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Abstract—We examine the problem of utilizing an autonomous
underwater vehicle (AUV) to collect data from an underwater
sensor network. The sensors in the network are equipped with
acoustic modems that provide noisy, range-limited commuia-
tion. The AUV must plan a path that maximizes the information
collected while minimizing travel time or fuel expenditure. We
propose AUV path planning methods that extend algorithms
for variants of the Traveling Salesperson Problem (TSP). Whe
executing a path, the AUV can improve performance by commu-
nicating with multiple nodes in the network at once. Such mui-
node communication requires a scheduling protocol that issbust
to channel variations and interference. To this end, we exame
two multiple access protocols for the underwater data colletion
scenario, one based on deterministic access and another ledson
random access. We compare the proposed algorithms to bassdi
strategies through simulated experiments that utilize modls
derived from experimental test data. Our results demonstrée
that properly designed communication models and schedulip
protocols are essential for choosing the appropriate path lanning
algorithms for data collection.

Index Terms—acoustic communication, path planning algo-
rithms, sensor networks, underwater robotics

T

|. INTRODUCTION

Fig. 1. Representative example of a sensor deployment on the oazan fl
to monitor environmental condition§uch sensors remain in place for many
months. Retrieving data from the sensors during deployngechallenging
due to limited communication underwater. A mobile AUV eqegd with
an acoustic modem can act as a data collection device in tEsaso
by traversing a path that minimizes travel time and maxisizgormation
gathered.

underwater, but they suffer from severe range limitationd a
channel variations [4].

Without reliable communication, collecting data from un-
derwater sensor networks becomes a challenging problem.

HE use of sensor fields to monitor phenomena in un; potential solution is the use of a mobile autonomous
derwater environments is of growing interest. Examplgg,gerwater vehicle (AUV) equipped with an acoustic modem

include monitoring of algal blooms [1], seismic activityl{2 , gather data from the sensors. The problem now becomes
depth surrounding oil platforms, and intrusion of enemy-suby,g of planning the AUV’s path to minimize its travel time and

marines [3]. In underwater scenarios, many standard msth

of communication are no longer feasible (e.g., WiFi,

aximize information gathered. We will refer to this prable

Ce”LEs the Communication Constrained Data Collection Problem

lar, satellite). Acoustic modems can provide communimtiqCC_DCP)'
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The CC-DCP is closely related to the classical Traveling
Salesperson Problem (TSP) [5]. The key difference is that
information is gathered from sensors through a noisy channe
the reliability of which decreases with distance and can
be modeled probabilistically. Thus, we are dealing with the
new problem ofTSP with probabilistic neighborhoodg/hile
executing the data collection, improved performance can be
achieved if the AUV communicates with multiple nodes at
once. To this end, we examineanonical versionf two
multiple access protocols, one based on Time Division Mul-
tiple Access (TDMA) and one on Random Access (RA). We
compare these protocots determine their relative benefits
and we use the results to select parameters for the AUV path
planning algorithm.

In this paper, we design path planning algorithms and com-
munication protocols for the application of an AUV gatherin
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data from an underwater sensor network. The novelties sf tAiSP has not been studied, and the use of probabilistic com-
paper include: (1) formulation of the Communication Communication models to describe the neighborhoods has also no
strained Data Collection Problem (CC-DCP) as a Travelimgeviously been examined.

Salesperson Problem (TSP) with probabilistic neighbodspo  Related problems have been studied in the context of
(2) extension of path planning algorithms for the deterstioi robotic data mules. Bhadauria and Isler derived approxanat
prize-collecting TSP and TSP with neighborhoods for use aigorithms for multiple data mules that must traverse a@ens
the CC-DCP, (3) comparison of two multiple access protocdigld and download data [14]. In their work, downloading time
for underwater data collection, and (4) the validation ad-pr is considered as part of the tour, and the communication radi
posed solutions to the CC-DCP through simulated experisneate assumed to be uniform, fixed, and deterministic (i.@a da
utilizing communication models derived from experimentdtom a sensor is known to be accessible at a given location). |
data. We presented a preliminary version of this work in the present paper, we utilize a probabilistic acoustic comm
prior conference paper [6]. The present paper extends thieation model that degrades with distance. Such modelks hav
conference version with data from an AUV deployment, moigeen used to optimize control strategies for both underwate
advanced acoustic communication models, and the comparistation-keeping [15] and underwater search [3].

of multiple access scheduling protocols. Vasilescu et al. developed a system of mobile and stationary

The remainder of this paper is organized as follows. We firabdes for underwater data collection based on the use of both
examine related work (Section II) and then formulate the C@ptical and acoustic communication [16]. They describexd th
DCP (Section Ill). We next propose a number of algorithmsetworking architecture and sensor specifications negessa
for solving the CC-DCP approximately (Section V). Weor underwater data collection and presented field experisne
then develop realistic acoustic communication models froosing a mobile network. They assume that the AUV commu-
experimental test data (Section V), and we derive two mleltipnicates with a single node at once, and they do not examine
access protocols for use during data collection (Section Vicheduling protocols for multiple access. Their experitsen
We validate our approach through simulated deploymerslowed the feasibility of utilizing AUVs for underwater dat
(Section VII) before concluding and discussing the avenuesllection, but the authors left open the problem of path
for future work (Section VIII). planning for the mobile nodes in large networks.

