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Abstract

Photoclinometry is the most common method used to obtain high-resolution

topographic maps of planetary terrain. We derive the likelihood function

of photoclinometric surface slope from (1) the probability distribution of the

measured photon count of natural sunlight through a Charge-Coupled Device

(CCD) including uncertainty due to camera shot noise, camera read noise,

small scale albedo fluctuation and atmospheric haze, and (2) a photometric

model relating photocount to surface orientation. We then use classical esti-

mation theory to determine the theoretically exact biases and errors inherent

in photoclinometric surface slope and show when they may be approximated

by asymptotic expressions for sufficiently high sample size. We show how

small-scale albedo variability often dominates biases and errors, which may

become an order of magnitude larger than surface slopes when surface re-

flectance has a weak dependence on surface tilt. We provide bounds on the
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minimum possible error of any unbiased photoclinometric surface slope es-

timate, and compute the sample sizes necessary to constrain errors within

desired design thresholds.
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1. Introduction

High-resolution elevation maps of planetary terrain are typically obtained

by the method of photoclinometry (e.g. Malin et al., 1992; McEwen et al.,

2003; Kirk et al., 2003b; Schenk, 2005), which relates variations in surface

radiance to variations in surface orientation relative to the light source, typ-

ically the Sun, and the optical receiver, typically on a spacecraft (Davis and

Soderblom, 1984; McEwen, 1991; Kirk et al., 2003a). While other methods

also exist to produce topographic models, including stereogrammetry and

radar altimetry, photoclinometry offers significant advantages since it (1)

requires only a single image, and (2) can provide higher resolution measure-

ments (McEwen, 1991).

It has been observed, however, that photoclinometry may not work very

well under certain lighting conditions that provide little topographic contrast,

and that these conditions typically correspond to small incidence angles (e.g.

Davis and McEwen, 1984; Efford, 1991; Jankowski and Squyres, 1991; Kirk

et al., 2003a,b). Uncertainties in surface albedo may also lead to errors in

surface slope estimates that are significant for small-scale albedo variations

(Howard, 1982; Kirk et al., 2003b), but become relatively insignificant for

large-scale albedo variations (e.g. Beyer et al., 2003).

The primary purpose of the present paper is to provide a formulation of

uncertainties and analysis of errors that (1) is consistent with the behav-

ior of the likelihood function (Fisher, 1956) of the photoclinometric surface

slope estimate that governs the uncertainties, and (2) accounts for all the

primary photoclinometric error sources, including albedo, haze, camera read

noise and camera shot noise, in a unified manner. Here, classical estimation
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theory (Fisher, 1956; Kay, 1993) is used to provide a method for determin-

ing both the exact and asymptotic biases and errors inherent in a Maximum

Likelihood Estimate (MLE) of photoclinometric surface slope given the prob-

ability distribution of the measured Charge-Coupled Device (CCD) data and

the nonlinear physical model relating the measured CCD data to surface slope

by planetary surface reflectance (e.g. McEwen, 1991). The formulation also

provides bounds on the minimum possible error for any unbiased photocli-

nometric estimate of surface slope as well as necessary conditions on sample

size to attain this error bound, or a desired design threshold on error. The

asymptotic biases and errors are determined by series expansion in inverse

orders of sample size, where higher order terms vanish in decreasing order as

uncertainty decreases until the Cramer-Rao Lower Bound (CRLB) or first-

order error term is attained (Naftali and Makris, 2001). Since approximations

to investigate photoclinometric errors (e.g. Davis and McEwen, 1984; Efford,

1991; Jankowski and Squyres, 1991; Beyer et al., 2003; Kirk et al., 2003a,b)

have previously not been formulated in terms of the likelihood function that

governs uncertainties, error bounds, asymptotic behavior for decreasing un-

certainty, necessary sample sizes, and exact theoretical biases and variances

have not been previously provided. We show that in many practical pho-

toclinometric scenarios the approximate asymptotic biases and errors for a

single sample differ dramatically from the exact ones, making asymptotic

expressions for errors applicable only when a large number of independent

samples is available. Moreover, the asymptotic expressions for errors must

be formulated in terms of the likelihood function as in Shenton and Bow-

man (1977); Barndorff-Nielsen and Cox (1994); McCullagh (1987); Naftali
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and Makris (2001) for them to properly converge as uncertainty decreases or

sample size increases.

In Section 2 we derive the likelihood function, the MLE and biases and

errors for photoclinometric surface estimation. The MLE is chosen because it

is known to become asymptotically unbiased and attain the minimum possi-

ble mean square error of any unbiased estimate as sample size becomes large

or uncertainty becomes small (Rao, 1966; Fisher, 1956). In Section 3 we com-

pute the exact theoretical biases and root mean square errors of the surface

slope MLE for various photometric functions and typical values of camera

read noise, camera shot noise, atmospheric haze, and albedo variability. We

show that the biases and root mean square errors grow rapidly when the

dependence of measured intensity on surface slope approaches a constant,

and that albedo variability is typically the dominant source of biases and

errors. We also present estimation methods for minimizing these biases and

errors to obtain surface slope estimates that fall within desired design error

thresholds.

2. The Likelihood Function and Maximum Likelihood Estimation

of Planetary Surface Slopes

In photoclinometry, natural light from a thermal source, such as the Sun

or a star, typically acts as the source of planetary surface illumination. Nat-

ural light is known to undergo Circular Complex Gaussian Random (CCGR)

field fluctuations and exponentially distributed instantaneous intensity fluc-

tuations, as a consequence of the central limit theorem (Goodman, 1985,

chap. 4). Spacecraft observations of planetary surfaces are typically made
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with photon-counting CCD cameras (e.g. Malin and Edgett, 2001; McEwen

et al., 2003), where the number of detected photons is known to follow the

conditional Poisson probability distribution for a given average light inten-

sity. Since the average intensity of natural light follows a Gamma distribu-

tion, conditional integration over all possible intensities leads to the negative

binomial distribution for the photocount (Goodman, 1985, chap. 9).

Photocount is related to planetary surface orientation by modeling the

reflectance properties of the planetary surface with a photometric function.

