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1 Introduction

We model and analyze the use of business share (or volume) to motivate performance improvements

from critical suppliers. Throughout the last few decades, many companies have reduced the number

of suppliers they use, and focused on improving the quality of the relationships they have with those

remaining (Giunipero, 1990). In consumer electronics, information technology, and other industries,

dual-sourcing (or multi-sourcing from a few suppliers) has become a common practice. For example,

Apple Inc. often sources critical parts from two suppliers: Solid State Drives for MacBook Air from

Toshiba and Samsung (O’Grady, 2011); DRAM for iPhone 4S from Samsung and Elpida (Shimpi

and Klug, 2011); and assembly manufacturing for iPhone 4S from Foxconn and Pegatron (Whitney,

2012). Supply base reduction allows a firm to focus on long-term ties with suppliers but may

potentially reduce the power of the buying firm. How can the manufacturer prevent a supplier

from getting “too comfortable” to improve? Krause et al. (2000) surveyed 527 purchasing executives

and found that supplier assessment and supplier incentives are the two most important enablers of

supplier development efforts. The incentives identified in their research are (1) promise of higher

order volume for current business, and (2) promise of preferred status for future business. That

is, performance-based business share allocation is used to drive competition among suppliers and

keep the suppliers on their toes. In a Japanese vertical, Keiretsu-style supply chain, a lead firm

often multi-sources to a few suppliers and uses business share incentives to drive supplier efficiency

improvements (Tezuka, 1997). A supplier that fails to meet the competitive standard over some

extended period of time will lose business share and its preferred status.

In this paper, we focus on the incentive issues arised when a manufacturer cannot directly

observe or verify its suppliers’ effort decisions that affect the delivered value to the manufacturer.

For example, in each contract period, a supplier may boost its quality-control effort to reduce the

defect rate, optimize the equipment maintenance schedule to decrease machine down time, or assign

the most effective account manager to manage the production and delivery for this manufacturer.

The level of these efforts is not easily verifiable by the manufacturer, but can affect the supplier’s

performance and thus the delivered value to the manufacturer greatly. We explore via a principal-

agent model how a manufacturer can induce the desired supplier behavior through business share

allocation based on supplier performance. We examine this in the context of a cost-plus contract

in which the transfer price between each supplier and the manufacturer is the unit cost of the

component plus a margin.

We make both technical and managerial contributions to the supply chain management and
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contract design literature. On the technical side, we propose a novel principal-agent model for

performance-based supplier incentive schemes in a dual-sourced supply chain. Our model is an

(infinitely) repeated moral hazard model with imperfect monitoring, which is known for its theoret-

ical challenge: “Generally speaking, the design of an optimal compensation scheme in the dynamic

principal-agent context is considered an intractable problem. In fact, even in the simpler repeated

principal-agent setting, the analysis of optimal schemes is formidable and involves complex and

subtle economic reasoning” (Plambeck and Zenios, 2000). We are among the very few to tackle

a two-agent repeated moral hazard model. We characterize the optimal contract through a novel

fixed-point analysis. Extending the dynamic programming approach of Spear and Srivastava (1987)

for a single-agent model, we formulate the two-agent problem in a recursive fashion and construct

the fixed point (function) directly, which allows us to obtain interesting structural results.

Managerially, our study provides theoretical explanations to popular business practices. In the

study by Giunipero (1990), 46% of the firms studied use formal quantitative rating systems to mon-

itor and motivate suppliers. Empirical research has documented many instances of rating/scoring

systems for suppliers. For example, Nike regularly rates its subcontractors for environmental and

labor performance (Sabel et al., 2000). High scorers often garner more lucrative orders and low scor-

ers risk losing contracts. Intel tracks a supplier’s cost, availability, service, support responsiveness

and quality, and rewards suppliers who have the best ratings with more business (Datta, 2004). De-

spite the apparent prevalence in practice, there are no published theoretical results addressing these

widely used supplier management practices. Our results fill this gap and explain the relationship

between a quantitative supplier assessment system and the manufacturer’s decisions on suppliers’

business shares.

A central managerial finding in this paper relates to the longitudinal behaviors of the supply

chain under the optimal contract. In our model, the state of the system is given by the vector

of the two suppliers’ ratings (quantified as their sustainable continuation values, or values-to-go).

Under the optimal contract, three types of states emerge. (i) A set of “trapping” states in which

the suppliers choose low effort forever. Each trapping state represents a “business-as-usual” scenario

with a state-dependent but fixed volume allocation for all future periods, which is reached after both

or at least one supplier over-perform for some extended time. Since each supplier prefers a trapping

state that yields a higher volume for itself, this creates incentive for suppliers to continually exert

high effort in order to influence the direction of the state transition. (ii) A “recurrent” class of states,

in which suppliers engage in a tournament-like competition and both choose high effort forever in

an effort to win a preferential status for future business. This represents an ideal situation for the
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manufacturer but a punishing situation for the suppliers, and is usually reached after both suppliers

repeatedly under-perform. (iii) “Transient” states, from which the system eventually evolves into

either a business-as-usual scenario or a tournament competition situation. Therefore, cases (i) and

(ii) form the long-run incentive drivers, as the “carrot” or “stick”, for the suppliers to work hard.

The rest of the paper is organized as follows: Section 2 reviews the relevant literature in eco-

nomics and operations. Section 3 provides the problem description and assumptions. We present

the solution of the history-dependent dynamic contract problem in Section 4. In Section 5, we

further explore properties of the optimal contract numerically. Section 6 discusses extensions of the

basic model and Section 7 concludes. The proofs of the results are given in Appendix A, and more

details of the extensions are given in Appendix B.

2 Related Literature

Moral Hazard (Hidden Action). In this paper, we consider an incentive problem with moral

hazard where a manufacturer (the buyer) does not directly observe its suppliers’ effort decisions

and needs to design incentive mechanisms to induce desired supplier behavior. Single-period moral

hazard problems have been extensively studied in economics; see Laffont and Martimort (2002),

Bolton and Dewatripont (2005), and references therein. Moral hazard problems have frequently

emerged in operations management (supply chain management in particular) in recent years, in-

volving various operational and managerial decisions across the supply chain, such as managers’

manufacturing and marketing efforts, suppliers’ capacity investment and cost reduction decisions,

manufacturers’ quality improvement efforts, and buyer’s processing and testing efforts; we refer the

reader to Porteus and Whang (1991), Baiman et al. (2001), Corbett et al. (2005), Kaya and Özer

(2009), Kim et al. (2007), and Kim et al. (2011). In contrast to these papers, which focus on single

period settings or steady state analysis that reduces to a static setting, we solve a moral hazard

problem with repeated interactions.

Because a multi-period contract can use both immediate compensation and future promises as

incentives to induce desired behaviors, it is potentially more powerful than a static contract. The

main obstacle to finding an optimal multi-period contract is history dependency. In theory, the

optimal contract could compensate a supplier based on its entire performance history and that of

competing suppliers (if any). As more performance data becomes available, the information set

expands and the computational complexity grows exponentially.

Using formal contracts, Plambeck and Zenios (2000) solve a dynamic moral hazard problem
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in operations management. They assume that the agent has an exponential utility function and

can borrow and lend freely from a bank, which leads to a memoryless optimal contract. Building

upon this paper, also assuming the agent’s exponential utility and free access to banking, Fuloria

and Zenios (2001) study dynamic outcome-adjusted reimbursement for a health-care provider who

privately chooses the intensity of treatment in every period, and Plambeck and Zenios (2003) study

a make-to-stock queueing system in which the production rate of the server is privately controlled by

the agent. Our paper however, presents an incentive structure based on suppliers’ full performance

history, without the aforementioned assumptions. Abreu et al. (1986, 1990) introduce a recursive

representation of the dynamic contract using the agent’s expected future utility as the state variable,

which is then extended by Spear and Srivastava (1987) to the Principal-Agent framework. We use a

similar approach to solve a two-agent problem with common business/resource constraint, whereas

the above papers all solve a single-agent problem.

The literature on relational contracts examines informal contractual agreements between players.

In the presence of moral hazard, a relational contract can induce desired actions from the players by

the threat of termination of the business relationship or the worst payoffs thereafter if a deviation

is caught (the so called “trigger strategies;” see Friedman 1971). Levin (2003) shows that under

certain assumptions (risk neutral players, sufficiently high discount factor, etc.), there exists a

history-independent, stationary optimal contract, which can be solved as a one-period problem.

This result has since been extended to supply chain management by Plambeck and Taylor (2006)

and Taylor and Plambeck (2007a,b). In contrast to this approach, we solve a repeated moral hazard

problem with risk averse agents and formal contracts, without any restriction on the discount factor.

Relational contracts can also be history dependent, when the players adopt “review strategies”

(Radner 1985). Ren et al. (2010) examine a supply chain in which a supplier reviews a demand

forecast from a buyer in every period before investing in capacity. If the buyer does not pass the

truth-telling test, a limited-time punishment phase follows. They show that truthful information

sharing is induced under large discount factors. In comparison, we consider hidden efforts, utilize

the entire performance history, and allow any level of discount factor.

Lastly, we note some additional work in supply chain management on multi-period games with

hidden information. Zhang et al. (2010) investigate the optimal wholesale contract for a supplier

in face of a retailer who carries inventory privately. Oh and Özer (2012) study a supplier’s choice

between making its own demand forecasts and screening the information from a downstream man-

ufacturer before a capacity investment. The work by Li and Debo (2009a,b) examines the option

value of future supplier-switching or second-sourcing of a manufacturer facing uncertain demand
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when suppliers have private cost information.

Volume Allocation. Many papers on reverse auction or dual sourcing address volume alloca-

tions, which is an important aspect of the problem we are studying. Anton and Yao (1989) compare

the split-award auction with a winner-take-all auction in a single-stage Nash equilibrium. Klotz

and Chatterjee (1995) consider a two-period dual-sourcing model where the buyer reserves a fixed

volume share for each supplier and leaves the rest to a competitive bidding in which the lower-cost

provider takes all. Seshadri (1995) studies a dual-sourcing model with a cost-plus contest that

awards each supplier its actual audited cost plus a fraction of the fixed incentive money. Benjaa-

far et al. (2007) consider a performance-based proportional allocation mechanism in a single-period

model. Cachon and Zhang (2007) compare several performance-based allocation policies that assign

incoming jobs to two servers who control their own service rate. They analyze open-loop strategies

in steady state and effectively solve a static problem. We extend this research stream by considering

dynamic volume allocation in an infinite-horizon problem.

A few recent papers examine volume allocation in dynamic environments. Lu and Lariviere

(2011) consider a dynamic stochastic game in which a car manufacturer allocates its scarce capacity

to its retailers through a fixed (equal) or “turn-and-earn” allocation scheme (which allocates a higher

volume to the retailer with more sales). In contrast, we do not assume a particular mathematical

form of the allocation policy. Belavina and Girotra (2012) model sourcing decisions with an in-

termediary and consider business allocations between two suppliers in an infinitely repeated game.

They examine cooperative behavior of the suppliers under relational governance whereas we study

formal contracts for inducing efforts from competing suppliers.

3 Problem Description and Model Formulation

In this section, we formulate the volume allocation problem for a manufacturer facing two substi-

tutable suppliers.

3.1 Problem Description and Assumptions

We consider a single manufacturer sourcing a critical component from two chosen suppliers: Supplier

1 and Supplier 2. Both suppliers are able to meet the minimum cost and quality requirement for

the manufacturer. However, the total cost of ownership to the manufacturer could differ between

the two suppliers on a number of key measures such as the defect rate, technology innovation,

percentage of on-time delivery, etc. The manufacturer constantly evaluates each supplier using these

measures and generates an overall rating for the supplier, which serves as a basis for determining
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business allocations in future time periods. Each supplier, in order to earn more business, has an

incentive to expend additional resources to improve the performance outcome (or measure). Such

an action can be costly, and does not always work – it only increases the performance outcome

probabilistically. From the manufacturer’s perspective, additional supplier effort is desirable and

ideally the manufacturer would like its suppliers to engage in continuous improvement over the

long run. However, the manufacturer needs to provide enough incentive so that a supplier would

voluntarily engage in such activities. These incentives could come at a cost to the manufacturer.

Therefore, it is not necessarily optimal or feasible to always induce high effort from the suppliers.

