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ABSTRACT

We propose a market-wide liquidity measure by exploiting the connection between the

amount of arbitrage capital in the market and observed “noise” in U.S. Treasury bonds—the

shortage of arbitrage capital allows yields to deviate more freely from the curve, resulting

in more noise in prices. Our noise measure captures episodes of liquidity crises of different

origins across the financial market, providing information beyond existing liquidity proxies.

Moreover, as a priced risk factor, it helps to explain cross-sectional returns on hedge funds

and currency carry trades, both known to be sensitive to the general liquidity conditions of

the market.
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The level of liquidity in the aggregate financial market is closely connected to the amount of

arbitrage capital available. During normal times, institutional investors such as investment

banks and hedge funds have abundant capital, which they can deploy to supply liquidity.

Consequently, big price deviations from fundamental values are largely eliminated by ar-

bitrage forces, and assets are traded at prices closer to their fundamental values. During

market crises, however, capital becomes scarce and/or willingness to deploy it diminishes,

and liquidity in the overall market dries up. The lack of sufficient arbitrage capital limits

arbitrage forces and assets can be traded at prices significantly away from their fundamen-

tal values.1 Thus, temporary price deviations, or noise in prices, being a key symptom of

shortage in arbitrage capital, contains important information about the amount of liquidity

in the aggregate market. In this paper, we analyze the noise in the price of U.S. Treasuries

and examine its informativeness as a measure of overall market illiquidity.

Our basic premise is that the abundance of arbitrage capital during normal times helps

smooth out the Treasury yield curve and keep the average dispersion low. This is particularly

true given the presence of many proprietary trading desks at investment banks and fixed-

income hedge funds that are dedicated to relative value trading with the intention to arbitrage

across various habitats on the yield curve.2 During liquidity crises, however, the lack of

arbitrage capital forces proprietary trading desks and hedge funds to limit or even abandon

their relative value trades, leaving the yields to move more freely in their own habitats and

resulting in more noise in the yield curve. We argue that abnormal noise in Treasury prices

is a symptom of a market in severe shortage of arbitrage capital. More importantly, to the

extent that capital is allocated across markets for major marginal players in the market,

this symptom applies not only to the Treasury market, but also more broadly to the overall

financial market.
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In addition to its close connection to arbitrage capital, the U.S. Treasury market is ideal

for our empirical investigation for several reasons. First, it is a market of central importance

and investors of many types come to the Treasury market to trade, not just for investment

but also funding needs (Treasuries are probably the most important collateral in short-term

financing). As such, trading in the Treasury market contains information about liquidity

needs for the broader financial market. Second, the fundamental values of Treasury bonds

are characterized by a small number of interest rate factors, which can be easily captured

empirically. This gives us a more reliable benchmark to measure price deviations, which

is important because we would like to keep the information content as “pure” as possible.

Other markets such as the corporate bond market, the equity market, or the index options

market might also be informative, but their information is “contaminated” by the presence

of other risk factors. Third, the U.S. Treasury market is one of the most active and liquid

markets, one with the highest credit quality, and thus is the number one safe haven during

crisis. A shortage of liquidity in this market therefore provides a strong signal about liquidity

in the overall market.

Using the CRSP Daily Treasury database, we construct our noise measure by first backing

out, day by day, a smooth zero-coupon yield curve. We then use this yield curve to price all

available bonds on that day. Associated with each bond is the deviation of its market yield

from the model yield. Aggregating the deviations across all bonds by calculating the root

mean squared error, we obtain our noise measure. We use the term “noise” in the sense that,

as in the fixed income literature, deviations from a given pricing model are often referred to

as noise.3

Whether this noise measure indeed captures the liquidity condition of the overall market is

largely an empirical matter. If it does, we expect it to exhibit the following properties. First,
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it should serve as a good indicator during liquidity crises in different parts of the market.

Second, it should provide new information about market liquidity beyond various existing

liquidity measures. Third and importantly, given its systematic nature, as an additional risk

factor, it should help us understand returns on assets beyond the Treasury market, especially

those that are sensitive to the liquidity condition of the overall market.

Our results show that the noise measure is rather informative about the liquidity condition

of the overall market. During normal times, the noise is kept at an average level of around

3.61 basis points, which is comparable to the average bid ask yield spread of 2 basis points.

In other words, the arbitrage capital on the yield curve is effective in keeping the deviations

within a range that is unattractive given the transaction cost. During crises, however,

our noise measure spikes up much more prominently than the bid ask spread, implying a

high degree of misalignment in bond yields that would have been attractive for relative

value arbitrage during normal times and are in fact attractive given the contemporaneous

transaction cost. Such crises include the 1987 crash, when the noise was over 13 basis points;

the aftermath of the LTCM crisis, when the noise peaked at 5.89 basis points; the first trading

day after the 9/11 terrorist attack, when the noise was at 12.54; the days following the sale

of Bear Stearns to JPMorgan, when the noise peaked at 8.08 basis points; and the aftermath

of the Lehman default, when the noise was above 15 basis points for a sustained period of

time. Given the sample standard deviation of 2.17 basis points for the noise measure, these

are large deviations from the mean.

To further understand the uniqueness of the information captured by the noise measure,

we examine its relation to other known measures of liquidity. One popular measure of

liquidity for the Treasury market is the premium enjoyed by on-the-run bonds. Since our

noise measure is a daily aggregate of cross-sectional pricing errors, the on-the-run premium
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is in fact a component of our measure. We find a positive relation between the two, but

our noise measure is by far more informative about the overall liquidity condition in the

market. In particular, our noise measure spikes up much more prominently than the on-the-

run premium during crises. This is because our noise measure collects information over the

entire yield curve, while the on-the-run premium focuses only on a couple of isolated points

on the yield curve. As such, our noise measure is much more sensitive to the commonality

in pricing errors across the yield curve. If such commonality heightens during crises, then it

will be captured by our noise measure, but not by a measure that focuses only on a couple

of isolated points on the yield curve. Indeed, this is how noise becomes information. Our

results also show that factors known to be related to systematic liquidity such at the CBOE

VIX index and the Baa-Aaa yield spreads have a significant relation with our noise measure.

By contrast, term structure variables such as the short- and long-term interest rates and

interest rate volatility do not have strong explanatory power for the time-variation for our

noise measure. In other words, the time-variation in our noise measure is not driven by poor

yield curve fitting.4

It is important to emphasize that our noise measure comes from the U.S. Treasury bond

market — the market with the highest credit and liquidity quality, and the number one

safe haven during crises — and yet it is able to reflect liquidity crises of varying origins

and magnitudes. In this respect, our noise measure does not simply capture the liquidity

concerns specific to the Treasury market, but rather reflects how different liquidity crises

might transmit through financial markets via the movements of arbitrage capital. In other

words, rather than being a measure specific to the Treasury market, our noise measure is a

reflection of overall market conditions.5 This insight becomes important when we examine

the asset pricing implications of this liquidity risk factor. Returns on assets such as equity

4



and bonds are within the confines of their own asset classes. While important in explaining

the risk factors within their own markets, such standard test portfolios are not good test

portfolios for our purpose. What we need are portfolios or trading strategies that transcend

asset class boundaries and are sensitive to liquidity risks or crises across a spectrum of

markets. We find hedge fund returns to be ideal for this purpose. They are closely associated

with arbitrage capital, react substantially to market upheavals, and are not localized to just

one market.

We use TASS hedge fund data from 1994 through 2011 to obtain hedge fund returns.

Using a two-factor model that includes monthly changes in noise as one factor and returns on

the stock market portfolio as the other, we find that liquidity risk is indeed priced by hedge

fund returns. The estimated risk premium is statistically significant, and is also economically

important. For two hedge funds with the same market beta but different liquidity beta, a one-

unit difference in liquidity beta generates a difference in returns of 0.69% per month. This

liquidity risk premium explains why some hedge funds can generate superior performance

— their high exposures to a priced, market-wide liquidity risk factor. Interestingly, such

highly exposed hedge funds are also found to have a higher exit rate in 2008 relative to

the graveyard sample. Using other measures of liquidity such as the RefCorp yield spread,

on-the-run premiums, the Pastor-Stambaugh (2003) equity market liquidity measure, CBOE

VIX, or default spreads to price the same set of hedge fund returns, we find no evidence that

any of these liquidity proxies is priced.

We further extend our hedge fund pricing results to explain the performance of currency

carry trade — a trading strategy widely known to be linked to arbitrage capital that is

sensitive to liquidity conditions in the broad market. A typical currency carry trade takes

long positions on “asset” currencies with high interest rates and funds the trade with low
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interest rates “funding” currencies. In our sample, the average return on the asset currencies

is about 79 basis points a month and is statistically significant. Using our noise measure as

a liquidity risk factor, we find that the asset currencies have high liquidity exposures, while

the funding currencies have minimal exposures. Using the liquidity risk premium estimated

from hedge fund returns to make risk adjustment, we find that the superior performance of

the asset currencies is lower in magnitude and no longer statistically significant. In other

words, high exposure to market-wide liquidity risk is a key driver for currency carry profits.

Our paper contributes to the existing literature along several dimensions. First, our study

explores the empirical implications of the theoretical “limits of arbitrage”, which emphasizes

the link between shortage of capital, market liquidity, and price deviations (see, for example,

Merton (1987), Shleifer and Vishny (1997), Kyle and Xiong (2001), and Gromb and Vayanos

(2002)). Recent empirical work, such as Coval and Stafford (2007) on equity fire sales by

mutual funds and Mitchell, Pedersen, and Pulvino (2007) on convertible bond arbitrage by

hedge funds, provides additional empirical evidence on this link.6 While these papers focus

mostly on the connection between arbitrage capital and liquidity in specific markets, our

paper considers liquidity in the overall market. In particular, our liquidity measure captures

episodes of liquidity crises of varying origins and is not limited to one specific market. As

such, the fluctuation in arbitrage capital captured by our noise measure is not confined to

market makers of certain markets or hedge funds of certain styles.

A growing body of work explores the asset pricing implications of liquidity and liquidity

risk. This work includes, for example, Pastor and Stambaugh (2003) and Acharya and

Pedersen (2005) on equities and Bao, Pan, and Wang (2011) on corporate bonds.7 These

studies follow a common approach, which is to focus on a specific market to both construct

and test the liquidity risk measure. We instead focus on the liquidity risk of the overall
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market by extracting our liquidity measure from the U.S. Treasury market, one of the most

liquid markets in the world. We then use test portfolios from other markets, namely, hedge

fund and currency carry trade strategies, to confirm the importance of this aggregate liquidity

risk factor in asset pricing.

Our results also complement studies on hedge fund and carry trade returns.8 For example,

Sadka (2010) extracts a liquidity risk factor from the equity market and finds it to be

important in explaining hedge fund returns. His measure of liquidity risk, similar to that of

Pastor and Stambaugh (2003), is based on price impact in the equity market, and thus is

equity specific, while ours is more market-wide. Moreover, we do not find a significant risk

premium for the Pastor-Stambaugh equity liquidity risk factor using hedge fund returns as

test portfolios. Since Fama (1984), the source of currency carry trade returns has been an

object of investigation by many studies.9 Brunnermeier, Nagel, and Pedersen (2008) focus

on the interaction of crash risks of currencies and funding conditions of currency speculators.

Using CBOE VIX and LIBOR spreads as proxies for funding liquidity, they find that the

carry trade tends to incur losses during weeks in which illiquidity increases. Our result is

consistent with this observation, but more importantly, we are able to formally test the

pricing implication. In particular, our result explicitly links the superior performance of

“asset” currencies to their high exposures to the noise measure.

Finally, given the existing literature, we discuss the extent to which our noise measure

may be driven by the liquidity demand (instead of liquidity supply) in the Treasury market.

To address this issue, we first note that the price noise of a particular security arises from the

imbalance of the demand and supply of liquidity in this security. The demand for liquidity

comes from the transitory buying or selling pressures of this security, while the supply

of liquidity comes from market makers and arbitragers who accommodate these pressures.
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Hence, a spike in the price noise of a particular security (or a subset) can come from an

increase in liquidity demand, a decrease in liquidity supply, or both. In this respect, it is

only when the liquidity demand of a particular security stays relatively stable, that we can

attribute an increase in noise of this particular security to a decrease in liquidity supply.