Many planetary surfaces have been successfully modeled with one or a com-

bination of a such closed-form empirical functions, including Lambert’s law,

Minnaert’s law, and the lunar-Lambert model (McEwen, 1991).

In this section, we discuss three common photometric functions used to

model planetary surface reflectance. We then use classical estimation theory

to derive the likelihood function and MLE for photometric surface slope

estimation, the theoretical lower bound on surface slope error, and necessary

conditions on sample size to appropriately constrain biases and errors within

desired design error thresholds.

2.1. Photometric Functions of Planetary Surface Reflectance

The most commonly used photometric function in planetary topogra-

phy applications is the lunar-Lambert function first introduced by McEwen

(1986),

I(µn, µ0n, α) = Bo(α)

[
2L(α)µ0n

µn + µ0n
+ (1 − L(α))µ0n

]

(1)

where I(µn, µ0n, α) is the reflectance function, µn = cos εn, µ0n = cos ιn, and

εn, ιn are the emission and incidence angles respectively, as shown in Fig. 1.
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The phase angle α corresponds to the angle between the incidence and emis-

sion angles, and Bo(α) = I(1, 1, α) is defined as the intrinsic albedo. L(α)

is the ratio of the lunar to the Lambertian component in the lunar-Lambert

function, so that in the limit L(α) → 0 the modeled surface is Lambertian,

while in the limit L(α) → 1, the surface is lunar. The photometric function is

the ratio of the intensity incident at angle ιn to that reflected to the receiver

at emission angle εn.

[Figure 1]

For many planetary surfaces and phase angles, L(α) can be well approxi-

mated as a constant L, especially when observations are made over a limited

range of incidence angles. Beyer et al. (2003), for example, show that vari-

ations in L for Martian terrain lead to small errors of 10% of the L = 0.55

mean for Mars Orbiter Camera (MOC) (Malin and Edgett, 2001) incident

angles in the vicinity of 25-45◦. Similarly, the effect of large-scale albedo vari-

ations, i.e. changes in the value of Bo(α) across the planetary terrain, can be

minimized by scaling out the average brightness of the imaged region (Beyer

et al., 2003). Small-scale variations in albedo cannot be similarly accounted

for and may lead to much larger errors (Howard, 1982; Kirk et al., 2003b;

Beyer et al., 2003). Here we model Bo(α) as a Gaussian random variable

based on a central limit theorem assumption of many independent sources

of albedo variation. The mean is set to the average albedo value across the

imaged region and the standard deviation is defined as proportional to a

fraction of the mean following calculations presented by Bell et al. (2008) for

typical Martian surfaces.

The illumination and zenith direction vectors define the principal plane
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(e.g. Ranson et al., 1991, Fig. 1). It is common in planetary applications for

satellite cameras to be close to nadir-looking, so that the difference between

the emission angle and its projection on the principal plane is negligible. As-

suming that local surface slopes are always in the up- or down-sun direction,

which is also the direction where reflectance is most sensitive to slope changes

for a Lambertian surface or small emission angles in the lunar-Lambert model

of Eq. 1 (e.g. Beyer et al., 2003; Kirk et al., 2003b), the emission and inci-

dence angles can then be written in terms of slope θ with respect to a flat

surface, εn = εz − θ and ιn = ιz − θ. Here ιz and εz are defined as the known

angles that the incident and emission directions make to the zenith direction,

respectively.

With these assumptions, the photometric function can be written as

I(µn, µ0n, α) ≡ I(θ) = Bof(θ), (2)

where

f(θ) =



L
cos (ιz − θ)

cos
(

ιz+εz

2 − θ
)

cos
(

ιz−εz

2

) + (1 − L) cos (ιz − θ)



 (3)

Surface slope θ can be estimated from knowledge of I(θ). While surface slopes

will be underestimated if their azimuth does not lie in the principal plane,

this error is found to be negligibly small for relatively flat topography, as

are errors introduced when the satellite viewing direction is off the principal

plane (Beyer et al., 2003).

Equation 3 is plotted as a function of surface slope θ and incident angle

with respect to flat topography ιz for the parameter L set to 0, 1, and 0.55

in Figs. 2(a), 3, and 4(a), respectively. The case L = 0.55 is shown here
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as an appropriate choice for Martian terrain (Beyer et al., 2003). For other

planetary bodies, McEwen (1991) provides best-fit L(α) values for various

terrain types. The angle of emission with respect to the z-axis is assumed to

be εz ≈ 0o, which is equivalent to the typical case of a nadir-looking satellite,

so that the true emission angle is εn = −θ. In all three figures, white dashed

lines highlight where the derivative of I with respect to θ is zero so that the

dependence of the CCD measurement on surface slope is constant. White

dot-dashed lines correspond to the direction of specular reflection, which in

this case occurs when ιn = −εn = θ, or equivalently ιz = ιn + θ = 2θ.

Finally, black lines denote lines of constant true incidence angle, ιn, which

are described by the equation ιz = θ + ιn, so that their slope and y-intercept

are 1 and ιn, respectively.

[Figure 2, Figure 3, Figure 4]

The Lambertian photometric function of Eqs. 2-3 for L = 0 is symmetric

about the line where the true incidence angle ιn equals zero, which is also

where dI/dθ is zero, as a consequence of Lambert’s cosine law, and as can

be seen in Fig. 2(a). The lunar photometric function of Eqs. 2-3 for L = 1

is instead antisymmetric about the direction of specular reflection, while its

derivative with respect to surface slope goes to zero when the incident and

emission directions become collinear, as can be seen in Fig. 3(a). For the

lunar-Lambert photometric function of Eqs. 2-3 for L = 0.55, the dI/dθ = 0

curve (white dashed line) is close to the ιn = 0 line for small tilt angles θ,

while it gradually moves towards the ιz = 0 line as θ increases, as can be

seen in Fig. 4(a). For the Martian example of L = 0.55, and for small tilt

angles, the lunar-Lambert surface then approaches Lambert’s cosine law, but
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becomes similar to a lunar surface as the surface slopes become larger.