A common assumption in prior work is that the AUV
communicates with a single node at a time while executing
the tour [6], [16]. For the multiple access case, there has

The underwater data collection problem is closely related been much work on the design of medium access control
TSP. In TSP, a mobile agent must visit a number of locatiofgethods for underwater acoustic communication networks in
in the minimal amount of time. This problem is known tthoth contention-free [17], as well as contention-based, [18
be NP-hard and has a long history of both approximate afb] categories. The emphasis in these works has been on
optimal solutions. With current methods, it is possible teompensating for the extensive acoustic propagation dalay
solve regular TSP instances optimally with more than 10,0@@ hoc networks. In contrast, our collection of sensor nisles
locations [5]. The two key differences between our worfixed, and network information is known a priori by the AUV.
and the classical TSP are: (1) the locations are associatgdact, it is the AUV that determines which nodes will access
with sensor measurements that may provide different ansouffe medium via the neighborhood design.
of information regarding the phenomena of interest, and (2)|n terms of methods for multiple nodes accessing the
information is gathered from locations based on a proksthuili network, the classical techniques employed in radio fre-
communication model over an unreliable channel. quency wireless networks [20] include interference avujdi

The case where locations are associated with differesiich as time-division multiple access (TDMA), code-divisi
“prizes” has been studied by a number of researchers. Tigiltiple-access (CDMA), frequency division multiple asse
prize-collecting TSP was originally introduced by Balag [7(FDMA), and random access methods. FDMA is impractical
and has been extended to a number of related variants [} underwater channels, due to the severe limits on availab
depending on the type of path required, restrictions on th@ndwidth. CDMA schemes show promise [21]; however
prizes, and the appearance of new locations during the 89ur fthere is higher overhead in determining and distributing th
Goemans and Williamson proposed an approximation algépreading codes for a large-scale sensor netwbhkis, we
rithm for prize-collecting TSP using alLP primal/dual SCI‘EI’nfOCUS herein on the Comparison of TDMA and a random-
that achieves a factor of two guarantee [10]. Slightly bettgccess scheme.
approximation guarantees are also possible at the cost of
computation and implementation complexity [11].

TSP with deterministic neighborhoods has also been stud-
ied. In this formulation, the agent visits a location by nmayi  We are given a pre-deployed network 8f sensors located
within a fixed radius of the location. Constant factor appron R9™. For this paper, we limit analysis tdim € {2,3},
imation algorithms are available for TSP with neighbort®odvhich yields the 2D and 3D problems respectively. We assume
for both disjoint and overlapping regions of the same si2 [1that the locationz,, € R%*™ is given for each sensor €
as well as regions of varying sizes [13]. To our knowledge, ttwhere\ is the set of deployed sensors. Each sensmwntains
combination of TSP with neighborhoods and prize-collectindata for retrieval, which we denote as,. We define the

II. RELATED WORK

Ill. PROBLEM SETUP
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information qualityof the data ag€(Y},), which correspondsto  Problem 1: Given path costs, information qualityZ, com-

the expected value of information (e.g., information gairan munication qualityC, and a set of possible AUV pathis, find

inference problem [22], or variance reduction in a reg@ssi .

problem [23]). P = argg;axR(”P) 1 > Pt-1),P(1), @)
In the general case, coupling between the sensor measure-

ments can lead to information being subadditive or superaghereT is the index of the last location on the path, dnd

ditive. In the context of data collection, we will assumetthaa scaling parameter that adjusts the relative tradeoff detw

information is either additive or subadditive (i.€(Y,,,Y,,) < information quality and traversal cost.

I(Yy) +Z(Yy) for all n # m) and that multiple observations In some cases, we may want to set the hard constraint to

of any Y;, do not provide additional information. Relaxinggather information from all sensors. For this case, thenuglti

either of these assumptions leads to interesting extemigs@® solution is a mappin@” x R¥™ — R¥*™ from the 2V

Section VIII). possiblereceivedor not receivedstates of theV sensors and
The sensors are assumed to have limited capabilities. Ealeb current location of the AUV to the next best location.

sensor is capable of transmitting data over a noisy channel.

A single mobile vehicle has the capability to communicate IV. ALGORITHMS

with the sensors. The location, € R%™ of the vehicle . .
is controlled and may be subject to constraints, such aswe now present algorithms for solving the CC-DCP both

obstacles or vehicle kinematics. Based on these consi,railqlpt'ma”y’ at _th_e cost Of_ high computat|or_1, and heuristical
a traversal costc(z1,22) is defined for all pairs of points based on existing algorithms for TSP variants.

x1, 22 € RY™ Traversal cost may be defined as the distance,

time, energy, or other quantity necessary to move between té. Optimal MDP Algorithm

points. We assume that the traversal cost obeys the triangleThe optimal solution to the CC-DCP can be encoded as
inequality and that the location of the AUV is known. The, policy mapping from states to actions. To see this, note
communication qualityof a location degrades with distanceinat the problem can be formulated as a Markov Decision
Clwv,wn) = f(D(xy,20)), Where D(zy,z,) = |2n — |, Process (MDP) [24]. In the 3D problem, the states in the
and f decreases monotonically with distance. MDP are defined asS = X x YV x Z x 2V, where X,
The path planning optimization problem is to generate 2 and Z are the coordinate spaces for the location of the
path for the vehicle that retrieves data from the sensors andy. The 2V states represent whether or not data has been
minimizes the traversal cost of the paffor the following collected from each of theV sensors. Letr, be the 2D
derivation,P(x,, z,) represents the probability that data fromyr 3D AUV location encoded ins. The reward function
a sensor atr, is received by a vehicle at, (i.e., the R(s,8') =2 crL(Yn) =1 c(zs, 25 ), WhereF is the set of
probability that the AUV has successfully received datanfro sensors that go from uncollected to collected betweands’,
the sensor)We will setC(z,,z,) = P(zy,2,), noting that . js the movement cost, arids a scaling parameteFhe state

more general communication quality models can be used t#nsitions7 (s, s') are defined by the communication model
the information quality of sensors is independent, the etgze  g3nd the motion model of the AUV.

received information quality at point, can be written as If the environment is discretized, the MDP above can be
solved using any standard method (e.g., value iteration or
R(z,) = Z P(zy,1,)L(Yy). (1) policy iteration) [24]. However, it is important to note tithe
neN number of states is exponential in the number of sensors and

With the independence assumption, we can also Cal&plynomial in the size of the environment (to the power of 2 or
late the expected received information along a p&th— 3 depending on the dimension). Thus, we can expect optimal
[20(1), 20 (2) 2o(T)] as solutions to become infeasible for any instance of more than

v ) v yr v

a few sensors. In addition, there may be additional erras th
arise from discretizing the possible locations of the AUV.

