
No Code: Null Programs

Nick Montfort

December 2013 TROPE–13–03

Abstract
To continue the productive discussion of uninscribed artworks in Craig Dworkin’s No
Medium, this report discusses, in detail, those computer programs that have no code,
and are thus empty or null. Several specific examples that have been offered in
different contexts (the demoscene, obfuscated coding, a programming challenge, etc.)
are analyzed. The concept of a null program is discussed with reference to null strings
and files. This limit case of computing shows that both technical and cultural means of
analysis are important to a complete understanding of programs – even in the unusual
case that they lack code.

A technical report from

The Trope Tank
Massachusetts Institute of Technology
77 Massachusetts Ave, 14N-233
Cambridge, MA 02139 USA
http://trope-tank.mit.edu

© 2013 Nick Montfort
This work is licensed under the Creative Commons

Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/4.0/
or send a letter to Creative Commons, 444 Castro Street,

Suite 900, Mountain View, California, 94041, USA.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78052981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Craig Dworkin’s book No Medium contributes to our understanding of many forms of
art, and to the concept of art itself, by surveying a wide range of uninscribed works,
artworks in several different categories that are blank (such as Tom Friedman’s 1,000
Hours of Staring), erased (such as Robert Rauchenberg’s Erased de Kooning Drawing), clear
(such as almost all of Nam June Paik’s Zen for Film), and silent (such as John Cage’s 4' 33").

An argument that Dworkin presents (one that he references in the book’s title) is that
such works, although they may be made of materials, do not actually have a medium
because these materials are not in any way inscribed. A medium conveys or transmits,
but these are materials without anything to convey or transmit. 1,000 Hours of Staring, a
blank square of paper, is in the drawing collection of the MoMA: Why the drawing
collection? Nothing is drawn upon it. It is culturally, curatorially, and institutionally
treated like a drawing, but it consists of nothing but a drawing material, paper.
Dworkin explains the conundrum:

To ask the question concretely: Was the paper you are holding already a
medium before it was brought together with the ink? Any object, it
seems, could conceivably be inscribed in some way, and so the mere
potential for inscription expands the notion of “medium” so broadly
that it is no longer precise enough to designate or distinguish in a useful
way. But for some prior inscription to be the defining factor of media
raises other questions. If paper, for instance, is one of the media used
for “recording or reproducing” my text here, is it still a medium in
Friedman’s 1,000 Hours of Staring, when nothing has been recorded or
reproduced? If not, we are left with a situation in which the material
specifics of the paper ... are integral to the meaning of the work, but
where the specific material (the sheet of paper) is not the work’s
medium. And if, on the contrary, we do recognize that blank sheet of
paper as a medium, or if we define media on the basis of inscriptibility,
we are faced with the question of how to know when mere materials
have been identifiable media. A certain sense of medium is caught
between impossible chronologies. (Dworkin 2013, p. 29)

The study undertaken in No Medium throws into even sharper relief what was already
known and recognized generally, but sometimes not as acutely as it should be: that
artworks cannot be meaningfully understood based on their content or inscription
alone. Art can, however, be considered, analyzed, and discussed even if it has no
content, because of important aspects of presentation, reception, and other sorts of
context. In this discussion, I am to show that the same is true when it comes to
computation: The use and cultural meaning of computer programs can be assessed
even when they have no code. That means that looking beyond the code is essential in
this case, and it suggests that it is important in others. This does not mean, however,
that a discussion of this sort can be developed without technical awareness and
analysis.

This report aims to extend the study of works with no medium to the digital, and
specifically to the computational. Computer programs generally have code as their
medium; this report looks at computer programs that are exceptional in that they have

3

no code. These have been called empty programs or null programs. The discussion here is
of strings, sets, files, and programs that are null in the sense of being empty.

This report is meant to be a extension of the more detailed and wider-ranging book No
Medium and an appropriate next step after the analysis of a one-line BASIC program I
conducted with nine other authors in our book 10 PRINT CHR$(205.5+RND(1)); : GOTO 10.
After considering a specific program as an example of those that have only one line,
and yet are meaningful, why not go on to analyze those of zero lines? Null programs
are also simpler and even more trivial than programs such as the utility yes (Montfort
2012), and might have a similar potenial to yield insights about programming.