The Lambertian, lunar and lunar-Lambert photometric functions are also

plotted as functions of the true incidence angle ιn = ιz−θ, for different values

of the angle between the illumination direction and the zenith direction, ιz ,

in Figs. 2(b)-4(b). These plots are constructed by cutting along the white

dotted lines of Figs. 2(a)-4(a) from right to left. Again, we note that the

Lambertian photometric function depends only on the value of the true in-

cidence angle ιn, while the lunar photometric function becomes independent

of surface slope when the incident and emission directions are collinear.

2.2. The Probability Distribution of CCD Photocount Measurements of Plan-

etary Surface Reflectance

Charge-Coupled Devices (CCDs) typically form the basic recording unit

of the high-performance cameras used for space exploration missions (e.g.

Malin and Edgett, 2001; McEwen et al., 2003) by measuring the number

of electrons released from a photosurface when an electromagnetic field is

incident upon it. This number is linearly proportional to the number of

incident photons, which in turn is a function of the average light intensity

incident on the photosurface (Janesick, 2001, chap. 6), so that the CCD

output signal can be parameterized in terms of average intensity.

Natural light from thermal sources, such as the Sun, is known to fol-

low Circular Complex Gaussian Random (CCGR) field fluctuations by the

central limit theorem, so that average intensity is described by the Gamma

distribution (Goodman, 1985, chap. 9). Since the number of photon arrivals

for a given light intensity is known to be a Poisson random variable, the

statistics of CCD-measured photocount then follow the negative binomial
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distribution (Goodman, 1985, chap. 9). For thermal light at optical frequen-

cies, and for the common integration times of CCDs (e.g. Malin and Edgett,

2001), the discrete negative binomial distribution can be well approximated

by the continuous Gaussian probability density (see Appendix A),

PK(K|θ) =
1√

2πσK(θ)
exp



−
1

2

[
K − K(θ)

σK(θ)

]2


 (4)

where K is the measured photocount.

The mean and variance of K have been derived in Appendix A (Eqs. 34,

35) and are repeated here for convenience

K = γ[I(θ) + H ] = γ[Bof(θ) + H ], (5)

σ2
K = K + K

2
σ2

Bo/Bo
2
+ σ2

R (6)

where γ is a known proportionality constant that depends on incident solar

flux, camera integration time, pixel surface area and other parameters as

described in Eq. 20, Bo, σ2
Bo are the mean and variance of surface albedo,

respectively, and H is the expected intensity of atmospheric haze which is

assumed to be a known constant (e.g. Beyer et al., 2003). Atmospheric haze

is described by a CCGR field that is independent and additive to the CCGR

field scattered from the surface which carries reflectance information. The

variances or expected intensities of these two fields then add, so that the haze

contribution increases the mean and variance of the photocount K. This

leads to a dilution of surface reflectance information in the total photocount.

Atmospheric haze often contributes minimally to topographic shading (e.g.

Beyer et al., 2003). Kirk et al. (2001) provide a model for how haze is affected

by changes in atmospheric conditions and illumination geometry.
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The photocount variance then has signal-independent components due

to camera read noise σ2
R (Janesick, 2001, chap. 7), and atmospheric haze

σ2
haze ≡ γH , and signal-dependent components γBof(θ) for shot noise and

K
2
σ2

Bo/Bo
2

for albedo uncertainty. The signal-dependent components arise

from the Poisson nature of photon statistics, the CCGR fluctuations of the

incident field, and the multiplicative dependence of the photometric function

on albedo. By defining the Signal to Noise Ratio (SNR) of K − γH , or a

sample mean of n independent and identically distributed measurements of

K−γH , as the ratio of the squared mean to variance, SNR is proportional to

sample size n. It also becomes large as the mean photocount becomes large

and the standard deviation of albedo becomes small compared to the mean

albedo.

2.3. Maximum Likelihood Estimation

The likelihood function for an estimate of θ is defined as PK(K|θ) evalu-

ated at the measured values of K, where PK(K|θ) is the conditional probabil-

ity distribution of a data vector K of independent and identically distributed

photocount measurements K1, K2, K3, . . . , Kn obeying Eqs. 4 through 6 given

surface slope parameter θ. Measurements of random photocount, in the vec-

tor K, then contain information about surface slope θ through both the mean

and variance of the photocount via Eqs 1- 6. The MLE θ̂ is defined as the

surface slope that maximizes the likelihood function with respect to θ (Rao,

1966; Fisher, 1956). The Cramer-Rao Lower Bound (CRLB) is the mini-

mum mean square error attainable by any unbiased estimate, regardless of

the method of estimation. The CRLB i−1 is the inverse the Fisher informa-

tion, also known as the expected information, which is defined as i = 〈l21〉,
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where l(K|θ) = lnPK(K|θ) is the log-likelihood function, and lj = ∂j l(K|θ)
∂θj .

If the sample size n is sufficiently large, or uncertainty is sufficiently small,

the MLE θ̂ is asymptotically unbiased and obeys the Gaussian distribution

P
θ̂
(θ̂|θ) =

√
i

2π
exp

(
−

i

2
(θ̂ − θ)2

)
(7)

with variance i−1 equal to the CRLB (Rao, 1966; Kay, 1993), where (Makris,

1995, 1996)

i = n



 1

σ2
K

(
∂K

∂θ

)2

+
1

2

(
∂ ln(σ2

K)

∂θ

)2




=
n

σ2
K

(
∂K

∂θ

)2


1 +
1

2σ2
K

[

1 + 2K
σ2

Bo

Bo
2

]2


 (8)

given the probability distribution for K described in Eq. 4-6 and Appendix

A, Eq. 33. In the deterministic limit n → ∞, where K is obtained from

exhaustive sample averages, P
θ̂
(θ̂|θ) becomes the delta function δ(θ̂ − θ).

In photoclinometry, surface slope estimates are obtained from single im-

ages, so the sample size is actually n = 1 and the MLE often will be biased

and not attain minimum variance. The necessary sample sizes for the MLE

to become effectively unbiased and have a Mean Square Error (MSE) that

asymptotically attains the CRLB are derived in Appendix B and appear in

Eqs. 39-40. For convenience, we define the necessary minimum sample size,

nb, to obtain an unbiased MLE by conservatively requiring that the first-order

bias b1 (Eq. 41) be 10 times smaller than the true value of the parameter,

nb = 10
|b1(θ̂|θ)|

|θ|
(9)

Similarly, the necessary minimum sample size, nv, for the MSE of an unbiased

estimate to attain the CRLB is defined by requiring that the second-order
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variance var2 (Eq. 43) be 10 times smaller than the CRLB,

nv = 10
|var2(θ̂|θ)|
var1(θ̂|θ)

(10)

where var1 = i−1 is the CRLB (Eq. 42).