RP)=> [1- [] [0-P(t),z.)]| Z(Yn).

= s (LT} B. ApproximateAlgorithms

(2) Due to the computational intractability of the optimal so-

The equations above assume that (1) the information quallitiftion for large networks, we develop heuristics for sotyin
of the sensors is independent, (2) the AU\ale/ays attempt- the CC-DCP approximately. The key difference between the
ing to communicatevith all sensors, and (3) that the sensorsCC-DCP and the TSP with neighborhoods [12] is that com-
replies do not cause packet collisions. We relax these thmaenication is modeled probabilistically. Our approachas t
assumptions in Section VI, which requires the developmént generate contours of equal probability around the sensuats a
more sophisticated scheduling protocols, as well as teclesi  utilize these as if they were deterministic neighborhoods.
to calculate the information qualityR(P) at a given AUV We define aprobabilistic neighborhood;,, ¢ R*™ as all
location. Given an expression fadR(P), we can state the locationsz, where the probability of successful data transfer
Communication-Constrained Data Collection Problem (CQ2(x,,z,) is greater thap. The value ofp € [0, 1] determines
DCP) formally. how conservative the probabilistic neighborhood ispAs 1,
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Contour distance Cont dist . )
. U™ second approach is to solve the TSP of the sensors and ignore
o ° ° the communication model. This technique will perform well
’< » when communication is poor, since this situation requihes t
° I .
.{‘ AUV tour . A AUV to move near all sensors to gain information from them.

Sensors o ® ‘ Finally, the TSP solution with neighborhoods incorporates
AUV tour circles communication model as a probabilistic neighborhood.
Sensors neighborhoods Neighborhoods

For the case where all sensors do not need to be visited, we
Fig. 2. Example tours using different neighborhood typesst: Standard PrOPOSE the use of a prize-collecting TSP _algorlthm (PCYTSP
traveling salesperson tour [SCenter: Tour circling a maximal independent to improve performance. The PC-TSP assigns a peqalty)
set of neighborhoods [12Right: Tour visiting the center of a covering setyq each |ocation based on its information content. The tour
of neighborhoods. All tours travel within the contour dista of all nodes, . . . .
but the covering set tour is shortest. now has the option of neglecting some locations and paying
the required penalty. The total cost of the tour is then the

movement cost plug(n) for all n not visited. In our case,

it will be near certain that information will be received fmo ¢(n) = 1 Z(Y,), wherel is a scale factor. We employ the
sensom if the AUV is within the neighborhood. Ap — 0, following strategies for the prize-collecting case:

the AUV may need to query a sensor multiple times before « Myopic: Ignore the penalties and act as above. Terminate
receiving data from it. if the sum of remaining benefits is less than minimum

Once the probabilistic neighborhoods are defined, we can distance to a sensor’s probabilistic neighborhbod.
generate a maximal independent set (MIS) of neighborhoods PC-TSP  Solution: Use the primal/dual algorithm
by greedily choosing sensors and removing adjacent sen- from [10] to determine sensors to visit. Find optimal
sors with overlapping neighborhoodBhe greedy algorithm ordering of this subset using the Concorde solver [5].
chooses the sensor neighborhood that covers the largest num Visit sensors in that order. Shortcut once data received.
ber of additional sensor neighborhoods and then removestho « PC-TSP Solution with Neighborhoods: Find a covering
neighborhoods from further consideratioh.valid tour can set of the sensors using probabilistic neighborhoods. Use
then be found by circling the neighborhoods in the MIS. the primal/dual algorithm on the covering set to determine
We note that the resulting algorithm has a constant factor a subset to visit. Find the optimal ordering of the subset
performance guarantee relative to optimal in the case of using Concorde [5]. Visit in that order. Shortcut once data
deterministic neighborhoods [12]. is received.

In the case of probabilistic neighborhoods, it may be The non-myopic algorithms for the case of differing sensor
necessary to wait for information to be received from thiaformation utilize an existing PC-TSP approximation algo
entire neighborhood before moving to the next neighborhoaithm to determine which sensors (or neighborhoods) td visi
In addition we make the following modification: instead ofluring the tour. The selected locations are then treated in a
generating an MIS and circling the entire neighborhoods, veémilar fashion to the problem with equal sensor infornmatio
generate a covering set at half the contour distance. Tloissl Additional implementation details and derivation of perfo
us to visit all sensors by simply planning a tour of the lomasi mance guarantees for the prize-collecting case are alailab
in the covering set. This modification improves performandhe conference version of this paper [6].
in practice and also allows straightforward extension to 3D
environments. In the following sections, we will denote the V. AcousTic COMMUNICATION
covering set of neighborhoods &s Figure 2 gives a visual-
ization of planning with varying neighborhood types.

For the case where all nodes must be visited, we design
following heuristics for planning the path of the AUV:

We now discuss the acoustic communication model that
we utilize to improve path planning for the AUV in the
mfta collection scenario. Acoustic propagation is cherasd
by energy spreading and absorption that occur in an unob-
« Myopic: Move towards closest sensor. Once data #sructed medium over a single propagation path, as well as by
received, move to next sensor. additional distortions caused by multipath propagatioa. (i
TSP Solution: Find an optimal TSP ordering of thgurface-bottom reflections and refraction due to sounddspee
sensors using the Concorde solver [5]. Visit sensors Variation with depth [25]).
that order. Shortcut sensor once data is received. While there is no well-accepted acoustic channel model,
TSP Solution with neighborhoods: Find a covering setatistical approaches and geometric approaches are\mith a
of probabilistic neighborhoods. Find the optimal TSRble. Ray tracing, a geometric approach, offers an accurate
ordering of the covering set using Concorde. Visit thgicture of the resulting sound field at a given frequency and
neighborhoods in that order. Shortcut once data is rg-given location in a ocean, which can be used to predict
ceived. signal strength prior to system deployment. However, the

