
1 INTRODUCTION 
Tropical cyclones (TCs) cause tremendous damage 
worldwide due to the associated strong winds, heavy 
rainfall, and storm surge. As the climate warms, the-
se TC hazards may intensify (e.g., Emanuel et al. 
2008; Knutson et al. 2010; Lin et al. 2012), making 
their societal impacts an increasing concern (Men-
delsohn et al. 2012). Recent events have revealed the 
vulnerability of the US to severe TCs. In 2011, Hur-
ricane Irene produced more than $10 billion in dam-
age in the Northeastern US. In 2012, Hurricane 
Sandy struck the Northeastern Seaboard, again, 
causing more than $65 billion in damage, killing 
over two hundred people, and leaving millions with-
out electric service. Hurricane Katrina of 2005, the 
costliest natural disaster in US history, caused more 
than $80 billion in losses and resulted in more than 
1800 fatalities. To prevent such TC disasters in the 
future, major advances in TC risk management are 
urgently needed.   

Due to uncertainties in future climate and demo-
graphic conditions, including TC activity, sea level 
rise (SLR), and exposure and vulnerability, effective 
TC risk management should be based on probabilis-
tic risk assessment. Currently, increases in exposure 
appear to dominate over the effects of anthropogenic 
climate change as the leading cause of change in TC 
damage (Handmer et al. 2012, Pielke 2007). How-
ever, potential changes in storm characteristics and 
hazards due to climate forcing and related SLR also 
affect risk (Mendelsohn et al. 2012). Accordingly, 
changes in the physical state of the atmosphere and 
ocean also must be accounted for. Thus reliable TC 
risk assessment, unlike traditional assessments, can-
not rely solely on direct statistical analyses of the 
(quite limited) historical TC records and damage da-
ta. Rather, it requires a new physically-based ap-
proach that incorporates information on current and 

projected future climates as well as exposure and 
vulnerability. 

2 TC RISK ASSESSMENT 
A challenge in TC risk assessment is that historical 
records of TCs, especially those making landfall in a 
local area, are very limited. Statistical methods 
based solely on local TC landfall history are unrelia-
ble because the estimated frequency of high-
intensity events is highly sensitive to exactly how 
the tail of the probability distribution is modeled. 
Hurricane return levels may be estimated from geo-
logical information and/or the historical data about 
hurricanes landfalling in neighboring regions (Elsner 
et al., 2008). More often, TC risk assessment makes 
use of Monte Carlo simulation to generate synthetic 
basin-wide storms to obtain landfall statistics; two 
principal approaches have been developed. One ap-
proach, pioneered by Vickery et al. (2000) (e.g., 
Powell et al. 2005; Rumpf et al. 2007; Hall and Jew-
son, 2007), uses the statistics of the storm parame-
ters (i.e., track, intensity, and size) to construct syn-
thetic storm sets. A drawback of this method is that 
it relies entirely on historical TC data and cannot 
readily incorporate or predict future changes. An ex-
tension of this method is to develop statistical rela-
tionships between the storm parameters and envi-
ronmental parameters (e.g., Yonekura and Hall 
2011) so that future storms maybe simulated using 
projected future environments, assuming that the 
statistical relationships remain the same under dif-
ferent climate conditions. The other approach, de-
veloped by Emanuel et al. (2006 and 2008), applies  
a deterministic, coupled ocean-atmosphere TC mod-
el to simulate storm development driven by large-
scale environmental conditions  whose statistics are 
derived from reanalysis or global climate model da-
ta. This statistical/deterministic TC risk model does 
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not rely on the limited historical TC data but gener-
ates large samples of synthetic storms that are in sta-
tistical agreement with observations (Emanuel et al. 
2006), and compares well with other methods used 
to study the effects of climate change on TCs 
(Emanuel et al. 2008 and 2010; Bender et al. 2010; 
Knutson et al. 2010). This approach has been used to 
investigate TC wind and surge risk (e.g. Lin et al. 
2010 and 2012; Klima et al. 2011; Mendelsohn et al. 
2012). 