In this paper, we strive to find the optimal contract that generates the maximal long-run payoffs

for the manufacturer.

We make the following assumptions regarding the manufacturer and its suppliers.

(1) The manufacturer is risk neutral and the suppliers are risk averse, which approximates a

typical situation with a large buyer and relatively small suppliers.

(2) The transfer price between each supplier and the manufacturer is determined through a

cost-plus model. That is, the manufacturer promises to pay each supplier the cost of the component

plus a margin r for each unit of the component for an agreed quantity qi, i = 1, 2. In this paper,

we focus on the case where the manufacturer uses volume allocation as an incentive lever and thus

we treat r as a constant and for simplicity, assume that the two suppliers receive the same margin

r. We later relax this assumption and show how the optimal contract may change if the margins

are asymmetric (Section 6.1) and how the problem of allocating a total volume is similar to the

problem of allocating a total payment (Section 6.2).

(3) In the base model, the total volume to be allocated between the two suppliers is fixed, as the

order quantity of a critical part is typically determined by the production plan for the final product.

In Section 6.3, we will allow the total volume to deviate from a target level and show that the main

insights from the optimal contract stay true with this generalization.

(4) The suppliers are identical with regard to their effort choice options, utility functions, and

cost functions, which allows us to focus on the performance differences caused solely by suppliers’

efforts. A supplier’s utility from the one-period margin rqi is φ(rqi), which is an increasing and

concave function and, without loss of generality, satisfies φ(0) = 0. In addition, the supplier’s utility

is additively separable across time, as is standard in the dynamic contract literature.

(5) The suppliers have two effort choices, “high” and “low,” from the set A = {H,L}, and their

disutility of effort choice a ∈ A is ψ(a) (or ψa), with ∆ψ = ψH − ψL > 0. Treating the disutility of

effort a separately from the utility of margin rqi is standard in the literature, because the cost-of-
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effort might not easily translate to a monetary cost. For the performance-enhancing efforts that the

suppliers engage in, activities are often process based and therefore only incur fixed costs.4 We will

relax the assumption of binary effort choices in Section 6.4 and demonstrate that the main results

remain true.

(6) The suppliers’ production functions are independent and the set of possible performance

outcomes is X = {0, 1}, representing “poor” and “good” outcomes, respectively.5 We assume that

the performance outcomes are public information to the manufacturer and the two suppliers.6

The probability for outcome x ∈ X after a supplier chooses effort a ∈ A is pa(x), which satisfies

pH(1) > pL(1), i.e., a good outcome is more likely to result from the high effort. We assume that the

effort choice in each period directly affects the performance in the current period only. This is often

the case with management, maintenance, or operational type of effort, and is arguably the more

interesting situation for inducing supplier efforts because incentive must be provided constantly and

suppliers cannot sit back and enjoy the lasting effects of their previous efforts.

(7) The value of a supplier’s performance outcome x ∈ X to the manufacturer is q · π(x), where

q is the quantity provided by that supplier and π(1) > π(0). That is, the performance outcome is

linked to a per unit dollar value π(x).7

(8) The manufacturer and the suppliers have the same discount factor δ ∈ (0, 1).

3.2 Model Formulation

Now, we formulate the model. In each period t, the manufacturer assigns a quantity qit to supplier

i and the supplier privately chooses an effort level ait ∈ A. The supplier’s performance xit ∈ X
depends on ait through the probabilities pait(xit). Let ht = {(x11, x21), . . . , (x1t, x2t)} denote the

suppliers’ performance history up to the end of period t, and Ht = (X × X )t denote the set of

possible ht’s. Supplier i’s utility from the quantity qit is φ(rqit) and disutility from the effort is

4A general disutility function may also include a variable element which depends on the business volume qi
allocated to a supplier. If the variable element of the disutility function has a linear form cqi, it can be viewed
as part of the variable cost and directly compensated by the manufacturer (see Swinney and Netessine 2009 for a
similar argument). Assuming ψ(a) independent of qi facilitates our analysis and allows us to concentrate on the key
trade-offs in motivating suppliers to make high efforts.

5It is known that a manufacturer can filter out common industry noise by observing the performance from multiple
suppliers (see Holmstrom, 1982; Swinney and Netessine, 2009; and Chen et al., 2011). In this paper, we treat
performance outcomes as the outcomes after common noise filtration.

6In practice, this is key for inspiring the suppliers and inducing competition. For example, Sun Microsystems Inc.
gave each supplier its scorecard results, along with the highest scores of other suppliers in the same commodity area
(Farlow et al., 1995); Waste Management Inc. publishes scores of all its suppliers (without disclosing names) to let
suppliers see how they performed relative to other vendors (Duffy, 2005).

7For example, at Sun Microsystems, if a supplier receives a total score of 86 from the scorecard evaluation, the
commodity manager may calculate the Total Cost of Ownership (TCO) for Sun using the formula (100-score)/100+1
and inform the supplier that every dollar Sun spends with the supplier actually costs Sun $1.14 (Farlow et al., 1995).
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ψ(ait). Therefore, a dynamic contract can be represented by σ = {qit(ht−1), ait(h
t−1)}i=1,2;t=1,··· ,∞,

which defines the strategy profile for the manufacturer and two suppliers. Because suppliers’ efforts

cannot be observed by the manufacturer, {ait(ht−1)}t=1,··· ,∞ can be viewed as the manufacturer’s

suggested effort plan to supplier i. Notice that qit and ait depend on ht−1, the performance outcomes

observed before period t, because the purchase volumes from the suppliers in period t must be

determined before entering period t and the suppliers must exert efforts before the outcomes are

realized. By default, h0 = Ø, representing no initial information. We denote the vectors (q1t, q2t),

(a1t, a2t), and (x1t, x2t) by qt, at, and xt, respectively.

The manufacturer maximizes its total discounted value through the following problem:

V = max
{qt(·),at(·)}∞t=1

∑

i=1,2

E

{
∞∑

t=1

δt−1[π(xit)qit(h
t−1) − rqit(h

t−1)]

∣∣∣∣∣ {at(·)}
∞
t=1

}
(3.1)

s.t. E

{
∞∑

τ=t

δτ−t[φ(rqiτ (h
τ−1)) − ψ(aiτ (h

τ−1))]

∣∣∣∣∣ {aτ (·)}
∞
τ=t, h

t−1

}
≥ ui,

ht−1 ∈ Ht−1, t = 1, . . . ,∞, i ∈ {1, 2}, (3.2)

E

{
∞∑

τ=t

δτ−t[φ(rqiτ (h
τ−1)) − ψ(aiτ (h

τ−1))]

∣∣∣∣∣ {aτ (·)}
∞
τ=t, h

t−1

}
≥

E

{
∞∑

τ=t

δτ−t[φ(rqiτ (ĥ
τ−1)) − ψ(âiτ (ĥ

τ−1))]

∣∣∣∣∣ {âiτ (·) ∈ A, ajτ (·)}∞τ=t, ht−1

}
,

ht−1 ∈ Ht−1, t = 1, . . . ,∞, j 6= i ∈ {1, 2}, (3.3)
∑

i=1,2

qit(h
t−1) = Q, q1t(h

t−1) ≥ 0, q2t(h
t−1) ≥ 0, ht−1 ∈ Ht−1, t = 1, . . . ,∞. (3.4)

Inequality (3.3) for i ∈ {1, 2} (and j 6= i) is supplier i’s incentive compatibility (IC) constraint,

which implies that the supplier would voluntarily follow the manufacturer’s suggested effort plan,

from any period t onward and after any performance history ht−1. Note that the deviated effort

plan {âiτ (·)}∞τ=t would alter the performance path stochastically, and we denote a deviated path

after history ht−1 by {ĥτ}∞τ=t (assuming ĥt−1 = ht−1). Inequality (3.2) for i ∈ {1, 2} is the par-

ticipation constraint for supplier i, which ensures that the supplier would voluntarily participate

in the contract, after any performance history ht−1, given its reservation utility ui. Expression

(3.4) represents a volume constraint which requires the total business volume to be fixed and is

mathematically akin to the “budget constraint” in the literature. In this infinite-horizon problem,

the information set Ht−1 (i.e., performance history set) grows with t and eventually becomes too

large to allow computation of the equilibrium strategy.
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3.3 Model Transformation

Abreu et al. (1986, 1990) and Spear and Srivastava (1987) address the computational complexity

issue in a repeated game between a principal and a single agent by a recursive formulation, which

can be extended to the two-agent setting of (3.1)-(3.4). In what follows, we describe the basic idea

of this extended approach. Because the future looks exactly the same from any period onward, the

subgame following every public history is conceptually identical. It can be easily shown that each

agent (supplier)’s expected future utility ui following any public history can be decomposed into an

immediate utility φ(rqi) − ψ(ai) in the current period and a continuation utility Ui from the next

period onward, contingent on the random outcome of the current period:8

ui = φ(rqi) − ψ(ai) + δE[Ui(x)| a], i = 1, 2. (3.5)

Because of the infinite future, the set of feasible continuation utility vectors from any period onward

should be identical. That is, the vectors (u1, u2) and (U1, U2)(x) should all belong to the same

continuation utility set. The vector u = (u1, u2) can be interpreted as the state of an (induced)

Markov decision process, since the transition from state u to state U is determined by the current-

period efforts a stochastically (through the current-period outcomes x).

The recursive formulation reduces the history-dependent contract problem to a dynamic pro-

gramming problem with a state variable u. Consequently, the problem of searching for the optimal

volume allocation contract σ = {qt(ht−1),at(h
t−1)}t=1,··· ,∞ is reduced to one of finding the optimal

variables {a,q,U(x)} for each feasible u.9 The state variable u in this stationary representation

has dual interpretations. On the one hand, it is a proxy of the suppliers’ performance history as

from any given initial state, the value of u at time t is determined by the sequence of performance

outcomes ht−1 = {x1,x2, . . . ,xt−1}. On the other hand, ui represents supplier i’s expected future

(or continuation) utility. The manufacturer may simply treat it as an equivalent of the supplier’s

preferential status, and update it in each period with new performance data. Thus, we shall refer

to it as the supplier’s “rating.”

8Let hτt denote the performance history from the beginning of period t to the end of period τ , for τ ≥ t,
i.e., hτt = {xt, . . . ,xτ}; by default, hτt = Ø if τ < t. Then, hτ is equivalent to (ht−1, hτt ), for τ ≥
t. Based on the formulation (3.1)-(3.4), at the beginning of period t after any performance history ht−1,
define ui(h

t−1) = E
{∑∞

τ=t δ
τ−t[φ(rqiτ (h

t−1, hτ−1
t )) − ψ(aiτ (h

t−1, hτ−1
t ))]

∣∣ {aτ (·)}∞τ=t, ht−1
}

and Ui(h
t−1,xt) =

E
{∑∞

τ=t+1 δ
τ−t−1[φ(rqiτ (h

t−1,xt, h
τ−1
t+1 )) − ψ(aiτ (h

t−1,xt, h
τ−1
t+1 ))]

∣∣ {aτ (·)}∞τ=t+1, h
t−1,xt

}
. In the backward induc-

tion, the past information ht−1 plays no explicit role and can be suppressed without loss of generality. Hence, noticing
ht = (ht−1,xt), we arrive at the equation ui = φ(rqit) − ψ(ait) + δE[Ui(xt)|at].

9The vectors q, a, and U(x) depend on the suppliers’ current continuation utility vector u implicitly, but for
notational simplicity, this dependence is suppressed.
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Figure 1 shows the sequence of events in the recursive framework. At the beginning of period

t, the suppliers’ ratings are given by u. The manufacturer announces the volume allocation for the

current period and ratings U(x) for the next period, contingent on the outcomes of the current

period. Then the suppliers privately choose effort levels. After delivery, the manufacturer observes

the suppliers’ performance outcomes and updates their ratings. The game enters the next period.

Beginning of period t

Suppliers’ ratings are 

u=(u1,u2)

Performance

outcomes

x=(x1 , x2)

observed by all

Beginning of 

period t+1

Suppliers’ ratings 

become U(x)

=(U1(x), U2 (x) )

Buyer realizes 

payoff  (x,q);

pays each 

supplier rqi

Each supplier 

chooses effort 

ai privately

Buyer announces

period-t volumes q=(q1, q2)

and next-period ratings

{U(x)=(U1(x), U2(x))}

Each supplier 

realizes utility 

 (rqi)  (ai)

Figure 1: Sequence of Events in Period t under a Dynamic Volume Contract.

