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Abstract—We apply lift-and-project type relaxations for poly-
nomial optimization problems to AC transmission system plan-
ning, and obtain new second-order cone and semidefinite models.
The models are compared to linear and nonlinear approaches on
a six-bus test system.

Index Terms—Transmission system planning, lift-and-project,
second-order cone programming, semidefinite programming, AC
power flow.

I. INTRODUCTION

Static transmission system planning entails choosing among
a set of candidate lines whose addition to a network minimizes
construction costs while meeting physical capacity require-
ments [1], [2]. The basic problem is nonlinear, and moreover
nonconvex due to both the mathematical description of AC
power flow and products between line and voltage variables.

Until recently, optimization-based approaches have almost
exclusively been preceded by application of the DC power
flow approximation [3], [4], because the full AC version was
considered intractable. At present, there are few methods that
do not first employ this simplification; of note is [5], in which
the full AC formulation is solved using a heuristic based on
nonlinear programming. An alternate recent approach is [6],
where we used a lift-and-project procedure to derive efficient
linear programming relaxations for both the simplified and full
variants of the problem.

Second-order cone [7] and semidefinite [8] programming
are generalizations of linear programming, which are more
expressive but retain its polynomial time efficiency. The recent
result of [9] has made AC power flow far more tractable
via a semidefinite programming relaxation of optimal power
flow, often capturing the true optimal solution exactly. In
this paper we employ their power flow formulation inside a
transmission system planning framework, and, using a lift-
and-project procedure [6], [10], [11], construct a high-fidelity
mixed-integer semidefinite programming relaxation. We then
use the result of [12] to obtain a mixed-integer second-order
cone relaxation directly from the semidefinite model. Each is
demonstrated on the six-bus test system of [1], [5].

Although mixed-integer second-order cone and semidefinite
programming algorithms are relatively immature today, their
similarities with linear programming suggest that comparable
sophistication is attainable. Indeed, mixed-integer second-
order cone programming is an active area of research [13]–
[15], and we can anticipate that robust and efficient tools will
become available in coming years. At the same time, the speed

of semidefinite and second-order cone programming relative to
nonlinear programming makes our relaxations directly appli-
cable within generic branch-and-bound frameworks. Our paper
does not address this approach.

II. AC POWER FLOW

In this section we provide the nonlinear AC transmission
system planning model and review the semidefinite power
flow relaxation of [9]. We work in rectangular coordinates,
for which the voltage at bus i is represented by the complex
number wi + jxi.

Let Ω0 and Ω be the sets of existing and candidate lines.
Unless otherwise specified, single subscripts are to be taken
over all buses and double subscripts over members of Ω. Let
cij be a line cost vector, p

i
, pi, qi, and qi be real and reactive

bus power limits, vi and vi be voltage limits, η0
ij be the number

of lines present in the existing network, and ηij be the number
of new lines which may be constructed. Let gij + jbij and
pij+jqij respectively be complex admittance and power flow,
and let s̄ij be capacity per line increment. Finally, let gij be
conductance and define bsij = bij + bshij , where bsh is line
shunt susceptance. The AC transmission planning model in
rectangular coordinates is given by

NLAC min
η,p,q,w,x

∑
i∼j

cijηij (1)

s.t. pij =
(
η0
ij + ηij

)
(bij(wixj − wjxi)

−gij(xixj + wiwj) + gij(w2
i + x2

i )
)

(2)

qij =
(
η0
ij + ηij

)
(gij(wixj − wjxi)

+bij(xixj + wiwj)− bsij(w2
i + x2

i )
)

(3)

p
i
≤
∑
j

pij ≤ pi (4)

q
i
≤
∑
j

qij ≤ qi (5)

v2
i ≤ w2

i + x2
i ≤ v2

i (6)√
p2
ij + q2

ij ≤
(
η0
ij + ηij

)
sij

(i, j) ∈ Ω0 ∪ Ω (7)
0 ≤ ηij ≤ ηij , ηij ∈ N (8)

The basic approach of [9] is to define a column vector
of the real and imaginary bus voltages X = [wTxT ]T , and
then substitute the symmetric matrix W for XXT subject to
the constraint rank(W ) = 1 and W � 0, where � denotes
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matrix semidefiniteness. Dropping the rank constraint yields
the relaxation.

A dual formulation of the power flow equations is used
in [9] to eliminate unnecessary variables; for the purpose of
integration into a transmission planning framework, it is more
convenient here to remain with the primal variables. The size
of the problem can be reduced by sparsifying W and in place
of (10) using the relaxed condition


Wi,i Wi,j Wi,i+n Wi,j+n

Wj,i Wj,j Wj,i+n Wj,j+n

Wi+n,i Wi+n,j Wi+n,i+n Wi+n,j+n

Wj+n,i Wj+n,j Wj+n,i+n Wj+n,j+n

 � 0

for each line (i, j), where n is the number of buses. We denote
the above submatrix ijW .