But one unique feature of our noise measure is that it is averaged across a broad set of

Treasury securities. As a result, shocks to the liquidity demand of individual Treasuries are

mostly averaged away and do not yield to a spike in the noise measure.10 By contrast, the

situation for liquidity supply is different because arbitrage capital does not localize itself to

one security. In particular, when arbitrage capital is abundant, liquidity shocks to individual

Treasuries are averaged away as capital moves fluidly across the yield curve. But when there

is an overall shortage of arbitrage capital, liquidity supply becomes limited across the board.

Our noise measure is uniquely designed to capture this effect.11 Consequently, we expect the

noise measure to be more reflective of the overall liquidity supply in the Treasury market

but less so of liquidity demand.

The paper proceeds as follows. Section I describes the construction of our noise measure

from Treasury prices. In Section II, we report the time-series properties of the noise measure,

focusing in particular on its variation through various crises and its connection with other

measures of market liquidity. In Section III, we provide cross-sectional tests on our noise

measure as a liquidity risk factor using returns on hedge funds and use the pricing results to

explain currency carry profits. Section IV concludes. In the Appendix, we investigate the

robustness of our main results with respect to curve-fitting methods.
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I. Constructing the Noise Measure

A. Treasury Data

We use the CRSP Daily Treasury database to construct our noise measure. The main

variable we use from the data set is the daily cross-sections of end-of-day bond prices from

1987 through 2011. The data set itself starts in January 1962, but we choose to start the

sample in 1987 due to considerations with respect to both data quality and the sample

period of interest. In particular, we test our noise measure using hedge fund data, which

are available starting in 1990. Our sample consists of Treasury bills, notes, and bonds that

are noncallable, nonflowering and with no special tax treatment. Observations with obvious

pricing errors such as negative prices, negative yields, or negative bid ask spreads are deleted

from the sample. We drop Treasury securities with remaining maturity less than one month

because of potential liquidity problems. We also drop bonds with maturity longer than 10

years to base our noise measure on notes and bonds with maturity between one and 10 years.

For bonds with maturity long than 10 years, we have fewer observations and the fitted yield

curve becomes less reliable.

[Table I about here]

Table I provides details of our bond sample. On average, we have 163 bonds (including

notes) and bills every day to fit the yield curve and 109 bonds with maturity between 1 and

10 years to construct the noise measure. The cross-section varies over time, with a noticeable

dip around the late 1990s and early 2000s. This dip coincids with record surpluses of U.S.

government and a reduction in the gross issuance of Treasury notes and bonds, which fell

by 54% from 1996 to 2000. Also reported are the key characteristics of the bonds used in
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constructing the noise measure. For example, the average maturity of the bonds is 3.85

years and the average age of the bonds is 3.96 years. Over time, both variables remain

stable, alleviating the concern that the time-series variation in bond characteristics such as

maturity and age might cause the time-series variation in our noise measure. Also reported

in Table I is the average spread between bid and ask yields of the bonds used in our noise

construction. The average bid ask spread is 2.11 basis points, with a decreasing time trend

that is caused by both improved liquidity in the market and improved data quality. In

particular, after October 16, 1996, the source for price quotations of the CRSP Treasury

database changed to GovPX, which receives its data from five interdealer bond brokers, who

broker transactions among 37 primary dealers. For most of the bond characteristics reported

in Table I, the cross-sectional mean and median are close, indicating that the cross-section

of bonds is unlikely to be dominated by a few bonds with extremely different characteristics.

B. Curve Fitting

Various estimation methods can be employed to back out zero-coupon yield curves from

coupon-bearing Treasury securities. These approaches can be broadly classified into spline-

based and function-based models. Spline-based methods rely on piecewise polynomial func-

tions that are smoothly joined at selected knots to approximate the yield curve. Function-

based models, on the other hand, use a single parsimonious parametric function to describe

the entire yield curve. In this section, we employ a function-based model, and in the Ap-

pendix we revisit the issue of curve fitting. We employ a variety of spline-based methods

to reconstruct our noise measure and check the robustness of our main results. We show

that our main results are not specific to the particular curve-fitting method employed here.

Instead, they are quite robust to various curve-fitting methods and the main insight of our
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paper is quite general.

Popular models in the class of function-based models include Nelson and Siegel (1987)

and Svensson (1994). We choose the Svensson model because of its improved flexibility over

the Nelson-Siegel model. The Svensson model assumes the following functional form for the

instantaneous forward rate f :

f (m, b) = β0 + β1 exp

(

−
m

τ1

)

+ β2

m

τ1
exp

(

−
m

τ1

)

+ β3

m

τ2
exp

(

−
m

τ2

)

, (1)

where m denotes the time to maturity and b = (β0 β1 β2 β3 τ1 τ2) are model parameters to be

estimated. Given that f → β0 as m → ∞ and f → β0 + β1 as m → 0, it follows that β0

represents the forward rate at infinitely long horizon, and β0+β1 represents the forward rate

at maturity zero. In addition, (β2, τ1) and (β3, τ2) control the “humps” of the forward rate

curve, while β2 and β3 determine the magnitude and direction of the humps, and τ1 and τ2

affect the position of the humps. Finally, in order to model nominal interest rates, a proper

set of parameters must satisfy the conditions that β0 > 0, β0 + β1 > 0, τ1 > 0, and τ2 > 0.

Using the parameterized forward curve, we can derive the corresponding zero-coupon

yield curve, which can then be used to price any coupon-bearing bonds. Conversely, we can

use market prices of such bonds to back out the model parameters b. Specifically, on each

day t, the inputs of our curve fitting are the market closing prices (mid bid ask quotes) of

all Treasury bills and bonds in our sample with maturity between one month and 10 years.

The output of the curve fitting on that day is the vector of model parameters bt, and the

details of curve fitting are as follows.

Let Nt be the number of bonds and bills available on day t for curving fitting and

let P i
t , i = 1, . . . , Nt, be their respective market observed prices. We choose the model
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parameters bt by minimizing the weighted sum of the squared deviations between the actual

and the model-implied prices:

bt = argmin
b

Nt
∑

i=1

[

(P i(b)− P i
t )×

1

Di

]2

, (2)

where P i(b) is the model-implied price for bond i given model parameters b and Di is

MaCaulay’s duration for bond i.12 Following standard practice in the yield curve-fitting

literature, we weight the price deviations by the inverse of bond duration. Effectively, we

are minimizing pricing errors in the yield space.13

C. Noise Measure

We construct our noise measure using the zero-coupon curve backed out from the daily

cross-section of bonds and bills. For each date t, let bt be the vector of model parameters

backed out from the data. Suppose that, on date t, there are Nt Treasury bonds with

maturity between one and 10 years. For each of these Nt bonds, let yit denote its market

observed yield, and let yi(bt) denote its model-implied yield. As a measure of dispersion in

yields around the fitted yield curve, we construct our noise measure by calculating the root

mean squared distance between the market yields and the model-implied yields:14

Noiset =

√

√

√

√

1

Nt

Nt
∑

i=1

[yit − yi(bt)]
2
. (3)

Unlike in curve fitting, where qualified bonds and bills with maturity between one month and

10 years are used, we use only bonds with maturity between one and 10 years in constructing

the noise measure. While short-maturity bonds and bills are needed for fitting the short end
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of the yield curve, we feel that their information content is limited with respect to the

availability of arbitrage capital in the overall market. This is because the short end of the

yield curve is known to be noisier than other parts of the yield curve, primarily due to

temporary demand and supply fluctuations in that segment of the market. Moreover, the

short end is unlikely to be the object of arbitrage capital, which is the main motivation of

our noise measure. While the longer maturity bonds might be useful to further capture the

effect of fixed-income relative value trades, the supply of these bonds is not as stable and

might introduce unnecessary time-series noise to our measure.15 For this reason, we exclude

bonds with maturity longer than 10 years in constructing the noise measure.

To avoid the pricing errors of one or two bonds driving the noise measure, we also

employ a filter. Specifically, given the daily cross-section of bonds and their pricing errors,

we calculate the cross-sectional dispersion in pricing error in the yield space. Any bond

with yield-to-maturity four standard deviations away from the model yield is excluded from

the construction of the noise measure. In practice, this is a rather mild filter and affects

only one or two bonds when triggered. Specifically, from 1987 through 2011, this filter was

triggered on 24.4% of the days to remove one bond each day, on 8.0% of the days to remove

two bonds each day, on 2.7% of the days to remove three bonds each day, and on 0.67%

of the days to remove four bonds each day. There was no case in which this filter removed

more than four bonds. As reported in Table I, on average 105 bonds contribute to the daily

noise measure. Consequently, the noise measure is an aggregate measure of the entire yield

curve and should not be driven by only one or two bonds. This additional filter allows us

to remove the few outliers that were missed in our initial sample cleaning process. As the

data quality improves over time, this filter was triggered even less frequently. For example,

from 1994 through 2011, the sample period during which we later perform our pricing tests
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using hedge fund returns, this filter was triggered only on 20.34% of the days to remove one

bond, 1.80% of the days to remove two bonds, and only once to remove three bonds. There

was no case in which this filter removed more than three bonds over this sample period.16

[Figure 1 about here]

To further illustrate the construction of our noise measure and the information content

it is supposed to capture, in Figure 1 we plot several examples of par-coupon yield curves

and the market-observed bond yields. The top left panel in Figure 1 plots three random

days in 1994, which represent normal days in terms of curve fitting. As can be seen, our

curve fitting method does a reasonable job. The other panels in Figure 1 focus on the days

surrounding the 1987 stock market crash, the 1998 LTCM crisis, the September 11, 2001

terrorist attack, the 2005 GM/Ford downgrade, and the Lehman default in September 2008.

For all of these events, we see significant increases in our noise measure. More importantly,

as shown in the cross-sectional plots, the sudden increases were not the result of poor curve

fitting on these event days. Instead, they were caused by high levels of dispersion in bond

yields across the entire yield curve. In fact, a closer examination of this dispersion seems to

indicate comovement in dispersion within various bond habitats.

II. Time-Series Properties

A. Noise as Information for Liquidity Crises

The daily time-series variation in our noise measure is plotted in Figure 2. The most

interesting aspect of this plot is the rich information content embedded in a variable that

has been traditionally treated as just noise or pricing errors. During normal times, the
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noise measure fluctuates around its time-series average of 3.61 basis points with a standard

deviation of 2.17 basis points, and it is highly persistent, with a daily autocorrelation of

98.11% and a monthly autocorrelation of 90.75%. This level of noise and its fluctuation is in

fact comparable to the average spread between bid and ask yields of 2.11 basis points for the

same sample of bonds. In other words, the arbitrage capital on the yield curve is effective

in keeping the deviations within a range that is unattractive given the transaction cost.

[Figure 2 about here]

During crises, however, our noise measure spikes up much more prominently than the bid

ask spread, implying a high degree of misalignment in the yield curve that would have been

attractive for relative value trading during normal times and is in fact attractive given the

contemporaneous transaction cost. This includes the 1987 crash, when the noise was over 13

basis points; the aftermath of the LTCM crisis, when the noise peaked at 5.89 basis points;

the first trading day after the 9/11 terrorist attack, when the noise was at 12.54; the days

following the sale of Bear Stearns to JPMorgan, when the noise peaked at 8.08 basis points;

and the aftermath of the Lehman default, when the noise was above 15 basis points for a

sustained period of time. Given its sample standard deviation of 2.17 basis points, these are

large deviations from the mean.

Another interesting aspect captured by our noise measure is that while some liquidity

events, such as the 1987 crash or the 9/11 terrorist attack, are short lived, others take much

longer to play out. The Savings & Loan crisis in the late 1980s and early 1990s is one such

example, and the aftermath of the Lehman default on September 15, 2008 is another. Figure

3 provides a closer examination of our noise measure during the period after the Lehman

default. It shows that when Lehman defaulted on Monday, September 15, 2008, the noise
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measure was at 6.64, which was about one standard deviation above the historical mean.