Let V (u) be the expected future payoff for the manufacturer given the suppliers’ expected future

utilities u = (u1, u2). For each feasible u, the manufacturer chooses volumes q = (q1, q2), efforts

a = (a1, a2), as well as the suppliers’ continuation utilities U(x) = (U1(x), U2(x)) to maximize its

expected future payoff, provided that the suppliers voluntarily choose a:

V (u) = max
a,q,{U(x)}

E[π(x1)q1 + π(x2)q2 + δV (U1(x), U2(x))| a] − rQ (3.6)

s.t. φ(rqi) − ψai + δE[Ui(x)| a] = ui, i ∈ {1, 2} (3.7)

φ(rqi) − ψai + δE[Ui(x)| a] ≥ φ(rqi) − ψâi + δE[Ui(x)| âi, aj ], âi 6= ai, j 6= i ∈ {1, 2} (3.8)

q1 + q2 = Q, q1, q2 ≥ 0. (3.9)

Equation (3.7) is the promise keeping (PK) constraint, the same as (3.5). Constraints (3.8) and

(3.9) are again the incentive compatibility (IC) constraint and the volume constraint, respectively.

This problem is parameterized by u. Both the parameter u and the decision variables {U(x)} are

drawn from the same feasible continuation utility set, say S ⊂ R
2, and the manufacturer’s optimal

value function V (·) is determined recursively through the above problem. Our goal is to characterize

this function V : S → R. Note that the original participation constraint (3.2) is equivalent to u ≥ u,

for a reservation utility vector u; we will later normalize u to 0 (without loss of generality) and

require u and U(x) ≥ 0, or, S ⊂ R
2
+.
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In general, the optimal value function V (·) may not be concave. However, when randomized

contracts are allowed, V (·) must be concave with a convex domain. To see this, suppose that the

optimal solutions to the problem given any feasible u′ and u′′ are {a′,q′,U′(x)} and {a′′,q′′,U′′(x)},
respectively. Then the randomized contract that executes {a′,q′,U′(x)} with probability λ and

{a′′,q′′,U′′(x)} with probability 1 − λ would generate continuation utility vector λu′ + (1 − λ)u′′

for the suppliers and continuation value λV (u′) + (1 − λ)V (u′′) for the manufacturer. Therefore,

the suppliers’ continuation utility vector λu′ + (1− λ)u′′ is feasible and the manufacturer’s optimal

continuation value at λu′+(1−λ)u′′ is at least λV (u′)+(1−λ)V (u′′), which implies the concavity of

V (·). Randomization is commonly assumed in the repeated game/dynamic contract literature (e.g.,

Fudenberg and Tirole 1991, Phelan and Stacchetti 2001, Judd et al. 2003, Doepke and Townsend

2006) and is permitted in this paper as well. In essence, the manufacturer may randomly choose

among a set of deterministic contracts according to a public lottery (with probabilities dependent on

the suppliers’ ratings u), which allows the manufacturer to potentially improve its value function.

4 Solving the Dynamic Volume Allocation Problem

The manufacturer’s volume allocation problem couples the two suppliers together through the vol-

ume constraint (3.9). The manufacturer wishes to create incentives for the suppliers to exert high

effort. However, to maintain the total volume, the manufacturer cannot penalize the suppliers simul-

taneously when their performance outcomes are both poor or reward them at the same time when

the outcomes are both good. The manufacturer thus faces an intricate problem of providing the

right incentives for the suppliers through dynamic volume allocation. In the following, we discuss

step-by-step how to solve for the dynamic contract. Specifically, The problem can be facilitated by

four subproblems, given the intended effort pair (H,H), (H,L), (L,H), and (L,L), respectively.

We first analyze each subproblem and obtain useful properties of the solution (Section 4.1) and then

derive the optimal contract from these subproblems (Section 4.2). For the ease of representation,

let πL = E(π(xi)| ai = L) and πH = E(π(xi)| ai = H).

4.1 Inducing a Given Effort Pair

Given an effort pair (a1, a2) to implement, the manufacturer’s problem (3.6)-(3.9) reduces to

11



(Γa1a2V )(u) = max
q∈R2,{U(x)∈S}

x∈{0,1}2

E[π(x1)q1 + π(x2)q2 + δV (U(x))| a1, a2] − rQ (4.1)

s.t. u1 = δE[U1(x)| a1, a2] + φ(rq1) − ψa1 (4.2)

u2 = δE[U2(x)| a1, a2] + φ(rq2) − ψa2 (4.3)

u1 ≥ δE[U1(x)| â1, a2] + φ(rq1) − ψâ1 , â1 6= a1 (4.4)

u2 ≥ δE[U2(x)| a1, â2] + φ(rq2) − ψâ2 , â2 6= a2 (4.5)

q1 + q2 = Q, q1, q2 ≥ 0. (4.6)

This problem implicitly defines a functional operator Γa1a2 , mapping a value function V : S → R

to another value function Γa1a2V : Sa1a2 → R. Using this operator, the manufacturer’s volume

allocation problem (3.6)-(3.9) can be succinctly written as

V ∗(u) = max
(a1,a2)∈{H,L}2

(Γa1a2V
∗)(u) (4.7)

(the superscript “∗” represents “optimum” throughout this paper). Problem (4.1)-(4.6), given

(a1, a2), can be simplified by the following results:

Lemma 1. Given any concave function V (·) and feasible continuation utility vector u, there exists

an optimal solution to problem (4.1)-(4.6) such that: (1) if (a1, a2) = (L,L), the IC constraints (4.4)

and (4.5) do not bind and Ui(x) ≡ U∗
i for i ∈ {1, 2}; (2) if (a1, a2) = (H,L), (4.4) binds, (4.5) does

not, and Ui(x1, 0) = Ui(x1, 1) = U∗
i (x1), for i ∈ {1, 2} and x1 ∈ {0, 1}; (3) if (a1, a2) = (L,H),

(4.5) binds, (4.4) does not, and Ui(0, x2) = Ui(1, x2) = U∗
i (x2), for i ∈ {1, 2} and x2 ∈ {0, 1}; (4)

if (a1, a2) = (H,H), both (4.4) and (4.5) bind.

The lemma confirms the intuition that to induce high effort from a supplier, the supplier’s

future utility must be contingent on (in fact, increase with) its performance outcome xi and its IC

constraint should be active.

4.1.1 Inducing Effort Pair (L,L)

By Lemma 1, if (a1, a2) = (L,L), problem (4.1)-(4.6) becomes

(ΓLLV )(u) = δ max
q∈R2,U∈S

V (U) + (πL − r)Q (4.8)

s.t. u1 = δU1 + φ(rq1) − ψL (4.9)

u2 = δU2 + φ(rq2) − ψL (4.10)

q1 + q2 = Q, q1, q2 ≥ 0. (4.11)

12



This problem is relatively straightforward and can be solved directly given any input function V (·).

4.1.2 Inducing Effort Pair (H,L) or (L,H)

We focus on the (H,L) problem below; the (L,H) problem is symmetric and can be analyzed

similarly. For (a1, a2) = (H,L), problem (4.1)-(4.6) becomes:

(ΓHLV )(u) = max
q∈R2,{U(x1)∈S}x1∈{0,1}

{πHq1 + πLq2 + δE[V (U(x1))| a1 = H]} − rQ (4.12)

s.t. u1 = δE[U1(x1)| a1 = H] + φ(rq1) − ψH (4.13)

u2 = δE[U2(x1)| a1 = H] + φ(rq2) − ψL (4.14)

u1 = δE[U1(x1)| a1 = L] + φ(rq1) − ψL (4.15)

q1 + q2 = Q, q1, q2 ≥ 0. (4.16)

Notice that the variables U(x1) do not depend on a2, as shown in Lemma 1. This problem can be

decomposed as follows:

Proposition 1. Problem (4.12)-(4.16) can be solved in two steps: At the lower level, given an

expected continuation utility vector Û and an input value function V : S → R, solve

V̂HL(Û) = max
{U(x1)∈S}x1∈{0,1}

E[V (U(x1))| a1 = H] (4.17)

s.t. U1(0) = Û1 − pH(1)µ, (4.18)

U1(1) = Û1 + pH(0)µ, (4.19)

pH(0)U2(0) + pH(1)U2(1) = Û2, (4.20)

where µ = δ−1∆ψ/(pH(1)−pL(1)) > 0. Let ŜHL be the feasible parameter set of this problem. At the

upper level, given the promised continuation utility vector u and the above function V̂HL : ŜHL → R,

solve

(ΓHLV )(u) = max
q∈R2,Û∈ŜHL

{πHq1 + πLq2 + δV̂HL(Û)} − rQ (4.21)

s.t. u1 = δÛ1 + φ(rq1) − ψH (4.22)

u2 = δÛ2 + φ(rq2) − ψL (4.23)

q1 + q2 = Q, q1, q2 ≥ 0. (4.24)

The upper level problem focuses on the optimal choice of volume allocation q and the expected

continuation utility vector Û (from the next period onward) that render the continuation utility

13
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Figure 2: Positions of U(0) and U(1) given Û.

vector u; while the lower level problem focuses on the optimal choice of the continuation utility

vectors {U(x1)} that yield the expected utility Û, subject to supplier 1’s incentive compatibility

with the high effort. The proposition suggests that in order to motivate supplier 1 to exert high effort,

its future compensation must differ substantially based on its performance x1, i.e., U1(1)−U1(0) = µ.

Geometrically, as shown in Figure 2, the future utility points U(0) and U(1) must lie on the vertical

lines with horizontal coordinates Û1 − pH(1)µ and Û1 + pH(0)µ, respectively, and their expectation

pH(0)U(0) + pH(1)U(1) is exactly Û.

The lower level problem for any given Û has essentially one free decision variable (U2(0) or

U2(1)) and the upper level problem given u has also one free decision variable (q1 or q2). The

challenge comes from the fact that these problems are parameterized and must be solved for all

possible Û and u, for a given input function V (·).

4.1.3 Inducing Effort Pair (H,H)

When (a1, a2) = (H,H), according to Lemma 1, problem (4.1)-(4.6) becomes

(ΓHHV )(u) = δ max
q∈R2,{U(x)∈S}

x∈{0,1}2

E[V (U(x))| a1 = H,a2 = H] + (πH − r)Q (4.25)

s.t. u1 = δE[U1(x)| a1 = H,a2 = H] + φ(rq1) − ψH (4.26)

u2 = δE[U2(x)| a1 = H,a2 = H] + φ(rq2) − ψH (4.27)

u1 = δE[U1(x)| a1 = L, a2 = H] + φ(rq1) − ψL (4.28)

u2 = δE[U2(x)| a1 = H,a2 = L] + φ(rq2) − ψL (4.29)

q1 + q2 = Q, q1, q2 ≥ 0. (4.30)

This problem can be decomposed as follows.
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Proposition 2. Problem (4.25)-(4.30) can be solved in two steps: At the lower level, given an

expected continuation utility vector Û and an input value function V : S → R, solve

V̂HH(Û) = max
{U(x)∈S}

x∈{0,1}2

E[V (U(x))| a1 = H,a2 = H] (4.31)

s.t. pH(0)U1(0, 0) + pH(1)U1(0, 1) = Û1 − pH(1)µ, (4.32)

pH(0)U1(1, 0) + pH(1)U1(1, 1) = Û1 + pH(0)µ, (4.33)

pH(0)U2(0, 0) + pH(1)U2(1, 0) = Û2 − pH(1)µ, (4.34)

pH(0)U2(0, 1) + pH(1)U2(1, 1) = Û2 + pH(0)µ, (4.35)

where µ = δ−1∆ψ/(pH(1)−pL(1)) > 0. Let ŜHH be the feasible parameter set of this problem. At the

upper level, given the promised continuation utility vector u and the above function V̂HH : ŜHH → R,

solve

(ΓHHV )(u) = δ max
q∈R2,Û∈ŜHH

V̂HH(Û) + (πH − r)Q (4.36)

s.t. u1 = δÛ1 + φ(rq1) − ψH (4.37)

u2 = δÛ2 + φ(rq2) − ψH (4.38)

q1 + q2 = Q, q1, q2 ≥ 0. (4.39)

With four free decision variables, the lower level problem in this case is considerably harder than

its counterpart in the (H,L) or (L,H) case. Notice that E[U1(1, x2)| a2 = H] − E[U1(0, x2)| a2 =

H] = E[U2(x1, 1)| a1 = H] − E[U2(x1, 0)| a1 = H] = µ. Once again, to motivate the suppliers

to choose high effort, their future compensation must increase with their individual performance,

and the gap between the two scenarios must be sufficiently large. The resulting continuation utility

points {U(x)}x∈{0,1}2 also possess strong geometric properties, as summarized below and illustrated

in Figure 3(a). Let l(N1N2) denote the length of a line segment N1N2.