The myopic strategy is simply to move towards the closeg¢tual signal strength, observed in a finite bandwidth and
sensor. This is a reactive strategy and will perform well wheover finite intervals of time, deviates from the predictetiea
communication quality is high. In such cases, the benefit of _ _ _ N

An alternative myopic strategy is to move to the node withhbif

Iong-term planning _iS negqted by the homog?nEity of tr'b%nefitlcost ratio. In practice, this did not perform as vaslthe simple nearest
expected received information across the environment. Tiheghbor.
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These variations appear as random, and our goal is to describWe now proceed to establish two models based on our
them statistically based on experimental data. Such datard experimental data: one that relates the mean valie the
models allow us to capture environmental factors typicarmf distanced, and another that specifies the probability distribu-
AUV deployment. tion function (pdf) of the random componentThese models
will be valid for the chosen operating conditions (frequenc
band and transmission distances). Specifically, we make the
following conjectures:

We utilize data acquired by the AUVucille, shown in (i) the mean value obeys a log-distance model
Figure 3. Lucille, a SeaBED-class AUV [26] operated by
the NOAA Northwest Fisheries Science Center, is equipped g(d) = go — ko - 10log d, (5)
with a WH_OI Micro-Modem [27] and a 12.5 kHz !TC_'3013 i) the random component obeys a Gaussian distribugon,
hemispherical transducer for acoustic communications. (0, 02).
September of 201Qucille assisted in mapping the submerged  gjq, re 4 summarizes the recorded values (from the deploy-
portion of the San Ar)dreas Fault off Northern Califormigyent gescribed above) of the gain as a function of distance.
at aEJprOX|mateI)69 °50 N’ 124°W. Durmg_ this survey, the The solid curve represents the log-distance model (5), &hos
AUV’s onboard networking stack periodically transmitted %arameter@o and k, were obtained by first-order polynomial
three-second long packet. These packets were modulatedigig 3 we emphasize again that the model parameters will
ing Phase Shift Keying (PSK) and transmitted using 4 kHg general depend on the operational conditions [28], hat t
bandwidth around a center frequency of 10 kHz. the values indicated in the figure are representative of the 8
12 kHz acoustic band and transmission distances on the order
of several hundreds of meters.

A. Data from AUV Deployment

30

© 9
_ go—kolo logd

251 -

20

gain [dB]

15f

10}
Fig. 3. The AUV Lucille being recovered after a successful dive. The ITC STt T
transducer used during this experiment is visible protrgdipwards from e e .
the back of the bottom hull, below the thrusters. Image esyriof the San T

Andreas Fault 2010 Expedition, NOAA-OER. 100 200 300 400 500 600 700 800 900 1000
distance [m]

Throughout the course of the dive, the vehicle maintain%ﬁj 4. Gain (normalized) vs. transmission distance. Dotswsmeasured
a constant altitude three meters above the seafloor, at & d%%eé; solid curve shows an estimated trend (a first-blmrlthmic-scale
of approximately 130 m. The surface ship, the R/V Pacifiglynomial fit to the ensemble mean at each distance yiejdd.9).
Storm,received packets from the AUV at varyistant ranges
from 100 m to 1 km. The surface ship remained underway Shown in Figure 5 is the histogram of the random compo-
with the hydraulics running during this experiment, reisgit nenty = g—g. This figure motivates our second conjecture, i.e.
in significant noise being generated across the frequendies Gaussian model fay. The variances? is calculated from
used for communication. These conditions are typical tfie data at hand. We note that its value appears to be invarian
those experienced by AUVs operating from near-shore v@ssklr the range of distances considered, although greatemndis
on the continental shelf, and our proposed statistical modgans could require sectioning. We also note that the waian
incorporates these effects. will depend on the bandwidth, decreasing as the bandwidth
increases. Similar conclusions have been found usingrédifte
B. Acoustic Link Gain Model data sets [29].

To specify a propagation model, we represent the link gagl Packet Error Approximations

as
g(d, t) =g(d) + y(t), 4) In addition to the log-normal link gain model justified

_ _ _ in the prequel, we adopt a previously employed [3], [15]
whereg(d) is the mean value of the gain at a distaceand  colored noise model that incorporates multiple enviroriaen
y(t) is a random process. factors, including wind, shipping activity, thermal najisend

°The distance is varying with time, i.@. = d(t). 3Logarithms are taken with base 10.
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A. Protocol Description

4-2?53’;?;”‘7 1) Time Division Multiple Access (TDMA)We assume

fixed locations for sensor nodes in each neighborhood and tha
synchronizatior(see e.g. [30]among them has been accom-
plished. The number of transmission slots per neighborhood
is fixed at N, for the given tour and length of each slot is
sufficient to receive all packets from a single node. A three
phase TDMA protocol is described below:

1) Initiation: The nodes begin in lbw power state wherein

0.16

0.14

0.12f
0.1t
g 0.08f

0.061

0.04r they can hear broadcast wake-packets from the AUV

002l if in range. The AUV sends a high power broadcast
wake-packet of sizéd3g that brings into an active state,

% the nodes within the AUV’s current neighborhood (see

y [dB] e.g. [31]). The broadcast wake-packet also contains

initial communication schedules for all nodes in the

Fig. 5. Histogram of the measured deviatigrand the theoretical p.d.f. of
a zero-mean Gaussian random variable wit¥6.7 dB.

neighborhood.
2) SchedulingThe functional nodes that receive the broad-
cast correctly reply with an acknowledgement packet
turbulence [25]. We assume a block log-normal fading model ~ of size B4 according to the schedul@he AUV sends
for SNR with instantaneous SNR being constant over the out the next round of scheduling information to these
duration of one block. We also assume that successive blocks nodest
fade independently. With BPSK modulation, the probabitity =~ 3) Data Transfer:The nodes reply with data packets. After

bit error at an SNR ofy is given by: all nodes have completed their transmissions, this phase
restarts for a second round of transmissions under the
P(v)=0Q (\/2’7), (6) same schedule. The number of transmission rounds

