horizon.
δ : Vector of the realization of the demand uncertainty, containing one component for

each product and time.
U : Uncertainty set, δ ∈U.
s : Vector of pricing decisions.
S : Strategy space, independent of the demand uncertainty.

pj,t(s, δ) : Price of product j at time t as a function of the pricing strategy and the uncertainty
realized up to time t.

d̃j,t(s, δ) : Realized demand of product j at time t, given the pricing strategy and the uncertainty.
o : Vector of overbooking penalties per unit of resource.
g : Vector of salvage values per unit of resource.

w̃(s, δ) : Vector function that maps the pricing strategy and the realized uncertainty into
overbooked/left-over inventory.

w : Vector of slack variables to account for overbooked/left-over inventory. At optimality,
wl = w̃l(y, δ), while w+ is the amount of overbooked units and w− is the left-over inventory.

Π(s, δ) : Actual revenue given a pricing policy and realized uncertainty.
Π∗(δ) : Perfect hindsight revenue, given some uncertainty vector.

hobj(s, δ) : The objective function for any given pricing strategy s, uncertainty δ.
obj can be one of three objectives: MaxMin, Regret or Ratio

hMaxMin(s, δ) = Π(s, δ)
hRegret(s, δ) = Π(s, δ)−Π∗(δ)
hRatio(s, δ) = Π(s, δ)/Π∗(δ)

z : Robust objective variable.
δ(i) : ith sampled realization of the demand uncertainty
N : Number of scenario samples, as in δ(1), ..., δ(N)

x : Set of all decision variables, which is the pricing strategy s and the robust objective z.
nx : Dimension of the strategy space.

f(x, δ) : Short notation for all constraints in the pricing model.
Q : True underlying distribution of the uncertainty with support in U .
P : Sampling distribution, from which we obtain scenarios of the uncertainty δ.
k : Bounded likelihood ratio factor between the sampling distribution P and the

true distribution Q.
VQ(x) : Probability of violation, i.e., probability under the true distribution Q, that the

realized uncertainty will violate some constraints given a policy x.
ε : Robust level.
β : Risk of failure, or alternatively (1−β) is the confidence level.

Appendix B: Illustration of the non-convexity issue.

Consider MaxMin robust problem with 2 time periods, single resource, single product, without salvage value

or overbooking, a linear demand function and a linear pricing policy, the function h(u, v, δ1, δ2) for any fixed

u and v is:

h(δ1, δ2) = u1(a1− b1u1 + δ1) + (u2 + v2,1δ1)(a2− b2(u2 + v2,1δ1) + δ2)

The eigenvalues of the Hessian matrix of this function are (−b2v2,1 +
√
b2

2v2,1
2+2)v2,1, (−b2v2,1 −√

b2
2v2,1

2+2)v2,1. These will always have one positive and one negative eigenvalue. Therefore the function

will neither be convex nor concave.
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Appendix C: Existence of an optimal solution.

In this section we prove there exists an optimal solution to (5). Note that the function f(s, δ) is continuous

with respect to s and δ from the initial assumption on the demand function, a property that is not modified

by introducing the deviation component to the function. We first need to show that f̄(s) = minδ∈U f(s, δ) is

also a continuous function of s. For some ∆> 0:

f̄(s+ ∆)− f̄(s) = minδ∈U f(s+ ∆, δ)−minδ∈U f(s, δ)

Define the deviations δ1, δ2 the deviations that attain the minimum at the two optimization problems above,

δ1 = argminδ∈Uf(s+ ∆, δ), δ2 = argminδ∈Uf(s, δ). These give us upper and lower bounds:

f(s+ ∆, δ1)− f(s, δ1)≤ f̄(s+ ∆)− f̄(s)≤ f(s+ ∆, δ2)− f(s, δ2)

By letting ∆→ 0, both sides will go to 0. It follows that:

lim∆→0 |f̄(s+ ∆)− f̄(s)|= 0

Which implies that f̄(s) is a continuous function. Since S is a compact set, we use Weierstrass Theorem to

guarantee existence of solution to (5).

Appendix D: Proof of Theorem 1.

Before proving Theorem 1, we first introduce Lemma D.1 below that bounds the density of the mode of a

log-concave distribution.

Lemma D.1Let f be the density of a one-dimensional random variable X with standard deviation σ and

mode M .

