
DEGREE DESIGN OF COUPLED INFRASTRUCTURES

Abstract. A recent asymptotic model of cascading failure in two-domain, coupled infras-
tructures is used to pose and solve a specific degree-distribution design problem. Low-order
nonlinear analysis exposes the mechanisms by which optimized graphs can form star-like clus-
ters, and suggests why the optimization is well-behaved numerically. Through computational
examples on coupled systems of finite size, we demonstrate that the model assumption of
degree independence can be somewhat relaxed, which is significant for geometric connectiv-
ity. Further, an assortative heuristic rule that matches degrees across the domain boundary
can offer benefits in most finite-size cases.

Keywords: interdependent networks; complex systems; asymptotic modeling; cascading
failures

1 Introduction

Given the rapid growth of smart distributed systems worldwide, there is great interest among
researchers and engineers in the key robustness properties of large-scale and complex systems.
Design insights that can be derived from asymptotic descriptions are likely to be important
practically, because traditional optimization techniques, and sometimes even simulation,
can be intractable at large scales, whereas systems today often grow and reconfigure in
real time, and need to have quantifiable robustness. While many papers in the last several
decades have provided elegant models and observations of large networks in the natural,
social, and technological domains, there are far fewer strong results concerning engineering
design at large scales. On one hand, specific motifs which confer robustness have been
studied (Newth & Ash, 2007; Gutfraind, 2009), and some guidelines for robust connectivity
can be developed for large random graphs, e.g., Paul et al. (2006). On the other hand,
concerning performance of Internet routers there appears to be little evidence that a purely
statistical recipe, applied without domain knowledge, could lead to good designs (Li et al.,
2004, 2005). This underscores the gap that exists between practical engineering methods
and popular large-scale network descriptions (Alderson & Doyle, 2010, Hines et al., 2010).

Recent work on the cascading failure of coupled infrastructures presents a new opportu-
nity for considering the role of statistical design rules. A control-oriented overview of coupled
infrastructures was given by Rinaldi et al. (2001), and Newman et al. (2005) showed that
they are inherently more susceptible to catastrophic failures than systems in a single domain.
Use of the z-transform for asymptotic infectious disease outbreak (Newman, 2002) has been
recently extended to the case of two coupled graphs (Buldyrev et al., 2010). This work was
motivated in particular by studies of Italian power outages in 2003, and the idea of large-scale
failures involving interactions between transmission and distributed control systems (Rosato
et al., 2008); see also Portante et al. (2010) for a description of extremely large failures in the
North American grid, which involve both transmission and information systems (Andersson
et al., 2005). The model of Buldyrev et al. describes a different dynamics than has been
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considered elsewhere in the design of large-scale systems, for example cascading failure due
to flows exceeding capacities (e.g., Carreras et al., 2002), loss of connectivity in a graph (Ball
et al., 1992), Markov chain mixing time (Boyd et al., 2004), and the spread of infection. This
makes it an interesting avenue for optimization.

Our first objective in this paper is to use the new asymptotic model to study and solve
design problems in degree distribution, for one or both sides in a two-domain infrastructure
arrangement. Our second objective is to explore briefly how such designs based on an
asymptotic theory can apply to systems with finite size, and having practical constraints
such as geometric connectivity. We emphasize that because the model is quite limited in its
details, any outcome from optimization should be first interpreted as an early design guide
or rule, not a means to specific realizations.

The paper is organized as follows. We describe the model of Buldyrev et al. (2010)
in Section 2. We frame the main optimization problem of interest, and explore it using a
second-order perturbation analysis in Section 3. The perturbation captures accurately all
the numerical results obtained with black-box nonlinear optimization tools, and suggests
why these tools work well despite the fact that the problem constraints are not convex. It
also shows how degree distributions evolve with the mean degree (number of connections),
and how clusters appear in the form of strongly bimodal distributions. In Section 4, we then
consider design degree distributions when the mean degrees on each side are matched, and
when they are different. Moving to finite-size problems in Section 4.3, we design one side’s
distribution when the distribution of the other side is completely given. In this context,
we mention scale effects, consider correlated geometric graphs, and develop a degree-based
reordering as a heuristic that takes the role of domain knowledge. These computations are
not exhaustive or particularly systematic, but represent the variety of problems that can be
tackled. Finally, in Section 5 some concluding remarks are given regarding the implications
of our result, and applications.

2 Failure Model and Design Problem

We outline here the procedure for characterizing cascading breakdown in a large, coupled
graph structure; this model is due to Buldyrev et al. (2010). The domains A and B are both
fully connected random graphs, with n nodes each; see Figure 1. A and B are linked together,
node-to-node, in normal operation, and then A suffers a random failure in a fraction 1−p of
its nodes. Rules for the ensuing cascade are as follows: i) the loss of any node destroys all the
edges attached to it, within the domain; ii) an A-side node failure induces a B-side failure
of the matching node, and vice versa; iii) if an A-node becomes completely disconnected to
any other A-nodes, it fails; this is also true on the B-side.

The coupled cascade model tracks giant components on the two sides, employing the
z-transform to represent the distribution of node degree G0A(z, w) =

∑∞
m=1wmz

m, on the A-
side. The mean degree is cA = G

′
0A(1, w) =

∑
mwm. The distribution of outgoing degree at

a node reached by following a random edge is similarly given by G1A(z, w) = G
′
0A(z, w)/cA.