Here we briefly summarize the Emanuel et al. 
method for generating synthetic storms. Storm gene-
sis points are randomly selected from a distribution 
constructed from the Best-Track historical dataset or 
generated by a random seeding technique. Once ini-
tiated, storm displacements are calculated using the 
‘beta and advection model’ in which 850 and 250 
mb environmental steering flows vary randomly but 
in accordance with the monthly mean, variance and 
covariances of the reanalysis data or the climate 
model prediction. Along each simulated track, the 
Coupled Hurricane Intensity Prediction System 
(CHIPS), a deterministic ocean-atmospheric coupled 
model, is used to simulate the intensity evolution of 
the storm (Emanuel et al. 2004). TC risk for a cer-
tain area is estimated by examining the frequency 
and characteristics of storms passing by the area 
(e.g., crossing a boundary of the area or passing 
within a certain radius of the center of the area). The 
CHIPS model also estimates the storm radius of 
maximum wind, conditional on the storm outer radi-
us (where the storm wind vanishes). The storm outer 
radius was found to obey a lognormal distribution 
(Chavas and Emanuel 2010). Theoretically, the 
storm outer radius scales with the storm potential in-
tensity (Emanuel 1986); however, the scaling rela-
tionship remains to be evaluated against observa-
tions; at the same time, further investigation is 
needed to determine how storm outer radii will 
change with climate. Storm size (as described by the 
storm radius of maximum wind, the outer radius, 
and other related parameters) is an important factor, 
in addition to storm intensity and track, in determin-
ing TC hazards, as amply demonstrated by Hurri-
canes Katrina, Irene, and Sandy.   

3 TC HAZARD MODELING 
TCs induce multiple hazards during and after land-
fall, including strong winds, heavy rainfall, and 
storm surge. TC wind and rainfall may be simulated 
using high-resolution dynamic models, such as the 
Weather Research and Forecasting (WRF; Skama-
rock et al. 2005) model. For example, Lin et al. 

(2010b) carried out a case study for Hurricane Isabel 
(2003), applying the WRF model to examine storm 
properties and wind and rainfall hazards down to 1-
km resolution at landfall. They further coupled the 
WRF model with a hydrodynamic model to simulate 
the storm surge in Chesapeake Bay. This approach 
may be applied to studying the impact of climate 
change on TC hazards; in particular, high-resolution 
dynamic models can be used to downscale relatively 
lower-resolution TC simulations, such as Knutson et 
al.’s (2012 and 2013) projection of storms in differ-
ent climates, to local scales. However, this approach 
is, at present, computationally too expensive to be 
applied directly to risk assessment, which should in-
volve very large numbers (~104) of simulations to 
cover many possible scenarios. Consequently, com-
putationally much more efficient parametric models 
are often used in risk analysis. Parametric wind and 
pressure models can also be applied to storm surge 
analysis. Such parametric modeling and analysis can 
be readily coupled with TC risk models (see above) 
to estimate TC hazard risk. In this section, we re-
view parametric wind modeling and storm surge 
modeling as well as statistical methods to estimate 
TC hazard risk from physical model results. A phys-
ically-based parametric rainfall model, which de-
pends on the wind model, is currently under devel-
opment by Emanuel.  
 
Wind modeling 
In the parametric approach, the TC surface wind 
field may be estimated as the sum of an axisymmet-
ric wind field associated with the storm itself and a 
background wind field representing the local envi-
ronment. The surface background wind is often re-
lated to the storm’s translation velocity, based on 
two assumptions: the storm’s movement is mainly 
due to advection by (some vertically integrated 
measure of) the background wind in the free tropo-
sphere near the storm, and surface friction causes the 
surface background wind to deviate from the free 
tropospheric wind in magnitude and direction. How-
ever, previous applications disagreed on the nature 
of this deviation. Some assumed that the surface 
background wind is approximately equal in direction 
to the storm translation velocity and reduced in 
magnitude by a variously-valued factor (e.g., 0–0.5 
used by Jelesnianski et al. 1992 and Phadke et al. 
2003, 0.6 by Emanuel et al. 2006, and 0.5 by Lin et 
al. 2012). In many other applications, the full veloci-
ty of the storm’s translation is added to the storm’s 
wind field (e.g., Powell et al., 2005; Mattocks and 
Forbes, 2008; Vickery et al., 2009b), neglecting the 
velocity difference between the free tropospheric 
wind and surface background wind. Lin and Chavas 



(2012) performed an observational analysis to esti-
mate the magnitude and orientation of the surface 
background wind relative to the storm translation 
velocity and found that with relatively small spatial 
variations, the surface background wind on average 
was reduced in magnitude from the storm translation 
velocity by a factor of about 0.55 and was rotated in 
the counter-clockwise direction by about 20 degrees. 
They also showed that the wind fields are very sen-
sitive to the representation of the surface back-
ground wind, so that previous methods may have 
significantly under- or over-estimated wind speeds.  