3. Results and Discussion

In this section we calculate the exact theoretical biases and errors of

photoclinometric surface slope estimates for photometric functions follow-

ing Lambert’s law, Minnaert’s law, the lunar-Lambert model, for a typical

Martian surface imaging scenario (see Appendix A) using the statistical for-

mulation of Section 2.3 and the Appendices.

To calculate the exact theoretical bias and Root Mean Square Error

(RMSE) of a MLE surface slope estimate θ̂ it is useful to observe that for

K = g(θ) and θ = g−1(K), it follows that θ̂ = g−1(K̂) by invariance of the

MLE (Kay, 1993) where K̂ = K is the MLE of the mean photocount K. The

bias and RMSE of θ̂ are then given by

bias(θ̂) = θ − 〈θ̂〉 (11)

RMSE(θ̂) =
√

bias2(θ̂) + var(θ̂) (12)

where

〈θ̂〉 =
∫ ∞

0
g−1(K)PK(K|θ)dK (13)

var(θ̂) =
∫ ∞

0

(
g−1(K) − 〈θ̂〉

)2
PK(K|θ)dK (14)

for the conditional probability distribution defined in Eqs. 4 through 6. The

exact theoretical bias and RMSE are calculated using Eqs. 11-14 for the
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combined effects of all variance terms in Eq. 6 assuming σ2
R ≈ 6400 electrons,

K ≈ O(104) electrons, σ2
haze ≈ 2000 electrons, and σBo = 0.1 × Bo as

discussed in Appendix A. Results are shown as a function of the incident

angle with respect to the zenith direction, ιz, and true surface slope θ in

Figs. 5-7.

Both the bias and RMSE of the surface slope estimate increase signif-

icantly in the region where the first derivative of I with respect to θ goes

to zero, and the measurement becomes ‘insensitive’ to the parameter to be

estimated. For the Lambertian photometric function (Fig. 5) the worst er-

rors then occur along the ιn = 0 line, a consequence of Lambert’s cosine

law, as expected from Fig. 2. For the lunar photometric function (Fig. 6),

the bias and variance of the estimate are worst along the line ιz = εz where

the incident and observation directions become collinear, as noted in Fig. 3.

Finally, the worst bias and errors for the lunar-Lambert photometric func-

tion (Fig. 7) occur along a curve that lies in the region between the ιn = 0

and ιz = εz curves, depending on the exact weighting between the Lam-

bertian and lunar functions. By using the full likelihood function for the

surface slope estimate θ̂, we find that previous approximations to the biases

and errors typically underestimated their true values by as much as 50%, as

can be seen by comparing for example the error ranges shown in Fig.A4a

of Jankowski and Squyres (1991) to those presented in Fig. 7. The first-

order error term of Jankowski and Squyres (1991), for example, is based on

an implicit assumption of additive signal-independent noise, and so is not

consistent with the dominant sources of photoclinometric noise, albedo and

camera shot noise, which are multiplicative and signal-dependent, and does
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not equal the first-order term expected from estimation theory, the square

root of the CRLB (Eq. 42).

[Figure 5, Figure 6, Figure 7]

Since the bias and RMSE for the lunar-Lambert photometric function

may be as large as 10 degrees or more when the incident angle with respect

to the zenith direction, ιz is less than 20 degrees (Fig. 7), obtaining opti-

mal estimates may then necessitate averaging over statistically independent

measurements. Here, an optimal estimate is defined as one that is unbiased

(or has a bias that is negligible compared to the true value of the parame-

ter), and its RMSE attains the the specified design threshold. Statistically

independent samples can be obtained, for example, by measuring surface

radiance under different illumination and/or observation conditions, or by

estimating surface slopes over larger regions that can be divided into statis-

tically independent and identically distributed sub-regions. When averaging

over a spatial region, the correlation area of albedo variability will limit the

total number of statistically independent samples available in that region to

the ratio of the total area of the region to the correlation area. The number

of samples N necessary to attain the design threshold is given by

√
N =

RMSE(θ̂)

design threshold
(15)

By calculating the sample sizes necessary to asymptotically obtain op-

timal estimates, we find that, while one sample appears to be enough for

most illumination conditions, the required number of samples increases sig-

nificantly in the region of the dI/dθ = 0 curve. The necessary sample sizes

are computed using Eqs. 9-10, 41-43, and shown in Figs. 8-10. In each figure,

the white dashed line denotes the curve where dI/dθ goes to zero and more
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than 104 samples are typically required to obtain an estimate that asymp-

totically becomes unbiased and has a RMSE that attains the square root

of the CRLB. In Figs. 8(a) and 10(a), a ridge occurs at θ = 0, where the

denominator vanishes according to our definition for nb (Eq. 9).

[Figure 8, Figure 9, Figure 10]

Figure 11 shows the first-order bias (Eq. 41) and the square root of the

CRLB (Eq. 42) for the lunar-Lambert photometric function of Eqs. 2-3 using

L = 0.55. We find that these asymptotic biases and variances differ dramati-

cally from the exact theoretical values, as can be seen by comparing Figs. 11

to 7. This is especially evident in two regimes: (1) at large incidence angles,

larger than typically 10 degrees, where the asymptotic biases and errors go

to zero, and (2) at small incidence angles, where the asymptotic biases and

errors very rapidly approach infinity as dI/dθ goes to zero along the white

dashed lines in Fig. 11. In the special case when nv samples are available,

the RMSE equals the square root of the CRLB. Even then, the CRLB may

still be larger than the design threshold, in which case a total of N = nv ×n′

samples would be necessary, where
√

n′ =
√

CRLB/(design threshold).

[Figure 11]

One way of obtaining more independent samples is to tilt the satellite

camera to an off-nadir direction. For example, consider the case where the

emission direction is at an angle of 20 degrees to the zenith direction, but still

lies in the solar plane as defined in Fig. 1 and Section 2.1. The photometric

function, the bias and RMSE (Eqs. 11-14) of the MLE, and the necessary

sample size conditions for this case are shown in Figs. 12-14.