The Null String
A common data type in computing is the string, a sequence of characters that is often
used to represent texts of different sorts. The null string is that string with zero
characters in it. Generally strings are distinguished from one another only by their
contents, by the data they encode. The string "a" is equal to the string "a" regardless
of where it appears in a program, what variable it is assigned to, and so on. There are as
many strings of length one as there are characters, and if there are n characters there
are n × n ways to assemble a string of length two. On the other hand, there is only one
string of length zero, because there is only one way to assemble the contents (nothing)
into a string of zero length. Hence, it makes sense to use the phrase the null string,
including the definite article.

Strings and other sequences, as well as sets, can be empty, lacking any elements. This is
not true of every data type. There is nothing corresponding to “the null integer,”
although 0 is perfectly fine as a value for an integer. Only when zero or more elements
are allowed can a particular value be empty.

In certain programming languages there is also a special value called null or NULL
which is used to indicate that a pointer does not refer to a valid object. This is a related
use of the term “null,” but not the same sense. The null programs we are considering
here are, like a null string or a null set, simply empty; they lack any code.

Although the computer science definition of strings provided here allows for empty
ones, in practice, bureaucracies almost always enforce that either an entire field is
optional (one may or may not have a middle name) or that the strings used to fill them
are not null. Try to obtain a vanity license place that is blank and you will see this in
action. In Illinois, for instance, the information on such plates specified that “Vanity
plates contain up to 3 numbers or 1 to 7 letters only.” In Pennsylvania, regulations state
that “A personalized registration plate may contain a combination of up to seven
letters and numbers.” Both regulations, taken at face value, allow for a person to be
issued a blank license plate. So, in either of these states, or any other, apply for a plate
that contains nothing but 0 numbers (and thus is blank) and see what the bureaucracy
will do. One’s choice of letters and numbers is supposedly free, but, on the other hand,
the form that indicates this choice must be filled out to be accepted and processed.

Based on the existence of a unique null string, it is reasonable to guess that it would be
sensible to refer to the null program as well. However, in the category of music and

4

sound work, there are different silent pieces; there are even different pieces by the
same composer, John Cage, which can result in silence of the same duration. The
famous 4' 33" is specified to be silent and four minutes and thirty-three seconds long,
while Cage’s 0' 00" (1962) can be of any duration, including 4:33, and can involve the
performer doing anything, including remaining silent. Cage’s Tacet (1960) is for one or
more instrumentalists and can last for any amount of time, too, so a performance of
four minutes and thirty-three seconds of silence could be of any one of these three
pieces (Dworkin 2013, p. 145). For somewhat analogous reasons, there are also different
null programs, different programs with no code.

Zero-Byte Files
Programs are most typically (although not always) stored on a computer as files; files,
too, can be of zero or more bytes. Without undertaking an exhaustive examination of
zero-byte files, it is important to note that there can be many different zero-byte files,
and that such files are formally valid for certain file types but not for others. While
zero-length strings are all the same and other sequences of length zero are all the same,
this is not true for the shortest possible files.

Zero-byte files are written to disk for several reasons. In some cases, a program opens a
file for writing but then writes nothing. In some cases, this is due to an error, but in
other cases, nothing (the absence of any data) may be the correct file contents and may
be meaningful. For instance, a program may start a log file to monitor some system
activity, such as when a job is sent to the printer. If there have not yet been any jobs
sent to the printer, it would be appropriate for the log file to be empty. Inspecting this
zero-byte file could provide useful information: Nothing has been printed since logging
began.

In other cases, a file is intentionally placed in a directory to serve as a signal of some
sort. It might be a lock, indicating that another file is currently being accessed. (If all
processes attempt to create this lock file when starting access, and if they only proceed
if the file is not already present and the file can be created, it’s possible to guarantee
that only one process has access at a time.) Such a file can signal a number of other
things, including that the installation of some software is complete or that a file
transfer has started. Sometimes a lock file can get left over by mistake, but these files,
too, are usually useful.

In Unix-like systems such as GNU/Linux and Mac OS X, one can create a zero-byte file
easily using the command touch and the file name. This command can be used, for
instance, to test whether one has write access to a particular directory.