. - ) executeds a design parameter.
where Q(-) denot(_as .the_ tail prob_ab|I|.ty. function for the 2) Random Access (RA)We assume that nodes lack
standard normal distribution. For simplicity, we suppréss . .. conse capability. We also suppose that any packet

depeno_lence .Ofy on transmission range, ey = ~(d) collision at the AUV leads to reception error. A two phase
Assuming.J bits per block, the probability of block error at nslottedRA protocol is described below:
SNR ofy is gi by: L L '
an oty 1S given by 1) Initiation: The nodes begin in a sleep state. The AUV
—1—(1- T . / sends a high power broadcast wake-packet which brings
Ps(y)=1-(1=P()" ~J Q ( 27) O the nodes into an active state.
where the approximation holds for large For a packet 2) Data Transfer:Each node transmits data packets with

spanningV’ blocks encoded with a code of rateto exploit a random backoff between successive packets. When a
selection diversity, the packet error rate averaged ovés node completes its transmission, it restarts for a second
given by: round of transmission. The number of transmission

rounds executed depends on the neighborhood.
The absence of node scheduling and selection reduces data

wherePs = E., [Ps ()], and the approximation holds for smalftransfer overhead for RA as compared to TDMA, but a

values of Ps. non-zero probability of packet collision decreases thhgud.

There is no known simple closed form approximatiorgp e note that the TDMA and RA protocols do not use

when~ is log-normally distributed, and so we employ semi@cknowledgements (ACKs) for data packets, which simplifies

analytic Monte-Carlo methods to compute the packet errdfiplementation at the expense of ge"%“n from feedbackl
In this model, the packet success ratelof- P, between reduces the round trip propagation detay.
a vehicle atx, and a sensor at, represents the expected

)TV

Po=1-(1-Ps) " ~r.v.Ts, ®)

communication qualitf (x,,, x,,) (see Section IlI). B. ProtocolPerformance Analysis
We now develop expressions that will allow us to evaluate
VI. SCHEDULING PROTOCOLS the performance of the two representative protocols desdri

above.We assume that the AUV receives a packet correctly

We now examine two multiple access protocols to a"O\éY at least one of the many transmitted copies of the packet is

the AUV to communicate with multiple nodes at once whil
executing the tour. We assume that a S!ngle carrier, half4a subset of nodes can be easily accommodated as well if AUtcaints
dupIeX, narrowbandcommunication system Is present on theuch as power necessitate communication with a smaller set.

AUV as well as on each node. The protocols are describeéWe consider uncoded performance in Section VIl to focus enriterplay
between the scheduling protocols and the path planningitidgts. However,

below f(_)llowed by a performance anaIyS|s in the fOIIOWIneror correction can easily be incorporated by increadiegeffective channel
subsection. SNR appropriately.
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received correctly. While the transmissions from the nddeslink is given by:
the AUV will incur errors, we assume that transmissions from
: S (h(m))
the AUV to the nodes are perfectly decoded. Pr,, (failure) = Pp : (10)

Let N denote the set of all deployed sensor nodes, an S - : -
let M denote the subset of nodes covered by the AUV where P is given by (8) after substituting fading statistics

the course of its entire tour. We denote by the set of for nodem to AUV link. For 5 C N with | 5] = 2, let N, (S)

neighborhoods that are visited by the AUV (see Section 1V, .enote _the condlfu.onal common mformau(?n betvyeen SEnsors
S. Since conditional common information resides at both

Jvze;é\;ldn?:rlic;:sezz:i i';“:s%dr ﬂtfélgflih?oorgfggf" 322 sensors inS, the probability of failure of such a packet is
9 y given by:

neighborhood inG. We defineh: M — G andK: G — Z*
to be functions respectively mapping a node € M to Sl (h(n))

its neighborhoodh(m) € G, and a neighborhootl € G to Prs (failure) = H Pry (failure) = H D - (D)
the number of transmission rounds execute@) € Z*.
We note that definition of a transmission round is protocslsing (11) and lettingV, (S) denote conditional innovation
dependent as described in section VI-A. Without loss &r S| = 1, the total expected information gain for an entire
generality, if 2, is the location of the AUV when at thetour P is given by:

center of the neighborhood, we can assume the nodes to

nes nes

satisfy D(zy, ) < D(zy,2,) whenever node indices. ~ B(P) = Z Np(S) - (1 = Prg (failure))

and n satisfy m < n and h(m) = h(n). Let C; and SCN:|S|<2

C> denote proportionality constants, respectively tramsfog =K (h(n))

physical distance into propagation delay, and packet size i = Z Np(S) - 1- H Pp » (12
transmission time. SCN:|5]<2 nes

1) Expected Information GainThe expression for expectedwhere we assum& (h(n)) = 0 for any senson € N'— M.
information gain can be developed independently of the unde Equation (12) is directly applicable to TDMA. However,
lying protocol. LetZ; denote the data stream of sensar M for RA, the packet collision probability needs to be accednt
and let Zs denote the set of data streams of all sensors fifr in the packet error probability. We define ¢ — Rt
the subsetS C A. For now, we assume that all sensors ang be a function mapping a neighborhoéde G to the
equally informative meaning that (Z;) is independent of, average packet arrival rate at the AUMb) € RT per
where H(-) is the entropy function. In an actual deploymeni¢, . B, unit of time. Assuming no synchronization between
information from different sensors are typically correléit nodes, the number of packets arriving at the AUV at any
To capture this effect, we define theonditional common given time is well approximated by a Poisson process with
information for the sensor pair(i,j) € N x N as the arameter
quantity I(Z;; Z;| Zar—yi.;3) Wherel(-; -|-) is the conditional P Cy -
mutual information function. For consistency, we also dfirin nelghborhood) € G ass(b) € Z*. Given that a packet
the conditional innovationfor sensori € N as the quantity arrives at timet from noden, a collision occurs if additional