Given storm characteristics (i.e., track, intensity, 
and size), the axisymmetric component of the sur-
face wind may be estimated by calculating the wind 
velocity at gradient level with a TC gradient wind 
profile and translating the gradient wind to the sur-
face level with an empirical surface wind reduction 
factor (SWRF) (e.g., Powell et al., 2003) and inflow 
angle (e.g., Bretschneider, 1972) to account for the 
effect of surface friction on the storm. A boundary 
layer model (e.g., Thompson and Cardone, 1996; 
Vickery et al., 2009; Kepert, 2010) may be applied 
to more accurately calculate the surface wind from 
the gradient condition, but it is nonparametric and 
more computationally demanding. A number of gra-
dient wind profiles (e.g., Holland, 1980; Jelesnianski 
et al., 1992; Emanuel, 2004; Emanuel and Rotunno, 
2011) have been used in wind and surge analysis; it 
may be difficult at this point to identify the “best” 
wind profile, as each profile has its own strengths 
and limitations. Lin and Chavas (2012) investigated 
the sensitivities of simulated wind and associated 
surge fields to these gradient wind profiles and the 
other above-mentioned factors, which may then also 
be used to quantify the uncertainties in parametric 
wind modeling.  

It is noted that Lin and Chavas’s (2012) paramet-
ric representation of the surface background wind 
assumed a uniform surface background wind to be 
added to the symmetric storm wind, which may only 
be valid for storms developing in a relatively uni-
form wind environment. TCs moving to higher lati-
tudes may undergo extratropical transition and be-
come “hybrid” storms (Hart and Evans 2001) – a 
critical aspect responsible for much of Hurricane 
Sandy’s devastating impact – about which our cur-
rent knowledge is limited (Emanuel 2005). These 
hybrid events, having a partially baroclinic structure, 
are often highly asymmetric. To account for this 
baroclinic effect, new methods need to be developed 
to improve the surface background wind estimation 
by developing a representation of the interaction be-

tween the highly localized potential vorticity anoma-
ly of the TC and its environmental baroclinic fields. 
In particular, Hart’s (2003) TC phase space tech-
nique may be applied to study the characteristics of 
hybrid storms and facilitate these developments.  
 
Surge Modeling 
The storm surge is a rise of coastal shallow water 
driven by a storm’s surface wind and pressure gradi-
ent forces; its magnitude is determined, in a complex 
way, by the characteristics of the storm plus the ge-
ometry and bathymetry of the coast. When observed 
wind and pressure fields are used, state-of-the-art 
storm surge models can often produce successful 
hindcasts of surges (e.g., Houston et al., 1999, West-
erink et al., 2008; Bunya et al., 2010). In real-time 
forecasting, predictions of winds, and thus surges, 
can be performed using advanced numerical weather 
forecasting models (e.g., Colle et al., 2008; Lin et 
al., 2010b). In risk analysis, parametric wind and 
pressure field models may be used to drive the storm 
surge simulations. Although high-resolution numeri-
cal grids can better capture the spatial variation of 
the storm characteristics and coastal features, in or-
der to conduct surge estimates for large numbers of 
storm scenarios in risk analysis, a trade-off between 
efficiency and accuracy is often required.  

Here we introduce two widely used storm surge 
models, representing the hydrodynamics of the 
storm surge by means of shallow water equations. 
One is the Sea, Lake, and Overland Surges from 
Hurricanes (SLOSH; Jelesnianski et al. 1992) mod-
el, used by the Natural Hurricane Center for real-
time forecasting of hurricane storm surge. The per-
formance of the SLOSH model has been evaluated 
using observations of storm surge heights from past 
hurricanes (Jarvinen and Lawrence, 1985; Jarvinen 
and Gebert, 1986); the accuracy of surge heights 
predicted by the model is ±20% when the hurricane 
is adequately described (Jelesnianski et al., 1992). 
The SLOSH model applies finite difference methods 
to solve the equations and uses a polar grid, which 
allows for a fine mesh in primary coastal regions of 
interest and a coarse mesh in the open ocean. For 
example, the New York basin grid is a polar coordi-
nate system with 75 arcs and 82 radials, with resolu-
tion of about 1 km near New York City (NYC). 
With some simplification in the physics represented 
(Jelesnianski et al. 1992) and with relatively coarse 
grids, the SLOSH simulation runs relatively fast. 
Another storm surge model is the Advanced Circula-
tion model (ADCIRC; Luettich et al. 1992, Wester-
ink et al. 1992). It has been evaluated and applied to 
simulate storm surges and make forecasts for vari-



ous coastal regions (e.g., Westerink et al. 2008; 
Colle et al. 2008; Dietrich et al. 2011; Lin et al. 
2010b; Lin et al. 2012). The ADCIRC model fully 
describes the complex physical process associated 
with storm surge and can also simulate astronomical 
tides and wind waves during the surge event (Die-
trich et al. 2011). It allows the use of an unstructured 
grid over a relatively large domain, with very fine 
resolution near the coast and much coarser resolu-
tion in the deep ocean. The high-resolution ADCIRC 
model is computationally expensive, compared to 
the SLOSH model, and thus is not feasible for very 
large numbers of simulations. 