Compared with the Friday before when the noise measure stood at 5.97, it was only a mild

increase, especially give the severity of the event.17 But as shown in Figure 3, the Lehman

event was the beginning of a cycle of worsening liquidity that lasted until late April and early

May of 2009, when the Federal Reserve announced and implemented stress tests for large

U.S. banks. During this liquidity crisis, the noise measure had two noticeable peaks whose

magnitudes dwarfed those at the previous crises. The first one was in early November when

it peaked at 19.85 on November 6, days after the Treasury and Fed injected $125 billion of

capital into nine large U.S. banks via the Capital Purchase Program (CPP) and the creation

of the Commercial Paper Funding Facility (CPFF). The second one was in the middle of

December when the noise measure peaked at 20.47 on December 10 as concerns over the

financial crisis deepened. Overall, this period was when the crisis was at its worst, and this

fact is captured by our noise measure.

[Figure 3 about here]

It is worth emphasizing that our noise measure comes from the U.S. Treasury bond

market — the market with the highest credit and liquidity quality, and the number one safe

haven during crises — and yet it is able to capture liquidity crises of varying origins and

magnitudes. In this respect, what our noise measure capture is not liquidity concerns specific

to the Treasury market, but rather liquidity conditions across the overall financial market.

B. Noise and the On-the-Run Premium

One popular measure of liquidity with respect to the Treasury market is the on-the-

run and off-the-run premium: the just-issued (on-the-run) Treasury bond enjoys a price
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premium, and therefore lower yield, compared to old bonds with similar maturity. Since our

noise measure is a daily aggregate of cross-sectional pricing errors, the on-the-run premium

is in fact a component of our measure. Calculating the correlation between daily changes in

our noise measure and daily changes in the on-the-run premium, we find that the correlation

is 5.7% and 9.3%, respectively, for the five- and 10-year on-the-run premiums. Repeating

the same calculation at a month frequency, the correlation increases to 33.4% and 42.8%,

respectively. Overall, we find a positive relationship between our noise measure and the

on-the-run premium, which is relatively small at the daily frequency but grows larger at the

monthly frequency.

Moreover, while the noise measure is on average smaller than the on-the-run premium,

it tends to spike up much more significantly during crises. For example, on October 19,

1987, the noise measure was 4.47 standard deviations above its sample average, while the

five-year on-the-run premium was 0.51 standard deviations above its sample average and

the 10-year on-the-run premium was 0.04 standard deviation below its sample average. On

September 21, 2001, the first bond trading day after the terrorist attack, our noise measure

was 4.11 standard deviations above its sample average while the five- and 10-year on-the-

run premiums were 0.58 and 1.58 standard deviations above, respectively. On October 15,

2008, when the crisis after Lehman’s default deepened, our noise measure was 4.34 standard

deviations above its sample average while the 10-year premium was 4.63 standard deviations

above and the five-year premium was 0.64 standard deviation below its sample average.

This comparison between our noise measure and the on-the-run premium is instructive

as it highlights the important fact that the information captured by our noise measure is

aggregate information collected over the entire yield curve.18 The fact that our noise measure

spikes up during liquidity crises much more prominently than the on-the-run premiums

17



implies that there is commonality in pricing errors across the entire yield curve. And the

heightened commonality during crises is reflected in noisy and misaligned yield curves, which

are captured by our noise measure. This is how noise becomes informative. By contrast, a

couple of isolated points on the yield curve as captured by the on-the-run premiums will not

be as informative.

C. Noise and Other Measures of Liquidity

To further investigate the connection between our noise measure and other measures of

market liquidity, in Table II we report results of an OLS regression of monthly changes in our

noise measure on several important market variables. The regressions are first conducted

univariately, and then in multivariate form in the last column to compare their relative

contribution. The pairwise correlations of monthly changes of these variables are reported

in Table III.

[Table II about here]

[Table III about here]

C.1. Treasury Market: Level, Slope, and Volatility

First, we examine the connection between our noise measure and the Treasury market

variables including the level, slope, and volatility of interest rates. Since our noise measure is

computed as pricing errors in yields, it is important to make sure that the time-variation in

the noise measure is not caused by time-variation in interest rates. Results are summarized

in the top left panel of Table II. Regressing monthly changes in our noise measure on monthly
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changes in three-month Treasury bill rates, we find a negative and statistically significant

relation. This implies increasing illiquidity during decreasing short rates, which is consistent

with the fact that liquidity in the overall market typically worsens during flight-to-quality

and decreasing interest rates episodes. The explanatory power of the short rate for our noise

measure, however, is rather limited. As shown in Table II, the R2 of the regression is only

4.66%. Another important factor in the Treasury market is the slope of the term structure,

which is labeled Term in Table II. We find a positive relation between our noise measure

and the term spread, consistent with the observation that the slope of the term structure

steepens in the depth of economic recessions. This connection, however, is not very strong

and the R2 of the regression is only 5.64%.

Overall, although our noise measure is constructed using pricing data in the Treasury

market, its connection to the time-variation in bond yields is not very strong. In fact, this

is a good indication of the “purity” of our noise measure — high correlations with such

term-structure pricing variables might suggest that our curve fitting is not flexible enough

to capture the shape of the term structure.

Similarly, given that our noise measure captures the cross-sectional dispersion in Treasury

bonds, it is natural to ask whether it is purely driven by the volatility of this market. To

address this question, we regress monthly changes in our noise measure on monthly changes

in bond volatility, which is calculated as the annualized bond return volatility using a rolling

window of 21 business days. We find a positive relation between our noise measure and

bond volatility, but it is not statistically significant. In particular, bond volatility can only

explain 1.46% of the monthly variation in our noise measure. In other words, the information

contained in our noise measure is not driven simply by the volatility in the Treasury bond

market. In fact, a large component of our noise measure is unrelated to the volatility of the
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Treasury market.19

C.2. Treasury Market: Liquidity and Flight-to-Quality Premiums

One important measure of liquidity premium for the Treasury market is proposed by

Longstaff (2004), who compares Treasury bonds with bonds issued by RefCorp, a U.S. gov-

ernment agency guaranteed by the Treasury. He finds a large liquidity premium in Treasury

bonds, and documents the presence of a flight-to-liquidity premium in Treasury bonds. This

measure examines the symptom of illiquidity from a perspective that is different from but

highly related to ours. It is therefore interesting to see how this measure connects with ours.

To do so, we construct RefCorp spread by calculating the average spread between RefCorp

and Treasury zero-coupon bonds with maturities ranging from three months to 30 years. As

shown in the top right panel of Table II, regressing monthly changes in our noise measure

on monthly changes in RefCorp spread, we find a positive and statistically significant rela-

tion. In other words, when the flight-to-liquidity premium in the Treasury market increases,

illiquidity of the overall market as captured by our noise measure also increases. But this

positive relation is not very strong given that RefCorp spread can explain only 6.11% of the

monthly changes in our noise measure. In other words, while it is possible that the flight-

to-liquidity premium in the Treasury market contributes to our noise measure, it is only a

small fraction of the information captured by the noise measure.

The variable with relatively high explanatory power for our noise measure is the 10-

year on-the-run premium, which can explain 18.02% of the monthly variation in our noise

measure. The five-year on-the-run premium is also positively related to our noise measure

and can explain 10.83% of its monthly variation. This not surprising since the on-the-run

premium is a component of our noise measure. In fact, the significance of this result is that
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a large component of our noise measure is not captured by the on-the-run premium and this

uncaptured component has more information content for liquidity conditions of the broad

market (see Section II.B for a more extensive discussion). Adding on-the-run premiums

together with RefCorp spread in a multivariate regression, we see that together they explain

changes in the noise measure with an adjusted R2 of 32.93%.

C.3. Stock Market: Returns, VIX, and Liquidity

One liquidity factor shown to be important in the U.S. equity market is the measure

constructed by Pastor and Stambaugh (2003). This liquidity measure is an aggregate of

the individual-stock liquidity measures proposed by Campbell, Grossman, and Wang (1993),

using the idea that order flow induces greater return reversals when liquidity is lower. Given

the systematic nature of this liquidity measure and given the importance of the U.S. equity

market, it is worth examining how this measure relates to our noise measure, which is

designed to capture overall market liquidity conditions including the stock market. As shown

in the bottom left panel of Table II, this measure of liquidity has a statistically significant

relation with our noise measure. The coefficient is negative, implying that a negative shock

to the systematic liquidity factor in the equity market is likely to be accompanied by an

increase in our noise measure and worsening liquidity in the overall market. The R2 of the

regression is 5.67%, implying that the liquidity effect captured by the noise measure cannot

be explained by the liquidity of the equity market only. Nevertheless, given that these two

measures are constructed using data from two distinct markets, this level of comovement

indicates the presence and importance of a systematic liquidity factor.

The CBOE VIX index, constructed from S&P 500 index options, is often referred to

as the “fear gauge.”20 We find a positive and statistically significant relation between the
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VIX index and our noise measure. The R2 of this regression is 12.13%. In other words, an

increase in the fear gauge is likely to be accompanied by an increase in our noise measure.

Given its significant relation with our noise measure, it is important for us to distinguish the

relative contribution between the two. We visit this issue in Section Section III, using hedge

fund returns as testing portfolios to evaluate their relative importance.

We also find a negative and significant relation between U.S. stock market returns and our

noise measure, with our noise measure spiking up during worsening stock market conditions.

The R2 of this regression is 11.79%. Adding the Pastor-Stambaugh stock market liquidity

measure together with the VIX index and stock market returns in a multivariate regression,

we find that they can explain the changes in the noise measure with an adjusted R2 of

16.65%.

C.4. Credit Market: Default and LIBOR Spreads

The bottom right panel of Table II examines the connection between our noise measure

and default spreads, measured as the difference in yield between Baa- and Aaa- rated bonds.

We find a positive and significant relation, and the R2 of the regression is 13%. This result

is consistent with the possibility that liquidity risk is an important component of observed

default spreads. We perform a bivariate OLS regression by including both the default spreads

and the VIX index — two variables with high explanatory power for our noise measure that

are often used as proxies for liquidity. We find the slope coefficients for both variables to

be positive and statistically significant, and the adjusted R2 is 20.21%. Thus, these popular

proxies of liquidity are both related to our noise measure, but can explain only a limited

amount of the time-variation in our noise measure.21

Table II also reports the connection with overnight general collateral Repo rates and
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LIBOR spreads. Overall, the results are in the expected direction. For example, our noise

measure increases with increasing LIBOR spreads, while it is negatively related with repo

rates. Including the Repo rates, LIBOR spreads, and default spreads in a multivariate

regression, we find that the repo rates and default spreads remain significant and the adjusted

R2 of the regression is 21.06%.

C.5. All Together

Finally, when the five-year and 10-year on-the-run premiums, RefCorp spread, VIX index,

stock market returns, Pastor-Stambaugh liquidity factor, and default spreads are considered

jointly in one regression, they together explain 43.7% of the monthly variation in our noise

measure. In other words, over 50% of the uncertainty in our noise measure is left unexplained.

Our results in the next section show that it is this unexplained component that is important

in explaining cross-sectional hedge fund returns.

III. Cross-Sectional Pricing Tests

Our noise measure is designed to capture the lack of liquidity in the overall market. The

empirical evidence provided so far indicates that this noise measure does a good job capturing

aggregate liquidity risk. Given the systematic nature of this risk, we now investigate its asset

pricing implications, particularly its impact on asset returns. To better identify this impact,

we need to consider returns that are potentially sensitive to market-wide liquidity shocks.

For this purpose, we employ two sets of returns. The first set consists of returns on hedge

funds, whose trading activities cover a broad spectrum of asset classes and whose capital

adequacy is a good representation of the amount of arbitrage capital available in the market.
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The second set of returns are those from currency carry trades, which are also known to be

associated with the overall arbitrage capital in the market.

A. Hedge Fund Returns as Test Portfolios

A.1. Hedge Fund Data

We obtain hedge fund returns, assets under management (AUM), and other fund char-

acteristics from the Lipper TASS database. The TASS database divides funds into two

categories: “live” and “graveyard” funds. The live hedge funds are active funds as of the

latest update of the TASS database, in our case February 2012. Hedge funds are listed as

graveyard funds when they stop reporting information to the database. Fund managers may

decide not to report their performance for a number of reasons such as liquidation, merger,

or closed to new investment. Although TASS has been collecting data since late 1970s, the

graveyard database was created in 1994. We thus choose to focus on the 1994 to 2011 period

to mitigate the impact of survivorship bias.