Incorporating the substitutions into NLAC we have

NLSDAC min
η,p,q,W

∑
i∼j

cijηij (9)

s.t. W � 0 (10)
pij =

(
η0
ij + ηij

)
(bij(Wi,j+n −Wj,i+n)

−gij (Wi+n,j+n +Wi,j)
+gij(Wi,i +Wi+n,i+n)) (11)

qij =
(
η0
ij + ηij

)
(gij(Wi,j+n −Wj,i+n)

+bij(Wi+n,j+n +Wi,j)
−bsij(Wi,i +Wi+n,i+n)

)
(12)

v2
i ≤Wi,i +Wi+n,i+n ≤ v2

i (13)

p2
ij + q2

ij ≤
(
η0
ij + ηij

)2
s2
ij

(i, j) ∈ Ω0 ∪ Ω (14)
Constraints (4), (5), (8)

III. RELAXATIONS

Except for the semidefinite constraint and line capacity,
NLSDAC only has bilinear nonlinearities, which are amenable
to same linear relaxations as in [6]. An additional benefit of
using second-order cone and semidefinite formulations is that
the line capacity constraint (14) may be enforced exactly.

We proceed by substituting the 4 × 4 matrix ∆ij for
each instance of the product ηij ijW . In addition to being
symmetric, ∆ij is implicitly constrained so that ∆ij

11 = ∆ji
22,

∆ij
33 = ∆ji

44, ∆ij
12 = ∆ji

12, ∆ij
34 = ∆ji

34, ∆ij
13 = ∆ji

24, and
∆ij

14 = ∆ji
23. New constraints are formed by taking products

of existing constraints, for example (17) below is obtained
from multiplying (10) and (8), and then substituting ∆ij . We

then have the following mixed-integer semidefinite program:

SDAC min
η,µ,ν,φ,ψ,W,∆

∑
i∼j

cijηij (15)

s.t. W � 0 (16)
0 � ∆ij � ηij ijW (17)
µij = bij(Wi,j+n −Wj,i+n)

− gij(Wi,j +Wi+n,j+n)
+ gij(Wi,i +Wi+n,i+n) (18)

νij = gij(Wi,j+n −Wj,i+n)
+ bij(Wi,j +Wi+n,j+n)
− bsij(Wi,i +Wi+n,i+n) (19)

φij = bij(∆
ij
14 −∆ij

23)

− gij(∆ij
12 + ∆ij

34)

+ gij(∆
ij
11 + ∆ij

33) (20)

ψij = gij(∆
ij
14 −∆ij

23)

+ bij(∆
ij
12 + ∆ij

34)

− bsij(∆
ij
11 + ∆ij

33) (21)

p
i
≤
∑
j

η0
ijµij + φij ≤ pi (22)

q
i
≤
∑
j

η0
ijνij + ψij ≤ qi (23)

v2
i ≤Wi,i +Wi+n,i+n ≤ v2

i (24)

v2
i ηij ≤ ∆ij

11 + ∆ij
33 ≤ v2

i ηij (25)

v2
jηij ≤ ∆ij

22 + ∆ij
44 ≤ v2

jηij (26)

v2
i

(
ηij − ηij

)
≤ ηij (Wi,i +Wi+n,i+n)

−∆ij
11 −∆ij

33 ≤ v2
i

(
ηij − ηij

)
(27)

v2
j

(
ηij − ηij

)
≤ ηij (Wj,j +Wj+n,j+n)

−∆ij
22 −∆ij

44 ≤ v2
j

(
ηij − ηij

)
(28)

µ2
ij + ν2

ij ≤ s2
ij (i, j) ∈ Ω0 (29)

φ2
ij + ψ2

ij ≤ η2
ijs

2
ij (30)(

ηijµij − φij
)2 +

(
ηijνij − ψij

)2 ≤(
ηij − ηij

)2
s2
ij (i, j) ∈ Ω0 (31)

0 ≤ ηij ≤ ηij , ηij ∈ N (32)

The new variables φ and ψ represent flows in the new,
variable network, while the flows in the existing network are
denoted µ and ν, and obey AC power flow. We remark that if
the semidefinite constraints are omitted and (29) through (31)
are replaced by piecewise linear approximations, we recover
the linear model LAC of [6].

Larger, more accurate models may be constructed by taking
higher-order products of constraints and performing similar
substitutions [10], [11]; however, the number of new con-
straints and variables increases rapidly, and at some point a
compromise must be struck. In this regard, SDAC is highly
appealing: it is reasonably sized as far as lift-and-project
relaxations go, and utilizes to the full extent today’s broadest



polynomial-time conic optimization framework, semidefinite
programming.