Lin et al. (2010a) compared 9 storm surge esti-
mates for NYC using the SLOSH model (with reso-
lution of ~1 km around NYC) and the ADCIRC 
model (with resolution as high as 10 m around 
NYC). When driven by the same wind fields, the 
SLOSH model performed well, (judging by the 
ADCIRC model) in simulating the maximum storm 
surge at a location with relatively simple coastal fea-
tures, although sub-grid scale variations in the local 
surge were averaged out. Lin et al. (2012) further 
carried out comparisons of over 1000 storm surge 
estimates from the SLOSH (with a resolution of ~ 1 
km) and ADCIRC (with a resolution of ~ 100 m) 
simulations for NYC. They also found that the re-
sults from SLOSH simulations were not biased rela-
tive to those of the ADCIRC simulations when the 
same wind fields were applied, although the SLOSH 
simulations were less sensitive to storm characteris-
tics and often predicted similar surges for a range of 
different storms, compared to the ADCIRC simula-
tions. However, it should be noted that the SLOSH 
model has an internal parametric wind model, which 
may underestimate the surface background wind and 
thus underestimate wind-field intensity. Thus, when 
the SLOSH wind fields are used, the storm surge 
may be underestimated; nevertheless, the estimated 
surges from the two model simulations are highly 
correlated (see Lin et al. 2012 supplementary mate-
rial).  

The SLOSH and ADCIRC models may be ap-
plied together in surge risk analysis. To make it pos-
sible to simulate surges with reasonable accuracy for 
the large synthetic storm sets for a risk assessment 
for NYC, Lin et al. (2012) applied the two hydrody-
namic models with numerical grids of various reso-
lutions in such a way that the main computational 
effort is concentrated on the storms that determine 
the risk of concern. First, the SLOSH model with 
resolution of ~1 km around NYC is applied as a fil-
ter to select the storms that have return periods, in 

terms of the surge height at the Battery, greater than 
10 yr. Second, the ADCIRC model with a resolution 
of ~100 m around NYC is applied to each of the se-
lected storms. To determine whether the resolution 
of the ADCIRC simulation is sufficient, another 
ADCIRC mesh with resolution as high as ~10 m 
around NYC is used to simulate over 200 most-
extreme events under  present climate conditions. 
The differences between the results from the two 
grids are very small. Thus, the ~100-m ADCIRC 
simulations were used, with a 2.5% reduction of the 
surge magnitude motivated by the ~10-m simula-
tions, to estimate the surge levels at the Battery for 
return periods of 10 yr and longer. Applying the two 
storm surge models in this way, large numbers of 
surge events can be efficiently simulated to estimate 
the risk. In addition to the analysis for the current 
climate, Lin et al. (2012) applied this approach, to-
gether with the Emanuel et al.’s (2008) TC risk 
model, to study the impact of climate change on 
surge risk through simulating 40,000 synthetic storm 
surge events under current and future climate condi-
tions projected by four climate models. Their results, 
indicate a greatly increased storm surge threat in a 
future climate, due to the change in storm climatolo-
gy.  The combination of the change of storm clima-
tology and projected sea level rise indicates greatly 
reduced coastal-flood return periods for New York 
City.  

TC hazard risk assessment 

The risk of TC hazards, such as wind speed and 
surge height, may be estimated from physically sim-
ulated database of the hazards. One may assume the 
annual storm counts for a region to be Poisson-
distributed (Elsner and Bossak 2001; Lin et al. 
2012), with the mean estimated by the TC risk mod-
el. The probability density function (PDF) of TC 
hazards appears to be characterized by a fat upper 
tail, which tends to control the risk (Lin et al. 2012). 
For the (marginal) PDFs of wind speed and surge 
height, one may apply a Peaks-Over-Threshold 
(POT) method to model the upper tail with a Gener-
alized Pareto Distribution (GPD) and the rest of the 
distribution through non-parametric density estima-
tion. The PDF of coastal-flood levels will be a con-
volution of the PDFs of surge, astronomical tide, 
wave setup, and sea level rise, with their nonlinear 
interactions empirically accounted for (see Lin et al. 
2012). These PDFs and the storm frequency model 
can then be combined to estimate hazard-specific re-
turn-period curves and associated statistical confi-
dence intervals. Return-period maps can also be 
generated, and one can proceed to estimate joint dis-



tributions for wind and coastal flooding and for wind 
and inland flooding. 