(a) If f is log-concave, then f(M)≤ e
√

6

σ
√

2
.

(b) If f is log-concave and symmetric, then f(M)≤ 1
σ
√

2
.

L et F be the cumulative density of the random variable X and m be the median of X. Define the

isoperimetric constant as Is= infx
f(x)

min{F(x),(1−F(x))} , see Bobkov (1999) for more details about the properties

of the isoperimetric constant.

For any x ≤m, we have that F(x) ≤ 1− F(x). Therefore, Is ≤ f(x)

F(x)
and from the log-concavity of f, we

know that the reversed hazard rate f(x)

F(x)
is decreasing, then the minimum will be achieved at the median.

Similarly for the other side, for any x≥m, we have that F(x)≥ 1−F(x). Therefore, Is≤ f(x)

1−F(x)
and from

the log-concavity of f, we have an increasing failure rate f(x)

1−F(x)
. Again, the minimum will be achieved at the

median. Since at the median F(m) = 1−F(m) = 1/2, then Is= f(m)

F(m)
= 2f(m).

From Bobkov (1999), Proposition 4.1, we have that Is2 ≤ 2
σ2 . For symmetric distributions the median is

equal to the mode, which directly implies the result for the symmetric case of Lemma D.1(b):

(2f(M))2 = (2f(m))2 ≤ 2

σ2
⇒ f(M)≤ 1

σ
√

2



Lobel and Perakis: Dynamic Pricing Through Sampling Based Optimization: Appendix
40

For non-symmetric distributions, Lemma D.1(a), we must find a relation between f(M) and f(m). Note

that since log f(.) is a concave function, the first order approximation will always upper-bound the original

function (as seen in Lemma 3.3 of Levi et al. (2010)). Therefore:

log f(M)≤ log f(m) +
f ′(m)

f(m)
(M −m)

For non-differentiable distributions, note this relation is true for all sub-gradients f ′(m) at m. From the

decreasing reversed hazard rate property of log-concave distributions, we have that: d
dx

f(x)

F(x)
≤ 0, which implies

that f′(x)

f(x)
≤ f(x)

F(x)
. When M ≥m, we get:

log f(M)≤ log f(m) +
f(m)

F(m)
(M −m)

From the increasing failure rate property of log-concave distributions, we have that d
dx

f(x)

1−F(x)
≥ 0, which

implies f′(x)

f(x)
≥− f(x)

1−F(x)
. Then for the case M <m, we have:

− log f(M)≥− log f(m) +
f ′(m)

f(m)
(m−M)≥− log f(m)− f(m)

1−F(m)
(m−M)

Combining the relations above and the fact that F(m) = 1−F(m) = 1/2, we obtain for either M ≥m or

M <m:

log f(M)≤ log f(m) + 2f(m)|M −m|

Since any log-concave distribution is unimodal, we can use the relations in Basu and DasGupta (1992),

Corollary 4, to bound the distance between the mode and the median: |M−m| ≤ σ
√

3. Therefore, log f(M)≤

log f(m) + 2f(m)σ
√

3. Since (2f(m))2 ≤ 2
σ2 , we have that f(m) ≤ 1

σ
√

2
, which implies log f(M) ≤ log 1

σ
√

2
+

2 1
σ
√

2
σ
√

3 = log 1
σ
√

2
+
√

6. Taking the exponential on both sides we get f(M) ≤ e
√

6

σ
√

2
, which concludes the

proof of Lemma D.1(a). �

Using Lemma D.1, we can directly obtain the likelihood ratio bound k on Theorem 1 by using a bound on

the density of the mode f(M) for log-concave distributions. Note that the uniform sampling distribution has

a constant density value of 1/(ub− lb) for each product j = 1, ..., n and time period t= 1, ..., T , which implies

a ratio bound of
[
(ub− lb) e

√
6

σ
√

2

]
for each product and time. Using the independence property, we can just

multiply this bound nT times to get the desired result. The symmetric case follows from the same argument.

Appendix E: Proof of Theorem 2.

Define xN as the solution of the scenario based problem for a sample of size N . The probability of violation

under the true uncertainty measure Q is defined as VQ(xN)
.
=PQ{δ ∈∆ : f(xN , ε)> 0}.