Unlike strings, files are not defined by their contents alone. They also have, for
instance, a file name and a location in the file system, a creation time, a modification
time, and information about permissions. Some file systems associate other metadata
with files.

For all of these reasons, zero-byte files are not meaningless and are not worthless. It is
true that they occupy space — the metadata must be stored, so they do occupy room on
disk; along these lines, there is generally a minimum block size that even zero-byte files

5

will occupy. Yes, certain zero-byte files can be removed without harm, but it is a
mistake to try to delete them wholesale from one’s system. Backup programs are
designed to back up these files and mirroring and synchronization programs are
designed to transmit them to replicas and keep them in sync. Such programs
sometimes need to be specially coded to handle the case of zero-byte files, since a
program cannot rely on any contents being transmitted as these files are sent. For
these reasons, it is generally important to test on zero-byte files when developing
backup and synchronization programs.

The source code to programs in most languages is represented in a plain text file,
usually in ASCII, although other character sets are supported by some languages. Text
files do not store any additional format information as file data, that is, as part of their
contents, which means it is legitimate to have a text file that is zero bytes in length.
The same cannot be said for other formats. Image and sound formats are required to
have headers if they are valid files, even if they contain as little data as is possible. For
instance, files of the type GIF (Graphics Interchange Format), version 89a, are specified
to begin with a header containing the six bytes “GIF89a” and to have other required
blocks, such as the logical screen descriptor which specifies the image width and
height.

Some executable computer program formats do not allow for zero-byte files. The
Commodore 64’s PRG format is a simple one, but it begins with two bytes that indicate
where the rest of the file is to loaded into memory. A PRG file cannot be blank, as it
must specify the destination location in memory. One could argue that a two-byte PRG
has no code, since it consists only of the address to which the (empty) program, the
lack of code, should be loaded. That may be, but the corresponding file is certainly not a
zero-byte file.

These aspects of files are important to the current discussion because the null
programs discussed in this report are not only null programs, but also zero-byte files.
In the cases considered here, null programs have file system metadata, exist in the
context of a platform, and have other information associated with them in the form of
additional metadata and/or paratexts.

zerobytes: The Shortest Demo
The demoscene is a community of practice, most active in Northern Europe, that
produces computer programs (demos) to computationally generate audiovisual
spectacles. These demos are deterministic, in that they generate the same sort of
“music video” each time. Unlike games, they are almost always non-interactive —
accepting no input from users during execution. There are other demoscene activities,
such as the creation of graphics and music and even “wild” entries that take other
forms, but the core activity is developing demos, including some which are of very
limited file size. The demoscene emerged from the practice of cracking (or removing
the copy protection from) software, which allowed programmers to add text, title
screens, and eventually small audiovisual programs to the beginning of disks that had
been altered in this way.

One common restriction imposed on demos is the 64 KB limit, which makes producing

6

Windows demos a challenge and inclines programmers to generate 3D objects and 2D
patterns from parameters rather than including elaborate 3D models or large bitmaps.
Such demos, and ones that are smaller, are called “intros” in reference to the graphical
introductions that were added to cracked software. More restrictive still is the 4 KB
demo or intro, which, when created for Windows with OpenGL, can still manage to
produce stunning landscape imagery, as demonstrated by the 2009 demo elevated by the
groups rgba and TBC. This demo, in only about a page of machine language code, shows
a simulated landscape, virtual camera moving over it, with a song playing and club-like
lights kicking in at one point. There are smaller demos/intros for different platforms,
probing the lower limits of program size.

Demos are typically shown at demoparties, where the attendees vote on them.
Typically they are uploaded to the pouet.net site, where they can be voted up or down
by individuals online.

Since the demoscene is concerned with how small programs can be, one might wish to
know what the smallest demo is; it would be impressive to produce such a demo. A
program that produces an audiovisual display of some sort is a requirement, in this
context; a program that does nothing visible or audible, or that simply outputs a
message such as “Hello world,” would not obviously qualify as a demo.

In September 2005, optimus uploaded a demo called zerobytes to pouet.net. As suggested
by the title, this is a zero-byte demo, declared to be for Windows. When one runs it, or
attempts to run it, it produces the following audiovisual effect:

Figure 1. zerobytes “executing” in Windows.