We only include funds that report returns net of various fees in U.S. dollars on a monthly

basis, which covers a majority of the funds in TASS. We also require that each fund has

assets of at least $10 million, and at least 24 months of return history during our sample

period. These filters ensure that we have a sample of hedge funds of reasonable size and each

fund has a sufficiently long enough time series for meaningful regression results.22 Details on

our hedge fund sample are summarized in Table IV.

[Table IV about here]
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A.2. Portfolio Formation by Noise Betas

We follow the standard procedure of Fama and MacBeth (1973) to perform cross-sectional

tests on the noise measure. Let Ri
t be the month t excess return of hedge fund i. We estimate

its exposure to the noise measure according to

Ri
t = β0 + βN

i ∆Noiset + βM
i RM

t + ǫit , (4)

where ∆Noise is the monthly change in our noise measure, RM is the excess return of the

CRSP value-weighted portfolio,23 and βN
i and βM

i are estimates of fund i’s exposure to the

noise measure and stock market risk, respectively.

Our specification in equation (4) implicitly assumes that, other than the liquidity risk

factor captured by our noise measure, stock market risk is the main risk factor for hedge

funds. Given the varying styles of hedge funds in our sample, this is perhaps a strong

assumption. It is nevertheless a reasonable starting point as long as our noise measure is not

a proxy for well-known risk factors other than liquidity risk; given our analysis in Section

II.C, this does not seem to be the case. We also experimented with adding other well known

risk factors such as term spreads in the Treasury market and default spreads in the corporate

bond market, and our results continue to hold.24 For this reason and to keep the specification

simple, we perform the cross-sectional test using our simple specification.

For each month t and each hedge fund i, we first use the fund’s returns over the previous

24 months to estimate the pre-ranking βN
i using equation (4). We then sort the month t

cross-section of hedge funds by their pre-ranking beta, βN
i , into 10 portfolios. The post-
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ranking betas of the 10 portfolios are estimated by

R
p
t = β0 + βN

p ∆Noiset + βM
p RM

t + ǫ
p
t , p = 1, . . . , 10. (5)

where R
p
t is the equal-weighted return for portfolio p in month t and this regression is run

over the entire sample period.25

Table V reports the expected returns of the 10 noise-beta-sorted portfolios and their post-

ranking betas. A negative noise beta implies that when the noise measure increases during

crises, the hedge fund return decreases. In other words, a hedge fund with negative noise

beta is one with high exposure to liquidity risk. Among the 10 noise-beta-sorted portfolios,

portfolio 1 therefore has much higher exposure to liquidity risk than portfolio 10, and we

can loosely characterize the hedge funds in portfolio 1 (10) as more aggressive (conservative)

in taking liquidity risk.

[Table V about here]

More important for our cross-sectional pricing test, Table V also shows that the hedge

funds in portfolio 1 differ from those in portfolio 10 in average performance. Specifically,

the aggressive funds outperform the conservative ones by a large margin. The average

excess return for portfolio 1 is 0.95% per month compared with 0.23% for portfolio 10,

implying monthly outperformance of 0.72%. In fact, moving from portfolio 10 to 1, there

is a general pattern of increasing average returns, indicating improved performance with

increasing exposure to liquidity risk. One direct implication of this pattern of risk and return

is that liquidity risk as captured by our noise measure is priced. This pricing implication

is formally tested later in this section when we perform cross-sectional tests a la Fama and

MacBeth (1973).
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[Table VI about here]

To further understand these 10 noise-beta-sorted portfolios, in Table VI we report the

characteristics of hedge funds within each portfolio. We see that the hedge funds in portfolios

1 and 10 have similar characteristics. Also reported in Table VI is the relative allocation of

hedge funds within each style category to the 10 portfolios. One interesting observation is

that on average 29.62% of the hedge funds specializing in emerging markets show up in the

aggressive portfolio. Other than that, the distribution does not seem to be very informative,

although it does point to the fact that it is important to conduct the cross-sectional test at

the hedge fund level. In particular, testing liquidity risk at the style indices level will not be

a successful endeavor.

[Figure 4 about here]

In Figure 4, we compare the liquidity risk of hedge funds in portfolio 1 versus portfolio

10 in a different way. For each year t, we report the one-year exit rate in the sample by

calculating how many hedge funds among the live sample end up in the graveyard sample

by the end of year t. Conditioning on a fund’s exit from the live sample to the graveyard

sample, we also track which portfolio this fund belongs to prior to exiting. From Figure 4,

we can see a distinctive increase in the exit rate in 2008. This is not surprising given the

severity of the financial crisis in 2008. What’s interesting is that the exit rate is much higher

for hedge funds in the aggressive category (portfolio 1), while hedge funds in the conservative

category have a similar exit rate as the sample average. It should be noted that hedge funds

exit from the database for various reasons and death is only one of them. In fact, for the

sample period excluding 2008, the hedge funds in portfolio 10 exit more often on average

than those in portfolio 1. This baseline makes the dramatic reversal in exit rate between the
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two portfolios even more interesting.

A.3. Hedge Fund Data Quality

Given the voluntary nature of hedge fund reporting, one might be concerned that their

exiting behavior might introduce biases to our results. For example, hedge funds might

simply stop reporting after poor performance, in which case the data tend to overstate fund

returns since the missing returns are likely to be much lower than the sample average. For

our purpose, if this type of overstating is more prevalent among funds in portfolio 1, then it

will contribute to the superior performance of portfolio 1 over portfolio 10.

We address this issue by replacing the last month returns of all exiting funds by large

negative numbers such as -100%, -50%, and -20% and recalculate the average returns for the

10 portfolios. We see a marked reduction in average monthly returns across the 10 portfolios

(especially when -100% is used), but the relative performance of these 10 portfolios remains

in line with that exhibited in Table V. Applying this approach to the Fama-MacBeth cross-

sectional test performed later in this section, we find very little difference in the estimated

liquidity risk premium. In fact, the point estimate for the liquidity risk premium is a bit

stronger. This is because on average funds in portfolio 10 tend to exit more frequently than

those in portfolio 1, and 2008 was of one of the few exceptions when this pattern is reversed.26

Overall, we believe that our results are robust with respect to this particular issue concerning

hedge fund data quality.

Another well known issue with respect to hedge fund data quality is the quality of the

reported returns. Previous research finds relatively large autocorrelation in hedge fund

returns. As reported in the last two columns of Table IV, the monthly autocorrelation is

on average 19%. One possible explanation is return smoothing. While it would not have a
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large impact on average performance, it will distort risk exposure. Later in this section, we

introduce lagged betas to better capture risk exposures of hedge funds.

A.4. Post-Ranking Noise Beta

Also reported in Table V are the post-ranking noise betas, which are estimated with

satisfactory precision and exhibit a nearly monotonic relation with the portfolio rankings.

This is an encouraging sign for our empirical test, given the importance of having a good

measure of liquidity risk exposure.27 We sort hedge funds into portfolio 1 believing that their

trading strategies are more exposed to systematic liquidity risk. The large and negative

post-ranking beta for portfolio 1 confirms that this is indeed the case: hedge funds in this

portfolio tend to underperform when the noise measure spikes up during crises. Moving

from portfolio 1 to portfolio 10, the post-ranking beta becomes less negative as the liquidity

exposure lessens. This precision and consistency in the post-ranking noise betas forms an

important foundation for our cross-sectional test performed in the next section.

We can further improve the precision of our risk exposure measures. As mentioned

earlier, one issue that is unique to the hedge fund data is that their returns are known to

be highly serially correlated. As shown in Getmansky, Lo, and Makarov (2004), one likely

explanation is their illiquidity and the possibility of smoothed returns at the fund level. In

this respect, a better way to capture a hedge fund’s risk exposure is to regress its returns

on the contemporaneous as well as lagged factors. Using this intuition, we estimate the

post-ranking beta by

R
p
t = β0 + βN

p ∆Noiset + lagβN
p ∆Noiset−1 + βM

p RM
t + lagβM

p RM
t−1 . (6)
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Given the high serial correlation in hedge fund returns, a more accurate estimate of a port-

folio’s exposure to liquidity risk is βN
p + lagβN

p . As reported in Table V, there is much

improvement in terms of the spread of post-ranking noise beta as well as the statistical

significance of the post-ranking noise beta. It is also interesting to note that although the

market exposure βM
p + lagβM

p also has some improvement, the improvement in noise beta is

much more significant.

A.5. Estimating Liquidity Risk Premiums using Fama-MacBeth Regressions

Following Fama and MacBeth (1973), we perform the cross-sectional regression for each

month t:

Ri
t = γ0t + γN

t βN
i + γM

t βM
i + c

age
t ageit + cAUM

t AUMi
t + ǫit, (7)

where Ri
t is the month t return of hedge fund i, and βN

i and βM
i are the noise and market

betas of hedge fund i, respectively. Following Fama and French (1992), we assign the post-

ranking portfolio betas, which are estimated as in equation (5), to each hedge fund in the

portfolio.28 The fund’s age and log of AUM are used as controls. The factor premiums are

estimated as the time-series average of γN
t and γM

t .

Table VII reports the factor risk premiums for our noise measure as well as the market

portfolio. Fama-MacBeth t-statistics are reported in square brackets. We see that liquidity

risk as captured by our noise measure is indeed priced. The coefficient that corresponds to

the noise risk premium is negative and statistically significant. When only contemporaneous

post-ranking betas are used in the test, the estimated coefficient is -0.69% per month with

a t-statistics of -2.37. When the sum of contemporaneous and lagged betas, βN
p + lagβN

p ,

is used in the cross-sectional test, the estimated coefficient is -0.35% with a t-statistics of

-2.52.29

30



Given that our noise measure moves up when market-wide liquidity deteriorates, this

means that the liquidity risk premium is positive and significant. Relating back to the

discussions above on the relative performance of portfolios sorted by noise beta (βN) as

reported in Table V, this result provides a formal test in support of the intuition developed

there. Specifically, hedge funds with high negative noise beta provide higher expected returns

because of their high exposures to this priced liquidity risk.

Another way to see this result is to use the risk premium estimated from this cross-

sectional test, plug it back to the two-factor model, and calculate the two-factor alphas

for the 10 hedge fund portfolios. The last two columns of Table V report such alphas.

The first column pertains to the case in which only contemporaneous post-ranking betas

are used in the cross-sectional test, while the second column is for the case in which both

contemporaneous and lagged post-ranking betas are used in the cross-sectional test. Unlike

the unadjusted portfolio returns reported in the left two columns of Table V, the two-factor

alphas are no longer significant, economically or statistically, and this is true for all 10 hedge

fund portfolios.

[Table VII about here]

A.6. Pricing Tests on Variations of Noise Measure

In addition to the base case tests on the noise measure, we also perform hedge fund

pricing tests on a few variations of the noise measure.

To take into account the fact that bid ask spreads in the Treasury market also have some

time-variation, we scale our noise measure by the cross-sectional average of the bid minus ask

yield for all of the bonds used in the construction of the noise measure. As shown in Panel
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A of Table VII, we find that this scaled version is priced with an estimated risk premium

similar to the base case in terms of both magnitude and statistical significance.

We also construct a variation of our noise measure that takes into account the fact that

the total amount outstanding varies across Treasury bonds. So instead of equal weighting the

squared yield deviations across bonds, we weight them by the size of the bond. Effectively,

the pricing errors of larger and therefore more liquidity bonds are weighted more. We find

similar hedge fund pricing results for this variation of our noise measure.

Our time-series analysis shows that our noise measure is related to other known proxies

of liquidity including the VIX index and default spreads. To evaluate the relative importance

of the information captured in our noise measure versus the information in VIX and default

spreads, we perform our cross-sectional test on a noise measure that is orthogonal to these

two variables. Specifically, we first regress the monthly changes of our noise measure on the

monthly changes in VIX and default spreads, and then perform the pricing test using the

residual. The result is reported in Table VII, the last row of Panel A, under “Noise-VIX-

Default.” We see that after removing the information contained in VIX and default spreads,

our noise measure maintains its significance and magnitude in pricing the cross-sectional

hedge fund returns.