Define B as the set of “bad” sampling outcomes that will cause the probability of violation of the sampled

solution to be greater than the ε robust level: B
.
= {(δ(1), ..., δ(N)) : VQ(xN)> ε}. The goal of this proof is to

bound the size of B under the sampling measure P, i.e., PP(B).

Let nx be the dimension of the strategy space and let I be a subset of indexes of size nx from the full

set of scenario indexes {1, ...,N}. Let I be the set of all possible choices for I, which contains
(
N

nx

)
possible

subsets. Let xI be the optimal solution to the model using only those I scenarios. Define BI
.
= {(δ(1), ..., δ(N)) :
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VQ(xI)> ε}. Also based on this subset I, define the set of all possible sampling outcomes that will result in

the same optimal solution as the solution using only the I scenarios: ∆N
I

.
= {(δ(1), ..., δ(N)) : xI = xN}.

From Calafiore and Campi (2006), we have that B =
⋃
I∈I (BI

⋂
∆N
I ). Therefore we need to bound the

sets BI
⋂

∆N
I under the measure P.

Note that using the Bounded Likelihood Ratio assumption, we have that for each point in B, the condition

VQ(xN)> ε implies VP(xN)> ε/k. Similarly for each point in BI , we have that VP(xI)> ε/k.

Fix any set I, for example, the first indexes I = 1, ..., nx, then note that the set BI is a cylinder with base

on the first nx constraints, since the constraint VQ(xI)> ε only depends on the first nx samples. Now take

any point (δ(1), ..., δ(nx), δ(nx+1), ..., δ(N)) in the base of BI , since we know it will satisfy VP(xI)> ε/k. For

this point to be in BI
⋂

∆N
I , we only need to make sure each of the samples δ(nx+1), ..., δ(N) do not violate

f(xI , δ)≤ 0, otherwise xI = xN will not hold as needed in ∆N
I . Since we have that each N −nx samples are

taken independently according the sampling distribution P and VP(xI)> ε/k, we have that:

PP (BI
⋂

∆N
I ) < (1− ε/k)

N−nx PP(δ(1), ..., δ(nx) ∈ base of BI)
≤ (1− ε/k)N−nx

A bound on the whole set B can then be found by summing that bound over all possible subsets in I.

PP(B)<

(
N

nx

)
(1− ε/k)N−nx

.
= β(N,ε)

�

Appendix F: Sample size bound for sampling with true distribution

The following theorem states the confidence level bound for the data-driven case where the sampling distri-

bution is the true distribution.

Theorem F.1From Campi and Garatti (2008), if we are given the scenarios of uncertainty δ(1), ..., δ(N)

drawn from the true uncertainty distribution Q. Let nx be the dimension of the strategy space X and ε be

the robust level parameter. Then define a “risk of failure” parameter β(N,ε) as:

β(N,ε)
.
=

nx−1∑
i=0

(
N

i

)
εi(1− ε)N−i (F.1)

Then with probability greater than (1 − β(N,ε)), the solution found using this method is ε-level robustly

feasible, i.e.,

PQ((δ(1), ..., δ(N)) : VQ(xN)≤ ε)≥ (1−β(N,ε))

If we are given a desired confidence level β and a robust level ε, it is natural to ask what is the minimum

number of samples required. This design question can be answered by numerically solving for N the equation

in (F.1). Calafiore (2009) has shown that by using the Chernoff bound on the lower binomial tail, we can

obtain an explicit formula for N that will guarantee that (F.1) is satisfied.
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Corollary F.1From Calafiore (2009), if the sample size N follows:

N ≥ 2

ε

(
ln

1

β
+nx

)
+ 1

Then with probability greater than 1−β the solution to the sampled problem will be ε-level robustly feasible.

Numerically testing the bound:

The goal of this experiment is to validate the results of Theorem F.1, which is provably a tight confi-

dence/robustness bound for the data-driven robust problem. The bound from Theorem 2 is less tight, i.e.,

requires more samples to achieve the same level of confidence. For this reason, it is sufficient for us to test

the tighter bound of Theorem F.1 in order to verify the effectiveness of both these bounds. Note that this

experiment is done under the assumption that the data samples provided are from the true distribution of

uncertainty, the data-driven case.