The zipfile that optimus uploaded contains an assembly-language source code file
zerobytes.ASM, as if to show that it is an assembled machine-language program. That
file simply contains “org 100h,” indicating that any further instructions — of which
there are none — will be loaded at the address 100h. It also contains zerobytes.COM, the
executable, which has no data, and zerobytes.txt, a file with no data.

Any invalid executable that one attempts to execute in Windows will produce a dialog
box of this sort. The shortest such invalid file is an empty one. So, while the source code
in this case appears to be valid and to have been assembled into the final demo, the
demo that resulted is not (according to Windows) a valid application.

As of this writing, zerobytes is has received as of late 2013 slightly more positive ratings
(thumbs up) than negative ratings (thumbs down) — 58 vs. 56. Code quality and
impressive programming feats are central concerns for this community. But, those in
the demoscene also appreciate humor and an awareness of the specifics of different
computational platforms, some of things they may have detected in this code-free

7

demo. Perhaps in the demoscene, where overstepping the stated boundaries is
valorized, people are more willing to admit that if it acts like a program, a message
claiming that it isn’t a program should be ignored.

smr.c/smr: The Shortest Quine
The term quine as it has come to be used in computing was coined by Douglas
Hofstadter; it refers to programs that, when executed, produce their own code as
output. The term is a reference to Willard Quine, whose discussion of self-reference was
significant in 20th century philosophy. The following is a short quine in Python that
was written by Greg Stein:

s = 's = %r\nprint s %% s'
print s % s

Quines are seldom straightforward. In this case, the print statement is what causes
output to be displayed at all. Having the statement print s % s, rather than just
print s, formats the output string, wrapping it in s = ' on the left and ' on the
right, which is part of what allowed the output to match the original code exactly.
There is much more to say about how this works and why it was composed as it was,
but a full investigation of this quine could begin in this way.

Since programmers are interested in the cleverness of quines, the question has
naturally arisen as to what the shortest quine is. It would be interesting to know what
the shortest one is in a particular programming language and which of the
general-purpose languages had the shortest quine. It is possible, of course, to define a
particular programming language that is capable of general computation but in which
the program ‘Q’ has the effect of printing the letter ‘Q’. In this case the existence of this
quine would not be so clever, because it was simply programmed into the language. It is
worth nothing that in the esoteric language Homespring, designed to amuse fellow
programmers, a null program produces the following output: “In Homespring, the null
program is not a quine.” (Neeman and Binder 2005, p. 4) It’s generally of more interest
to programmers to ask about the shortest quine in an existing language that wasn’t
made for quining, one in which quines are built out of general-purpose code.

A classic programming language for which this question would certainly be interesting
is C, the language of the Unix operating system. C is a compiled language, so the
shortest program would be a text file that compiles to an executable that, when run,
produces the text of the program.

Using a liberal definition of “compile,” Szymon Rusinkiewicz submitted a null source
code file and instructions for the program make (used to compile C programs) to the
1994 IOCCC (International Obfuscated C Code Contest). The idea encoded in the
makefile was for make to simply copy the null program so that it became the
“executable,” setting this file’s permissions so that it could be run. With this done, the
blank program could be made into a blank executable that, when run, would produce ...
nothing.

While zerobytes fetaures valid source code and an executable that is questionable at
best, this quine is the other way around: The product seems to be a valid executable,
and runs without an error message being produced, but the source code, smr.c, will not

8

compile on all systems and a work-around is required in the makefile.

This program won the “Worst Abuse of the Rules” award, which seems to acknowledge
that it is a program as the rules defined one, although this status is problematic. The
judges’ comments were as follows:

Nearly every year, one or more people would submit what they claimed was the
world’s smallest self reproducing program. While the sizes of these submissions
varied, a quick glance would reveal that they were too big, until this entry came
along.

While strictly speaking, smr.c is not a valid C program, it is not an invalid C
program either! Some C compilers will compile an empty file into a program
that does nothing. But even if your compiler can’t, the build instructions
supplied with this entry will produce an executable file. On most systems, the
stdout from the executable will exactly match original source.

In the future, the contest rules will specify a minimum size that is one character
larger than this entry, forever eliminating this sort of program from contest.
After all, how many variations can one make on this entry? :-)

The final smiley, of course, refers to the fact that (neglecting metadata such as the file
name) there is only one C program of length zero. Variations, from this perspective, are
not really possible.