4 TC DAMAGE MODELING 

TCs cause damage to the natural and built environ-
ment, via a multiplicity of hazards. Residential 
buildings, in particular, are often heavily damaged 
by TC winds, surge/wave, and flooding caused by 
severe rainfall, as seen in recent storms such as Hur-
ricane Sandy. Hurricane wind damage to residential 
buildings is mainly due to direct wind pressure ef-
fect, windborne debris impact, and their interaction 
over time. The typical debris sources are roof mate-
rials, such as roof covers, sheathings, and timbers. 
These roof materials may become windborne, due to 
high wind pressure on the roof, and fly at high 
speeds so as to damage surfaces of neighboring 
buildings. When the building envelopes are pene-
trated, in addition to causing wind and rain damage 
to building contents, internal pressurization increas-
es the net loading in suction zones, possibly leading 
to failure of roofing and wall cladding, generating 
new debris and thus starting a chain reaction in the 
whole residential area. Lin and Vanmarcke (2010) 
developed a debris risk model, based on the Poisson 
theory, large numbers of wind-tunnel experiments 
(Lin et al. 2006 and 2007), and available post-
damage survey data (Twisdale et al. 1996). Lin et al. 
(2012) further integrated this debris model with a 
component-based pressure damage model to esti-
mate the wind damage to a residential area during 
the passage of a storm. This wind damage model is 
an improvement over other methods, such as the 
FEMA HAZUS-MH Hurricane Model (Vickery et 
al. 2006) and the Florida Public Hurricane Loss Pro-
jection model (Gurley et al. 2005), in that it explicit-
ly models, for the first time, the (two-way) interac-
tion between pressure damage and debris damage 
over time. Results from a case study involving a res-
idential area in Florida were shown, which indicate 
that wind damage to residential areas may be greatly 
underestimated if the effects of windborne debris are 
not accounted for. Yau et al. (2011) made use of this 
wind damage model to estimate economic losses 
from TCs.  

This wind damage model can be extended to ac-
count for the effects of the surge/wave and rainfall. 
Damage due to rainfall may be modeled by convert-
ing amounts of water penetrated (through openings 
created by pressure and debris) into an interior dam-
age ratio (Pita et al. 2012). The surge/wave damage 
component can be developed using damage survey 
data. Based on data from Hurricane Ike (2008), 

Kennedy et al. (2011) developed empirical relation-
ships between surge/wave damage and the freeboard 
height and significant wave height. Such empirical 
damage functions can be tested and further im-
proved using recent damage data, for example, from 
Hurricane Sandy.  

TC vulnerability models can be combined with 
the TC risk assessment and hazard modeling (see 
above) to predict the aggregate impact of TCs in 
coastal regions. Aerts et al. (2013) predicted the 
storm surge damage risk, in terms of expected annu-
al losses, for NYC. Klima et al. (2011) estimated 
and compared expected damage/losses with the costs 
of alternative mitigation measures (and their combi-
nations) for Miami-Dade County, Florida. Further 
improvements may include accounting for the corre-
lation of the TC hazards to develop joint (or multi-
ply effective) mitigation strategies. Also, dynamic 
economic models may be applied to derive near-
optimal mitigation strategies and implementation 
time paths.  

5 CONCLUDING REMARKS 

We sought to assess the status of quantifying risks 
associated with hurricanes, including the effect on 
TC risk of various climate-change scenarios. The 
principal hazards, entailing various combinations of 
catastrophic loss potential, are storm surge, strong 
wind pressures, high-impact debris, and heavy rain-
fall and flooding. Recent approaches to modeling in 
each of these areas are reviewed and illustrated with 
(references to and summaries of) case studies. The 
challenge remains to tackle the multiplicity of haz-
ards in an integrated way, aiming at improved risk 
estimation and quantification of uncertainties across 
a range of spatial scales. The results are of consider-
able interest to those seeking to quantify the effec-
tiveness of risk mitigation measures and perform 
risk-based scientific and policy analysis pertaining 
to the resilience of the natural and built environ-
ments. 
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