I(Zi; Zi| Zn—ay) = H(Zi| Zar—(y)- To simplify book keep- packets arrive in the intervgt — Cs - Bp,t+ C> - Bp) and
ing, we further suppose that any correlated informatiopvin SO the probability that no collision occurs is given by:
can be captured by the conditional common information for 1
some subset of sensor pafisj) € N x A, which essentially ~ Pr;, (no collision = exp (—2 - A(D) - (1 — —)) (13)

means the following is assumed: s(b)
~ exp (=2 A(b)), (14)

[32]. Let us denote the number of nodes

1(Zi; Z;12k) = 1(Zi; Z;) Yk e N ={i,j}. (9 where the packet arrival rate(b) has been adjusted to exclude
noden and the approximation holds for large neighborhoods.
We consider a fixed packet size &f, bits and assume thatProbability of packet error given that no collision occuss i
all packets from a single node in one transmission round/casame asP};. So, effective average packet error rate for RA is
independent but equal quantities of information. This nseagiven by:
that we can assume equal number of packets at each sensor
in accordance with nodes being equally informative. Les thPBes = Pra(n) (collision) + Pry(, (no collision) - Pj

number beV,. We further assume that the AUV performs joint _1 9 \h ] 1 1_Pr
decoding of information streams from different nodes and ca =1—exp(-2-Ah(n) - (1- s(h(n)) ) ) (1-Pp)
distinguish between packets containing common infornmatio

and innovation packets. ~1—exp(—2-Ah(n))) - (1 _ P_B) . (16)

We can now compute the expected information gain at the
AUV for an entire tourP in terms of the number of correctly We substituteP; . for PJ5 in (12) which gives the total
received packets carrying distinct information. A packet a&xpected information gain for RA.
sensorm € M is transmittedK (h(m)) times over the node  Although the expression for expected information gain is
m to AUV link. So, the probability of packet failure over thisvalid for any information correlation model, for simulatio
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purposes we consider the following model. We define the

information correlationbetween sensors, n € N as:

H(Zpn) ’

(17)

m,n —
and assume it to decay exponentiéllith separation forn #

n as.
D(mmmn)) (18)

Pm,n = €XP <_
«

where« is scaling parameter.
Using (17) and then (9) we get,, ,,, as:

Pm,m = Z Pm,n — Z Pm.n

neN neN

n#m
-y A

neN

:1_me,n

neN

n#m

men

neN
n#m

(19)

In terms of packets, this means that data strezipsand Z,,
shareN,, - p., », packets of information fofn # n.

2) Expected Communication Cosdtve defineG: G — RT
to be the function mapping a neighborhdod G to the cost
of communication in that neighborhoa@(b) € R* during

b) RA: The initiation phase has a round trip propagation
delay ofCy - 2- D(x,, 7)) like TDMA. Data transfer spans
K (b) transmission rounds witllV,, packets per sensor at a

2(0)

transmission rate of—b packets per sensor pék - Bp unit
S
of time. This gives the communication cost as:

G(b) =2 C1 - Dl wy) + 252 JXzEb')K(b) - 5(b)
(22)
_ C2 Bp N, K(b) - s(b) 3

A(b) ’
where the approximation holds for long data steams.

The expressions derived above provide the basis for sim-
ulations that compare the respective benefits of TDMA and
random access in the underwater data collection domain. We
next employ these expressions to evaluate the performance
of the path planning algorithms on a number of simulated
deployments.

VII. SIMULATIONS

A simulation environment was implemented in C++ running
on Ubuntu Linux to test the CC-DCP algorithms. The simu-
lated experiments were run on a 3.2 GHz Intel i7 processor
with 9 GB of RAM. We first test the AUV path planning
component of the proposed algorithm, and we then compare
the two multiple access protocols with different parameter

the tour. Lete(b) denote the farthest sensor from the AU\settings to optimize communication scheduling during tagad
in neighborhood € G. The total communication cost for thecollection.

entire tour is thenX: G(
beg

communication protocol and is computed below for TDMA as

well as RA.

a) TDMA: The initiation phase has a broadcast of siz

). The value ofG(b) depends on the

A. Path Planning Comparison

This section validates the path planning component of the
groposed algorithm. The simulations utilize random deploy

Bg. This must reach the farthest sensor, so round-trip pro
gation delay isC’; - 2 D(z,, (), and the transmission cost e simulated AUV moves at 5 km/HRandom deployments

is C, - Bs. In the scheduling phase, the reception time for e used to determine average-case behavior of the proposed
ACK packets isCs - B - s(b) in addition to scheduling and algorithms. The simulations utilize the model built frometh

dlafnts of 100 sensors in 100 ks 100 km 2D environments.

propagation delay equivalent to initiation phaser,]lf,. is the
maximum delay spread, we need a guard intervaVofr,,, .
for each transmission round aés(b) - 7,4, for the initiation
phase. Data transfer spaA¥b) transmission rounds wittV;
slots per round}N,, packets per slot an@’ - Bp transmission

time per packet. The communication cost for TDMA is give

by:

G(b) = Initiation Cost4 Scheduling Cost

+ Guard Intervak- Data Transfer Cost

=2 (2 -C1 - D(y, Tep)) + Ca - BS) +Co-Ba-s(b)
+2-5(5) - Tonaz + No - Tnaz - K (b)
+Cy-Bp - N,-N;-K(b)

~Cy-Bp-N,-N,-K(b),

(20)
(21)

where the approximation holds for long data streams.

6The exponential decay model is commonly used in Kriging aadg3ian
Process models of spatial correlations [33].