We repeat the same exercise by including the five- and 10-year on-the-run premiums,

Refcorp spread, and the Pastor-Stambaugh liquidity factor along with the VIX index and

default spreads in the regression. Performing the hedge fund pricing test on the residual, we

again reach the same conclusion. That is, the importance of the noise measure as a liquidity

risk factor in pricing hedge funds is independent of these “usual suspects.” While all of these

variables are informative in their own right and for their respective market, we argue that

the information captured in our noise measure is unique. Given the breadth of hedge fund
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activities and their specialization on arbitrage activities and liquidity, we further argue that

this unique information contained in our noise measure is broad and important.

A.7. Pricing Tests on Other Liquidity Proxies

We have established so far is that our noise measure is an important priced liquidity

factor, above and beyond the information contained in other liquidity proxies such as the

VIX index and default spreads. A question that remains is: are these liquidity proxies

important for the pricing of hedge fund returns? The importance of these proxies is widely

known and they have been shown to be important for their respective markets. But what

are their implications for hedge fund returns?

For this purpose, we repeat the same hedge fund tests by replacing the noise measure

with one of the other liquidity proxies. This includes the on-the-run premiums for five- and

10-year Treasury bonds, RefCorp spread, the Pastor-Stambaugh stock market liquidity risk

factor, the VIX index, and default spreads. Again, we use the two-factor model including the

stock market return and the liquidity risk factor. We perform the test by first sorting hedge

funds by their exposure to the liquidity risk factor into 10 portfolios, and then performing the

Fama-MacBeth cross-sectional test. As shown in Panel B of Table VII, we find no evidence

that these risk factors are priced in hedge fund returns.

B. Explaining Carry Trade Returns

B.1. Building Currency Portfolios

Following Lustig, Roussanov, and Verdelhan (2011), we consider 36 currencies from both

developed and emerging countries. Currencies are included in the sample only when both

spot and forward rates are available. Our sample starts with 17 currencies, and reaches a
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maximum of 34 currencies. Since the launch of the Euro in January 1999, our sample covers

24 currencies only. For each country, we obtain its end-of-month spot and forward exchange

rates with one-month maturity from Barclays and Reuters via Datastream. For both forward

and spot rates, we use mid bid-ask quotes in units of foreign currency per U.S. dollar. The

sample period spans from January 1987 to December 2011.

We denote the log of the one-month forward rate by f , and the log of the spot rate

by s. At the end of each month t, we allocate all currencies into six carry trade portfolios

based on their forward discount, ft − st. Because covered interest parity holds closely at

the monthly frequency, our portfolios sorted on forward discounts ft − st are equivalent to

portfolios ranked by interest rate differentials i∗t − it, where i
∗

t and it are the foreign and U.S.

one-month risk-free interest rates, respectively. Portfolio 6 contains the currencies with the

smallest forward discounts (or lowest interest rates), and portfolio 1 contains the currencies

with the biggest forward discounts (or highest interest rates). From the perspective of a U.S.

investor, the log excess return rx of holding a foreign currency in the forward market and

then selling it in the spot market one month later at t + 1 is

rxt+1 = ft − st+1 = i∗t − it + st − st+1 = i∗t − it −△st+1.

The log currency excess return for a carry trade portfolio is then calculated as the equally

weighted average of the log excess returns of all currencies in the portfolio. We rebalance

carry trade portfolios at the end of every month in our sample period.

B.2. Carry Trade Portfolios, Beta, and Alpha

[Table VIII about here]
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For the six carry trade portfolios described in the previous section, we first estimate their

factor risk exposures by

Ri
t = β0 + βN

i ∆Noiset + βM
i RM

t + ǫit , (8)

where Ri
t is the month t excess return of carry portfolio i, RM

t is the month t excess return

of the aggregate stock market, and ∆Noiset is the monthly change in our noise measure for

month t.

Panel A of Table VIII reports, for the six currency carry portfolios, their respective risk

exposure βN and βM to the noise measure and the stock market portfolio. Currencies in

portfolio 6 are those with the lowest interest rate and function as funding currencies, while

currencies in portfolio 1 have the highest interest rate and are on the asset side of the

carry trade. It is therefore interesting to see that the asset currencies in carry portfolio 1

have the most negative noise beta among the six portfolios, implying worsening portfolio

performance for such target curries during liquidity crises when our noise measure usually

spikes up. By contrast, carry portfolio 6 has a small and statistically insignificant beta on

our noise measure, implying very low exposure to liquidity risk. Moving from portfolio 1 to

portfolio 6, we observe a general pattern of decreasing liquidity exposure, although it is not

monotonic.

Also reported in Table VIII are the mean excess returns for the six portfolios. As ex-

pected, moving from portfolio 6 to 1, the monthly mean excess return increases monotonically

from -18 basis points to 79 basis points, and this difference in performance is the main driver

behind the popularity of currency carry trades. Connecting this pattern in expected returns

to that in liquidity risk exposures βN , one could argue that the superior performance of
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portfolio 1 is a result of its high exposure to liquidity risk.

To formally test this idea, we use the factor risk premiums estimated using hedge fund

returns (Table VII) to calculate the two-factor alpha for these six carry portfolios.30 Effec-

tively, we are using the pricing information obtained from the hedge fund tests to see whether

this information can help explain away the superior performance of currency carry trade.

Our results in Table VIII show that the exposure to liquidity risk does work in the right

direction. Without risk adjustment, the monthly expected return of portfolio 1 is 79 basis

points with a t-statistic of 4.56. After adjusting for its risk exposures to our noise measure

and the stock market portfolio, however, its monthly expected return is only 24 basis points

with t-statistic of 1.38. Similarly, the positive and statistically significant expected returns

to portfolios 2 and 3 shrink to near zero after the risk adjustments.

By contrast, using the stock market alone in a one-factor model cannot explain the carry

trade profits. As reported in Table VIII, the CAPM alpha for portfolio 1 is 69 basis points

per month with a t-statistic of 3.08, which is large in magnitude and statistically significant.

For comparison, we also report the one-factor noise beta in Table VIII. Unlike the CAPM

beta, the one-factor noise beta exhibits a very strong pattern of increasing liquidity exposure

moving from portfolio 6 to portfolio 1.31

B.3. Carry Portfolios with Developed Countries Only

As a robustness check, we also test our results on 14 developed countries: Australia,

Belgium, Canada, Denmark, France, Germany, Italy, Japan, the Netherlands, New Zealand,

Norway, Sweden, Switzerland, and the U.K.. This smaller sample starts with 14 countries

and covers 10 countries after the launch of the Euro in January 1999. The results are

summarized in Panel B of Table VIII.
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Again, we see that a pattern of increasing exposures to liquidity risk as we move from

portfolio 6, which contains funding currencies, to portfolio 1, which contains target curren-

cies. For this subsample including currencies from developed countries only, we can estimate

the noise betas with better precision, and the pattern of increasing liquidity exposure is

indeed monotonic. Without risk adjustment, portfolio 1 provides an average excess return of

53 basis points per month. With risk adjustment, however, the two-factor alpha shrinks to

-15 basis points with an insignificant t-statistic of 0.79. By contrast, using only the market

portfolio as risk adjustment, the CAPM alpha is 43 basis points with a t-statistic of 1.98.

This robustness result is also consistent with what we find using other carry trade indices.

Given the popularity of carry trades, money managers provide several carry trade indices.

The JP Morgan IncomeFX index, for example, focuses on 14 currency pairs of developed

countries. Using its monthly returns from November 1995 through December 2011, we find

that this index return has a noise beta of -0.833 with a t-statistic of -2.70. Without any

risk adjustment, its average monthly return in excess of the risk free rate is 59.7 basis points

with a t-statistic of 2.35. After adjusting for risk exposures, however, its two-factor alpha is

no longer statistically significant.

IV. Conclusions

In this paper, we use price deviations from asset fundamentals as a measure of market

illiquidity. Instead of focusing on the liquidity conditions of a specific market, we are in-

terested in the liquidity conditions of the overall market. For this purpose we consider the

U.S. Treasury market, which is arguably one of the most important and most liquid markets;

signs of illiquidity in this market presumely reflect a general shortage of arbitrage capital and
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tightening of liquidity in the overall market, whatever its origins and causes. In particular,

we use the average “pricing errors” in U.S. Treasuries as a measure of the illiquidity of the

aggregate market. We find that this measure spikes up during various market crises, includ-

ing the 1987 stock market crash, the near collapse of LTCM, 9/11, the GM credit crisis,

and the fall of Bear Stearns and Lehman Brothers. This drastic variation in our illiquidity

measure over time, especially during crises, suggests that it captures substantial market-wide

liquidity risk.

We further explore the pricing implications of this liquidity risk factor by examining its

connection with the returns on assets and trading strategies that are generally thought to

be sensitive to market liquidity conditions. Two sets of such returns are considered: returns

from hedge funds and currency carry trades. We find that the market-wide liquidity risk, as

measured by the variation in the price noise of Treasuries, can help explain both the cross-

sectional variation in hedge fund returns and currency carry trade strategies, while various

liquidity-related risk factors obtained from other markets such as equity, corporate bonds,

and equity options show no explanatory power.
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Appendix: Robustness on Curve Fitting

In this Appendix, we investigate the robustness of our result with respect to the particular

curve-fitting method employed in Section I.B. To do so, we use two variations of the cubic

spline method to fit the yield curve and then construct new noise measures based on the

fitted curves. We find that the information content in these alternative noise measures is

very similar to that found in the original measure. Moreover, our main results remain quite

robust to the various curve-fitting methods.

A. Cubic Spline

Spline-based methods use piecewise polynomials that are smoothly joined at selected

knots to approximate the yield or forward curve. Cubic polynomials have been widely used

for this purpose (McCulloch (1971, 1975)). One of the shortcomings of this method is that

it tends to generate unstable and oscillating yield curves that are absent of economic con-

tent. Fisher, Nychka, and Zervos (1995) improve on the traditional cubic spline method by

introducing a roughness penalty function. This smoothing spline method trades off between

the goodness-of-fit and the smoothness of the forward yield curve.

We assume that the instantaneous forward curve is a cubic spline with knot points on

(t0, t1, . . . , tk). On each of the subintervals [ti−1, ti], with 1 ≤ i ≤ k, the forward rate f is a

cubic polynomial function in maturity m:

f(m, b) = ai
(

m− ti−1

ti − ti−1

)3

+ bi
(

m− ti−1

ti − ti−1

)2

+ ci
(

m− ti−1

ti − ti−1

)

+ di ,

where b = ((ai, bi, ci, di), i = 1, 2, . . . , k) summarizes the cubic spline parameters. In addition,

we require that both f and its first derivative are continuous at the connecting knot points

39



over the k subintervals. We also impose the constraints that d0 > 0 and ak > 0 to ensure

that forward rates are positive at maturities of zero and infinity.

Given the the forward curve, the zero-coupon yield curve can be derived and, similar to

Section I.B, the model parameters bt can be estimated using the market-observed Treasury

bond and bill prices by,

bt = argmin
b

[

Nt
∑

i=1

[

(P i(b)− P i
t )×

1

Di

]2

+ λ

∫ tk

0

[

f
′′

(x, b)
]2

dx

]

, (1)

where λ ≥ 0 and f ′′(x, b) is the second derivative of the forward rate function with respect

to maturity x. Compared to equation (2) used for curve fitting, the above objective function

includes a roughness penalty function, which measures the curvature of the forward curve.

As mentioned earlier, this penalty function was introduced by Fisher, Nychka, and Zervos

(1995) to curtail the stability issue inherent in the cubic spline method and has been widely

used in the fixed income community. With a small or close-to-zero penalty coefficient λ,

the emphasis is on fitting the curve well at the potential cost of having a highly fluctuating

forward curve. An increasing λ will produce a smoother forward curve, at the sacrifice of

the goodness of fit. We experiment with various λ to find a sufficiently flexible curve that

fits the data well but doesn’t oscillate too much to overfit the data.32

B. Noise Measure Constructed using Cubic Spline

We consider two measures using cubic spline. In the first case, we pick three subintervals

that are joined at the knot points of two-, five-, and 10-year maturities. Given the impor-

tance of these maturities in the Treasury bond market, we feel that this is a natural choice.