What is a Computer Program?
In their famous book on programming, Abelson and Sussman characterize programs in
terms of computational processes, noting that “The programs we use to conjure
processes are like a sorcerer’s spells.” (Abelson, Sussman, and Sussman 1996, p. 1) Given
this wizardly definition, could the spell be — nothing?
The strange limit case of no code — an empty file — does raise the question of what
exactly a computer program is as we look to the lower limit of code. It also asks
whether an empty file can just “accidentally” be a computer program, or whether such
a code-free program falls into theoretical definitions of computer programs that
declare it valid or invalid.

According to the U.S. Copyright Act as amended in 1980, and as declared on Circular 61
from the United States Copyright Office, “A ‘computer program’ is a set of statements
or instructions to be used directly or indirectly in a computer in order to bring about a
certain result.”

This establishes the legal definition of a computer program, although it is a problematic
definition from a science or computer science standpoint. For one thing, a “set” is,
mathematically, an unordered collection of entities, each of which can occur at most
once. {Wallet, Keys} is the same set as {Keys, Wallet}; it does not matter in what order the
elements are written down. In a machine-language computer program (to restrict our
consideration to these programs at this time), the order of the instructions is of course
highly significant. Also, an instruction may occur more than once and this may be
significant; while multisets allow for multiple instances of an element, ordinary sets do
not. It would be better to say that programs, at least ones of this sort, are “sequences”
rather than “sets.”

9

In this view of programs as “sequences,” however, it is still reasonable to think that a
null program can exist. The same would actually be true even if we did view programs
as sets; A set can be empty and a sequence can be of length zero. So, an empty file is,
intuitively at least, a computer program according to U. S. law, as long as it exists “in
order to bring about a certain result.” This is a view connected to an imperative concept
of programming, in which programs consist of instructions. This idea corresponds well
to programming in assembly language and in C. It is not the only view, however.
Without attempting a comprehensive survey of programming paradigms, it is useful to
discuss some of the most well-known and influential ones.

Object-oriented programming developed from the imperative model and defined
particular ways in which data and code were to be encapsulated together. This
paradigm still involves defining a flow of control and particular instructions, as does
imperative programming. In “pure” object-oriented languages, everything is
implemented in every way as an object, even pieces of data such as integers or
characters. Other languages that support this type of programming, such as Python and
Java, have certain primitive data types that are not implemented in every way as
objects.

In the abstract, it is not clear that OOP systems allow null programs. In Featherweight
Java, proposed as a minimal core calculus that models the type system of Java, “a
program consists of a collection of class definitions plus a term to be evaluated,
corresponding to the body of the main method in full Java.” (Pierce 2002, p. 249) A null
program would be allowed, then, by this theoretical definition of an abstract version of
Java, if the collection of class definitions is allowed to be empty and the term can be
empty as well.

There is also the functional view of programs in which they transform inputs to
outputs, a view usually taken by programmers who use Lisp, Haskell, and other
languages that support a functional idiom. In this case particular instructions and the
order in which they are executed are not important to defining programs. A Lisp
program, for instance, consists of a sequence of expressions, specifically symbolic
expressions or s-expressions, each of which produces a value when evaluated.

Another programming idiom is that of logic programming, in which the code defines
facts and rules. Prolog was developed to support this type of programming. The
execution of a Prolog program corresponds to evaluating a particular query to
determine its value. Because logic programming involves declaring facts and rules
rather than issuing commands or instructions, it is one of several types of declarative
programming.

In languages where a (nonempty) query is needed, or where a “term to be evaluated”
that is nonempty is needed, or where there must be at least one expression to be
evaluated, a program cannot be empty. But if we consider that the query (and facts and
rules) can be nothing, that the term (and the collection of class definitions) can be
empty, and that there can be any number of expressions, including zero, then null
programs can be admitted without any trouble. In theoretical definitions of computer
programs, whether the definition makes it clear that null programs are allowed or not
is, at least, one test of how complete and formal the definition of a program is.