The giant component fraction following a failure of a fraction 1 − p of nodes on the A-
side is gA(z, w) = 1 − G0A(1 − p(1 − fA), w), where fA satisfies the implicit relation fA =
G1A(1 − p(1 − fA), w) (Shao et al., 2008). If the context is clear, we will drop arguments
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when writing G0A, G1A, and gA. Similar expressions describing the B-side are completely
analogous, where we replace wm with vn. We denote the size of the giant component,
following the initial failure, on the A-side (odd indices) and the B-side (even indices) by μi,
and define intermediate variables ξi. The sequence of operations, as given in the original
publication, is as follows: μ1 = pgA(p), ξ1 = μ1, μ2 = ξ1gB(ξ1), ξ2 = pgB(ξ1), μ3 = ξ2gA(ξ2),
ξ3 = pgA(ξ2), and so on. We drop the subscripts on μ to indicate the fraction still operating
on both sides after the cascade has settled.

In our approach, we will minimize the single parameter p that maintains the steady-state
giant component μ �= 0, subject to fixed mean degrees representing cost. Other optimization
problems could be developed, for example where the allowable initial loss 1−p and terminal
giant component size μ are specified, and mean degree becomes a design variable.

3 Analysis

We develop the stated optimization problem in a compact form, for the main purpose of
showing the emergence of particular graph structures, as they are encoded into specialized
degree distributions. We base our insights on gradient vectors of the objective function,
noting this is not a formal analysis of the optimization.

3.1 Linear and Second-Order Approximations

With two different mean degrees on each side, the steady-state condition attained at the end
of the cascade is ξeven = pgB(pgA(ξeven)). More precisely, let qA and qB be the arguments
to gA and gB, respectively, so that qB = pgA(qA) and qA = pgB(qB). As above, we define
gA(qA) = 1−G0A(1− qA(1−fA)), where fA satisfies fA = G1A(1− qA(1−fA)), and similarly
for gA(qA) and fB. Transforming variables such that rA = 1 − qA(1 − fA), the two A-side
constraints are

gA(qA) = 1−G0A

1− rA
qA

= 1−G1A,

where G0A =
∑
wmr

m
A and G1A =

∑
mwmr

m−1
A . We similarly define the B-side functions,

using vn and rB instead of wm and rA respectively, and the entire optimization statement is

min
w, v, qA, qB, rA, rB, p

p

s.t. qA = p(1−G0B)

0 = (1−G1B)qB − 1 + rB

qB = p(1−G0A)

0 = (1−G1A)qA − 1 + rA.

For analysis we will essentially adopt a procedure in which w, v are treated separately
from rA, rB, although all are strictly design variables as written. For a fixed w, v, the broad
shape of the minimum p as a function of rA, rB can be seen quickly from considering a paired
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design in which w = v and therefore qA = qB and rA = rB; collapsing the constraints to one
equation, p takes the finite value of cA/(cA−w1) ≥ 1 at rA = 0, has negative slope there, and
then tends to infinity as rA → 1. Hence, we should expect that the minimum p will come
down into the range of [0, 1] for only certain values of rA (its behavior outside this range is
inconsequential). However, a few computations also quickly show that the minimum p is not
a convex function of rA, rB over (0, 1)× (0, 1), although it may be quasi-convex. We show an
example case below which illustrates these properties, and in particular that for fixed v, w
there is a global minimum of p on rA, rB, which is easy to find.

We will focus here on the case that w and hence cA is given, along with cB, and our
task is to optimize v. This is a one-sided design scenario, which has a richness beyond the
paired case mentioned above where w = v. Also, it is perhaps more realistic than a two-sided
case in which only unique cA and cB are given, since one domain may be fixed already, or
be more constrained than the other. The two-sided setting can be studied using the same
methods, however, and both the paired and the two-sided design problems are considered
using numerical optimization in a later section.

In this one-sided, non-paired case, then, eliminating qA and qB by substitution, we have
the simpler constraints

p(1−G1A)(1−G0B)− 1 + rA = 0

p(1−G1B)(1−G0A)− 1 + rB = 0. (1)

We first derive a key relationship between rA and rB. Using the two constraint equations to
eliminate p, we find that all of the design variables v, as arguments of G0A and G1A, can be
collected on one side of the equation:

(1− rA)(1−G0A)

1−G1A
=

(1− rB)(1−G0B)

1−G1B
. (2)

Setting ra = rb +Δr and using the expansion

rmA = rmA +mrm−1
b Δr +

(
m
2

)
Δr2 + · · ·

we define G0A = α0 + α1Δr + α2Δr
2 + · · ·, with

α0 =
∑

wmr
m
B

α1 =
∑

mwmr
m−1
B

α2 =
∑(

m
2

)
wmr

m−2
B

· · ·
We make a similar expansion G1A = β0 + β1Δr + β2Δr

2 + · · ·, with
β0 =

1

cA

∑
mwmr

m−1
B

β1 =
1

cA

∑
m(m− 1)wmr

m−2
B

β2 =
1

cA

∑
m

(
m− 1

2

)
wmr

m−3
B

· · ·
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The A-side of Equation 2, with these expansions inserted, has a linearization of the form
φ+ ψΔr, where

γ = 1− rB

φ =
γ(1− α0)

1− β0

ψ =
β1φ+ α0 − α1γ − 1

1− β0
.