Proposition 3. Given Û, (1) the points (convex combinations) M1(x1) = pH(0)U(x1, 0)+pH(1)U(x1, 1),

x1 ∈ {0, 1}, lie on the vertical lines with horizontal coordinates Û1 − pH(1)µ and Û1 + pH(0)µ,

respectively; (2) the points M2(x2) = pH(0)U(0, x2) + pH(1)U(1, x2), x2 ∈ {0, 1}, lie on the hori-

zontal lines with vertical coordinates Û2 − pH(1)µ and Û2 + pH(0)µ, respectively; (3) the line seg-

ments M1(0)M1(1) and M2(0)M2(1) intersect at Û; and (4) the line segments M1(0)M2(0) and

M2(1)M1(1) are parallel to U(0, 1)U(1, 0), with lengths l(M1(0)M2(0)) = pH(1) · l(U(0, 1)U(1, 0))

and l(M2(1)M1(1)) = pH(0) · l(U(0, 1)U(1, 0)).10

10Proposition 3 suggests a geometric method to determine points {U(x)} from Û: first, freely choose U(0, 1) and
U(1, 0); then the points M1(0), M2(0), M1(1), and M2(1) are uniquely determined according to part (4); finally,
U(0, 0) and U(1, 1) are uniquely determined by the expressions of {Mi(xi)} in part (1) or (2).
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The geometric properties reveal a common pattern of the suppliers’ continuation utilities, as

illustrated in Figure 3(b), and are useful for retrieving structural properties of the optimal contract

later.

4.2 Finding Optimal Contract

Now we return to the volume allocation problem (3.6)-(3.9), or equivalently, (4.7).

4.2.1 Suppliers’ Continuation Utility Set and Randomized Volume Allocation

The domain of the manufacturer’s optimal value function V ∗(·) is a subset of R
2. To derive this

set, we introduce a set operation. The Minkowski sum of two sets Y and Z in an Euclidean space

R
n is the set

Y ⊕ Z = {y + z : y ∈ Y, z ∈ Z}.

Consider problem (4.8)-(4.11) of inducing efforts (L,L). Let S ⊂ R
2 be the domain of the input

function V (·) and SLL ⊂ R
2 be that of the output function (ΓLLV )(·). Define the set

T = {(φ(rq1), φ(rq2)) : q1 + q2 = Q, q1, q2 ∈ [0, Q]}

= {(t1, t2) : φ−1(t1) + φ−1(t2) = rQ, t1, t2 ∈ [φ(0), φ(rQ)]}. (4.40)

Every vector t in T represents the suppliers’ utilities from a certain volume allocation q. Using the

Minkowski sum operation, constraints (4.9)-(4.11) can be condensed to

SLL = (δS) ⊕ T − (ψL, ψL). (4.41)
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The output set SLL so defined may not be convex even if the input set S is convex, because T

is a curve in R
2 and is a non-convex set for risk-averse suppliers. However, by the argument at the

end of Section 3, when randomization is permitted, problem (4.8)-(4.11) can be modified so that the

output domain is convex (and the output function is concave). When the input domain S is convex

(and the input function V (·) is concave), which is true under our model, it suffices to randomize

over the utility set T because the Minkowski sum of two convex sets is also convex. To that end,

denote the convex hull of T by

conv(T ) = {λt′ + (1 − λ)t′′ : t′, t′′ ∈ T, λ ∈ [0, 1]}. (4.42)

Every t ∈ conv(T )\T gives the suppliers’ expected utilities from a randomized volume allocation that

randomizes between two deterministic allocations q′ and q′′. After incorporating randomization,

equation (4.41) becomes

SLL = (δS) ⊕ conv(T ) − (ψL, ψL). (4.43)

Similarly, randomized contracts are allowed in problems (4.12)-(4.16) and (4.25)-(4.30).

4.2.2 Benchmark Contract: Inducing (L,L) Forever

To always induce effort pair (L,L) is a feasible strategy for the manufacturer and provides a useful

benchmark solution to the dynamic volume allocation problem although it may not be optimal. Let

V∞
LL(·) be the manufacturer’s value function in this solution. It is the fixed point of the operator

ΓLL defined in (4.8)-(4.11), i.e., satisfying (ΓLLV
∞
LL)(·) = V∞

LL(·).
This fixed point property has two implications. First, the domain of V∞

LL, denoted by S∞
LL, is

self-generated through (4.8)-(4.11) and hence, by (4.43), satisfies

S∞
LL = (δS∞

LL) ⊕ conv(T ) − (ψL, ψL). (4.44)

This equation can be solved through the properties of the Minkowski sum (Gritzmann and Sturmfels,

1993; Zhang, 2010). Second, if we can show that V∞
LL(u) ≡ V∞

LL, it follows immediately that

V∞
LL = δV∞

LL + (πL − r)Q. Along these lines, we obtain the following result:

Theorem 1. Suppose without loss of generality that both suppliers’ reservation utility is 0. To induce

efforts (L,L) forever, the set of suppliers’ continuation utility vectors is S∞
LL = (1− δ)−1[conv(T )−

(ψL, ψL)] ∩ R
2
+, and the manufacturer’s value function is V∞

LL(u) = (1 − δ)−1(πL − r)Q, for any

u ∈ S∞
LL. At any u ∈ S∞

LL, an optimal choice of U is u. When u lies on the upper boundary

of S∞
LL, denoted by S∞

LL, this optimal U is unique and the optimal volume allocation q satisfies

φ(rq1)/φ(rq2) = u1/u2.
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The set S∞
LL is illustrated by the shaded areas in Figure 4 for ψL = 0 and ψL > 0, recalling that

φ(0) = 0. The theorem implies that every point (u, V∞
LL(u)) can be self-generated or self-sustained:

On the upper boundary of S∞
LL, i.e., for u ∈ S∞

LL, the manufacturer provides the suppliers with

the same business volume allocation q in every period which satisfies φ(rq1)/φ(rq2) = u1/u2, and

the suppliers’ ratings are the same u forever; If u /∈ S∞
LL, each point can still be self-generated,

but through a randomized volume allocation. Therefore, every point (u, V∞
LL(u)), for u ∈ S∞

LL,

is a “trapping” state and represents a “business as usual” situation: each supplier maintains its

status quo (i.e., does not undertake additional effort to improve performance) and the manufacturer

simply compensates them according to this status quo and maintains the same volume allocation

from period to period. Although good performance can still be observed in this scenario (unless

pL(1) is zero), it is not interpreted as an indication of high effort and the manufacturer does not

differentiate good and bad performance observations. As we explain in the following sections, this

benchmark scenario serves as an effective long-run incentive, which seems counterintuitive but can

be well explained once the longitudinal behavior of the optimal contract is revealed.

4.2.3 Properties of the Optimal Solution

Let S∗ denote the domain of the manufacturer’s optimal value function V ∗(·) and S∗
a1a2

denote the

feasible domain of the subproblem of inducing efforts (a1, a2) given the input function V ∗(·). After

incorporating randomized contracts, the volume allocation problem (4.7) implies that

S∗ = conv(S∗
LL ∪ S∗

HL ∪ S∗
LH ∪ S∗

HH), (4.45)

where

S∗
LL = (δS∗) ⊕ conv(T ) − (ψL, ψL) (4.46)

by equation (4.43), and the other S∗
a1a2

can be derived from the upper and lower level problems

defined in Propositions 1 and 2.

We characterize the optimal solution along the upper and lower boundaries of S∗ by examining

the sets {S∗
a1a2

}. A representative S∗ is illustrated in Figure 4, for ψL = 0 and ψL > 0. The sets

S∗
LL, S∗

HL, S∗
LH , and S∗

HH are illustrated in Figure 5, for the numerical example discussed in Section

5 (see Table 1 for the parameters). We denote the upper (lower) boundary of a set S by S (S).

Theorem 2. The upper boundary of S∗ coincides with the upper boundaries of S∗
LL and S∞

LL, and the

manufacturer’s optimal value V ∗(u) = (1− δ)−1(πL− r)Q for any u ∈ S∗. The optimal solution at

any u ∈ S∗, including the volume allocation and next period ratings, is identical to that in Theorem

1.
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The theorem identifies a set of self-generated points along the upper boundary of S∗. That is,

if the suppliers’ continuation utility vector u enters S∗, it will be “trapped” there forever. Next, we

examine the lower boundary of S∗.

Theorem 3. (1) If ψL
ψH

≤ pL(1)
pH(1) and φ(rQ) ≥ 2(1 − δpH(0))µ, the center of the lower boundary

of S∗ is a −45◦ line segment self-generated under the (H,H) effort pair, with end points ul =

(1 − δ)−1(δpH(1)µ − ψH ,−δpH(1)µ + φ(rQ) − ψH) and ur = (1 − δ)−1(−δpH(1)µ + φ(rQ) −
ψH , δpH (1)µ− ψH).

(2) If ψL
ψH

> pL(1)
pH(1) and φ(rQ) ≥ 2((1 − δ)µ + ψH), the lower boundary of S∗ is a −45◦ line

segment self-generated under the (H,H) effort pair, with end points ul = (1− δ)−1(0, φ(rQ)− 2ψH )

and ur = (1 − δ)−1(φ(rQ) − 2ψH , 0).
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(3) In the above cases, for any u ∈ ulur or ulur, the manufacturer’s optimal value V ∗(u) =

(1 − δ)−1(πH − r)Q and the optimal volume allocation q is randomized between (0, Q) and (Q, 0).

Part (3) implies that the manufacturer can achieve the highest possible (first-best) expected

value (1 − δ)−1(πH − r)Q by keeping the suppliers’ ratings in the line segment ulur (or ulur)

and inducing both of them to exert high effort; the line segment ulur is labeled in Figure 4. The

conditions in parts (1) and (2) of the theorem are sufficient but not necessary. They enable sufficient

variations in the suppliers’ future utilities for incentive provision 11 and can be easily met when the

(possible) reward is sufficiently high (e.g., high Q, r, or δ) and/or the cost of the high effort (ψH)

is sufficiently low. 12

Although the lower boundary of S∗ is also generated from points on the lower boundary, no

individual point on S∗ can be a trapping point as those on the upper boundary, because, to provide

incentive for efforts (a1, a2) 6= (L,L), a utility vector u ∈ S∗ must be generated from at least two

distinct points in the feasible domain to reward a good outcome and punish a bad one. However,

as shown below and illustrated in Figure 6, the suppliers’ continuation utilities can still be “locally

trapped” on the lower boundary, i.e., confined to a closed line segment which forms a “recurrent”

class of the induced Markov process.

Proposition 4. Let ũl = ul + (µ,−µ) and ũr = ur + (−µ, µ). In the first case of Theorem 3,

there exists an optimal solution such that (1) for any u ∈ ũlũr, U(0, 0) = U(1, 1) = u, U(0, 1) =

u+(−µ, µ), and U(1, 0) = u+(µ,−µ); (2) for any u ∈ ulũl, U(0, 0) = U(0, 1) = ul, U(1, 1) = ul+

pH(1)−pH(0)
pH(1) (µ,−µ), and U(1, 0) = ul+(2µ,−2µ); and (3) for any u ∈ ũrur, U(0, 0) = U(1, 0) = ur,

U(1, 1) = ur + pH(1)−pH(0)
pH(1) (−µ, µ), and U(0, 1) = ur + (−2µ, 2µ). In the second case of Theorem

3, there exists an optimal solution similar to the above, with ul, ur, ũl, and ũr replaced by ul, ur,

ũ
l = ul + (µ,−µ), and ũ

r = ur + (−µ, µ), respectively.