AUV deployment data (see Section V-A). Further experimienta
validation of the models is an important avenue for future
work. We note that the proposed algorithms are general énoug
to be used with a wide range of communication models that
provide a probability of receiving data from a given nodet tha
lqegrades with distance.

For the initial simulations, the node utilities are set to
uniform, and the requirement is to visit all nodes. In thesgé
environments, the communication time is negligible when
compared to the travel time, so we do not consider the choice
of scheduling protocol. The optimal MDP solution using \ealu
iteration was able to solve problems with up to 3 nodes on
a 15 kmx 15 km environment with a 1 km grid resolution.
For these small problem sizes, the myopic nearest neighbor
heuristic performed competitively with the optimal sobuti
Based on this finding, we scale up the size of the instances
to compare the approximate methods, and we remove the
infeasible optimal method from consideration.

We next compare the myopic nearest neighbor strategy to
the TSP strategy and the TSP with probabilistic neighbadkoo
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of p = 0.8. This value ofp was selected empirically, and we 200 Full Collection: 100 Nodes (100 km x 100 k)

i i i i 3 L Patt
give a more thorough _analy5|s of selection of nelghborhood ool e |
size in Section VII-B. Figure 6 shows results from thesddria == TSP Ignoring Contours

160 - I,’ TSP on Contours B

At low transmission power (poor communication), the value
of utilizing the neighborhoods is minimal, and the problem
reduces to the classical TSP. At high transmission powexdgo
communication), the value of planning is reduced, and the
simple myopic strategy moves closer to the quality of the-non
myopic strategies. At moderate communication levels glier

100

©
=)
T

Average Completion Time (hours)
o
o
T

some improvement from both solving the TSP and utilizing a0}

neighborhoodsWe also compare to a standard lawnmower 20l

pattern that determines the coarsest layout of verticadtsals o ‘ ‘ ‘ ‘

that collect data from all nodes. The lawnmower patterns 10* 1’ 10 10° 10’ 1t

i A Transmission Power (W)
perform poorly relative to the proposed algorithms because
they do not consider the communication neighborhoods or thig. 6. Communication-constrained data collection sittiwites. Error bars are
exact locations of the nodes. one SEM, and averages are over 100 random deploymentsn§dheé TSP

. . . . ._provides improvement over myopand lawnmowetechniques, and utilizing
The same simulations were run with random informati ighborhoods provides some additional improvement.

values from 0 to 25 added to the 100 sensors. The total
cost is calculated by summing traveled distance plus the

Prize Collecting: 100 nodes (100 km x 100 km)

scaled information values of sensors not collected. Thiesca 200¢- e
factor was set a$ = 1 for these simulations. Modifying 180 = = = Move 10 Nearest Node

. .. - == PC-TSP Ignoring Contours
would allow for tuning the number of sensors visited. The 160F i PC-TSP on Contours

PC-TSP approximation algorithm was compared with and
without neighborhoods to the nearest neighbor strategy and
the lawnmower patterns.

Figure 7 shows the numerical results for the prize-colhegti
case. Solving the underlying PC-TSP without neighborhoods
does not perform well, even when compared to the myopic
strategy. Since the PC-TSP algorithm cannot account for the

N
>
S

.
N}
=)

©
=}
T

60

40

Average Completion Time (hours+penalty)
5
o

cost of the neighborhoods when determining which sensors 20r
to visit, it chooses to ignore a number of sensors that would 0 " o e e o
actually improve the final cost. In contrast, the combinatd Transmission Power (W)

the neighborhoods and the underlying PC-TSP approximation

algorithms performs well. Combining Figures 6 and 7, we Sé@' 7. Prize-collecting communication-constrained d:ﬂﬂ_ectlon S|mu|g-
ions. Data are not collected from some sensors, and thereeqpenalty is

that considering neighborhoods helps marginally in thee cagaid. Error bars are one SEM, and averages are over 100 rarejpioyments.
without prizes and more significantly when prizes are consi@onsidering neighborhoods significantly improves peranoe.

ered.The lawnmower pattern can also be applied to the prize-
collecting case; however, in this case the coarsest layayt m
not yield the lowest cost. We choose the lawnmower patteifie vehicle to access all nodes in the neighborhood when
that provides the lowest cost, though it may pay the penaityreaches the center of the neighborhood. We also assume
for missing some nodes. Even with these modifications, tHgat no communication occurs while the vehicle is moving
lawnmower pattern still performs poorly. between neighborhoods. Relaxing this assumption is aruaven
The running time of the algorithms is dominated by théor future work.
cost of calculating the TSP tour with the Concorde solver. In A random 2D deployment of 100 sensors was generated in
the worst-case, this computation time can grow expondéntiaf 5 km x 5 km area, and a simulated AUV was added to
in the number of nodes. In practice, typical instances 8ie environment that moves at a speed of 1 m/s. The size of
100 nodes were solved in 10-100 ms. For a more extensifi@ environment is smaller than in the previous simulations
discussion of the running time of Concorde, see [5]. Whegxplore cases where AUV travel time does not dominate the
probabilistic neighborhoods are taken into account, th® T#nission time. The AUV modem was assumed to operate at low
solver uses a reduced set of nodes (those in the covering ge@wver in this smaller environment, which creates a tradeoff
Thus, utilizing neighborhoods actually reduces the rugnirbetween staying in the current neighborhood for additional
time of the algorithm. transmission rounds or moving to the next neighborh&tel.
considered 200 data packets per node with packet transmissi
period of 10 ms. A carrier frequency of 13 kHz was used
with a maximum channel delay spread of 30 ms. The TDMA
We now examine the performance of the proposed schedpitetocol was set to use 10 transmission slots per trangmissi
ing protocols integrated into the contour-based TSP pathund while the RA protocol was set for each node to transmit
planning algorithm. In the following simulations, we allow0.2 packets per transmission period. The presented reselts

B. Multiple Access Protocol Comparison
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averaged ovet(0> Monte-Carlo runs. x 10