In sequence, we truncated the higher order terms in 1−G0A and 1−G1A, invoked 1/(1−ε) ≈
1 + ε for |ε| << 1, and then eliminated higher-order products. Critically, this linearization
does not require any information from the B-side fraction in Equation 2. The linearization is
good for all the design problems we have studied, and can be justified in detail by inserting
specific numbers; it is is easily accurate to a few percent.

Now we connect Δr with the B-domain design problem. Let y = 1−G0B and z = 1−G1B.
Equation 2 implies the approximation

Δr ≈ γy − φz

ψz
,

which can now be used to characterize p in the original constraint equation pair. We will
employ Equation 1, since rA appears only once:

pz(1− α0 − α1Δr − α2Δr
2 − · · ·)− 1 + rB = 0. (3)

Proceeding for the moment with the first-order term only, we obtain

−α1

ψ
y +

1

γ

(
1− α0 +

α1φ

ψ

)
z ≈ 1

p
.

This is significant because (for a given rB) minimizing p is the same as maximizing 1/p, and
the left side of the equation is linear in the design variables v – they only appear in y and
z. To express derivatives of y and z with respect to an element vn, we use the fact that∑
vn = 1 and

∑
nvn = cB to first remove v1 and v2 from consideration; we have

v1 = 2− cb + v3 + 2v4 + · · · and (4)

v2 = cb − 1− 2v3 − 3v4 − · · · .
These augment the constraints that 0 ≤ vn ≤ 1, and we can now write for n ≥ 3

dy

dvn
= −(n− 2)rB + (n− 1)r2B − rnB

dz

dvn
=

1

cB

(
−(n− 2) + 2(n− 1)rB − nrn−1

B

)
.

Note that both of these are functions only of cB and rB. Thus, for a given rB, finding the
optimum design v is essentially a small linear program, and the cost of sweeping through rB
to find the minimum p is negligible.
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Numerical solutions to the original problem occur at locations other than the vertices of
the polytope, however, belying the importance of the second-order α2 term in our treatment
of Equation 3. Working through the algebra, we have the more accurate form

1

p
≈ δ1y + δ2z + δ3

y2

z
, where

δ1 = −α1

ψ
+

2α2φ

ψ2

δ2 =
1− α0

γ
+
α1φ

γψ
− α2φ

2

γψ2

δ3 = −α2γ

ψ2
.

Combining terms, we obtain

d

dvn

(
1

p

)
=

(
δ1 + δ3

2y

z

)
dy

dvn
+

(
δ2 − δ3

y2

z2

)
dz

dvn
, (5)

where the derivatives of y and z are as before. The nonlinear effects are shown in the 2y/z
and y2/z2 terms multiplying δ3. Finding v given rB is no longer a linear program.

3.2 Behavior of the Approximate Solutions

We address here and in our later sections the case of cB = 2.5, a fairly low connectivity
specification and therefore a challenging constraint with which to develop robustness. The
feasible set of solutions up to v5 is given in Figure 2. On the A-side, we consider regular
graphs of mean degree between 2.5 and 5.5 (we refer to fractional regular graphs with the
understanding that only one, or two consecutive, nonzero degree probabilities are possible,
and they scale so as to ensure the mean degree). For each cA, we scan through rB as needed,
and compute the gradient of 1/p with the design variables as described above. For linear
analysis, the gradient depends only on rB and not on v. We also plot gradients obtained from
the second-order analysis; in this case they depend on both rB and v. In our drawings on the
feasible polytope, the gradient magnitude across all designs v is normalized, and sometimes
these vectors are uniformly rescaled with respect to the polytope, to help visibility. Along
with the gradient vector, we plot its projection on the active face. Finally, when we list a
specific degree distribution v, unspecified values are implied zero, e.g., [v3 = 1/5, v4 = 4/5] is
a complete description. Typical calculations in Δr and p are shown in Figure 3, confirming
that p is a well-formed curve (although not convex) for the family of designs studied, and
that Δr is small.

The case of cA = 2.5 is described first. Linear analysis gives the gradient as shown in
Figure 4. It is negative in all three directions, and the point v3 = 1/2 on the plot is the
optimum, inducing v2 = 1/2 by Equation 5. This makes B a 2.5-regular graph, and hence
the A and B sides are paired. We find for this case that gradients from the nonlinear analysis
are indistinguishable from the linear, and so are not shown.

Next we consider cA = 3.5, in Figure 5. The optimum is at the point v3 = 3/4,
inducing v1 = 1/4. This is our first evidence of a more complex structure coming from the
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optimization, even based on the linear analysis. We refer to this as a “split” or bimodal
design, wherein no degree-two nodes occur, and (as we will show) only v1 and one or two
other vn are nonzero. In the second-order case, shown in Figure 5 (right), the optimum point
comes out to be the same, but the information in the gradients is much more complex. First,
on the inner face, gradients are pointed away and upward from the origin, while on the outer
face, they point inward and down as for the linear model. On both faces, however, there
is a component towards the point v3 = 3/4; at this location, the gradient is significantly
deflected so as to point nearly in the direction [1, 1, 0].