The proposition reveals an interesting and intuitive solution for the manufacturer. Once the

suppliers’ ratings fall into the middle section of the trapping segment ulur on the lower boundary,

the manufacturer can keep the suppliers on their toes through the following “tournament”: when

11In case (1), the distance between the two end points ul and ur is given by (1 − δ)−1(φ(rQ) − 2δpH(1)µ) along
both axes. Thus the condition φ(rQ) ≥ 2(1− δpH(0))µ implies that these two points are at least 2µ apart along both

axes. The assumption ψL

ψH

≤ pL(1)
pH(1)

is equivalent to δpH(1)µ ≥ ψH and thus ul1 = ur2 ≥ 0. In case (2), the line segment

ulur is truncated by the two axes to ulur. Since the distance between ul and ur is given by (1− δ)−1(φ(rQ)−2ψH),
the assumption φ(rQ) ≥ 2((1 − δ)µ+ ψH) similarly ensures that ulur is long enough for incentive provision.

12For example, when δ is close to 1, the main assumption in case (2), φ(rQ) ≥ 2((1 − δ)µ+ ψH), is approximately
φ(rQ) ≥ 2ψH , which is necessary to just cover the disutility of high effort for the two suppliers (under randomized
volume allocation).
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Figure 6: Local Trapping on the Lower Boundary.

one supplier performs better than the other (i.e., the outcome vector is either (0, 1) or (1, 0)),

promote the former supplier and demote the latter; if they perform equally well or equally poor

(with outcome vector (0, 0) or (1, 1)), keep their ratings unchanged. This strategy highlights the

role of competition in motivating suppliers. When the suppliers’ ratings move too close to one end

of the trapping segment, i.e., into ulũl or ũrur, the above tournament becomes non-sustainable and

the manufacturer’s strategy needs to be modified: for example, the manufacturer should punish

poor performance by the lower-rated supplier even if the competing supplier performs equally poor.

4.2.4 State Evolution under the Optimal Contract

Our solution approach to the repeated moral hazard problem rests upon the idea that the suppliers’

rating vector evolves as a Markov decision process. Now, we examine the longitudinal behavior of

this process, as summarized in Figure 7. Theorems 1, 2, and 3 reveal that trapping and recurrent

class of states may exist in this Markov decision process. From Theorems 1 and 2, there are infinitely

many individual “trapping” states on the upper boundary of S∗. Each trapping state represents a

“business-as-usual” (low effort) scenario with a characteristic volume allocation determined by the

ratio of the two suppliers’ ratings. Theorem 3 identifies a “recurrent” class on the lower boundary

of S∗ under certain conditions. This subset is characterized by high effort from both suppliers and

highest value achieved for the manufacturer. From the manufacturer’s perspective, this is the most

desirable situation. The suppliers however, experience the most intense competition in these states.

Any point from which S∗ can be reached with a positive probability is a “transient” state.

Similarly, when the recurrent class exists on the lower boundary, any point from which a recurrent
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Figure 7: A representative pattern of state evolution under the optimal contract.

state may be reached is also transient. In fact, the majority of the feasible domain S∗ comprises of

these transient states. Because the analytical solution is intractable in the interior of S∗, a complete

characterization of transient states is infeasible. However, Propositions 1-3 and Figures 2-3 shed

light on incentive provision and state transitions at those points. In general, the power of incentives

at the transient points is less intense than on the lower boundary but stronger than on the upper

boundary. More properties of the optimal solution at the interior of S∗ are explored numerically in

Section 5.

Consider an initial state that is transient, as the point in the interior of S∗ in Figure 7. Over time,

the state transitions as performance outcomes are observed. The overall trend of such transitions

is illustrated in the figure (see also Figure 3(b)). Eventually the state becomes trapped, either to a

point on the upper boundary or to some recurrent states on the lower boundary. For instance, the

line segment described in Theorem 3 can be reached after both suppliers under-perform for some

extended time, in which case the punishment for the suppliers is exactly what characterizes this

recurrent class: high effort, intense competition, and low expected payoff. The upper boundary is

reached after both or at least one supplier over-perform for some extended time. In this case, the

exact location where it is trapped makes a huge difference for the suppliers. As shown in Theorem

1, each point on the upper boundary has a characteristic volume allocation which changes from

0 : 1 on one end to 1 : 0 on the other, and is solely determined by the ratio of the suppliers’ ratings

u1 : u2. Ideally, a supplier prefers the trapping to occur at a location that yields a higher volume for

itself (since that volume allocation will persist in all future periods), which provides incentive for

the supplier to continually exert high effort in order to influence the direction of the state transition.
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In summary, the trapping states on the upper boundary of S∗ and the recurrent states on the lower

boundary are long-run incentive drivers, as the “carrot” or “stick”, for the suppliers to work hard.

The results resonate with some known results in the repeated game literature. The “trapping”

states on the upper boundary are reminiscent of the Nash equilibria in a static game in which

the manufacturer allocates volume between two suppliers to match each supplier’s promised utility.

The “recurrent” states on the lower boundary bear some resemblance to the punishment threat in a

“trigger strategy” in repeated games (Friedman 1971, Levin 2003, Plambeck and Taylor 2006). While

punishment often involves termination of the cooperation and is thus the worst equilibrium for all

players, under the optimal contract in our model, the recurrent states impose intense competition

and low payoff for the suppliers but result in high effort input and the first-best value to the

manufacturer, i.e., they are “punishment” to the suppliers but not to the manufacturer.

5 Numerical Analysis

To further characterize the optimal contract, we resort to numerical analysis. For simplicity, we as-

sume the utility function φ(w) =
√
w, for w ≥ 0, but the results can be generalized to other concave

utility functions. We examine the optimal solution for a representative example, including the sup-

pliers’ continuation utility set, effort choices, and allocated volumes, as well as the manufacturer’s

value function. We also study the longitudinal evolution of the suppliers’ ratings.

Since we have already provided analytical characterizations of the optimal contract under the

conditions given in Theorem 3, in the numerical analysis, we explore the case when such conditions

are not met. In particular, we consider the example given in Table 1 (the total volume Q is

normalized to 1). The results are presented in Figures 8 and 9.13 We have also conducted a

comparative statics analysis, by varying the parameters pH(1), pL(1), ψH , ψL, π̄H , π̄L, r, and δ, to

verify that the numerical findings are robust; due to space limitation, those results are omitted here

but are available from the authors.

Parameter Q r δ pH(1) pL(1) ψH ψL πH πL

Value 1 0.5 0.9 0.7 0.3 0.3 0 1 0.1

Table 1: Parameter Values for the Example

Manufacturer’s Optimal Value Function. The domain S∗ and function V ∗(·) are illustrated

13We first identify the minimum and maximum values of each supplier’s rating ui using the results in Theorem
2. We then discretize this interval into 50 points and iteratively search for the two-dimensional self-generating
domain S∗, whose upper boundary is specified exactly in Theorem 2 but the lower boundary has to be identified
computationally. Next, based on the obtained domain S∗ and the benchmark value V∞

LL identified in Theorem 1, we
iteratively construct the value function V ∗(·) through the decomposed problems defined in Propositions 1 and 2.
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Figure 8: Manufacturer’s Optimal Value Function V ∗(·).

in Figures 8(a) and 8(b), respectively. By the randomized version of equation (4.7), V ∗(·) is formed

from the upper convex hull of the individual functions (Γa1a2V
∗)(·), for a1a2 ∈ {LL,HL,LH,HH}.

Hence the vertices on the surface of V ∗(·), identified in Figure 8(a), correspond to (the manufac-

turer’s) pure strategies and the non-vertex points in the blank spaces represent mixed strategies.

The upper boundary of S∗ consists entirely of points with optimal effort pair (L,L), marked with

“+”; from Theorem 2, we know that these points are “trapping”. The lower boundary of S∗ consists

of points with optimal effort pair (H,H) (marked with “o”), (H,L) (marked with “△”), and (L,H)

(marked with “�”). In contrast to the cases identified in Theorem 3, the highest manufacturer val-

ues, marked with “∗” in Figure 8(a), are not located on the lower boundary, but at the intersection

of the three regions where a = (H,H), (H,L), and (L,H) respectively dominate and near the 45◦

line. This implies that the manufacturer’s value is higher if the suppliers are symmetric with respect

to their ratings, and that the highest manufacturer values are achieved with a randomized contract

which implements (H,H), (H,L) and (L,H) probabilistically.

Optimal Volume Allocation. As shown in Theorem 1, each point on the upper boundary

of S∗ (or S∞
LL) corresponds to a specific volume allocation, which changes continuously with the

ratio u1/u2 (such that φ(rq1)/φ(rq2) = u1/u2). Figure 9(a) shows supplier 1’s volume allocation

under the optimal contract over the entire domain S∗ (supplier 2’s volume is symmetric).14 Clearly,

higher value of u1 results in higher business volume for supplier 1. The volume drops markedly as

14Noise along the upper boundary is due to the computation precision and the fact that the lower-level optimization
problems have an objective function that is rather flat near the optimal point.
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Figure 9: Volume Allocated to Supplier 1.

the state moves from the area where supplier 1 is stronger (i.e., with a higher rating) to the area

where supplier 2 is stronger. We observe that the trend of the volume allocation is interrelated with

the optimal effort choices (a1, a2). For instance, the allocation along the upper boundary where

(L,L) dominates behaves quite differently from the lower boundary where (H,H), (H,L) or (L,H)

dominates. Although on both the upper and lower boundaries, the optimal volume allocation for

supplier 1 follows a upward trend and changes from 0 to 1 as u1 increases from its minimum value

to its maximum (Figure 9(b)), the change is much more drastic on the lower boundary, where at

least one supplier chooses high effort.

State Evolution. The suppliers’ ratings form a set of Markov states and evolve over time.

We simulate the state path from different starting states, which helps shed light on the behaviors

of the transient states between the upper and lower boundaries. We observe in this example that

trapping is inevitable and it always occurs on the upper boundary, which is reasonable since the

conditions for the recurrent class identified in Theorem 3 are not met. As discussed in Section

4.2, being trapped at a particular point (on the upper boundary) implies that the future “business

norm” is represented by a characteristic volume allocation, which serves as the ultimate long-run

incentive/disincentive for continuous supplier improvement. Our simulation reveals that the time it

takes to reach a trapping state varies with the starting state and so does the exact location where

trapping occurs. In particular, when the initial state is farther away from the upper boundary, it

takes longer to reach trapping and the initial state (or, the initial ratings of the suppliers) has a

weaker impact on the final trapping location.
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6 Extensions

In the base model studied in previous sections, we have made some assumptions that simplify our

analysis. In this section, we demonstrate that our main results still hold if some of these assumptions

are relaxed or altered. We highlight the main findings here and defer the details to Appendix B.

6.1 Asymmetric Suppliers

The basic model (3.6)-(3.9) assumes that the two suppliers are symmetric, with regard to their

utility functions, cost functions, unit margins, value contributions, etc. This assumption allows

us to concentrate on the most valuable circumstances for dynamic volume allocation. Suppose, for

example, the suppliers’ unit margins are unequal. Then the manufacturer would tend to allocate less

volume to the supplier demanding the higher margin, diminishing the power of volume incentive.

Nevertheless, as discussed below, the main results of this paper can be extended to the setting of

unequal supplier margins (asymmetries in utility and cost functions can be accommodated similarly).

Suppose supplier i’s unit margin is ri, i = 1, 2. The manufacturer’s problem (4.1)-(4.6) needs

slight modifications – replacing the term rQ in the objective function by r1q1 + r2q2, and replacing

the terms rq1 and rq2 in the constraints by r1q1 and r2q2, respectively. It is straightforward to

verify that Lemma 1 is still valid and results in Section 4.1 are slightly modified as above.