Comparing Figs. 7 and 10 to Figs. 13 and 14, respectively, we find that
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rotating the camera significantly affects the bias and RMSE, as well as the

sample size necessary to obtain an optimal surface slope estimate for given

values of ιz and θ. This example then suggests that carefully designed off-

nadir viewing may provide an opportunity for reducing surface slope biases

and errors when combined with nadir images.

Depending on the exact experimental conditions, it may be possible to

specify a general strategy where an optimal estimate can be obtained from a

single sample. For example, for the two cases of the lunar-Lambert function

presented here (Figs. 4 and 12), requiring |ιz| > 30◦, and |ιz| > |εz| + 20◦

will allow optimal estimates to be obtained for most values of θ. These

two conditions are less stringent than the |ιz| ≈ 60◦ − 75◦, which is typically

specified as the optimal regime for photoclinometry (e.g. Davis and McEwen,

1984; Jankowski and Squyres, 1991), where the upper limit typically stems

from the need to avoid shadows which are not amenable to investigation.

The results presented here (Figs. 5-7 and 13) suggest that photoclinometry

may work equally well even at shallower incidence angles.

[Figure 12, Figure 13, Figure 14]

3.1. Comparison of the Different Sources of Noise or Uncertainty

Here, we examine the biases and errors due to each source of noise or un-

certainty described in Section 3 acting in the absence of the others. Specif-

ically, biases and errors are calculated with Eqs. 11-14 by replacing Eq. 6

with only the variance term for either (i) read noise, (ii) shot noise, (iii)

atmospheric haze, or (iv) albedo variability for each respective case.

As expected, the biases and errors for each noise source increase signifi-

cantly in the region where the reflectance function has weak dependence on
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surface slope, as shown in Figures 15 and 16. The total bias and RMSE for

all these error sources has been shown in Fig. 7. Biases often dominate the

RMSEs.

We find that albedo variability is typically the dominant source of biases

and errors, on the order of 10-20◦ or more at small incidence angles (ιn smaller

than roughly ten degrees), as can be seen from Fig. 15(d). Camera shot and

read noise are the next most important noise sources, leading to biases and

errors on the order of 5◦ (Fig. 15(a-b)). Finally, haze appears to be the least

significant source of noise, resulting in biases and errors that are typically

on the order of a 1-2◦, or approximately an order of magnitude smaller than

those due to albedo variability, as can be seen from Fig. 15(c). This last

result is in agreement with previous literature (Kirk et al., 2003b), where

errors due to haze have typically been found to comprise less than 20% of

the total error when accurately modeled. Note however that haze effects may

increase significantly in magnitude during dust storms (Cantor et al., 2001).

[Figure 15, Figure 16]

Since the ratio of the albedo to the shot noise contribution of the pho-

tocount variance from Eq. 6 is K
σ2

Bo

Bo
2 , we expect that albedo noise should

dominate the variance of the photocount K if the standard deviation of

albedo uncertainty is larger than 1√
K

times the mean albedo, or roughly 1%

of the mean albedo for the mean photocount used here of K ≈ O(104), given

sufficiently low read and haze noise contributions. This is indeed found to

be the case in Figs. 15-16 where σBo = 0.1×Bo, for our typical Martian sce-

nario. For much lower albedo uncertainty of σBo = 0.005 × Bo, as reported

for Miranda (Hillier et al., 1989), the total bias and error are instead domi-
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nated by shot noise, which can be seen by comparing the black dashed lines

to the gray dash-dotted lines in Fig. 17 which shows a cut through Figs. 7

and 15-16 along the line ιz = 12◦.

[Figure 17]

4. Conclusions

Both theoretically exact and asymptotic biases and errors inherent in

photoclinometric estimation of planetary surface orientation from Charge-

Coupled Device (CCD) measurements are calculated using an approach de-

veloped from classical estimation theory. The approach can be used to de-

termine the accuracy of topographic reconstructions and aid in experimental

design.

The likelihood function governing statistical fluctuations of a photoclino-

metric slope estimate is derived, including uncertainty due to camera shot

noise, camera read noise, small-scale albedo fluctuations and atmospheric

haze. The derivation incorporates common photometric models of planetary

surface reflectance and the known probability distributions of CCD measure-

ments of natural light. From this, bounds on the minimum mean square error

of any unbiased estimate of photoclinometric surface slope are derived, as are

necessary conditions to attain these bounds and constrain errors within de-

sired design thresholds. Approximate asymptotic biases and errors for low

uncertainty (1) are formulated in terms of the likelihood function to insure

proper convergence with decreasing uncertainty, and (2) typically differ dra-

matically from the exact ones, making them applicable only when a large

number of independent samples is available. Biases and errors are shown to
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typically become much larger than surface slopes for illuminations and ob-

servations where planetary reflectance is weakly dependent on surface slope,

near inflection points of the photometric function.

The approach developed here provides a unified method for quantita-

tively comparing the biases and errors from different sources of uncertainty

in a photoclinometric estimate. Albedo variability, for example, is shown to

typically dominate estimate biases and errors when the standard deviation of

albedo uncertainty is larger than approximately 1√
K

times the mean albedo

in the imaged region, for CCD photocount K, while other error sources such

as shot noise may become dominant for very low albedo uncertainty.

A. Statistics of CCD Measurements of Surface Reflectance

We show that a CCD photocount measurement, K, of planetary surface

reflectance from a natural light source approximately follow a Gaussian dis-

tribution. The derivation incorporates surface albedo variability, as well as

CCD camera read and shot noise, and atmospheric haze noise. The num-

ber of photoevents K recorded by CCD cameras is directly proportional to

incident intensity (Janesick, 2001). The averaged intensity incident on a

photosurface of area A in the time interval (t0, t0 + τ) is a random variable

W |Bo =
1

τA

∫ ∫ ∫ t0+τ

t0
I (x, y; t|Bo) dt dx dy (16)

where I (x, y; t|Bo) is the random instantaneous intensity at time t and

location (x, y) on the photosurface given albedo Bo. For satellite imaging

of a planetary surface under the illumination-observation scenario described

in Fig. 1, the expected value of I (x, y; t|Bo) is proportional to the surface
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reflectance function I(µn, µ0n, α) times the incident solar flux I0 (McCluney,

1994, chap. 1), where the latter is assumed to be a known constant, plus the

mean intensity from atmospheric haze H . The surface reflectance function

can be expressed as I(µn, µ0n, α) = Bof(θ) (Eq. 3), where Bo is the random

surface albedo and θ is the unknown planetary surface slope. Atmospheric

haze is described by a CCGR field that is independent and additive to the

CCGR field from the surface, so that the field variances, or equivalently the

mean instantaneous intensities of each add.