To test the bound we consider a small instance of the MaxMin robust model, with a single product

(n=m= 1), two time periods (T = 2), a linear demand model and affinely adjustable pricing policies. Using

an adjustable pricing policy, the set of pricing decision variables has dimension nx = 4, with one static price

for each time period u1, u2, an adjustable component v2 and the robust level z. Note that we will use dummy

variables for the net inventory w(i) that are completely determined by the other variables, therefore they

do not count for the dimension of the strategy space in our confidence/robust bound calculation. More

specifically, the demand at each period is given as a linear function of the price, where a is a constant

demand term, b is the price elasticity of demand and δ is an additive uncertain component: d̃t(u, v, δ) =

at − bt(ut + vt
∑t−1

k=1 δ
(i)
k ) + δt. For simplicity of notation, we will not separate the case for the first time

period, t= 1, where there is no adjustability to be considered. Therefore, wherever you consider the case of

t= 1, define the summation from k= 1 to t− 1 as an empty sum, with zero value. Moreover, we will assume

δ lies within a box-type uncertainty set, which is widely used in the robust optimization literature, defined

as: U = {(δ1, δ2, ..., δT ) : |δt| ≤ Γt,∀t= 1, ..., T}. The experiments in this section can be performed with any

type of convex uncertainty set.

The parameters used for this test were T = 2, a = [200,200], b = [0.5,0.5], C = 100 and Γ = [15,30]. For

simplicity, we will consider a model virtually without overbooking or salvage value: o = 10000, s = 10. We

assume for this test that the uncertainty is uniformly distributed over the uncertainty set. Moreover, we are

sampling our data points from the same distribution. In other words, we are testing the data-driven case,

where the scenario samples δ(1), ..., δ(N) come from the true distribution, possibly from historical data.

At each experiment, we draw N = 200 uncertainty scenarios to use in the optimization model to determine

the pricing policy and another 2000 scenarios to evaluate the out-of-sample performance of this sampling-

based pricing policy. Define the estimated probability of violation V̂ as the proportion of the out-of-sample

scenarios for which the constraints are violated under the scenario based policy.

We repeated the experiment 300 times in order to obtain multiple instances of the problem, each with a

different probability of violation. In other words, we drew other samples of N = 200 scenarios and repeated



Lobel and Perakis: Dynamic Pricing Through Sampling Based Optimization: Appendix
43

Figure 7 Bound Test for N = 200: ε×β

the procedure described before. We counted the probability of violation V̂ for each experiment and ordered

the experiments in a decreasing vector. For any given failure level β̂, define the β̂-quantile of this vector as

the estimated robust level ε̂ associated with β̂. This means that a proportion β̂ of the experiments we ran,

have demonstrated a probability of violation greater than ε̂.

P(V̂ > ε̂)
.
= β̂(ε̂)

From Theorem F.1, we also have a theoretical guarantee on this “risk of failure” β:

P(VQ > ε)≤ β(N,ε)
.
=

nx−1∑
i=0

(
N

i

)
εi(1− ε)N−i

Using N = 200 samples, Figure 7 shows, with a dashed line, the theoretical bound on the ε-robust level (y-

axis) for each possible failure level β (x-axis). The solid line shows the estimated ε̂ for the same failure levels

β. For example, one should read this graph as follows: for β = 0.0395, i.e., confidence level of 96.05%, the

solution for the MinMax model is 4%-robustly feasible, according to Theorem F.1. In other words, assuming

we have a good sample, there is at most a 4% chance that the actual competitive ratio will be lower than

the solution provided by scenario based solution. When observing the number of violations that actually

happened, the estimated probability of violation, 3.96% of the simulations had a ratio below the sample

based ratio. At confidence level 99.97%, the theoretical robust level is 7% and our estimated probability

of violation was 6.05%. Note how the estimated probabilities of violation are fairly close to the theoretical

bound. In Figure 7, we present the outcome of the test with 300 experiments, but it is interesting to note

that the empirical line converges to the theoretical bound roughly within 100 experiments. Overall, we have

a strong empirical evidence that the bound in Theorem F.1 is effective, if not in fact tight, for the pricing

problem.

Appendix G: Summary of optimization models in the numerical experiments.