An examination of the second-order effects in Equation 5 shows that they become im-
portant through several mechanisms, illustrated in Figure 6. First, δ3 is always negative and
y/z is always positive, and therefore an offset occurs to δ1, which is always positive. δ2 can
be positive or negative, and small in magnitude; in this case it is dominated by the δ3 term.
For the specific setting of cA = 3.5 in the figure, we find in the neighborhood of minimum
p (rB ≈ 0.52) that δ1 ≈ 2.7, δ2 ≈ −0.1, and δ3 ≈ −0.9. With y/z in the range of 0.9–1.3
over all the designs v, the term multiplying dz/dvn in Equation 5 is indeed dominated by
the δ3y

2/z2 part, and can vary by a factor of about two. The term multiplying dy/dvn in
Equation 5 has a similar, two-fold variation over v because of sign cancelation. Both of
these terms multiplying dy/dvn and dz/dvn are positive. We see further that dy/dvn itself is
negative, while dz/dvn is positive near rB = 0.52, for cA = 3.5. Thus a further cancelation
effect occurs, and by now it is clear that the derivatives of 1/p can be very substantially
controlled by the second-order effects. We shall not attempt a more fundamental assessment
than this here.

Resulting from these properties, the transition from the vertex solution for cA = 2.5
and that for cA = 3.5 cannot be accurately captured with the linear analysis, but is seen
clearly for cA = 3.1 in Figure 7, with the nonlinear effects added. Here the gradient at
v3 = 1/2 (inner face) drives the optimum outward on the v3 axis, while at v3 = 3/4 (outer
face) the gradient drives it back. Although not evident in the plot, the line segment on the
v3 axis is active. Hence, we have identified an intermediate solution on this segment with
1/2 ≤ v3 ≤ 3/4, over which range v1 and v2 exchange roles.

As we increase cA further, the linear analysis becomes worse, in the sense that even
vertex optima are not necessarily indicated clearly. For example, with cA = 4.5, the apparent
optimum with nonlinear analysis is v4 = 1/2, inducing v1 = 1/2. The linear analysis instead
puts the optimum at v5 = 3/8; this occurs because the projection on the outer plane has an
incorrect, slight positive vertical component. These observations are based on Figure 8.

As with cA near 3.0, there exists a continuous transition between the two vertex solutions
for cA = 3.5 and cA = 4.5. This is identified using the nonlinear analysis for cA = 3.9 in
Figure 9. Along the lower edge of the outer plane, the gradient at the midpoint v has a
component to the right in the figure, towards the vertex v4 = 1/2, while the gradient at
the next v on this edge has a component in the opposite direction, towards the vertex at
v3 = 3/4.

The transition from cA = 4.5 to 5.5 is similar. The linear analysis gives the optimum
at v5 = 3/8 for cA ≥ 4.5; however, we have not allowed the solution to move into v6, so it
is unclear where the linear gradient will drive it at cA = 5.5. The nonlinear analysis again
gives a mid-edge solution, between v4 = 1/2 and v5 = 3/8, for cA near 5.0; for cA = 5.5 we
have v5 = 3/8, and can expect that v6 will become active shortly.
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Summarizing, for each cA the gradients shown indicate a unique solution that can be
found by a nonlinear optimization algorithm. From the linear (L) and nonlinear (NL) analysis
we have (with cB = 2.5 and A a cA-regular graph):

cA 2.5 3.0 3.5 4.0 4.5 5.0 5.5
L v3 = 1/2 v3 = 1/2 v3 = 3/4 v4 = 1/2 v5 = 3/8 v5 = 3/8 ?

NL v3 = 1/2 on edge v3 = 3/4 on edge v4 = 1/2 on edge v5 = 3/8

A property shared by both the linear and nonlinear models is that nodes of degree two are
never in the solution v, except at the lowest cA value. This is synonymous with the solutions
traveling along the marked paths on the outer plane in Figure 2. We refer to these broadly
as split designs, where only a few elements of v are active: v1, and one or two others for
which n ≈ cA. We find in the next section that split distributions are ubiquitous in this
optimization problem.

4 Numerical Optimization

Our next objective is to carry out the optimization described above for some different ap-
plication types, to develop further properties of the solutions, and to assess strengths and
limitations of this approach. We consider below separate design scenarios in which i) the
mean degree for both sides is the same and fixed (paired case; cA = cB given, design w = v),
ii) the mean degrees are distinct and fixed (two-sided, non-paired; cA �= cB given, design
w �= v), and iii) the mean degrees are fixed and possibly distinct, and the distribution on
one side is completely defined (one-sided, non-paired; cA, cB, and w given, design v). We
apply a standard constrained nonlinear optimization using the active-set method in all of
our computations, and use the notation p∗ to indicate the minimum value of p found.

4.1 Two-Sides Design with Matched Mean Degrees

The first obvious case is cA = cB = 2.4554 ≡ γER, which was considered by Buldyrev et
al. (2010), for Erdős-Rényi graphs. Our optimization yields p∗ = 0.913, leading to a final
giant component fraction of 0.811. This means that the system will survive an initial loss
of about nine percent of nodes on the A-side, and in this case, the system ultimately loses
about twenty percent of its functionality. The designed distribution is simple: w2 = 0.545
and w3 = 0.455, so the optimization has created a matched pair of γER-regular graphs.
This first result is not unexpected, since a pair of ER graphs would be hard to defend as
an optimized form according to any operational metric. At the same time, it is striking
because the designed distribution is a net zero-cost rewiring of the ER network that allows
the coupled structure to move from essentially zero robustness to a nine percent loss.