10

There is also a practical consequence: If an empty file does meet the formal definition
of a computer program, the compiler or interpreter should process it successfully. If it
does not, the compiler or interpreter should produce an appropriate error message.

file.wc: A “Program” (or not) in wc
A somewhat quine-like programming challenge was presented on StackExchange in
2011: “write a program to print the sum of the ASCII codes of the characters of the
program itself ... Program to print the lowest number wins.” One user responded with a
file that worked with the GNU word count utility, wc. With the -c argument this
program prints the number of characters in a file. If run on an empty file, wc -c
file.wc would print 0. Since there are no characters in an empty file, and thus no
ASCII codes, it seems evident that wc supplies the correct answer in this case.

This “program” is an interesting idea. The main problem is not the questionable
validity of the source code, as with the quine, or the questionable status of the
executable, as with the demo. It is that wc is not a programming language, but a utility
that counts characters, words, and lines. wc is neither designed for nor capable of
general-purpose computation. There is no view of programming in which the empty
file, having its characters counted, is the limit case of a program.

One could further argue that the specification included the following prohibition: “You
are not allowed to open any file ...” and yet wc clearly opens the file specified. If it were
running it as a program, that would be allowed, but the file here is opened not for the
purpose of executing it but for reading it and reporting on it. The post about this
“program” earned a check-mark on the thread to which it was submitted, but what this
contribution illustrates most clearly is that not every zero-byte file can qualify as a
program, even when people would like such a file to be considered as one.

Null Programs across Languages
So far, there has been no clear case of a null program that is unequivocally accepted as
a program. The first item we considered is not a valid application; the second was
judged to be an abuse of the rules of the programming contest, and the last instance
doesn’t involve executing any program except the utility wc, which then just counts
the characters in a file rather than treating that file like a program. It seems that the
first two of these three were accepted, at least in part and in good humor, as computer
programs by the communities to which they were offered. However, it’s not necessary
to establish this firmly to show that null programs exist. There are dozens of others
online.

On the Rosetta Code wiki, contributors offer programs or code snippets in many
languages, in response to certain tasks. All of the code on a particular page is supposed
to do the same thing, allowing visitors to the site to see how the same tasks are
accomplished in different programming languages. On one of these pages, “the goal is
to create the simplest possible program that is still considered ‘correct.’”

More than 150 programming languages are represented on this page, many of them by
the null program. In some cases, a class must be defined or a keyword such as end (in
SNOBOL4, for example) is required. The exercise of writing the shortest possible
program in a language may not seem to require a profound engagement with

11

computing, but it can expose what is required of all programs in that language.

Practically speaking, if the language of interest is contemporary and freely available, it
is easy to try to run an empty file in that environment and see what will run and what
won’t. In Python, Ruby, Common Lisp, and shell scripting environments, a null file was
seen to work perfectly — doing nothing, causing no error. Compiling an empty file is
possible in Java, but trying to run it produces a message of the form “Error: Could not
find or load main class ...” because the filename must correspond to a class.

The Abundance of Null Programs
The IOCCC judges asked of the zero-byte entry that they received, “After all, how many
variations can one make on this entry? :-)” The general answer about programs, beyond
the IOCCC, is, actually, very very many. Although most of the discussion was devoted to
two “named” zero-byte programs — a demo presented with the demoscene and a C
program offered for the IOCCC — we also found an amusing message printed by a null
Homespring program and dozens of other null programs documented online. These
certainly suffice to show that when all contexts are considered, there is indeed more
than one null program.

Consider how this conclusion was arrived at: In the most abstract mathematical realm,
we saw that there was only one null string. The judges of the IOCCC chuckled at the
possibility that there could be more than one null program submitted to their contest.
Because of how this coding contest is specified, they may have been right to do so.
However, we find that there are many zero-byte programs for different platforms, with
different names, intended to be executed in different ways, and for the consideration of
different communities. Some may be offered as demos and quines; why not others as
answers to homework assignments or as digital media artworks? There are technical
reasons that allow more than one zero-byte program to exist, but those are only part of
the story.

If the same zero-byte files is used as a program in many different contexts, it is true
that is might be considered a single null program that has been put to various use.
Those who seek to write a single text that is valid program in many programming
languages (a practice called polyglot programming, and introduced well in Wikipedia)
seem to think of their text, which works in different programming langauge contexts,
as “a computer program.” So, if one takes a single null file and tries to make it work as a
program in various ways, one might be testing a single null program. But null programs
are not all composed in this way; they are not all considered as possible programs that
might be compiled, interpreted, or executed by running the same file. And pratically
speaking, in terms of how programs are received and discussed, a null program devised
as a quine is not the same null program devised as a demo, and so on.