There are four parameters for each subinterval, resulting in 12 parameters. The smoothness
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conditions at the two- and five-year maturity junctions take away four degrees of freedom.

Consequently, we have eight free parameters in our curve fitting and we call this specification

“Cubic8.” Compared with the Svensson model used earlier, Cubic8 has two more free param-

eters. To further relax the specification and give the curve fitting more degrees of freedom, we

consider a second case with more subintervals: (0, 1m, 3m, 6m, 1y, 2y, 3y, 5y, 7y, 10y). The

knot points are chosen so that we have a similar number of bonds and bills within each

subinterval. We call this specification “Cubic20”, since it has 20 free parameters in curve

fitting.

We perform curve fitting using cubic spline from 1994 through 2011 with a monthly

frequency. This is because the main robustness check we would like to perform is on the

hedge fund test results. Setting the roughness penalty coefficient λ to zero, we find that the

correlations between our original noise measure and the alternatives constructed using cubic

spline are 97.76% and 98.60%, respectively, for Cubic8 and Cubic20. In other words, even

with a more flexible curve fitting approach with 20 free parameters and zero requirement

for smoothness, the resulting noise measure is closely related to our original noise measure.

This is not surprising given that the noise measure is an aggregate of pricing errors across

hundreds of bonds. If we further impose a smoothness requirement by setting the roughness

penalty coefficient λ = 0.01, the correlations increase to 98.99% and 99.03%, respectively,

for Cubic8 and Cubic20. Given that our pricing tests are on the monthly changes in the

noise measure, it is also instructive to report the correlations in changes. With λ = 0, the

numbers are 83.30% and 88.59%, respectively, for Cubic8 and Cubic20. With λ = 0.01, the

numbers increase to 90.74% and 91.91%, respectively, for Cubic8 and Cubic20. We further

perform the same set of time-series analysis reported in Table II and find similar results.

Not surprisingly, the information content in these alternative noise measures is very similar
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to that found for the original one.

Figure A1 provides more textured information with respect to how the curves fitted using

cubic splines might differ those using the Svensson model. On the left panels, we plot the

par-coupon yield curves along with the market-observed bond yields for a normal day, March

31, 1994. As we can see, the shape of the curve as well as the level of the noise measure are

pretty similar regardless of the curve-fitting method or the choice of the roughness penalty

coefficient λ. Even when λ is set to zero in the last row, we see only a tiny improvement

in the goodness of fit as captured by the noise measure. The only signal that sets this case

apart from the others is the magnitude of the “wiggle”, which is the integrated curvature

of the forward curve (the penalty term in equation 1). For the case of Cubic20 with λ = 0,

there is no requirement on smoothness and the wiggle is 34.28. By contrast, the wiggle is

only 0.44 for the case of Cubic20 with λ = 0.01 and 0.21 for the Svensson model. Regardless

of their differences in wiggle, the noise measures produced by all four cases are very close.

[Figure A1 about here]

For November 28, 2008, however, the differences in yield curves are more noticeable.

In particular, using cubic spline does improve the goodness of fit. For example, the noise

measure using the Svensson model is 17.37 basis points. It decreases to 16.62 basis points

using Cubic8 with λ = 0.01. Using Cubic20 with no penalty further improves the goodness

of fit and the noise measure is 15.23 basis points. Given the severity of the crisis during

November and December 2008, this difference in yield curve fitting is probably among the

most extreme in our sample. Nevertheless, we see that the noise measure is 15.23 basis

points even for Cubic20 with λ = 0. In other words, the actual magnitude might vary from

one curve-fitting method to another, but the important feature of our noise measure remains
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very much the same. We further argue that the main insight of our paper is in fact a quite

general one: using any yield curve as a benchmark for pricing, we can construct a noise

measure. As long as this benchmark is generated by a smooth enough yield curve, which

takes into account the internal consistency of bond pricing, the corresponding noise measure

contains valuable information about broad market liquidity.

C. Cross-Sectional Tests using Hedge Fund Returns

We use the noise measure constructed from the cubic spline method to perform the hedge

fund test. The results for portfolio returns and post-ranking noise betas are similar, which

we omit. Instead, we report in Table A1 the estimated risk premiums for the two factor

model. Panel A reports the pricing results for both Cubic8 and Cubic20 while fixing the

roughness penalty coefficient λ at 0.01. As we can see, the estimated market prices of risk

for our noise measure are negative and significant, and our main results using the original

noise measure remain robust.

To further understand the sensitivity of our results to the choice of the roughness penalty

coefficient λ, we report in Panel B of Table A1 the pricing results with varying penalty

coefficients. In each case, we perform month-by-month curve fitting with the chosen λ and

cubic spline method and then construct the noise measure using the fitted curve. We then

perform the hedge fund test on the noise measure and report the market prices of risk. As we

can see, our results remain quite robust. Except for the case in which no roughness penalty

is imposed, our pricing results remain pretty strong with respect to the varying choices of λ.

Even for the case with no roughness penalty (λ = 0), our estimated coefficients are in the

right direction and are marginally significant. Overall, these robustness checks confirm that

our results are indeed quite general and are not an artifact of the curve-fitting method.
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Notes

1An extensive literature focuses on how the amount of arbitrage capital in a specific market

affects the effectiveness of arbitrage forces, or ”limits of arbitrage,” and possible price devi-

ations. See, for example, Merton (1987), Leland and Rubinstein (1988), Shleifer and Vishny

(1997), Gromb and Vayanos (2002), Brunnermeier and Pedersen (2009), and Duffie (2010).

2Vayanos and Vila (2009), for example, model the interaction between habitat investors

and risk-averse arbitrageurs and its impact on bond yields.

3Other authors have also considered the fitting or pricing errors of Treasury securities. For

example, Bennett, Garbade, and Kambhu (2000) and Fleming (2000) use median difference

between market and model yields as a possible indicator of market inefficiency in the Treasury

market.

4In the Appendix, we investigate the issue of yield curve fitting more seriously by ex-

amining the robustness of our main results using alternative and more flexible curve-fitting

methods. Our results are robust.

5More specifically, our measure is not a reflection of how constrained the market makers

in the Treasury market are. In fact, the bid and ask spreads of Treasury bond prices can be

a better measure of such ”local” liquidity.

6More recently, Mitchell and Pulvino (2012) provide a detailed and informative account

on the financing of hedge funds during the 2008 crisis and its potential implications on asset

prices. Nagel (2011) connects the returns of short-term reversal strategies in equity markets

with the expected returns from liquidity provision. Fleckenstein, Longstaff, and Lustig (2010)

find that the prices of nominal Treasury bonds and TIPS appear to be inconsistent with

inflation swaps and document a large increase of this mispricing during the 2008 crisis. Lou,

Yan, and Zhang (2012) find that anticipated and repeated Treasury auctions can generate
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temporary price deviations in the secondary market.

7See Mancini, Ranaldo, and Wrampelmeyer (2013) on the liquidity of foreign currencies.

On the liquidity of corporate bonds, Jankowitsch, Nashikkar, and Subrahmanyam (2011)

also propose a dispersion-based liquidity measure. For each bond, they calculate the root

mean squared difference between the TRACE prices and the respective Markit quotation

and find it to be informative about the bond’s liquidity. Although similar in name, it is

important to point out that their dispersion comes from the intraday price movements (one

bond at a time) and has a very different economic meaning from the noise measure proposed

in this paper.

8A growing literature in hedge fund studies connects hedge fund activities to market

liquidity and market crises. See, for example, Cao, et al. (2013) and Billio, Getmansky, and

Pelizzon (2010).

9It ranges from using consumption-based asset pricing models (e.g., Backus, Gregory,

and Telmer (1993) and Verdelhan (2010)), and reduced-form term structure models (e.g.,

Backus, Foresi, and Telmer (2001)) to combining carry trade returns with currency options

to incorporate tail risks (e.g., Jurek (2009) and Burnside et al. (2010)).

10A common shift in the buying or selling of Treasury securities will cause a shift in the

yield curve rather than average noise.

11This unique feature of our noise measure also sets itself apart from measures such as

on-the-run premiums, which focus only on a few isolated points on the yield curve. Not

surprisingly, we find that our noise measure is much more informative about overall liquidity

conditions in the market.

12We use the daily MaCaulay duration reported by CRSP.

13Unlike minimizing directly in the yield space, this approach has the advantage of avoid-
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ing large computing costs required by numerically converting prices into yields. In an earlier

version of our paper, we also performed curve fitting by minimizing pricing errors without

duration weights. Our main results are robust to both curve-fitting approaches.

14In addition to measuring noise in the yield space, we also experimented with using

squared pricing errors scaled by duration, as in equation (2). Our main results are robust to

both approaches.

15For example, issuance of the 30-year Treasury bonds was suspended for four-and-a-half

years starting October 31, 2001 and concluding February 2006.

16To understand the robustness of our hedge fund pricing results, we also experimented

with cutoffs of other magnitudes. Our hedge fund results still hold with a threshold of six

standard deviations, when the winsorizing removes, at a monthly frequency, only one bond

(out of the cross-section of over 100 bonds) five times (out of the full sample of 216 months).

17From 1987 to 2011, the sample standard deviation of daily changes in the noise measure

is 0.42 basis points.

18This observation sets our paper apart from recent work by Musto, Nini, and Schwarz

(2011) and Lamoureux and Theocharides (2012), who focus on the relative pricing in the

market for 10-year Treasury notes. Consistent with our finding, both papers find substantial

pricing deviations in the 10-year region during the recent financial crisis. Over the entire

sample, however, the information content of our measure differs from theirs preciesely because

our measure collects information over the entire yield curve.

19Acknowledging the fact that the bond volatility is a monthly estimate, we also average

our noise measure over each month and regress the monthly changes of this averaged noise

measure on bond volatility. Again, the coefficient is positive but insignificant and the R2 is

only 1.58%. We also used swaption implied volatility instead of the historical bond return
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volatility. Regressing monthly changes in the noise measure on monthly changes in the three

month-for-five year swaption implied volatility, we find that the slope coefficient is positive

with a t-statistic of 1.90 and the R2 of this regression is 4.38%.

20We used the old VIX index (VXO) since the new VIX was only recently introduced

and the sample extends back only to 1990, while the old VIX has been around longer and

the sample extends back to 1986.

21Indeed, as we show in Section III, our noise measure has important pricing implications

and commands a significant risk premium. Moreover, this result remains robust using a

component of our noise measure that is orthogonal to VIX and default spreads. By contrast,

we do not find strong pricing implications for VIX or default spreads.

22As mentioned in Cao et al. (2013), smaller funds with AUM less than $10 million are

of less concern from an institutional investors perspective, and they have less impact on the

market as well. Nonetheless we experiment with different size criteria such as $5 million,

$50 million, and $100 million. Our main result regarding the market price of the liquidity

risk factor remains robust.

23We use the Fama-French research factors posted on Ken French’s website.

24We also incorporated the hedge fund benchmarks proposed by Fung and Hsieh (2001),

which can be downloaded from faculty.fuqua.duke.edu/dah7/DataLibrary/TF-FAC.xls. We

regress the monthly changes of our noise measure on these factors and use the residual as

our noise factor in the cross-sectional test. Our results remain robust. In other words, the

unexplained component in our noise measure is important for the cross-sectional pricing of

hedge funds.

25We also repeated our analysis by weighting hedge fund returns by their AUM. Our

results are quite similar. In the cross-sectional test performed later in this section, we
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always include fund AUM as a control. Large funds on average underperform small funds,

but the difference is small in magnitude.

26We further experimented with other ways to better extract information from the exit

event. For example, we count the number of exits conditioning on lower performance, say,

the bottom 25% of the sample. Again, this pattern across portfolios 1 and 10 remains the

same.