The probability distribution of W |Bo for polarized thermal light is given

by the Gamma distribution (Goodman, 1985, chap. 9),

PW |Bo(W |Bo) =






(
ζ

WBo

)ζ W ζ−1 exp
(
−ζ W

W Bo

)

Γ(ζ) for W ≥ 0

0 for W < 0
(17)

where W Bo ≡ 〈W |Bo〉 =
∫

WPW |Bo(W |Bo)dW = I0[Bof(θ) + H ], and

H is the expected intensity of atmospheric haze which is assumed to be a

known constant (e.g. Beyer et al., 2003). The variable ζ is the number of

coherence cells in the intensity average (Goodman, 1985, chap. 6) which is

equal to the squared-mean-to-variance ratio, or Signal to Noise Ratio (SNR)

of W |Bo, defined as 〈W |Bo〉2/(〈W |Bo2〉− 〈W |Bo〉2). For example, ζ equals

the time-bandwidth product of the received field if W |Bo is obtained from

a finite-time average (Makris, 1995). Additionally, ζ can be interpreted as

the number of stationary speckles averaged over a finite spatial aperture in

the image plane or the number of stationary multi-look images averaged for

a particular scene (Arsenault and April, 1976; Makris, 1995).

The probability of observing K photoevents follows the conditional Pois-
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son distribution (Goodman, 1985, chap. 9)

PK|W,Bo(K|W, Bo) =
(KW,Bo)K

K!
e−KW,Bo (18)

where KW,Bo = βτAW . The proportionality constant β is given by β = η
hν ,

where h is Planck’s constant (6.626x10−34 Joule-s), ν is the mean optical

frequency of radiation, and η is the quantum efficiency that represents the

average number of photoevents produced by each incident photon (0 ≤ η ≤

1). From Eqs. 17 and 18, the probability of observing K photoevents then

follows the negative binomial distribution

PK|Bo(K|Bo) =
∫ ∞

−∞
PK|W,Bo(K|W, Bo)PW |Bo(W |Bo)dW

=
Γ(K + ζ)

Γ(K + 1)Γ(ζ)

[

1 +
ζ

KBo

]−K [

1 +
KBo

ζ

]−ζ

(19)

where KBo = βτAW Bo ≡ γ[Bof(θ)+H ], and we have defined for convenience

the proportionality constant γ

γ ≡ βτAI0 =
η

hν
τAI0 (20)

For ζ , 1, the Gamma distribution of Eq. 17 approximates a delta

function (Mandel, 1959), PW |Bo(W |Bo) = δ(W −W Bo), so that the negative

binomial distribution for K (Eq. 19) approaches a Poisson distribution. To

show this, let q = KBo/ζ . The first cumulant of the negative binomial

distribution for K conditional on Bo is given by λ1(K|Bo) = ζq, and the

rest by the recursion equation

λj+1(K|Bo) = q(q + 1)
dλj(K|Bo)

dq
, (21)

so that

λn(K|Bo) = ζ(q +
n∑

j=2

ajq
j) for n ≥ 2, (22)
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where the aj are constants. For thermal light at optical frequencies, and

for the common integration times of CCDs, ζ is very large, usually in the

order of 1010, while maximum values for KBo are typically much smaller,

around 104. For ζ , KBo, q tends to 0 and λn(K|Bo) ≈ ζq for all n, so

that the cumulants of K|Bo become equal to those of a Poisson distributed

random variable with mean ζq = KBo, which is random since Bo is a random

variable.

The total probability distribution for K is also approximately Gaussian

by virtue of the central limit theorem. To show this, we first calculate the cu-

mulants κn of the photocount K using the law of total cumulance (Brillinger,

1969),

κn(K) ≡ κ1(K1, . . . , Kn) =
∑

π

κ1(λ1(Kπ1|Bo), . . . , λ1(Kπj|Bo)) (23)

where the summation is defined over all possible partitions π of the set

{1, . . . , n} of indices. For each partition π, sub-blocks are denoted by π1, . . . , πj,

so that for example, if n = 3 and π = {2 indices, 1 index}, the sub-blocks

are π1 = {[1, 2], 3}, π2 = {[1, 3], 2}, and π3 = {[2, 3], 1}. We then define

K1 = K2 = . . . = Kn = K. Equation 23 reduces to the well known laws of

iterated expectations and total variance for n = 1, 2 (Bertsekas and Tsitsiklis,

2008). The cumulants for K are given by,

κ1(K) = 〈KBo〉, (24)

κ2(K) = 〈KBo〉 + var(KBo), (25)

...

κn(K) = 〈KBo〉 + bnvar(KBo) (26)

where the bn are constants and we have made use of κj(KBo) = 0 for all
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j ≥ 3, since Bo has been assumed to follow a Gaussian distribution with

mean Bo and variance σ2
Bo.

Defining a new random variable

U =
(K − K)

√
K

(
1 + Kσ2

Bo/Bo
2
)1/2

(27)

where K = 〈KBo〉 = γ[Bof(θ) + H ], the cumulant generating function of U

is given by

gU(φ) = ln 〈eφU〉

= −φ

√
K

(1 + Kσ2
Bo/Bo

2
)1/2

+ gK

(
φ√

K(1 + Kσ2
Bo/Bo

2
)1/2

)

,(28)

where gK(φ) is the cumulant generating function of K. The cumulants of U

are then given by

uj =
djgU(φ)

dφj

∣∣∣∣∣
φ=0

=
1

[√
K(1 + Kσ2

Bo/Bo
2
)1/2

]j



−K
j djφ

dφj

∣∣∣∣∣
φ=0

+ κj(K)



 ,(29)

so that

u1 = 0, (30)

u2 = 1, (31)

...

un =
K(1 + cnKσ2

Bo/Bo
2
)

[√
K(1 + Kσ2

Bo/Bo
2
)1/2

]n for n ≥ 2, (32)

where the cn are constants. For very large values of K, un approaches 0 for

n > 2, so that U and consequently K become Gaussian random variables.