Among the entire family of optimum designs for different mean degree specifications, as
expected p∗ decreases as cA increases: highly-connected graphs are more robust. Table 1
shows the product p∗cA, which serves as a simple performance metric relative to the ER
case, for different settings of cA; p

∗ being low captures robustness, whereas cA scales the
cost. All of the designed distributions are regular, so the graph with cA = 2.1 has a chain-
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like structure, with occasional degree-three nodes. The advantages of the design are greatest
relative to the ER case at the lower mean degree. Table 2 shows the ultimate system size
fraction μ for cA = [3, 4], at different levels of initial failure. As expected, it is only near the
critical failure level that the final GC sizes are substantially below the initial failure size,
and therefore the ultimate loss level increases gracefully with increasing initial damage.

4.2 Two-Sides Design with Different Mean Degrees

As would be expected, the two-sides scenario shows a richness that is not evident when the
mean degrees are constrained to be the same. However, it recovers exactly the scenario
developed in the perturbation study for cB = 2.5; the higher-degree side (A) takes a regular
distribution, whereas the lower-degree side takes a split form. In none of these cases are
nodes with degree two expressed in v. One explanation is simply that degree-two nodes are
three times as expensive as are degree-one nodes, in terms of contributing to the low mean
degree of cB = 2.5 that we enforce, but they are only twice as robust, in terms of the number
of original in-domain connections. By this reasoning, local star-like structures would always
be preferred on the B-side. On the A-side, the regular form which emerges can perhaps be
motivated from the fact that paired regular graphs are preferred when the mean degrees are
equal.

4.3 One-Side Design with Different Mean Degrees

We now consider the case where w is given, and the task is to design v, given cB. This is the
same scenario as in the perturbation analysis, but here we will broaden our view significantly.
The previous sections employed only the asymptotic model; here, we attempt a much closer
connection with applications by considering finite sizes and several important graph types.
For each, we will i) create a realization for one side, with size N = 1000, and compute its
degree distribution, ii) design the distribution of the second side, iii) generate a sizeN = 1000
realization of the second side, and iv) study the behavior of the aggregate system using the
explicit cascading process on which the asymptotic model is based. We have verified our full
model against the results in Buldyrev et al. (2010), to the extent possible given our fairly
small network size. We consider mainly the case of N = 1000 because our purpose is not to
study scaling effects relative to the asymptotic model, as has been done already elsewhere;
rather this size of system is between the scales at which deterministic design strategies could
be employed, and the scales at which an asymptotic description should be accurate.

In Table 3, we give critical p-values from ensembles in which half of the members suffer a
complete cascading failure, and the other half do not. We define a complete failure somewhat
arbitrarily as the result that the giant component is less than ten percent of p. It is important
to note that in the table p is not interpreted as a design variable any more, but as one minus
the actual failure size imposed at the beginning of each trial. Each ensemble has one thousand
trials.
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4.3.1 Definition of Graph Types and a Heuristic

The upper portion of the table shows results for pairings of some standard graphs, and in-
troduces several graphs that we will consider specifically as a basis for design in the next
subsection. As is well known, regular graphs are robust against random failures in one do-
main; this is seen again in the multi-domain case, where for cA = cB = 4, over forty percent
of nodes on one side can be eliminated without leading to total collapse; this is in agreement
with the asymptotic result in Table 1. A 4-regular graph paired with a scale-free preferential
attachment graph of equal mean degree has a similar robustness level; our scale-free preferen-
tial attachment graphs (SFPA) (Barabasi & Albert, 1999) have slope γ = 3 and mean degree
four. When degree heterogeneity appears on both sides, we can expect that the correlation
across the domain boundary matters. We therefore introduce an assortativity-like heuristic
to the realization, in the ordering of nodes: our “inverse” configuration in the table reorders
the boundary connections so that high-degree nodes on one side are connected with low-
degree nodes on the other; our “matched” configuration connects high-degree nodes on both
sides together. The table shows that paired ER and paired SFPA graphs having matched
connections are substantially more robust than those with random or inverse connections.
These properties are obviously dependent on scale, because we implement reordering in the
realization.

We also generate “hybrid geometric” scale-free (hgSFPA) graphs wherein the preferential
attachment recipe is augmented by the distance between nodes, so that long-distance links
are made rarer, while short-distance links are more common. The probability of connecting
an existing node u with a new node v is taken in the hgSFPA as P (u ∼ v) = ku/d

4
uv, subject

to a normalization factor, where ku is the degree of node u and duv is the geometric distance
between the nodes. Such geometric preference is a ubiquitous property of real-world systems
operating in the spatial domain, and correlates the degree distribution. As one measure
of this structure, our hgSFPA has a clustering coefficient of about 0.3. The graph has a
non-power-law degree distribution, but maintains the mean degree four; see Figure 10 for a
typical realization with N = 1000. In Table 3, we see that a pairing of hgSFPA graphs is
not as robust as the ER and SFPA pairs.

We finally generate formal geometric graphs (Penrose, 2006). In this case, connections
are made solely on the geographic separation of points; if the distance is within a fixed
threshold they are connected with probability one. A typical geometric graph for our study
is shown in Figure 10; it has mean degree 8.8 and clustering coefficient about 0.6. In Table 3,
there is virtually no effect of making reconnections based on degree between two such paired
geometric graphs, a consequence of the very high dependence among node degrees. The
critical value of p is good primarily because the mean degree is so much higher than in the
other cases discussed so far.