27Post-ranking betas for risk factors other than the market portfolio are always difficult to

estimate. It is usually difficult to construct portfolios with a strong enough spread in terms

of their exposures to the particular risk factor of interest. For example, using cross-sectional

stock returns to test the the VIX index, Ang, et al. (2006) have issues in constructing

portfolios with strong spread in their post-ranking betas. Facing a similar issue, Pastor and

Stambaugh (2003) use predicted betas. Specifically, they take advantage of stock charac-

teristics that are more stable and postulate that their liquidity beta is an affine function of

stock characteristics.

28In addition to the 10 noise-beta-sorted portfolios used here, we also perform our test

using the 5x5 portfolios double-sorted by noise beta and market beta. Our results on the

liquidity risk premium remains robust.

29The slope coefficient is smaller in the latter case due to the increased spread in noise

betas. We believe that including the lagged betas is important to better capture hedge funds’

exposure to liquidity risk.

30We compute alpha by calculating the difference between the mean excess return for each

portfolio and the mean excess return implied by the two-factor model, using the liquidity

and market risk premiums estimated from the hedge fund tests. In an earlier version of the

paper, we use these six carry portfolios to test and estimate the liquidity risk premium. We
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find significant results. But given the limited number of test portfolios, we feel that this

test is perhaps not very reliable. We therefore decide to use the risk premiums estimated

using the hedge fund returns to explain the carry profits. Given the noise in the premium

estimates from hedge fund data, one might still want to interpret the results with caution.

31We cannot use the liquidity risk premium estimated in a two-factor model to calculate

the one-factor alpha, although it should be convincing to the reader that it is the liquidity

risk that helps explain the carry trade profits.

32The penalty coefficient λ is often allowed to vary according to maturity m so as to

fine-tune the trade-off over different regions on the term structure. We decide to keep a

simple specification with a constant λ.
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Figure 1. Examples of par-coupon yield curves and the market-observed bond yields,

marked by “x”, “o”, or “+”. The top left panel plots three random days in 1994, and the other
five panels focus on the days surrounding five events: the 1987 stock market crash, the 1998 LTCM
crisis, the September 11, 2001 terrorist attack, the 2005 GE/Ford downgrade, and the Lehman
default in September 2008. Marked in the legends are the date of observation and the level of the
noise measure for that day.
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Figure A1. Examples of par-coupon yield curves and the market-observed bond

yields, marked by “x”. The left panels are for a normal day (March 31, 1994), while the
right panels are for a stressful day (Nov 30, 2008). The Svensson model is the base case in
all figures and is marked by solid lines. The cubic-spline models are marked by dashed lines.
The first row plots Cubic8 with λ = 0.01, the second row plots Cubic20 with λ = 0.01, and
the last row plots Cubic20 with λ = 0. Marked in the legend are the levels of the noise
measure and the “wiggle” — the integrated curvature of the forward curve.
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Table I
CRSP Treasury Data Summary Statistics

Bonds with maturity ranging from (one month to 10 years) are used for yield curve fitting, while bonds with maturity ranging from
(one month to 10 years) are used to construct the noise measure. All other variables are reported for the sample of bonds used to
construct the noise measure, and reported are the time-series averages of the cross-sectional mean, median, and standard deviation.
The size of a bond is its amount outstanding in billions of dollars. The bid ask spread is the bid yield minus the ask yield.

Sample # bonds # bonds Coupon Size Bid/Ask Maturity Age Duration Price Yield
Period (1M-10Y) (1Y-10Y) (%) ($B) (bps) (year) (year) (year) ($) (%)

mean
1987-1990 170 115 9.37 7.64 3.99 3.89 3.43 3.15 103.27 8.06
1991-1995 185 126 7.88 10.35 2.61 3.88 3.68 3.21 106.48 5.85
1996-2000 171 111 7.16 12.72 1.93 3.63 4.57 3.09 104.71 5.74
2001-2005 111 66 5.19 19.83 1.27 3.65 4.12 3.24 105.03 3.23
2006-2011 178 124 4.05 24.22 1.30 4.14 3.89 3.68 105.87 2.67
ALL 163 109 6.52 15.61 2.11 3.85 3.96 3.29 105.18 4.90

median
1987-1990 8.94 7.51 3.59 3.42 2.41 2.95 101.75 8.07
1991-1995 7.68 9.84 2.09 3.32 2.47 2.96 104.36 5.87
1996-2000 6.37 12.98 1.63 3.02 2.81 2.72 101.41 5.74
2001-2005 4.84 20.05 1.02 2.94 2.44 2.72 103.60 3.13
2006-2011 3.81 23.54 1.03 3.55 1.87 3.33 103.30 2.57
ALL 6.12 15.42 1.77 3.25 2.38 2.95 102.95 4.86

standard deviation
1987-1990 2.10 3.76 1.96 2.26 3.26 1.53 6.23 0.24
1991-1995 2.05 5.66 1.53 2.36 3.68 1.63 9.32 0.55
1996-2000 2.31 7.76 1.06 2.25 4.84 1.66 8.93 0.15
2001-2005 2.20 9.21 0.75 2.42 4.71 1.94 6.16 0.60
2006-2011 1.87 10.52 0.87 2.50 5.86 1.98 10.47 0.55
ALL 2.10 7.65 1.19 2.37 4.57 1.77 8.40 0.43
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Table II
Monthly Changes in Noise Measure Regressed on Other Market Variables

Reported are OLS regression coefficients with Newey West t-statistics in squared brackets. On5Y and On10Y are the on-the-run premiums
for five-year and 10-year bonds. TB3M is the three-month Treasury bill rate. Repo is the overnight general collateral repo rate. LIBOR is
the spread of three-month LIBOR over three-month Treasury bill. Default is the yield spread between Baa and Aaa bond indices. VIX is
the volatility index from CBOE. RefCorp is the average spread between Treasury and Refcorp zero-coupon bonds. ∆ PSLiq is the innovation
in the liquidity factor by Pastor and Stambaugh (2003). StockRet is the monthly return on the CRSP value-weighted index. BondV is the
annualized return volatility of monthly bond returns calculated from five-year Treasury yields using a rolling window of 21 business days.
Term is the spread of 10- over one-year Treasury yields.

Treasury: Level, Slope and Volatility
(1) (2) (3) (4)

∆TB3M -0.823 -0.439
[-2.64] [-1.67]

∆Term 0.010 0.007
[2.40] [1.63]

∆BondV 0.082 0.046
[1.57] [0.77]

Adj R2 (%) 4.66 5.64 1.78 6.98
# month 299 299 299 299

On-the-Run Premiums and RefCorp
(1) (2) (3) (4)

∆On5Y 0.104 0.062
[5.55] [2.44]

∆On10Y 0.088 0.090
[2.49] [2.41]

∆RefCorp 0.029 0.028
[3.25] [3.60]

Adj R2 (%) 10.83 18.02 6.11 32.93
# month 299 299 248 248

Stock Market: Ret, VIX, and Liquidity
(1) (2) (3) (4)

StockRet -0.070 -0.040
[-2.82] [-1.98]

∆VIX 0.065 0.042
[2.96] [2.32]

∆PSLiq -3.10 -1.35
[-3.35] [-1.87]

Adj R2 (%) 11.79 12.13 4.21 16.65
# month 299 297 287 285

Repo, LIBOR and Default
(1) (2) (3) (4)

∆Repo -0.445 -0.309
[-3.01] [-2.72]

∆LIBOR 0.007 0.004
[3.24] [1.37]

∆Default 0.027 0.029
[2.12] [2.11]

Adj R2 (%) 3.43 3.25 13.00 21.06
# month 247 299 299 247
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Table III
Pairwise Correlations (in %)

Pairwise correlations are computed using monthly changes from 1987 through 2011 and
reported in percentage. See Table II for definitions of variables.

2 3 4 5 6 7 8 9 10 11 12 13

1 ∆Noise -22 33 43 15 24 -20 25 19 36 35 -21 -35
2 ∆TB3M -18 -14 -25 -50 39 -12 -38 -14 -25 27 17
3 ∆On5Y 13 30 17 -15 5 14 -7 29 -23 -25
4 ∆On10Y -6 14 0 1 6 24 20 -11 -14
5 ∆BondV 21 -24 21 24 -5 29 -30 -12
6 ∆Term -32 6 12 -6 4 -15 -4
7 ∆Repo -19 -19 -9 -2 11 -0
8 ∆RefCorp 17 21 5 -23 -7
9 ∆LIBOR 8 25 -17 -22
10 ∆Default 23 -2 -31
11 ∆VIX -29 -69
12 ∆PSLiq 31
13 StockRet
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Table IV
TASS Hedge Fund Data Summary Statistics

Hedge fund returns (“ret”) are monthly net of fees, and “stdret” is the standard deviation of the monthly returns. “AUM” is assets under
management in millions of dollars, and “iAUM” is the initial AUM of the hedge fund. The total number of months a hedge reports returns
in the database is recorded by “reporting.” For each fund in each month t, we also calculate its “aget” by counting the number of months
from its inception to month t. Also reported are the first-order autocorrelations (auto corr) of hedge funds’ monthly returns.

Total Graveyard ret (%) stdret(%) AUM($M) iAUM($M) reporting (mn) age (mn) auto corr
(#) (#) mean med mean med mean med mean med mean med mean med mean med

Panel A: All Hedge Funds

1994-1999 1856 1433 1.81 1.23 4.47 3.52 78.10 26.74 16.58 5.40 129.51 133.00 29.91 21.50 0.11 0.13
2000-2006 4602 3201 0.87 0.76 2.93 2.07 136.02 49.44 22.32 8.18 92.78 79.00 42.59 28.00 0.12 0.13
2007-2011 4081 2246 0.21 0.21 3.83 2.94 234.64 68.22 29.49 10.00 88.73 74.00 75.11 59.50 0.17 0.18
ALL 5392 3557 0.67 0.59 3.68 2.78 160.21 55.70 26.89 9.71 84.65 70.00 46.34 37.50 0.19 0.19

Panel B: Hedge Funds by Style

Long/Short Equity 1393 1005 0.88 0.80 4.73 3.98 116.19 49.09 16.92 6.47 86.30 72.00 46.97 38.00 0.13 0.13
Global Macro 215 145 0.73 0.65 4.10 3.35 318.71 53.85 42.20 8.67 75.07 63.00 41.87 33.00 0.07 0.08
Fund of Funds 1504 936 0.39 0.38 2.58 2.06 156.08 55.26 36.34 12.29 87.75 75.00 48.19 40.00 0.24 0.25
Fixed Income Arb 170 134 0.58 0.59 2.39 2.03 195.14 93.95 27.83 10.67 80.56 71.00 42.21 37.00 0.22 0.19
Managed Futures 275 140 0.79 0.72 5.10 4.41 178.14 45.65 21.43 5.03 101.04 76.00 57.83 43.00 0.03 0.03
Event Driven 459 339 0.82 0.73 2.76 2.30 226.59 89.16 25.46 7.80 92.68 80.00 50.49 41.50 0.25 0.24
Equity Neutral 242 191 0.54 0.45 2.61 2.15 98.02 43.98 25.48 9.34 72.31 60.00 38.04 31.25 0.11 0.12
Emerging Markets 436 224 0.80 0.77 5.83 5.20 121.15 48.85 27.71 10.70 76.12 63.00 42.20 34.50 0.21 0.22
Convertible Arb 153 123 0.57 0.58 2.66 1.99 171.95 68.65 19.92 10.00 91.18 82.00 49.04 41.00 0.38 0.43
Others 545 320 0.69 0.62 3.33 2.69 201.33 64.42 32.11 10.16 72.41 55.00 39.66 30.00 0.23 0.22
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Table V
Noise-Beta-Sorted Portfolios, Returns, and Betas

Hedge funds are sorted by their noise betas into 10 portfolios. Reported are the pre-ranking betas as estimated in equation (4) and
the post-ranking portfolio beta’s as estimated in equation (5). Taking into account persistence in hedge fund returns, the sum of
contemporaneous and lagged betas as estimated in equation (6) are also reported. The portfolio returns are monthly and equal-
weighted, with “ret”denoting returns and “exret” denoting returns in excess of the risk-free rate. The alphas reported in the last two
columns are the two-factor alphas using the risk premiums estimated from equation (7) and reported in Table VII.