Throughout the modeling section of the paper, Section 2, we described the general framework of the pricing

models using simplified concise notation. In this section of the appendix, we will summarize the full model
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instances used to run the simulations in Section 3, trying to be as clear as possible in case the reader wishes to

implement any of these models in a convex optimization solver. Define the following model as the MaxMin:

max
z,u,v,p,w,w+

z

s.t.



z ≤
T∑
t=1

p
(i)
t

(
at− btp(i)

t + δ
(i)
t

)
−

m∑
l=1

(
(ol− gl)w+

l

(i)
+ glw

(i)
l

)
T∑
t=1

M
(
at− btp(i)

t + δ
(i)
t

)
≤C +w(i)

p
(i)
t = uj,t +

m∑
l=1

vj,l,t

n∑
j′=1

t−1∑
t′=1

Ml,j′δ
(i)
j′,t′ ≥ 0, ∀t= 1, ..., T

w
(i)
l ≤w+

l

(i)
, ∀l= 1, ...,m

w+
l

(i) ≥ 0, ∀l= 1, ...,m



∀i= 1, ...,N
(G.1)

For the regret based models, define the perfect hindsight revenue as the solution of the following model:

Π∗(δ) = max
u,v,p,w,w+

T∑
t=1

pt (at− btpt + δt)−
m∑
l=1

(
(ol− gl)w+

l + glwl
)

s.t.

T∑
t=1

M (at− btpt + δt)≤C +w

pt ≥ 0, ∀t= 1, ..., T
wl ≤w+

l , ∀l= 1, ...,m
w+
l ≥ 0, ∀l= 1, ...,m

(G.2)

Using the solution of the hindsight revenue Π∗(δ(i)) for every sample of δ(i) provided, we can define the

MixMax Regret model as:

max
z,u,v,p,w,w+

z

s.t.



z ≤
T∑
t=1

p
(i)
t

(
at− btp(i)

t + δ
(i)
t

)
−

m∑
l=1

(
(ol− gl)w+

l

(i)
+ glw

(i)
l

)
−Π∗(δ(i))

T∑
t=1

M
(
at− btp(i)

t + δ
(i)
t

)
≤C +w(i)

p
(i)
t = uj,t +

m∑
l=1

vj,l,t

n∑
j′=1

t−1∑
t′=1

Ml,j′δ
(i)
j′,t′ ≥ 0, ∀t= 1, ..., T

w
(i)
l ≤w+

l

(i)
, ∀l= 1, ...,m

w+
l

(i) ≥ 0, ∀l= 1, ...,m



∀i= 1, ...,N
(G.3)

Similarly, the MaxMin Ratio model is defined as:

max
z,u,v,p,w,w+

z

s.t.



z ≤

(
T∑
t=1

p
(i)
t

(
at− btp(i)

t + δ
(i)
t

)
−

m∑
l=1

(
(ol− gl)w+

l

(i)
+ glw

(i)
l

))
/Π∗(δ(i))

T∑
t=1

M
(
at− btp(i)

t + δ
(i)
t

)
≤C +w(i)

p
(i)
t = uj,t +

m∑
l=1

vj,l,t

n∑
j′=1

t−1∑
t′=1

Ml,j′δ
(i)
j′,t′ ≥ 0, ∀t= 1, ..., T

w
(i)
l ≤w+

l

(i)
, ∀l= 1, ...,m

w+
l

(i) ≥ 0, ∀l= 1, ...,m



∀i= 1, ...,N
(G.4)
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Alternatively, we will also use the Sample Average Approximation (SAA) model as a benchmark,

which can be defined as:

max
z,u,v,p,w,w+

1

N

N∑
i=1

[
T∑
t=1

p
(i)
t

(
at− btp(i)

t + δ
(i)
t

)
−

m∑
l=1

(
(ol− gl)w+

l

(i)
+ glw

(i)
l

)]

s.t.



T∑
t=1

M
(
at− btp(i)

t + δ
(i)
t

)
≤C +w(i)

p
(i)
t = uj,t +

m∑
l=1

vj,l,t

n∑
j′=1

t−1∑
t′=1

Ml,j′δ
(i)
j′,t′ ≥ 0, ∀t= 1, ..., T

w
(i)
l ≤w+

l

(i)
, ∀l= 1, ...,m

w+
l

(i) ≥ 0, ∀l= 1, ...,m


∀i= 1, ...,N

(G.5)

Appendix H: Static vs. Adjustable policies.