4.3.2 One-Side Design Results

Next we undertake the design of degree distributions on one side, given the distribution of
the other. These computations use the specific graph types outlined above, and with the
same specifications of mean degree and γ. We will assume as before that the mean degree on
the side to be designed is 2.5, corresponding with fairly low connectivity, and that the mean
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degree of the other side is higher. Now the side on which initial failures occur is important
for finite-size systems, if the properties of the two sides are different. Intuitively, removing a
fraction of nodes in a low-connectivity random graph could be markedly more damaging than
in a high-connectivity setting. Thus, in accordance with the convention that the asymptotic
model specifies initial failures on the A-side, in the rest of our computations we design and
damage the A-side.

The first case has B given as a 4-SFPA graph. Here the optimal design for A is a simple
1-4 split, i.e., w1 = w4 = 1/2, as shown in Figure 11. As the maximum degreemmax increases,
representing wider and wider splits, p∗ increases to unity, indicating a loss of robustness; at
mmax 25 in this example, the system tolerates no failures at all (p∗ = 1). This is a condition
where the optimization problem has no non-trivial solution. It is noteworthy also that the
giant component fraction μ generally degrades as mmax and p∗ increase.

Considering now the finite-size results for the optimal 1-4 split, robustness is dramatically
improved by ordering the connections – the inverse, random, and matched connections confer
robustness levels of about 10%, 20%, and 30% losses respectively in Table 3. We have also
given the results for a suboptimal 1-8 split and a 2.5-regular graph; the probability of the
giant component is shown versus the initial loss size for all three cases in Figure 12 (left). The
1-8 split is more robust overall than the optimal 1-4 split, and broadly speaking this disparity
is a result of finite size, as illustrated in Figure 12 (right) for random ordering. Such scaling
effects can be appreciated at a fundamental level by the fact that the asymptotic model
has nothing to say about star networks, and yet with any finite-size graph, gA(p) = 1 with
probability p, and gA(p) = 0 with probability 1 − p. In other words, in a star there are
no giant component calculations to do on the A-side – either the hub is hit or not. For
the present case, expanding N (“L” entries in the table) significantly reduces the relative
improvements of the 1-8 split for random ordering, as might be expected. With matched
ordering, we find that the 1-8 split offers an extraordinary robustness level; this outcome is
certainly a scale effect also, but it is a larger question and outside our scope here.

Next we apply the design procedure with B a 4-hgSFPA. Although the maximum degree
in B can be quite high (perhaps thirty for N = 1000), the same optimum solution w1 = w4 =
1/2 emerges again for cA = 2.5. The matched ordering creates a very substantial robustness
level, given the obvious geometric structure in Figure 10. Again, the suboptimal 1-8 split is
superior for N = 1000, and especially for matched ordering.

The table next shows results when B is an 8.8-ER graph, as a transition from the well-
performing designs at lower levels of cB to the formal geometric graph with cB = 8.8. The
1-8 split with w1 = 11/14, w8 = 3/14 is optimal, and as expected with high connectivity
the robustness is good. The 1-12 split offers minor enhancements at this scale. Finally, we
consider the random geometric graph on the B-side. Since we showed for a pair of these
geometric graphs that reordering has little effect on robustness, we expect and see a similar
insensitivity here. Nevertheless, again the split designs are better than the regular graph,
and ordering can offer a minor improvement with the 1-12 split, subject to scale.
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5 Discussion

This study has identified a new optimization problem for the robust design of very large
two-domain systems, built upon a recent asymptotic model of Buldyrev et al. (2010). A
second-order perturbation analysis gives insights as to why the problems are reasonable to
solve with generic tools, and is sufficient to bring out some key attributes of the solutions,
which we further develop with numerical optimizations. Most notably, split, or bimodal,
degree distributions arise; these are associated with hub-and-spoke topologies, which are
of course well-known and have been discussed in other works on network robustness, e.g.,
Tanizawa et al. (2005). We verified system robustness properties with non-asymptotic,
finite-size cascading failure simulations, subject to scaling effects. An added heuristic step of
reordering the cross-domain connections according to their degree adds some improvements.

The asymptotic model employed here was motivated in the context of a controlled power
system (Rosato et al., 2008). The model will shut down a control node when its paired gen-
erator or load substation fails, and conversely shut down a substation when its control node
fails. The model further eliminates the in-domain edges connected to failed nodes, so that
the loss of a node also removes any role its site may have had as a power bus or a data
router. In the general context of spreading infection, in-domain edge losses are quite plau-
sible if failures create transient events – such as surges, latency, or bad packets – that can
propagate. Although the model is a worst-case scenario, similar analogies could be made
for many systems in which one side is a flow network and the other a communication and
control grid. Another major manifestation of coupled infrastructures is a group of coordi-
nated agents performing an integrated task and operating in a physical domain. That such
distributed systems will constitute infrastructure in the future seems unavoidable. Consider
as one example a collaborative localization mission with underwater, mobile robotic sensors
(Bahr et al., 2009). Communications and navigation underwater employ the acoustic chan-
nel, which brings serious reliability, range, and capacity constraints in comparison with the
wireless links available in most terrestrial and air scenarios (Sozer et al., 2000, Stojanovich,
2006). For vehicles performing relative localization with each other, A-side edges represent
relative positioning constraints and B-side edges the communication network; it is often the
case that ranging packets are not used for data transmission. Thus, if a first vehicle loses
communication with the other agents, it will not be able to maintain its relative position
as easily, since it cannot know the velocities, absolute positions, or intents, of the others.
Vehicles that were depending on the first for their own positioning will in turn have their
navigation compromised, and could drift out of communication range. In short, both the
communication and navigation links need to function for the system to work. Practically
speaking, marine operational challenges derive not only from the acoustic channel, but also
from ocean currents and waves, shipping traffic, and underwater fouling, all of which are real
hazards to autonomous vehicles.