The discrete probability density for K is then well approximated by the

continuous Gaussian probability distribution,

PK(K|θ) =
1√

2πσK(θ)
exp



−
1

2

[
K − K(θ)

σK(θ)

]2


 (33)
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where

K = γ[Bof(θ) + H ], (34)

σ2
K = K + K

2
σ2

Bo/Bo
2
+ σ2

R (35)

are the mean and variance of K respectively, σ2
R is an additive signal-independent

variance term due to CCD camera read noise, and we define σ2
haze ≡ γH as

the noise term due to the known atmospheric haze expected intensity H .

In order to determine appropriate noise levels and the scaling factor γ, we

consider as an example the HiRISE camera of the latest Mars Reconnaissance

Orbiter (MRO) mission (Bergstrom et al., 2004; McEwen et al., 2003), where

Bergstrom et al. (2004) specify read noise σR to be roughly 80 electrons r.m.s.,

and imply in Fig. 12 a γ ranging from roughly 20000 electrons for the blue-

green and NIR bands to 70000 electrons for the red (pan) band. The mean

photocount, K, is then on the order of 104 electrons.

A typical value for the contribution of atmospheric haze to the total

measured signal in images of Mars may be inferred from Table I of Bridges

and Herkenhoff (2002). Accounting for the gain of Mariner’s camera (Dunne,

1970), we find that the atmospheric haze component, σ2
haze, is typically on

the order of 2000 electrons, or roughly 10% of the mean signal expected

using the blue-green HiRISE band. For albedo variability, the mean Bo is

normalized to one and the standard deviation σBo is specified as 10% of the

mean following calculations presented by Bell et al. (2008) for typical Martian

surfaces. Albedo variability then results in a variance that is on the order of

106 electrons.

The integration time or shutter speed of the HiRISE camera is τ ≥ 76

µsec and the optical bandwidth is νB ≈ 1014 Hz or greater, depending on
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the exact band used. The value of ζ is then in the order of 1010, while K is

in the order of 104, so that the negative binomial distribution of Eq. 19 is

well approximated by the Gaussian distribution of Eq. 33. In this paper, we

consider CCD measurements in the blue-green and/or the NIR band.

B. Necessary Sample Sizes for an Unbiased, Minimum Variance

Estimate, and Asymptotic Expansions of Bias and Variance

Given the likelihood function PK(K|θ) for θ given the measurements

K1, K2, K3, . . . , Kn, the moments of the MLE estimate θ̂ can be expressed as

series of inverse powers of the sample size n (Naftali and Makris, 2001), pro-

vided that the required derivatives in an expansion of the likelihood function

exist (Shenton and Bowman, 1977). The MLE variance is then expressed as

var(θ̂, n) = var1(θ̂|θ, n) + var2(θ̂|θ, n) + Higher Order terms (36)

where varj(θ̂|θ, n) = varj(θ̂|θ, 1)/nj, so that

var(θ̂, n) =
var1(θ̂|θ, 1)

n
+

var2(θ̂|θ, 1)

n2
+ O

(
n−3

)
(37)

where O(n−3) represents integer powers n−3 and higher. The first term on

the right hand side, var1(θ̂|θ, 1)/n is the CRLB, the asymptotic value of the

variance when sample size n becomes large or uncertainty becomes small.

Similarly, the MLE bias can be expressed as

bias(θ̂, n) =
b1(θ̂|θ, 1)

n
+

b2(θ̂|θ, 1)

n2
+ O

(
n−3

)
(38)

To simplify notation, we let varj(θ̂|θ, 1) ≡ varj(θ̂|θ) and bj(θ̂|θ, 1) ≡ bj(θ̂|θ).
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The value of n necessary for the MLE variance to asymptotically attain

the CRLB is found by requiring the second-order variance to be negligible

compared to the first-order variance, so that

n ,
|var2(θ̂|θ)|
var1(θ̂|θ)

(39)

Similarly, the necessary value of n for θ̂ to become asymptotically unbiased is

found by requiring the first-order bias to be negligible compared to the true

value of the parameter

n ,
|b1(θ̂|θ)|

|θ|
(40)

Only for values of n satisfying these conditions is it possible for the variance

to be in the asymptotic regime where it is unbiased and continuously attains

the CRLB (Naftali and Makris, 2001; A. Thode et al., 2002; Zanolin et al.,

2004).

For the statistical model of Eq. 33

b1(θ̂|θ) = −
1

2
(i−2)[υ1,2 +

1

2
ν1ν2 + υ1,1ν1], (41)

var1(θ̂|θ) = i−1, (42)

var2(θ̂|θ) = (i−3)[2ν4
1 − 5υ1,2ν1 + 6υ1,1ν

2
1 −

1

2
ν1ν3

−υ1,1ν2 − υ1,3 − ν2
1ν2]

+(i−4)[
7

2
υ2

1,2 +
7

2
υ1,1ν

2
1ν2 + 7υ1,1υ1,2ν1

+
7

8
ν2

1ν2
2 +

7

2
υ1,2ν1ν2 −

11

2
υ2

1,1ν
2
1

−6υ1,1ν
4
1 − ν6

1 ] (43)

where

υa,b =
1

σ2
K

∂aK

∂θa

∂bK

∂θb
(44)
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νc =
1

σ2
K

∂cσ2
K

∂θc
(45)

and i is the Fisher information given by Eq. 8.
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Figure Captions

FIG. 1: Resolved surface element with slope θ to flat topography. The slope,

or tilt θ is the angle suspended between the z-axis and the surface normal,

measured counter-clockwise. All other angles are measured counter-clockwise

from the z-axis or the surface normal direction, as indicated by subscript z

or n respectively. The true incident angle is equal to the angle between

the z-axis and the incident direction, ιz, minus surface slope, θ, or ιn =

ιz − θ. Similarly, the true emission angle is equal to the angle between the

z-axis and the emission direction, εz, minus surface slope, θ, or εn = εz − θ.