Using SDAC as a starting point, we can straightforwardly
construct a second-order cone relaxation (SOCAC) via the fact
that positivity of all two-by-two principal minors is a necessary
condition for positive semidefiniteness [12]. The relaxation is
thus obtained by replacing (16) and (17) with the second-order
cone constraints

Wi,i ≥ 0
Wi+n,i+n ≥ 0
∆ij
kk ≥ 0, k = 1, ..., 4

W 2
i,j ≤Wi,iWj,j

W 2
i,j+n ≤Wi,iWj+n,j+n

W 2
i+n,j ≤Wi+n,i+nWj,j

W 2
i+n,j+n ≤Wi+n,i+nWj+n,j+n

∆ij
12

2
≤ ∆ij

11∆ij
22

∆ij
14

2
≤ ∆ij

11∆ij
44

∆ij
23

2
≤ ∆ij

22∆ij
33

∆ij
34

2
≤ ∆ij

33∆ij
44(

ηijWi,j −∆ij
12

)2

≤(
ηijWi,i −∆ij

11

)(
ηijWj,j −∆ij

22

)
(
ηijWi,j+n −∆ij

14

)2

≤(
ηijWi,i −∆ij

11

)(
ηijWj+n,j+n −∆ij

44

)
(
ηijWi+n,j −∆ij

32

)2

≤(
ηijWj,j −∆ij

22

)(
ηijWi+n,i+n −∆ij

33

)
(
ηijWi+n,j+n −∆ij

34

)2

≤(
ηijWi+n,i+n −∆ij

33

)(
ηijWj+n,j+n −∆ij

44

)
for each line (i, j). Note that the line capacity constraints
(29)-(31) are convex quadratic, and therefore already within
the class of second-order cone constraints. As with analogous
linear models, it is straightforward to formulate more accurate
but less efficient binary versions of both SDAC and SOCAC
[6].

IV. COMPUTATIONAL RESULTS

In this section we test SDAC and SOCAC on the six-bus
example of [5], which is an adaptation of Garver’s six-bus
system [1]. We specifically consider the case in which there
are preexisting lines. Also included is the linear model LAC
of [6]. To facilitate comparison, the following piecewise linear
relaxation for line limits, as required for LAC, has been used:

|pij |+ |qij | ≤
√

2Sij , |pij | ≤ Sij , |qij | ≤ Sij .

Mixed integer linear and second-order cone programs were
solved using the modeling language AMPL [16] and solver
CPLEX [17]. Mixed integer semidefinite programs were
solved by enumerating over additions to lines {1−5, 2−3, 2−
6, 3−5, 4−6}, which is the set of all lines appearing in one or
more optimal solution from LAC. CVX [18] and SeDuMi [19]
were then used to identify the feasible ones; in this fashion,
it is partially determined how to prune and reinforce solutions
from LAC.

Table I shows the objective value and solution reported for
the nonlinear approach in [5] (NL) and obtained by LAC, SO-
CAC, and SDAC. LAC and SOCAC each found solutions with
the same objective; SOCAC, however, found three, whereas
LAC found six, indicating that SOCAC eliminated more low-
quality solutions than did LAC. SDAC found three solutions
with a higher objective than the other models. The bottom
portion of Table I shows a single solution obtained by each
model.

TABLE I
CONIC MODELS ON THE SIX-BUS TEST SYSTEM OF [5]

Model NL [5] LAC SOCAC SDAC
Number of solutions - 6 3 3

Obj. 160 80 80 100
Line additions

2 - 6 2 2 2 1
3 - 5 2 1 1 2
4 - 6 2 0 0 1

We restate that at present, only mixed-integer linear pro-
gramming can be considered a mature technology, but that
mixed-integer second-order cone programming is an active
field of research [13]–[15], and we expect that mixed-integer
semidefinite programming will follow. As such, the methods
presented here are not currently scalable approaches, although
we expect them to be in the near future.

V. CONCLUSION AND FUTURE WORK

We have derived mixed-integer semidefinite and second-
order cone relaxations of AC transmission system planning
using a lift-and-project procedure. On a small example, the
new models are shown to be more accurate than a similarly
constructed linear model. The models do yet not enjoy the
maturity of linear algorithms, but advancements in mixed-
integer conic optimization are to be expected, in which case
these models will soon represent practical approaches to high-
fidelity transmission system planning without the complica-
tions of nonconvexity. At the same time, second-order cone
and semidefinite programming are very efficient compared
with nonlinear algorithms, and hence the models presented
here should also be attractive for use with general integer
programming techniques such as branch-and-bound.
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