Because our approach is rapid but lacks many details in the modeling as described, it
is primarily useful for early design concepts, or fast reconfiguration of distributed systems.
Considering the topology of a fixed power grid, for example, the procedure establishes a
relationship between allowable initial failure size 1− p and the required mean degree, which
reflects the installation cost. Specific realizations that match the desired degree distribution,
and respect the main assumptions, should have an inherent robust structure, which can be
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fine-tuned using more domain-specific tools. This is a common strategy, for example, in
the use relaxations of nonlinear programs: the solution may not be feasible as given, but
important elements of the optimal feasible solution are revealed. For active reconfiguring
of large systems such as groups of mobile agents, our approach can shape real-time degree
distributions that trade off robustness with other properties such as diameter, possibly mod-
ifying the mean degree as needed on the fly. If small perturbations are expected, then there
is no need to operate with a high mean degree.

More broadly, the roles of detailed versus statistical optimization in large-scale systems
have been argued in several contexts, and robustness very likely requires specificity in design.
Nevertheless as we have shown, in the case of a two-domain dynamics the emergent statistical
character – the split degree design specifically – measurably affects robustness of the system.
For any 1-mmax split design, all the edges are either mmax-to-mmax in their node degrees,
or 1-to-mmax. We cannot create edges of node degrees 1-to-1, so all the realizations have
equal relative likelihood (Li et al., 2004). This does not mean, of course, that all rewirings
have equal performance or robustness, but, critically, that there are fewer to work with. In
this sense our asymptotic optimization process has significantly reduced the space of design
solutions (Bianconi, 2008). A simple example illustrates the constraints provided by the split
designs. A 2.5-regular graph with eight nodes has at least twenty-five unique connections
(to isomorphism), and a twelve-node version has more than 1300; these are estimated by
comparing the adjacency spectra of many random realizations. Consider now the 1-8 split
with cA = 2.5, as in our numerical experiments; w1 = 11/14 and w8 = 3/14. A fourteen-node
realization is impossible, because the number of half edges is odd; but a twenty-eight node
realization can be hooked up in exactly two ways, as shown in Figure 13.

Considering future work, the major assumptions made in the asymptotic model are that
the random graphs on either side are themselves uncorrelated and have local treelike struc-
ture, that there is a one-to-one nodal interconnection between the two graphs, and that
successive, coupled node and edge failures occur in the manner described. Scale-free and
ER graphs have the first property, but in fact a number of more specialized graphs could be
accommodated formally, including those with degree correlations (Newman, 2002). Our de-
sign example with geometrically-correlated graphs also suggests that effective designs can be
applied even when the assumptions are not strictly met. Relevant to the second assumption,
very recent work has extended the model to allow fully in-domain nodes (Parshani et al.,
2010); design optimization within this new framework would be an interesting direction of
inquiry. Finally, the case of targeted attacks, for example where the most highly-connected
nodes are destroyed, is of high interest and would complement the present study.
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Figure 1: Two-layer coupled network examples, in a power system and for a group of au-
tonomous vehicles with collaborative navigation. For clarity, edges are drawn only for the
transmission side of the power system.
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Figure 2: With cB = 2.5 given and v1, v2 given by Equation 4, the feasible set for v3, v4,
and v5 is the polytope defined by the inner red plane and the outer blue plane, bounded by
v3 ≥ 0, v4 ≥ 0, and v5 ≥ 0. The planes are not parallel. At cA = 2.5 and cB = 2.5, the
optimal v to minimize p is the red dot, v3 = 1/2. As cB increases to 5.5, solutions move along
the boundaries indicated with arrows. Black circles indicate the specific designs v where we
make gradient calculations.
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Figure 3: Typical calculations for the case of cA = 3.5. The curves represent all of the
eighteen design points in Figure 2. Δr takes values on the order of 0.1 or less; the p shown is
based on the keeping α1 in Equation 3, while the second-order equivalent is labeled P . The
minimal p are found over a narrow set of rB, as indicated by the overlaid circles.
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Figure 4: The linear gradient (protruding bold) and its projection on the active plane at the
optimal vertex, for cA = 2.5.
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Figure 5: The linear (left) and nonlinear (right) gradients and their projections onto the
active planes, for cA = 3.5. The polytope is viewed from the along the negative v4-axis.
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Figure 6: Terms appearing in the second-order expansion for gradients of 1/p with vn, and
cA = 3.5. The circles overlaid on y/z indicate locations of minimum p across the eighteen
designs considered.
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Figure 7: Gradients from the nonlinear analysis, and their projections, for cA = 3.1. The
polytope is viewed from along the negative v4-axis.
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Figure 8: The linear (left) and nonlinear (right) gradients and their projections, for cA = 4.5.
In the right-side plot, the gradient at v5 = 3/8 is nearly straight down the outer face, and is
not shown. Gradients on the inner face point outward, and are not shown.
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Figure 9: Gradients from the nonlinear analysis, and their projections, for cA = 3.9.