The set T of one-period utility vectors from deterministic volume allocations, defined in expres-

sion (4.40), changes to:

T = {(φ(r1q1), φ(r2q2)) : q1 + q2 = Q, q1, q2 ∈ [0, Q]}

= {(t1, t2) :
φ−1(t1)

r1
+
φ−1(t2)

r2
= Q, t1 ∈ [φ(0), φ(r1Q)], t2 ∈ [φ(0), φ(r2Q)]}. (6.1)

As an example, if the utility function is φ(w) =
√
w, i.e., φ−1(t) = t2, the new set T would be

the north-east quarter of an ellipse with radiuses
√
r1Q and

√
r2Q, as opposed to the circle with

radius
√
rQ in the equal margin case. Equations (4.41) to (4.46) still hold true, and Theorems

1 and 2 only incur minor modifications. The upper boundary of S∞
LL or S∗ is still given by (1 −

δ)−1[conv(T )− (ψL, ψL)]∩R
2
+, and the optimal volume allocation q on this boundary is still unique

(satisfying φ(r1q1)/φ(r2q2) = u1/u2), but the manufacturer’s expected value function, now given

by V∞
LL(u) = (1 − δ)−1(πLQ− r1q1 − r2q2), is not flat any more because the total margin payment

r1q1 + r2q2 is not constant. The properties of the optimal solution along the lower boundary of

S∗, characterized by Theorem 3 and Proposition 4, can also be generalized except that the slope of

the line segment ulur (or ulur), is no longer −45◦ when the margins differ and the manufacturer’s
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expected value along that line segment now varies linearly between V ∗(ul) and V ∗(ur). Lastly, the

longitudinal behavior on the upper and lower boundaries stays unchanged.

6.2 Fixed Total Payment

In the base model of the paper, the unit margin for each supplier is a constant r, and the manu-

facturer allocates a fixed total volume Q between the suppliers in every period. In this extension,

we consider the “opposite” problem, in which the business volume allocated to each supplier is con-

stant at q, and the manufacturer has a fixed total payment W to allocate in each period. The key

difference between the two problems lies in the timing of the critical events. Business volumes are

usually determined at the beginning of a period, while the payments are often made at the end and

thus can be contingent on the performance outcome of that period. Nevertheless, a careful choice

of the reference point can suppress this contingency and streamline the latter problem.

We call the time point (in each period) at which the performance outcomes and the manu-

facturer’s payoff have been realized but the payments to the suppliers are yet to be made the

compensation point . Let u = (u1, u2) be the continuation utility vector promised to the suppliers

from the compensation point of the current period onward and V (u) be the manufacturer’s cor-

responding continuation payoff from the compensation point onward (without the current-period

payoff). Given u, the manufacturer chooses the current-period payments w = (w1, w2), next-period

efforts a = (a1, a2), as well as the suppliers’ continuation utilities U(x) = (U1(x), U2(x)) (contingent

on the next-period performance outcomes x) to maximize its expected value, subject to promise

keeping, incentive compatibility, and total payment constraints:

V (u) = max
w,a,{U(x)}

E[δπ(x1)q + δπ(x2)q + δV (U1(x), U2(x))| a] −W (6.2)

s.t. φ(qwi) − δψai + δE[Ui(x)| a] = ui, i ∈ {1, 2} (6.3)

φ(qwi) − δψai + δE[Ui(x)| a] ≥ φ(qwi) − δψâi + δE[Ui(x)| âi, aj ], âi 6= ai, j 6= i ∈ {1, 2}
(6.4)

w1 + w2 = W/q, w1, w2 ≥ 0. (6.5)

The problem is similar to the volume allocation problem (3.6)-(3.9); so the function V (u) and

the corresponding optimal contract possess similar properties. The only additional task is to decide

for period 1 the optimal effort vector a and continuation utility vectors {U(x)} (contingent on

period 1’s outcomes), given an initial state u0 = (u0
1, u

0
2); it is a simple one-shot problem and does

not affect the long-term properties of the optimal contract governed by the recursive problem above.
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6.3 Flexible Total Volume

In the base model, the manufacturer’s total business volume is a constant Q in every period. In this

extension, we allow the total volume to vary in an interval, [Qm, QM ]. We assume that the manufac-

turer has a target volume Q0 ∈ [Qm, QM ] and incurs over and under-order penalties. The manufac-

turer’s total cost of procuring Q units is given by g(Q) =

{
rQ+ βm(Q0 −Q), if Q ∈ [Qm, Q0),
rQ+ βM (Q−Q0), if Q ∈ [Q0, QM ],

for some nonnegative coefficients βm and βM . When βm = βM = ∞, the model reduces to the

base model with a fixed total volume Q0; when βm = βM = 0, the model reduces to one without

a target volume. To avoid trivial cases, we assume πL < r + βM , i.e., increasing the total volume

beyond Q0 is not profitable for the manufacturer at least in the low effort scenario; otherwise, the

manufacturer would be tempted to push the total volume all the way to QM .

The manufacturer’s problem (4.1)-(4.6) of inducing a given effort pair (a1, a2) only undergoes

minor modifications: the manufacturer’s total payment rQ in the objective function is replaced by

g(q1 + q2), and the volume constraint q1 + q2 = Q is replaced by q1 + q2 ∈ [Qm, QM ]. It can be

verified that Lemma 1 is intact. Thus, the problems of inducing (L,L), (H,L), (L,H), and (H,H)

effort pairs are all similar as before except the above modifications. As a result, the decomposition of

these problems is still valid, i.e., Propositions 1 and 2 are still true except for the necessary changes

in the objective functions and volume constraints in the upper level problems. Propositions 3 and 4

carry over without any modification. The robustness of these results reveals that the fundamental

incentive driver in the problem is unchanged under this generalization.

The flexibility in Q broadens the manufacturer’s choices, which enlarges the feasible set of

the suppliers’ continuation utilities and improves the manufacturer’s value function. Due to such

changes, Theorems 1, 2, and 3 need to be modified; most notably, the trapping region near the upper

boundary of the feasible set S∗ and the recurrent set near the lower boundary are both enlarged

as a result of the flexibility in Q. Being able to dynamically allocate a larger (as well as smaller)

volume makes it easier for the manufacturer to induce high effort from the suppliers. A rigorous

analysis can be found in Appendix B.

6.4 Multiple Effort Levels

In the base model, the suppliers’ effort level can be either H or L. In this extension, we add an

intermediate level, M . More effort levels can be treated similarly.

As in the two-effort-level case, assume that the disutilities of the effort levels and corresponding

probabilities of the good outcome are ordered such that ψH > ψM > ψL and pH(1) > pM (1) >

28



pL(1). Define the effective marginal costs of effort as µHM = δ−1(ψH − ψM )/(pH(1) − pM(1)),

µML = δ−1(ψM − ψL)/(pM (1) − pL(1)), and µHL = δ−1(ψH − ψL)/(pH(1) − pL(1)). We assume

µHM > µML; otherwise effort M will never be chosen by the suppliers and the problem becomes

trivial. Eliminating symmetric cases, we have six subproblems to solve, which are for effort pairs

(H,H), (H,M), (H,L), (M,M), (M,L), and (L,L). For each effort pair (a1, a2), the subproblem

is largely the same as given in (4.1)-(4.6), with the IC constraints (4.4) and (4.5) each replaced by

two IC constraints to prevent each supplier from deviating to other effort levels.

Similar to Lemma 1, it can be shown that the IC constraints for supplier i do not bind if ai = L

and only one of them binds if ai = M (or H). Consequently, the (L,L) subproblem is the same as in

the base model and the results about the (L,L)-forever benchmark and the upper boundary of S∗ in

Theorems 1 and 2 continue to hold. The (H,L) and (M,L) subproblems are similar to the original

(H,L) subproblem (with one IC constraint binding for supplier 1); and the (H,H), (H,M), and

(M,M) subproblems are similar to the original (H,H) subproblem (with one IC constraint binding

for each supplier). Since the the recurrent segment on the lower boundary of S∗ is driven by the

(H,H) subproblem, Theorem 3 and Proposition 4 hold with minor modifications – replacing the

constant µ with µHM , and the effort L with M in the conditions of Theorem 3. Therefore, the main

results in the paper withstand the inclusion of more effort levels.

7 Conclusion

We have presented a dynamic contract problem for managing critical suppliers using business vol-

ume incentives. Because the manufacturer cannot directly observe or verify each supplier’s effort

devoted to supplying goods or services that the manufacturer buys from them, a performance-

based contract is necessary. In this paper, we solve the repeated moral hazard problem with two

agents and characterize the main properties of the optimal contract. We formulate the problem

as a Markov decision process, treating the suppliers’ continuation utility vector as the state of the

system. We have shown that the process comprises of three types of states, each representing unique

transition characteristic and longitudinal behavior. The discovery of these states leads to a clear

understanding of the dynamic incentive structure embedded in the optimal solution. In particular,

we find that individual trapping states with characteristic volume allocations, as well as a trapping

region formed by a recurrent class of the Markov states, are the ultimate long-run incentive levers

for the manufacturer. Compared to existing literature on dynamic contracts, we are among the

very few to give well-characterized solution. In addition, our paper is first to exploit the transition
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dynamics and longitudinal behaviors of the optimal contract to unveil characteristics of long-run

volume incentives, to the best of our knowledge.

We have made some simplifying assumptions in the model, some of which are relaxed in the

extensions: we have considered asymmetric suppliers, fixed total payment (instead of volume),

flexible total volume, as well as multiple effort levels. In particular, flexibility in the total quantity

enables the manufacturer to offer stronger-powered incentives and trapping near the two boundaries

where both suppliers exert low effort or high effort is more widespread. It is also possible to generalize

our model in other directions. For instance, we have not considered common industry noise in the

suppliers’ production functions, and therefore, the manufacturer needs to first filter out the common

noise when implementing the contract. If, however, common noise is considered in the problem,

we expect the reward (punishment) becomes stronger (more severe) for the good (poor) performer

because the manufacturer has to rely more on relative performance to infer the effort choice of each

supplier.

Finally, although the mathematical model developed in this paper is motivated by a buyer-

supplier problem involving two competing suppliers providing the same product or service, the model

and solution technique can also be applied to other principal-agent problem settings involving (1)

two or more agents, (2) repeated moral hazard issues, and (3) common resource constraints among

the agents. This is a promising future research direction.
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A Appendix: Proofs

A.1 Proof of Lemma 1

Proof. (1) Assume (a1, a2) = (L,L). Consider any feasible solution {q1, q2, U1(x), U2(x)}. Let

U∗
1 = E[U1(x)|L,L] and U∗

2 = E[U2(x)|L,L]. Clearly, U∗
1 and U∗

2 satisfy (4.2) and (4.3). They

also satisfy (4.4) and (4.5) strictly because ψL < ψH . Further, because V (u1, u2) is concave,

V (U∗
1 , U

∗
2 ) = V (E[U1(x), U2(x)|L,L]) ≥ E[V (U1(x), U2(x))|L,L], by Jensen’s inequality. Thus,

the set of variables {q1, q2, U∗
1 , U

∗
2 } is feasible to (4.1)-(4.6) and yields weakly higher expected

value for the manufacturer than {q1, q2, U1(x), U2(x)} does. Therefore, the problem (4.1)-(4.6)

for (a1, a2) = (L,L) must have an optimal solution that satisfies U1(x) ≡ U∗
1 , U2(x) ≡ U∗

2 , and the

IC constraints (4.4) and (4.5) strictly.

(2) Assume (a1, a2) = (H,L). Consider any feasible solution {q1, q2, U1(x), U2(x)}. Let U ′
i(x1) =

E[Ui(x1, x2)| a2 = L] =
∑

x2∈{0,1}

pL(x2)Ui(x1, x2), for i = 1, 2, as illustrated in Figure 10(a). We have

E[Ui(x)|H,L] =
∑

x1∈{0,1}

∑

x2∈{0,1}

pH(x1)pL(x2)Ui(x1, x2)

=
∑

x1∈{0,1}

pH(x1)[
∑

x2∈{0,1}

pL(x2)Ui(x1, x2)]

= E[U ′
i(x1)

∣∣ a1 = H].