To show that there can be many null programs, it was necessary to join technical
analysis (of strings, sequences, sets, imperative programs that are sequences of
instructions, different platforms, different programming paradigms, the definition of
and means of storing metadata, and so on) with cultural inquiry (based directly on that
done by Craig Dworkin in No Medium, and including how three pieces can result in
identical silent performances, how paratexts and cultural contexts operate, how
communities of practice factor into the creation and reception of artworks, and so on).

12

Even when a program has no content, literally no code at all, there are aspects of it that
remain to be understood. Scholars who eschew the technical aspects of programs,
ignoring metadata and the equivalence of null strings, will find it impossible to explain
the meaning of such null programs (and other programs). Computer scientists who
seek to explain real, observed null programs (such as zerobytes and smr) in purely
abstract terms, without referring to culture and communities of practice with their
diverse values, will also never succeed at a complete explanation of null programs; the
same can be said for non-null programs that also have these important aspects.

The programs considered in this report are, by any code-based definition, the
absolutely simplest of computer programs. Some of them were devised as jokes, but
other null programs and null files have clear uses. Their lack of code shows them to be
degenerate programs, absolutely trivial ones. Even this simplest example of
computation, then, demands both technical and cultural engagement. If both types are
analysis are needed when there is no code to consider, it seems that those studying
computational media more generally should definitely continue to explore and learn in
both realms.

Works Cited
Abelson, Harold and Gerald Jay Sussman with Julie Sussman. Structure and Interpretation

of Computer Programs 2nd Edition. MIT Press: Cambridge, Mass. and London. 1996.
Alexandru. “Write a program to print the sum of the ascii codes of the program.” On

“Programming Puzzles & Code Golf,” StackExchange. June 21, 2011, 17:33. Thread last
updated May 25, 2012 at 23:08.
<http://codegolf.stackexchange.com/questions/2926/write-a-program-to-print-the
-sum-of-the-ascii-codes-of-the-program/2946>

Dworkin, Craig. No Medium. MIT Press: Cambridge, Mass. and London. 2013.
Montfort, Nick. “The Trivial Program ‘yes.’” Technical Report, The Trope Tank, MIT.

TROPE-12-01. January 2012.
Montfort, Nick, Patsy Baudoin, John Bell, Ian Bogost, Jeremy Douglass, Mark C. Marino,

Michael Mateas, Casey Reas, Mark Sample, and Noah Vawter. 10 PRINT
CHR$(205.5+RND(1)); : GOTO 10. MIT Press: Cambridge, Mass. and London. 2013.

Neeman, Joe and Jeff Binder. “Homespring Proposed Language Standard.” November
24, 2005.
<http://bunny.xeny.net/linked/Homespring-Proposed-Language-Standard.pdf>

optimus. zerobytes. On Pouet.net. September 2005. <http://www.pouet.net/prod.php?
which=18860>

Pierce, Benjamin C. Types and Programming Languages. MIT Press: Cambridge, Mass. and
London. 2002.

Rosetta Code. [Wiki.] “Empty Program.” Revision as of 18:29, 13 November 2013.
<http://rosettacode.org/wiki/Empty_program>

Rusinkiewicz, Szymon. smr.c. 1994 IOCCC entry.
<http://www0.us.ioccc.org/1994/smr.hint>

United States Copyright Office. Circular 61: Copyright Registration for Computer Programs.
Reviewed August 2011. <http://www.copyright.gov/circs/circ61.pdf>

Wikipedia. “Polyglot (computing).” Revision as of 07:37, 31 October 2013.
<https://en.wikipedia.org/wiki/Polyglot_%28computing%29>

	Abstract
	The Null String
	Zero-Byte Files
	zerobytes: The Shortest Demo
	smr.c/smr: The Shortest Quine
	What is a Computer Program?
	file.wc: A “Program” (or not) in wc
	Null Programs across Languages
	The Abundance of Null Programs
	Works Cited