Pre Formation Post Formation

exret ret ∆Noise Mkt Adj-R2 ∆Noise Mkt Adj-R2 ∆Noise Mkt Adj-R2 alpha (%)
rank (%) (%) βN βM (%) βN βM (%) βN + lag βM + lag (%) no lag β with lag β

1 0.95 1.20 -2.96 0.55 36.28 -0.64 0.49 52.77 -1.00 0.55 55.19 0.01 0.05
[3.51] [4.39] [-42.68] [33.62] [-5.44] [10.67] [-5.53] [9.71] [0.05] [0.20]

2 0.60 0.85 -1.20 0.37 34.26 -0.41 0.33 58.76 -0.55 0.39 61.28 -0.01 0.03
[3.50] [4.88] [-41.74] [35.01] [-3.81] [11.14] [-4.10] [10.22] [-0.08] [0.15]

3 0.48 0.72 -0.72 0.28 33.23 -0.25 0.26 54.45 -0.31 0.32 57.79 0.04 0.05
[3.49] [5.24] [-36.86] [31.47] [-2.53] [10.53] [-2.09] [10.99] [0.29] [0.36]

4 0.43 0.67 -0.47 0.25 32.69 -0.28 0.23 54.46 -0.36 0.29 58.50 -0.01 0.01
[3.39] [5.26] [-28.51] [32.13] [-3.04] [9.81] [-2.39] [9.24] [-0.05] [0.07]

5 0.34 0.58 -0.29 0.22 31.42 -0.30 0.20 52.62 -0.36 0.25 56.83 -0.07 -0.04
[3.01] [5.12] [-19.16] [31.25] [-3.31] [9.20] [-2.43] [8.40] [-0.63] [-0.37]

6 0.38 0.63 -0.14 0.21 28.88 -0.25 0.19 56.95 -0.34 0.24 61.70 0.01 0.03
[3.76] [6.02] [-9.14] [35.25] [-3.16] [9.48] [-2.61] [8.98] [0.14] [0.27]

7 0.29 0.53 0.02 0.21 27.10 -0.24 0.19 56.44 -0.18 0.24 59.39 -0.07 -0.02
[2.87] [5.21] [1.01] [35.28] [-3.17] [9.33] [-1.69] [8.38] [-0.70] [-0.15]

8 0.38 0.62 0.24 0.24 26.41 -0.20 0.21 55.24 -0.04 0.26 57.49 0.03 0.10
[3.51] [5.68] [10.02] [36.02] [-2.17] [9.76] [-0.35] [9.54] [0.30] [0.94]

9 0.36 0.60 0.63 0.29 26.13 -0.08 0.26 55.41 0.08 0.31 56.58 0.03 0.07
[2.75] [4.59] [17.09] [33.47] [-0.89] [9.31] [0.57] [9.32] [0.23] [0.53]

10 0.23 0.47 1.94 0.40 27.59 0.15 0.33 35.09 0.69 0.43 39.06 0.00 0.03
[1.21] [2.49] [25.49] [23.18] [0.62] [6.76] [2.60] [8.08] [-0.01] [0.16]
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Table VI
Noise-Beta Sorted Portfolios, Characteristics

The 10 portfolios are ranked by their noise betas. See Table IV for variable definitions.

Portfolio Rank 1 2 3 4 5 6 7 8 9 10

Panel A: Characteristics

AUM ($M) 163 183 205 217 218 212 200 187 170 160
iAUM ($M) 21.08 19.61 22.18 21.64 21.23 20.13 20.80 19.67 19.91 17.41
reporting (mn) 130 128 132 135 134 135 133 133 129 130
age (mn) 75.9 75.6 76.3 78.0 78.0 77.7 76.9 77.0 76.4 77.0
stdret (%) 3.77 2.40 1.90 1.76 1.56 1.44 1.41 1.51 1.80 2.61
auto corr 0.15 0.19 0.22 0.23 0.25 0.25 0.23 0.20 0.16 0.11

Panel B: Allocation within Hedge Fund Style (%)

Long/Short Equity 11.99 12.08 9.16 7.22 6.08 6.27 7.51 10.16 13.85 15.67
Global Macro 16.65 13.32 9.62 6.38 5.25 4.88 6.85 9.63 13.68 13.74
Fund of Funds 4.12 7.62 11.48 14.73 15.75 14.82 12.61 9.46 5.98 3.42
Fixed Income Arb 10.34 7.28 9.10 11.29 11.65 11.71 11.40 11.73 9.71 5.80
Managed Futures 17.79 9.80 5.41 4.17 3.92 4.13 5.46 8.16 13.76 27.41
Event Driven 4.87 8.33 10.91 11.16 12.23 12.91 12.62 12.65 8.68 5.63
Equity Neutral 3.69 7.30 9.94 8.15 7.90 9.61 11.95 13.83 16.85 10.77
Emerging Markets 29.62 15.91 9.86 6.30 4.87 4.54 5.12 6.22 7.57 10.00
Convertible Arb 11.33 12.71 11.93 11.18 12.42 12.70 12.39 8.48 5.12 1.73
Others 6.76 8.67 10.56 10.41 9.79 11.27 12.77 11.06 9.99 8.72
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Table VII
Estimating Liquidity Risk Premiums using Hedge Fund Returns

Each proxyt of liquidity is tested together with the equity market portfolio in a two-factor model
using hedge fund returns, with age and size (AUM) as additional controls. The coefficients for age
are reported in percentage points. The Fama-MacBeth t-statistics are reported in square brackets.
Panel A focuses on the noise measure with the base case as described in equations (5) and (7) as
well as additional cases. Panel B considers other proxies for liquidity. See Table II for variable
definitions.

Factor Intercept Liquidity Market Age AUM

Panel A: Noise as Proxy for Liquidity

Noise 1.73 -0.69 1.01 0.015 -0.10
[4.39] [-2.37] [1.65] [0.26] [-3.96]

Noise (beta+lag beta) 1.77 -0.35 1.01 0.016 -0.10
[4.37] [-2.52] [1.8] [0.29] [-3.95]

Noise/BASpreads 1.75 -0.56 0.89 0.009 -0.10
[4.38] [-2.20] [1.49] [0.16] [-3.93]

Noise-VIX-Default 1.65 -1.19 0.97 0.008 -0.10
[4.14] [-2.26] [1.67] [0.15] [-3.88]

Panel B: Other Proxies for Liquidity

On5Y 2.00 -1.58 0.63 0.003 -0.10
[4.46] [-0.79] [0.93] [0.04] [-3.96]

On10Y 1.80 -0.70 1.05 0.002 -0.09
[4.03] [-0.25] [1.76] [0.03] [-3.8]

RefCorp 1.77 -5.32 0.73 0.017 -0.10
[4.37] [-1.27] [1.22] [0.31] [-4.01]

PSLiq 1.87 -0.02 0.84 -0.032 -0.09
[4.51] [-0.22] [0.96] [-0.59] [-3.89]

VIX 1.79 1.92 0.65 -0.004 -0.09
[4.23] [0.49] [0.72] [-0.08] [-3.83]

Default 1.88 8.27 1.17 -0.015 -0.09
[4.19] [1.37] [1.79] [-0.28] [-3.89]
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Table VIII
Currency Carry Portfolios, Beta and Alpha

Portfolios are formed monthly by sorting currencies by their forward discount, with currencies
in portfolio 1 having the highest forward discount and the highest interest rate and currencies in
portfolio 6 having the lowest interest rate. Returns are monthly in excess of the risk-free rate.
The two-factor model includes ∆Noise and stock market returns, and the two-factor alphas are
calculated using the factor risk premiums estimated using hedge fund returns. Also reported are
the CAPM beta and alpha as well as the one-factor noise beta.

Panel A: Developed and Emerging Countries

Two-Factor Model CAPM One Factor

Rank exret ∆Noise Market Adj-R2 alpha beta alpha ∆Noise
(%) βN βM (%) (%) (%) beta

1 0.79 -0.57 0.15 11.10 0.24 0.19 0.69 -0.83
[4.56] [-1.84] [2.64] [1.38] [3.08] [3.22] [-2.51]

2 0.35 -0.29 0.15 10.18 -0.01 0.17 0.26 -0.54
[2.39] [-1.54] [2.90] [-0.07] [3.64] [1.55] [-2.80]

3 0.28 -0.32 0.09 6.96 -0.04 0.12 0.22 -0.48
[2.14] [-1.41] [1.98] [-0.34] [2.36] [1.39] [-1.93]

4 0.15 -0.12 0.07 2.84 -0.01 0.08 0.11 -0.24
[1.21] [-0.61] [1.65] [-0.08] [1.91] [0.77] [-1.13]

5 -0.05 -0.14 0.05 2.19 -0.21 0.07 -0.08 -0.23
[-0.38] [-0.66] [1.34] [-1.72] [1.52] [-0.58] [-0.97]

6 -0.18 -0.05 0.00 0.06 -0.22 0.01 -0.18 -0.06
[-1.37] [-0.33] [0.06] [-1.73] [0.24] [-1.30] [-0.38]

Panel B: Developed Countries Only

Two-Factor Model CAPM One Factor

Rank exret ∆Noise Market Adj-R2 alpha beta alpha ∆Noise
(%) βN βM (%) (%) (%) beta

1 0.53 -0.78 0.13 11.07 -0.15 0.19 0.43 -1.01
[2.81] [-3.45] [2.06] [-0.79] [2.87] [1.98] [-4.33]

2 0.40 -0.69 0.15 14.78 -0.25 0.21 0.29 -0.96
[2.35] [-2.51] [2.95] [-1.50] [3.37] [1.48] [-3.14]

3 0.25 -0.40 0.12 8.00 -0.16 0.15 0.17 -0.61
[1.56] [-1.47] [2.30] [-1.00] [2.67] [0.95] [-2.08]

4 0.23 -0.18 0.05 1.48 0.05 0.07 0.19 -0.26
[1.47] [-0.59] [1.01] [0.29] [1.26] [1.04] [-0.84]

5 0.03 -0.06 0.02 0.22 -0.05 0.03 0.01 -0.09
[0.21] [-0.27] [0.40] [-0.32] [0.66] [0.08] [-0.40]

6 0.00 0.47 0.02 1.73 0.30 -0.01 0.01 0.44
[0.01] [2.04] [0.27] [1.63] [-0.19] [0.04] [2.15]
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Table AI
Estimating Liquidity Risk Premiums using Hedge Fund Returns

The noise measure is tested together with the equity market portfolio in a two-factor model using
hedge fund returns, with age and size as additional controls. Fama-MacBeth t-statistics are reported
in square brackets. The noise measure is constructed using two cubic spline methods: Cubic8 and
Cubic20. Reported in the table are the estimated market prices of risk for our noise measure and
the equity market portfolio.

Panel A: with fixed penalty coefficient λ = 0.01

Cubic8 Cubic20

Liquidity Market Liquidity Market

Noise -0.61 0.88 -0.49 1.44
[-2.23] [1.51] [-2.14] [2.23]

Noise(beta+lag beta) -0.30 0.79 -0.29 1.21
[-2.28] [1.57] [-2.26] [2.16]

Noise/BASpreads -0.46 1.00 -0.40 1.23
[-1.97] [1.74] [-1.99] [1.95]

Noise-VIX-Default -1.19 1.27 -1.17 2.50
[-2.12] [2.06] [-2.11] [2.97]

Panel B: with varying penalty coefficient λ

Cubic8 Cubic20

Liquidity Market Liquidity Market

λ = 0 -0.83 0.76 -0.33 1.10
[-1.70] [1.22] [-1.68] [1.83]

λ = 0.005 -0.71 0.81 -0.45 1.54
[-2.17] [1.37] [-1.94] [2.39]

λ = 0.01 -0.61 0.88 -0.49 1.44
[-2.23] [1.51] [-2.14] [2.23]

λ = 0.02 -0.53 0.74 -0.47 1.34
[-2.19] [1.25] [-2.10] [2.04]

λ = 0.03 -0.50 0.77 -0.51 1.19
[-2.08] [1.28] [-2.22] [1.86]

λ = 0.04 -0.49 0.76 -0.48 1.18
[-2.05] [1.23] [-2.10] [1.83]

λ = 0.05 -0.48 0.79 -0.44 1.19
[-2.00] [1.26] [-2.02] [1.81]
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