Thus, the menu {U ′
1(x1), U

′
2(x1)}x1∈{0,1} satisfies the PK constraints (4.2) and (4.3). Because

E[U1(x)|L,L] = E[U ′
1(x1)| â1 = L], the IC constraint (4.4) implies u1 ≥ δE[U1(x)|L,L]+φ(rq1)−

ψL = δE[U ′
1(x1)| â1 = L]+φ(rq1)−ψL, and hence (4.4) is satisfied by {U ′

1(x1), U
′
2(x1)}x1∈{0,1}. Be-

cause E[U ′
2(x1)|H,H] = E[U ′

2(x1)|H,L], from (4.3) and ψH > ψL we obtain u2 = δE[U ′
2(x1)|H,L]+

φ(rq2) − ψL > δE[U ′
2(x1)|H,H] + φ(rq2) − ψH , and hence the IC constraint (4.5) is also satisfied

(strictly). Because V (·) is concave,

E[V (U′(x1))
∣∣ a1 = H] =

∑

x1∈{0,1}

pH(x1)V (
∑

x2∈{0,1}

pL(x2)U(x))

≥
∑

x1∈{0,1}

pH(x1)
∑

x2∈{0,1}

pL(x2)V (U(x))

= E[V (U(x))|H,L]

by Jensen’s inequality. Thus, the set of variables {q1, q2, U ′
1(x1), U

′
2(x1)} is feasible to the problem

(4.1)-(4.6) and yields weakly higher expected value for the manufacturer than {q1, q2, U1(x), U2(x)}
does. Therefore, the problem (4.1)-(4.6) for (a1, a2) = (H,L) must have an optimal solution such

that U1(x1, x2) ≡ U ′
1(x1), U2(x1, x2) ≡ U ′

2(x1), and the IC constraint (4.5) is strictly satisfied.

If the constraint (4.4) does not bind at {U′(x1)}x1∈{0,1}, we can find two points U′′(0) and

U′′(1) on the line segment U′(0)U′(1) such that E[U′′(x1)|H] = E[U′(x1)|H] and (4.4) binds,
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as illustrated in Figure 10(a). We show below that U′′(0) and U′′(1) must lie between U′(0) and

U′(1), and hence by the concavity of V (·), E[V (U′′(x1))|H] ≥ E[V (U′(x1))|H].

By the above non-binding assumption,

u1 > δE[U ′
1(x1)

∣∣L] + φ(rq1) − ψL. (A.1)

Because u1 = δE[U ′
1(x1)|H] + φ(rq1) − ψH and ψH > ψL, we have

u1 < δE[U ′
1(x1)

∣∣H] + φ(rq1) − ψL, (A.2)

i.e., (4.4) is violated at the expected point E[U′(x1)|H]. Inequalities (A.1) and (A.2) imply

pL(0)U ′
1(0) + pL(1)U ′

1(1) < pH(0)U ′
1(0) + pH(1)U ′

1(1). Because pL(0)− pH(0) = pH(1)− pL(1) > 0,

we obtain U ′
1(0) < U ′

1(1). For any U ′′
1 (0) and U ′′

1 (1) such that U ′
1(0) < U ′′

1 (0) < E[U ′
1(x1)|H] <

U ′′
1 (1) < U ′

1(1) and E[U ′′
1 (x1)|H] = E[U ′

1(x1)|H], we have

pH(0)[U ′′
1 (0) − U ′

1(0)] = pH(1)[U ′
1(1) − U ′′

1 (1)]

and

[pL(0)U ′′
1 (0) + pL(1)U ′′

1 (1)] − [pL(0)U ′
1(0) + pL(1)U ′

1(1)]

=pL(0)[U ′′
1 (0) − U ′

1(0)] − pL(1)[U ′
1(1) − U ′′

1 (1)]

=[pL(0) − pL(1)
pH(0)

pH(1)
][U ′′

1 (0) − U ′
1(0)] > 0,

because pL(0)pH(1) − pL(1)pH(0) = pL(0)pH(1) − (1 − pL(0))(1 − pH(1)) = pL(0) + pH(1) − 1 =

pH(1) − pL(1) > 0. Further,

[pL(0)U ′′
1 (0) + pL(1)U ′′

1 (1)] − [pH(0)U ′′
1 (0) + pH(1)U ′′

1 (1)]

=[pL(0) − pH(0)]U ′′
1 (0) + [pL(1) − pH(1)]U ′′

1 (1)

=[pH(1) − pL(1)][U ′′
1 (0) − U ′′

1 (1)] < 0.

Thus, we obtain E[U ′
1(x1)|L] < E[U ′′

1 (x1)|L] < E[U ′′
1 (x1)|H] = E[U ′

1(x1)|H]. By varying

the gap between U ′′
1 (0) and U ′′

1 (1) while maintaining U ′
1(0) < U ′′

1 (0) < U ′′
1 (1) < U ′

1(1) and

E[U ′′
1 (x1)|H] = E[U ′

1(x1)|H], we can have E[U ′′
1 (x1)|L] anywhere between E[U ′

1(x1)|L] and

E[U ′
1(x1)|H]. Then by inequalities (A.1) and (A.2), there must exist a pair of U ′′

1 (0) and U ′′
1 (1)

such that u1 = δE[U ′′
1 (x1)|L] + φ(rq1) − ψL, i.e., the IC constraint (4.4) is satisfied with equality.

(3) The case (a1, a2) = (L,H) is symmetric to the case (H,L) above and can be proved similarly.

(4) Assume (a1, a2) = (H,H). Consider any feasible solution {q,U(x)} and suppose that

the constraint (4.5) does not bind. As illustrated in Figure 10(b), there must exist {U′(x)} such

that (i) for any x1 ∈ {0, 1}, U′(x1, 0) and U′(x1, 1) lie on the line segment U(x1, 0)U(x1, 1) and
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Figure 10: Making IC Constraints Binding.

Ex2 [U
′(x1, x2)| a2 = H] = Ex2 [U(x1, x2)| a2 = H], and (ii) the constraint (4.5) binds (by the same

argument as in part 2). Then, we have

Ex1,x2[U
′(x)

∣∣ a2 = H,a1] = Ex1{Ex2 [U
′(x1, x2)

∣∣ a2 = H]
∣∣ a1}

= Ex1{Ex2 [U(x1, x2)| a2 = H]| a1}
= Ex1,x2[U(x)| a2 = H,a1], a1 ∈ {H,L}.

Consequently, the PK constraints (4.2), (4.3), and the IC constraint (4.4) are unchanged, but

the IC constraint (4.5) is now binding (by the assumption about {U′(x)}). By the concavity of

V (·), for any x1 ∈ {0, 1}, Ex2 [V (U′(x1, x2))| a2 = H] ≥ Ex2 [V (U(x1, x2))| a2 = H], and hence

E[V (U′(x))|H,H] ≥ E[V (U(x))|H,H].

If the IC constraint (4.4) binds at {U′(x)}, the proof is completed. Suppose (4.4) does not

bind. As illustrated in Figure 10(b), there must exist {U′′(x)} such that (i) for any x2 ∈ {0, 1},
U′′(0, x2) and U′′(1, x2) lie on the line segment U′(0, x2)U′(1, x2) and Ex1[U

′′(x1, x2)| a1 = H] =

Ex1 [U
′(x1, x2)| a1 = H], and (ii) the constraint (4.4) binds. By the same argument as above, we

can show that the PK constraints (4.2), (4.3), and the IC constraint (4.5) are all unchanged, and

E[V (U′′(x))|H,H] ≥ E[V ′(U(x))|H,H]. Notice that both IC constraints bind at {U′′(x)}, and

the proof is completed.

A.2 Proof of Proposition 1

Proof. Define Ûi = E(Ui(x1)| a1 = H), i = 1, 2. Then constraints (4.13), (4.14), and (4.16) become

(4.22), (4.23), and (4.24). Problem (4.12)-(4.16) is transformed into the upper level problem (4.21)-

(4.24) as long as Û is created from {U(x1)}x1∈{0,1} that satisfy

pH(0)Ui(0) + pH(1)Ui(1) = Ûi, i = 1, 2 (A.3)
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and the remaining constraint (4.15).

By constraints (4.13) and (4.15), we have δÛ1 + φ(rq1) − ψH = δ[pL(0)U1(0) + pL(1)U1(1)] +

φ(rq1) − ψL, and hence

pL(0)U1(0) + pL(1)U1(1) = Û1 − δ−1∆ψ. (A.4)

Solving equations (A.3) (for i = 1) and (A.4), we obtain constraints (4.18) and (4.19). Constraint

(4.20) is equation (A.3) for i = 2. The objective (4.17) ensures that for any given Û, the variables

{U(x1)} are optimally chosen for the manufacturer. Therefore we obtain the lower level problem

(4.17)-(4.20).

A.3 Proof of Proposition 2

Proof. Define Ûi = E(Ui(x)|H,H), i = 1, 2. Then constraints (4.26), (4.27), and (4.30) become

(4.37), (4.38), and (4.39). Problem (4.25)-(4.30) is transformed into the upper level problem (4.36)-

(4.39) as long as Û is created from {U(x)}x∈{0,1}2 that satisfy

pH(0)[pH(0)U1(0, 0) + pH(1)U1(0, 1)] + pH(1)[pH(0)U1(1, 0) + pH(1)U1(1, 1)] = Û1 (A.5)

[pH(0)U2(0, 0) + pH(1)U2(1, 0)]pH (0) + [pH(0)U2(0, 1) + pH(1)U2(1, 1)]pH (1) = Û2 (A.6)

and the remaining constraints (4.28) and (4.29).

By constraints (4.26) and (4.28), we have δÛ1+φ(rq1)−ψH = δ{pL(0)[pH(0)U1(0, 0)+pH (1)U1(0, 1)]+

pL(1)[pH(0)U1(1, 0) + pH(1)U1(1, 1)]} + φ(rq1) − ψL, and hence

pL(0)[pH (0)U1(0, 0) + pH(1)U1(0, 1)] + pL(1)[pH (0)U1(1, 0) + pH(1)U1(1, 1)] = Û1 − δ−1∆ψ. (A.7)

Solving equations (A.5) and (A.7), we obtain constraints (4.32) and (4.33). Similarly, by constraints

(4.27) and (4.29), we obtain

[pH(0)U2(0, 0) + pH(1)U2(1, 0)]pL(0) + [pH(0)U2(0, 1) + pH(1)U2(1, 1)]pL(1) = Û2 − δ−1∆ψ. (A.8)

From (A.6) and (A.8), we obtain constraints (4.34) and (4.35). The objective (4.31) ensures that

for any given Û, the variables {U(x)} are optimally chosen for the manufacturer. Therefore, the

lower level problem is defined by (4.31)-(4.35).

A.4 Proof of Proposition 3

Proof. Claims (1) and (2) follow (4.32)-(4.35) immediately. Claim (3) is true because

pH(0)M1(0) + pH(1)M1(1)

= pH(0)[pH(0)U(0, 0) + pH(1)U(0, 1)] + pH(1)[pH (0)U(1, 0) + pH(1)U(1, 1)]

= E[U(x)|H,H] = (Û1, Û2)

and similarly pH(0)M2(0) + pH(1)M2(1) = (Û1, Û2).
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Figure 11: Determining the boundaries of S∞
LL: (a) The set T and conv(T ); (b) Determining the
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LL.

Now, we show claim (4). BecauseM1(0) = pH(0)U(0, 0)+pH (1)U(0, 1) andM2(0) = pH(0)U(0, 0)+

pH(1)U(1, 0), we haveM1(0)−U(0, 0) = pH(1)[U(0, 1)−U(0, 0)], M2(0)−U(0, 0) = pH(1)[U(1, 0)−
U(0, 0)], and

l(U(0, 0)M1(0))

l(U(0, 0)U(0, 1))
= pH(1) =

l(U(0, 0)M2(0))

l(U(0, 0)U(1, 0))
.

Thus, M1(0)M2(0) is parallel to U(0, 1)U(1, 0) and l(M1(0)M2(0)) = pH(1) · l(U(0, 1)U(1, 0)).

Similarly, because M1(1) = pH(0)U(1, 0)+pH (1)U(1, 1) and M2(1) = pH(0)U(0, 1)+pH (1)U(1, 1),

we have
l(U(1, 1)M1(1))

l(U(1, 1)U(1, 0))
= pH(0) =

l(U(1, 1)M2(1))

l(U(1, 1)U(0, 1))

and henceM2(1)M1(1) is parallel to U(0, 1)U(1, 0) with length l(M2(1)M1(1)) = pH(0)·l(U(0, 1)U(1, 0)).

A.5 Proof of Theorem 1

Proof. The proof is by construction. We first derive the two boundaries of S∞
LL when ψL = 0, as

illustrated in Figure 11 (in which the utility function is φ(w) =
√
w). The proof below utilizes the

properties of Minkowski sum of convex polytopes.