Specular reflection occurs when εn = −ιn. Given known angles ιz and εz ,

photoclinometry can be used to obtain an estimate of the unknown surface

slope θ.

FIG. 2: Lambertian photometric function given constant albedo, Eq. 3 using

L = 0. (a) 3D representation of the value of Eq. 3 for L = 0 as a function of

surface slope θ, which is the parameter to be estimated, and incident angle

with respect to flat topography ιz. The emission angle εz is assumed to be

zero so that the satellite is nadir-looking. The black lines correspond to

lines of constant true incident angle, ιn = ιz − θ. The regions beyond the

|ιn| = 90◦ lines correspond to incidence on the ‘back’ of the surface patch,

so that nothing is reflected towards the receiver and I = 0. Superimposed

on the plot is the curve along which the derivative of I with respect to θ is

zero (white dashed line). Also shown is the line that corresponds to specular

reflection, εn = −ιn (white dot-dashed line). The plot can also be interpreted
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as a sheared and rotated version of the plot of I versus true incident and

emission angle, ιn and εn respectively. (b) Three cuts along constant values

of incident angle to flat topography, ιz , for the same photometric function.

Each curve is obtained by cutting along the corresponding white dotted line

in Fig. 2(a) from right to left.

FIG. 3: The same as Fig. 2 for the lunar photometric function given constant

albedo, Eq. 3 using L = 1.

FIG. 4: The same as Fig. 2 for the lunar-Lambert photometric function

given constant albedo, Eq. 3 using L = 0.55, which is a typical value when

modeling the reflectance of Martian terrain.

FIG. 5: Absolute value of the bias and Root Mean Square Error (RMSE)

(Eqs. 11-14) of the Maximum Likelihood Estimate (MLE) of surface slope

for the Lambertian photometric function of Fig. 2 given typical values for the

different sources of noise: (i) CCD camera read noise, σ2
R ≈ 6400 electrons,

(ii) CCD camera shot noise, K ≈ O(104) electrons, (iii) atmospheric haze,

σ2
haze ≈ 2000 electrons, and (iv) albedo variability, σBo = 0.1 × Bo (see

Appendix A). (a) Bias as a function of incident angle with respect to flat

topography ιz, and true surface slope θ. (b) RMSE as a function of ιz and

θ.

FIG. 6: The same as Fig. 5 for the lunar photometric function of Fig. 3.
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FIG. 7: The same as Fig. 5 for the lunar-Lambert photometric function of

Fig. 4.

FIG. 8: Necessary sample sizes to obtain an unbiased estimate of planetary

surface slope and for an unbiased estimate to attain the minimum possible

RMSE. The planetary surface reflectance is assumed to follow the Lambertian

photometric function of Fig. 2. (a) 10log10 of the necessary sample size for

an unbiased estimate θ̂ as a function of incidence angle to flat topography

ιz, and true surface slope θ computed using Eqs. 9 and 41. (b) 10log10 of

the necessary sample size for an unbiased estimate to attain the minimum

possible RMSE as a function of ιz and θ computed using Eqs. 10 and 42-43.

The white dashed line indicates the curve along which the derivative of the

photometric function with respect to the estimated parameter θ is zero and

the necessary sample sizes approach infinity.

FIG. 9: The same as Fig. 8 for a planetary surface that can be modeled using

the lunar photometric function of Fig. 3.

FIG. 10: The same as Fig. 8 for a planetary surface that can be modeled

using the lunar-Lambert photometric function of Fig. 4, where L = 0.55.

FIG. 11: Absolute value of the first-order bias and the square root of the

CRLB, Eqs. 41 and 42, respectively, of the Maximum Likelihood Estimate

(MLE) of surface slope for the lunar-Lambert photometric function. (a)
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First-order bias as a function of incident angle with respect to flat topography

ιz, and true surface slope θ. (b) Square root of the CRLB as a function of ιz

and θ. The white dashed line indicates the curve along which the derivative

of the photometric function with respect to the estimated parameter θ is zero

and the asymptotic biases and errors approach infinity.

FIG. 12: The same as Fig. 4 for an emission angle εz = 20 degrees. Again,

the regions beyond the |ιn| = 90◦ lines correspond to incidence on the ‘back’

of the surface patch, so that nothing is reflected towards the receiver and

I = 0. Note the axes are shifted compared to Fig. 4 to ensure the emission

direction never lies behind the surface patch.

FIG. 13: The same as Fig. 7 for an emission angle εz = 20 degrees.

FIG. 14: The same as Fig. 10 for an emission angle εz = 20 degrees.

FIG. 15: Absolute value of the bias (Eqs. 11 and 13) of the MLE of surface

slope for the lunar-Lambert photometric function, given typical values for the

different sources of noise: (i) CCD camera read noise, σ2
R ≈ 6400 electrons,

(ii) CCD camera shot noise, K ≈ O(104) electrons, (iii) atmospheric haze,

σ2
haze ≈ 2000 electrons, and (iv) albedo variability, σBo = 0.1 × Bo (see

Appendix A). The emission angle is again assumed to be zero, and L = 0.55.

The total bias has been shown in Fig. 7(a).
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FIG. 16: RMSE (Eqs.12 and 13-14) of the MLE of surface slope for the lunar-

Lambert photometric function, given typical values for the different sources of

noise: (i) CCD camera read noise, σ2
R ≈ 6400 electrons, (ii) CCD camera shot

noise, K ≈ O(104) electrons, (iii) atmospheric haze, σ2
haze ≈ 2000 electrons,

and (iv) albedo variability, σBo = 0.1 × Bo (see Appendix A). The emission

angle is again assumed to be zero, and L = 0.55. The total RMSE has been

shown in Fig. 7(b).

FIG. 17: Horizontal cuts along ιz = 12◦ in Figs. 7 and 15-16. The bias and

error due to small-scale albedo variability such that σBo = 0.005 × Bo, as

well as the total bias and error in this case are also shown.
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