In Figure 8, we display the out-of-sample revenues between the static and the adjustable policies for the

MinMax robust model. The static counterpart is defined the same way as in (11), but with the price function

consisting only of the static component uj,t. We can clearly see that the static policy is dominated by the

adjustable policy, which performs a better worst case revenue as well as in overall revenue distribution.

This is observation is exactly as we expected, since the adjustable policy gives the model an extra degree of

freedom, which should only improve the performance of the model.

Figure 8 Example of out-of-sample revenue distribution: Static vs. Adjustable policies

Appendix I: Network example: multiple products and resources.

For this experiment, consider a simple network problem, with m = 2 resources and n = 3 products. The

incidence matrix used is:

M =

(
1 0 1
0 1 1

)
This can be viewed as the airline problem with two legs who is selling either the single leg itineraries or a

combination of both legs. We will again use linear demand functions with additive uncertainty for simplicity.

The reader should note that this is used here for simplicity of notation only and the use of other demand and



Lobel and Perakis: Dynamic Pricing Through Sampling Based Optimization: Appendix
46

uncertainty models can be easily incorporated. We further assume the pricing policies for each product/time-

period to be affine functions of the accumulated uncertainty for the corresponding resources consumed over

the previous time-periods. For a given uncertainty realization δ(i) and a set of pricing decisions u and v,

define the prices at each period according to (3). Instead of using more complex policies, which could include

cross-product and time dependencies, we use here a simpler policy as suggested in (3)(i.e. a policy for each

product that depends only on its own remaining capacity) because we simply want to illustrate how to apply

this framework in a network problem.

Note that the
∑n

j′=1

∑t−1
t′=1Ml,j′δ

(i)
j′,t′ is the amount of unpredicted resources of type l consumed by time t

due to the realized uncertainty δ(i) up to time t− 1. The adjustable component of the pricing strategy, vj,l,t

is the price impact on product j at time t from the consumption of resource l.

We compare the trade-offs between the worst-case performance and the average performance for each of

these four models. The particular instance of the problem used in this experiment is: T = 2, aj,t = 200, bj,t =

0.5 for all products j and time t, Cl = 120, ol = 1000, gl = 10 for each resource l. These numbers were chosen

to be somewhat similar to the case study displayed in Section 4. We defined a box type uncertainty set,

U = {(δ1, δ2) : |δt| ≤ 15,∀t= 1,2}, and sampled data points using a normal distribution with zero mean and

standard deviation of 15 and then truncated over the uncertainty set U . For the optimization part, we used

200 samples to obtain pricing policies for each method and simulated the out-of-sample performance of these

policies using 2000 samples. Figure 9 displays the revenue distribution for an instance of this problem with

our four models. The difference between the robust models does not seem significant, while the SAA presents

a better average and lower worst case revenues. In general, the results for the network cases are consistent

with the single product cases displayed in Section 3.

Figure 9 Example of out-of-sample revenue distribution for the network problem.
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Figure 10 Logarithmic Demand Model: T = 2,C = 10, at = 10, bt = 2

Appendix J: Nonlinear demand models.

Note that the numerical experiments of Section 3 were done using only linear demand functions, although

our framework can also deal with nonlinear demands. In this section of the appendix, we simply demonstrate

an application of the sampling based framework with a logarithmic demand function defined as d̃(p) =

a− b log(p) + δ, where the demand is a linear function of the logarithm of the price plus some deviation δ.

Using this demand function in a single product problem, we can apply the same underlying models defined

in the previous section. For example, define the MinMax Regret as:

max
p,u,v,z

z

s.t. z ≤
T∑
t=1

p
(i)
t (at− bt log(p

(i)
t ) + δ

(i)
t )− o(w(i))+− g(w(i))−−Π∗(δ(i)) ∀i= 1, ...,N

T∑
t=1

(at− bt log(p
(i)
t ) + δ

(i)
t )≤C +w(i) ∀i= 1, ...,N

p
(i)
t = ut + vt

t−1∑
k=1

δ
(i)
k ≥ 0, ∀t= 1, ..., T ,∀i= 1, ...,N

Figure 10 displays the overall performance of the four different models under logarithmic demand. As we

have shown in this section, there is no particular difference in the methodology needed to implement different

demand models, as long as they satisfy Assumption 1. If we are provided with historical data of price and

demand realizations, the demand function should be chosen according to the best possible fit to the data set

and the uncertainty realizations will be the estimation errors.