Figure 10: (Left) Layout of a typical hybrid geometric-scale-free graph, in which preferential
attachment is enhanced by the geographic closeness of points. The four hubs shown are
defined and connected at the first iteration. This realization has one thousand nodes and
a mean degree of four. (Right) Layout of a typical geometric graph realization, with one
thousand nodes on the unit square, threshold distance 0.054, and mean degree 8.8.
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Figure 11: Asymptotic model p∗ values for different split designs w satisfying cA = 2.5, for
the 4-SFPA on the B-side. In the split designs, node degrees are either one or approximately
mmax.
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Figure 12: (Left) Giant component probability versus p for several A designs on for the
4-SFPA B-side, and N = 1000. Robustness differences are obtained via random (blue),
matched (green), and inverse (red) ordering through the boundary between subsystems. p
values corresponding with PGC = 0.50 are approximately those given in Table 3. (Right)
Effects of scale for the same structures, with random ordering only. The three curves for
each degree distribution are for N = 500 (red), N = 1000 (blue) and N = 2000 (green).
Note the change of horizontal scale; blue curves on both sides are identical.
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Figure 13: The two ways in which a 1-8 split design having mean degree 2.5 can be realized
on 28 nodes, to isomorphism.
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cA-type p∗ p∗cA
γER-ER 1− γER

2.10-C Reg 0.995 2.09
2.20-C Reg 0.979 2.15
γER-C Reg 0.913 2.24
2.70-C Reg 0.841 2.27
3.00-C Reg 0.759 2.28
4.00-C Reg 0.586 2.34
5.00-C Reg 0.475 2.38

Table 1: Robustness of paired regular random graphs. “ER” indicates Erdős-Rényi and
“C Reg” indicates a regular random graph generated with the configuration model. γER =
2.4554 (Buldyrev et al., 2010)

p μ
cA = 3 0.759 0.633

0.800 0.766
0.900 0.897
0.950 0.950

cA = 4 0.586 0.442
0.600 0.510
0.700 0.683
0.800 0.797
0.900 0.900

Table 2: Initial failure size applied versus final component size, for optimized paired regular
random graphs. The first line for each cA shows the minimum p (to three significant digits)
that does not destroy the giant component, i.e., p∗.
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Inverse Random Matched
4-C Reg; 4-C Reg 0.576
4-C Reg; 4-SFPA 0.600

4-ER; 4-ER 0.712 0.606 0.513
4-SFPA; 4-SFPA 0.657 0.607 0.410

4-hgSFPA; 4-hgSFPA 0.741 0.697 0.566
8.8-geo; 8.8-geo 0.606 0.619 0.619

2.5-C SubOpt 1-8; 4-SFPA 0.835 0.748 0.549
L 2.5-C SubOpt 1-8; 4-SFPA 0.779

2.5-C Opt 1-4; 4-SFPA 0.892 0.794 0.691
L 2.5-C Opt 1-4; 4-SFPA 0.791

2.5-C SubOpt Reg; 4-SFPA 0.852 0.826 0.790
L 2.5-C SubOpt Reg; 4-SFPA 0.827
2.5-C SubOpt 1-8; 4-hgSFPA 0.869 0.803 0.619

2.5-C Opt 1-4; 4-hgSFPA 0.905 0.827 0.726
2.5-C SubOpt Reg ; 4-hgSFPA 0.860 0.835 0.802

2.5-C SubOpt 1-12; 8.8-ER 0.631 0.507 0.415
2.5-C Opt 1-8; 8.8-ER 0.632 0.522 0.445

2.5-C SubOpt 1-4; 8.8-ER 0.663 0.618 0.565
2.5-C SubOpt Reg; 8.8-ER 0.727 0.718 0.704
2.5-C SubOpt 1-12; 8.8-geo 0.811 0.748 0.718

2.5-C Opt 1-8; 8.8-geo 0.779 0.748 0.741
2.5-C SubOpt 1-4; 8.8-geo 0.767 0.748 0.754
2.5-C SubOpt Reg; 8.8-geo 0.786 0.782 0.779

Table 3: Cascading failure results with 1000-node graphs; listed are the p-values for which
half of the realizations collapse and the other half do not. The three data columns refer to
connecting the A and B sides so that the node degrees are inversely correlated, randomly
paired, or positively correlated. The upper grouping gives examples having a standard
random graph on both the A and B sides; the lower grouping applies A-side optimized
designs to specific B-side distributions. For each pairing, the A,B-side graph descriptions
are separated by a semicolon; for each, the prefix (2.5, 4, or 8.8) indicates the mean degree,
and the suffix is the structure. “C” indicates construction using the configuration model,
“Reg” is a regular graph, “SFPA” is a scale-free graph using preferential attachment, “ER”
is an Erdős-Rényi graph, “hgSFPA” is a hybrid geometric SFPA graph as described in the
text, and “geo” is a geometric graph. “Opt” refers to an optimized split design using the
asymptotic model; several suboptimal cases are given also. All runs are with N = 1000,
except those with a leading “L”, which have N = 2000.
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