Neighborhoods were generated as in the previous simu
tions, and a TSP tour was calculated to visit all neighbodsoo
To focus on the evaluation of the scheduling protocols, we «
not consider tours that avoid neighborhoods. Simulatioaisew
run for the two multiple access protocols with varying value
of the number of transmission rounds and the parameter
The value ofp describes the size of the probabilistic neigh

I
N D O N
T T T T

o
©

Information Gain
i

borhoods, and we note that a highecorresponds to smaller 06r & : : ilgm 52283
neighborhood size (see Section IV). These two paramet o4} o _‘g‘_;DA"z'Ffz(%zl)O-g)—
represent design decisions when implementing the conto '
based TSP algorithm. Figure 8 shows the results of the ‘ ~9-RA(R=09)

- % =RA(p=0.5)

o
)

0 i i i
400 450 500 550 600 650 700
Mission Time (min)

simulations. As expected, both information gain in Figuf@)8
and communication cost in Figure 8(b) increase as the number
of transmission rounds are increased. In addition, in@®a%ig. 9. Communication-constrained data collection siriittes in a 5 kmx
in p (corresponding to decreased neighborhood size) lead>tym area with 100 nodes. A frontier of solutions is generaked provides
Ionger paths for the AUV and increased cost. a tradeoff between information gain and mission time.

More interesting observations arise when we examine the

gain to cost ratio in Figure 8(c). We see that the gain to cost L L . .
ratio first increases with increasing transmission rounut$ gcommunication quality is high (relative to the sparsity of

then decreases. The maximum appears at a different numtggrlr_letv_vorlk), pI_ar_mmg is less essen|t|al. \P/1Vhen (;:orlnmurmnau
of transmission rounds for varying probabilistic neighimsd qua ity r:s ow, I |sf|r|r|1portan_t to solve the un ”erylng TSP,
size. If we examine the effect of correlated information offther than using a fully reactive approach. Finally, at evate

the choice of scheduling protocol parameters in Figure,8((5"}\’6|S Of_ cqmmumcaﬂon, it is bgneflClaI t(.) con3|der. Fhe
we see that increases in information correlation favor fewgommunlcatlon neighborhoods during planning. In addition

transmission rounds to maximize gain/cost ratio. This Itesﬁf\’hen information quality of th? SENsors 1S cpn&dgred ahd al
is expected, since correlated data allow for high infororati SENSOrs do not need to be visited, considering neighboenood

gain without receiving data from the entire neighborhood. WMProves performance. This analysis provides insight thee
observe a different effect when the variance of the link galfive! Of Planning required to optimize information gatieyi

o is increased from Figure 8(e) to Figure 8(f). At higher vari?t different levels of network sparsity, communicationdan

ances, larger neighborhood sizes and additional tran&msss information quality. Such insight motivates the use of il

are favored to maximize the probability of receiving datg£ommunication models in the development and analysis of
@mnlng algorithms.

The ability to handle these various cases by changing th ) o
neighborhood size demonstrates the flexibility of the conto e have also demonstrated the benefit of utilizing schedul-
based TSP path planning algorithm in this domain. ing protocols to de5|g.n path planning algorithms .for au-

If we look at the gain/cost frontier, we see that the solugioffonomous data collection. We have shown that simulated
can be tuned based on different weightings of cost and g&R@lysis with varying parameters can be used to build up
(see Figure 9). By varying the value pfand the transmission & frontier of solutions that tradeoff between mission time
rounds, we create a frontier of solutions that provides &d information gain. Without such analysis, it would not
tradeoff between mission time and information gain. be possible to generate this frontier of solutions, and the

We note that the TDMA protocol outperforms the raPath planning algorithm would need to execute blindly. Thus

protocol in terms of gain/cost ratio. In most underwatdf"Proved scheduling protocols and analysis of commurdoati

data collection scenarios, the quantity of information atte Provide powerful tools for optimizing path planning algams
sensor is large, which makes TDMA the favored protocol. i data collection scenarios. _ _

applications where the information content at each node isA number of interesting extensions provide avenues for
small, poor synchronization and poor communication q;aalif““{re research. The case where. sensor C(_)_rnmumganon)quall
can lead to significant overhead for TDMA. In such case¥aries between sensors results in probabilistic neigfdmits

RA becomes a better choice for multiple access. In additio?f, different sizes. While it is possible to apply our techreg
random access allows for ad hoc networking and is easg}yectly to such cases, it is not clear if additional methods
extended to the case where there is error in the node losaticif® necessary to provide good performance. Another patenti
We note that in many cases, the benefit of TDMA over randotension is the use of non-metric and asymmetric distances

access is quite small, and random access may be preferred Rfg/een sensors. For instance, in the case of ocean currents
to its relative ease of implementation. it may be easier to travel in one direction than another. Such

cases have been examined for the classical TSP [34], but not
in the case of neighborhoods.
Another avenue to examine is the effect of communi-
This paper has shown that communication-constrained dattion quality dependencies between sensors on the appro-
collection is feasible with robotic sensor networks. Whepriate scheduling parameters and path planning algorithms

VIII. CONCLUSIONS ANDFUTURE WORK
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Fig. 8. Communication-constrained data collection sirtiaits in a 5 kmx 5 km area with 100 randomly placed nodes. Increasing theevally decreases
the neighborhood size in the path planning algoritdnvalue ofp = 0.1 corresponds to approximately 4-5 nodes per neighborhoed(.5 to approximately
3-4 nodes per neighborhood, apa= 0.9 to approximately 2—3 nodes per neighborhodtle maximum gain/cost ratio occurs at different parameétings

depending on the information correlation and gain variance
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the path planning algorithms, rather than considered after and G.S. Sukhatme, “Effects of underwater communicafiavsicaints
| . bv the schedulin rotocol. Exploiting the lobali on the control of marine robot teams,” iRroc. Int. Conf. Robot
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. . Proc. Int. Conf. Embedded Networked Sensor Syst26@5, pp. 154—
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