(1) Let S denote the upper boundary of a convex set S. Consider the upper boundary of S∞
LL,

i.e., S∞
LL. From equation (4.44), we have S∞

LL = (δS∞
LL) ⊕ conv(T ) = (δS∞

LL)⊕ conv(T ). Notice that

conv(T ) = T . Refer to Figure 11(b) and consider any point u′ ∈ S∞
LL. Let the normal vector at u′
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be n. Clearly, the point on δS∞
LL with the same normal vector n is u′′ = δu′. By the properties

of Minkowski sum (Gritzmann and Sturmfels 1993), u′ = u′′ + t′, where t′ is the point on T with

the same normal vector n. Thus, we have u′ = δu′ + t′, or, u′ = (1 − δ)−1t′, and consequently

S∞
LL = (1 − δ)−1T .

(2) Let S denote the lower boundary of a convex set S. Consider the lower boundary of S∞
LL,

i.e., S∞
LL. From equation (4.44), we have S∞

LL = (δS∞
LL) ⊕ conv(T ) = (δS∞

LL) ⊕ conv(T ). Notice

that conv(T ) is the line segment (φ(0), φ(rQ))(φ(rQ), φ(0)). Refer to Figure 11(c) and consider any

point u′ ∈ S∞
LL. By the same argument as in part (1) above, we have u′ = (1 − δ)−1t′ for some

t′ ∈ conv(T ) and thus S∞
LL = (1 − δ)−1conv(T ).

Combining (1) and (2), we obtain S∞
LL = (1 − δ)−1conv(T ) when ψL = 0. Now, assume ψL > 0

but ignore the constraint u ∈ R
2
+ for the moment. Define S∞′

LL = S∞
LL + (1 − δ)−1(ψL, ψL). By the

properties of Minkowski sum, (Y +d)⊕Z = (Y ⊕Z)+d for any vector d. Thus, (δS∞′
LL)⊕conv(T ) =

(δS∞
LL) ⊕ conv(T ) + δ(1 − δ)−1(ψL, ψL) = S∞

LL + (ψL, ψL) + δ(1 − δ)−1(ψL, ψL) = S∞′
LL, where the

second equality follows from equation (4.44). Therefore, the set S∞′
LL is identical to the set S∞

LL

characterized above when ψL = 0. As a result, when ψL > 0 and the constraint u ∈ R
2
+ is ignored,

we have S∞
LL = S∞′

LL − (1 − δ)−1(ψL, ψL) = (1 − δ)−1[conv(T ) − (ψL, ψL)].

Consider the constraint u ∈ R
2
+. As shown above, every u′ ∈ (1 − δ)−1[conv(T ) − (ψL, ψL)]

can be self-generated according to u′ = δu′ + t′ (for some t′ ∈ conv(T )). Hence the truncated set

(1 − δ)−1[conv(T ) − (ψL, ψL)] ∩ R
2
+ can be self-generated as well, and S∞

LL ⊃ (1 − δ)−1[conv(T ) −
(ψL, ψL)] ∩ R

2
+ when the constraint u ∈ R

2
+ is imposed. Suppose that there exists ũ ∈ S∞

LL \ ((1 −
δ)−1[conv(T ) − (ψL, ψL)] ∩ R

2
+). Then ũ + (ψL, ψL) must belong to the set S∞

LL corresponding

to ψL = 0, which is (1 − δ)−1conv(T ). Clearly, such a ũ does not exist. Thus, S∞
LL = (1 −

δ)−1[conv(T ) − (ψL, ψL)] ∩ R
2
+.

Next, we derive the manufacturer’s continuation value function V∞
LL(·). Because every point

u′ ∈ S∞
LL can be self-generated as mentioned above (along with certain t′ ∈ conv(T ) or q satisfying

(4.11)), it is feasible to let U = u in problem (4.8)-(4.11) and hence V∞
LL(u) ≥ (πL−r)Q+ δV∞

LL(u),

i.e., V∞
LL(u) ≥ (1−δ)−1(πL−r)Q. It can be further seen that the function V∞

LL(u) = (1−δ)−1(πL−
r)Q, for all u ∈ S∞

LL, is a fixed point of the operator ΓLL, i.e., satisfying (ΓLLV
∞
LL)(·) = V∞

LL(·).
Consider the space of continuous and bounded functions with the common domain S∞

LL, and equip

the space with the supremum norm ‖f‖ ≡ supu∈S∞
LL

|f(u)|, for any function f : S∞
LL → R. Consider

any functions f1 : S∞
LL → R and f2 : S∞

LL → R in the space and let d = ‖f1 − f2‖. By the

definition (4.8)-(4.11), ΓLLf1 ≥ ΓLLf2 if f1 ≥ f2 and ΓLL(f + d) = ΓLLf + δd for any constant

d ∈ R. Thus, ΓLLf2 − δd = ΓLL(f2 − d) ≤ ΓLLf1 ≤ ΓLL(f2 + d) = ΓLLf2 + δd, which implies

‖ΓLLf1 − ΓLLf2‖ ≤ δ ‖f1 − f2‖. Hence the operator ΓLL is a contraction mapping in this function

space and the above fixed point V∞
LL(·) = (1 − δ)−1(πL − r)Q is unique under ΓLL.

Finally, according to the construction of S∞
LL, any u′ ∈ S∞

LL satisfies u′ = δu′ + t′, where t′

lies on the curve T and has the same normal vector as u′ does. Because t′ = (1 − δ)u′, it is
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uniquely determined. By the definition of T , t′ = (φ(rq′1), φ(rq′2)) for some (q′1, q
′
2), and therefore

φ(rq′1)/φ(rq′2) = u′1/u
′
2. For any u′ ∈ S∞

LL \ S∞
LL, we can still have u′ = δu′ + t′, with certain

t′ ∈ conv(T )\T , corresponding to a randomized volume allocation (recall that any t in conv(T )\T
gives the suppliers’ expected utilities from a randomized volume allocation that randomizes between

two deterministic volume allocations). However, such a construction is not unique because we can

also have u′ = u′′ + t′′ for some u′′ 6= δu′, as evident from Figure 11(c).

A.6 Proof of Theorem 2

Proof. We determine the upper boundary of S∗, i.e., S∗. Because S∗ = conv(S∗
LL ∪ S∗

HL ∪ S∗
LH ∪

S∗
HH), our main task is to show that the upper boundary of S∗

LL dominates those of S∗
HL, S∗

LH , and

S∗
HH .

Let Ŝ∗
a1a2

represent the feasible parameter set of the lower level problem for the effort pair

(a1, a2), given the input function V ∗(·). By the definition of these problems, we have

Ŝ∗
HL = {Û : ∃{U(x1) ∈ S∗}x1∈{0,1} s.t. (4.18)-(4.20)}, (A.9)

Ŝ∗
LH = {Û : ∃{U(x2) ∈ S∗}x2∈{0,1} s.t. the counterpart of (4.18)-(4.20) for a1a2 = LH}, (A.10)

Ŝ∗
HH = {Û : ∃{U(x) ∈ S∗}x∈{0,1}2 s.t. (4.32)-(4.35)}. (A.11)

By the similarity between the upper level problems and the (L,L) problem (4.8)-(4.11), and in

analogy to (4.46), we obtain

S∗
a1a2

= (δŜ∗
a1a2

) ⊕ conv(T ) − (ψa1 , ψa2), a1a2 ∈ {HL,LH,HH}. (A.12)

Consider any Û ∈ Ŝ∗
HH . By definition (as in Proposition 3), Û is the expected continuation

utility vector and is the convex combination of some {U(x) ∈ S∗}x∈{0,1}2 . Hence Û must lie inside

the convex hull of {U(x)}x∈{0,1}2 and be dominated by S∗, by the convexity of S∗. Similarly, any

Û ∈ Ŝ∗
HL or Ŝ∗

LH must be dominated by S∗ as well. Thus, the upper boundary of S∗ dominates

those of Ŝ∗
HL, Ŝ∗

LH , and Ŝ∗
HH . By equations (4.46), (A.12), the fact ψH > ψL, and the monotonicity

of S∗
LL (assuming that the curve T is monotone), the upper boundary of S∗

LL dominates those of

S∗
HL, S∗

LH , and S∗
HH .

Therefore, equation (4.45) implies S∗ = S∗
LL. By equation (4.46), we obtain

S∗
LL = (δS∗) ⊕ conv(T ) − (ψL, ψL) = (δS∗

LL) ⊕ conv(T ) − (ψL, ψL).

Because this coincides with the definition of S∞
LL, the upper boundaries of S∗, S∗

LL, and S∞
LL are

identical.

A.7 Proof of Theorem 3

The basic idea of the proof is the following: Compare problems (4.8)-(4.11), (4.12)-(4.16), and

(4.25)-(4.30). Because the high effort cost ψH is incurred by both suppliers in the (H,H) problem
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Figure 12: Lined up {U(x)} to Generate a Given Û under (H,H) Efforts.

while by at most one of them in the other problems, the (H,H) effort pair may lead to the lowest

continuation utilities for the suppliers. Consider any point u ∈ S∗ that is created by the (H,H)

effort pair. According to the geometric structure described in Proposition 3 and illustrated in Figure

3(a), the corresponding expected continuation utility vector Û must lie in the convex hull of the

corresponding {U(x) ∈ S∗}x∈{0,1}2 , and hence Û ∈ S∗ as well. To ensure u ∈ S∗, we must push

Û toward S∗. Ideally, we would have Û ∈ S∗. This can be achieved when all {U(x)} lie on the

same line and their convex hull degenerates into a line segment. Due to the symmetry between the

two suppliers (essentially, the slope of conv(T )), the line segment should have a −45◦ slope. We

construct the solution rigorously below with the aid of two lemmas.

Lemma A1. Let µ = δ−1∆ψ/(pH(1) − pL(1)) > 0. If an expected continuation utility vector Û

can be generated from a set of U(x), x ∈ {0, 1}2, that all lie on a −45◦ line segment, then the

line segment is the shortest when U(0, 0) and U(1, 1) lie between U(0, 1) and U(1, 0). The line

segment has the following properties, as illustrated in Figure 12: (1) U(0, 1)U(1, 0) passes through

Û; (2) U(1, 0) −U(0, 1) = (2µ,−2µ); (3) U(0, 1) lies to the left of the vertical line with horizontal

coordinate Û1 − pH(1)µ or exactly on it (in which case U(0, 1) coincides with U(0, 0) and M1(0));

and (4) U(1, 0) lies below the horizontal line with vertical coordinate Û2 − pH(1)µ or exactly on it

(in which case U(1, 0) coincides with U(0, 0) and M2(0)).

Proof. By Proposition 3 and Figure 3(a), when all {U(x)} lie on the same line, the line must

pass through Û. As the intersections of this line with the dotted (horizontal or vertical) lines

in Figure 12, the points Mi(xi), xi ∈ {0, 1}, i ∈ {1, 2}, are uniquely determined. Because

l(U(0, 1)U(1, 0)) = l(M1(0)M2(0)) + l(M2(1)M1(1)), the distance between U(0, 1) and U(1, 0)

is determined as well. To ensure that the line segment that contains all {U(x)} has the shortest
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Figure 13: Generating ul from {Ul(x)} and Ûl under (H,H) Efforts.

length (so that it is easiest to sustain in the optimal solution), U(0, 0) and U(1, 1) must lie between

U(0, 1) and U(1, 0). Then by Proposition 3 and Figure 3(a), U(0, 1) must lie to the left of the

vertical line with horizontal coordinate Û1 − pH(1)µ, and U(1, 0) below the horizontal line with

vertical coordinate Û2−pH(1)µ. Further, because both M1(0)M2(0) and M2(1)M1(1) pass through

Û, by the geometry illustrated in Figure 12, we obtain M2(0) −M1(0) = (2pH(1)µ,−2pH (1)µ),

M1(1) −M2(1) = (2pH(0)µ,−2pH(0)µ), and hence U(1, 0) − U(0, 1) = (2µ,−2µ).

Notice that although the length of U(0, 1)U(1, 0) is fixed, the exact locations of U(0, 1) and

U(1, 0) (and consequently, U(0, 0) and U(1, 1)) are flexible to some extent.

Lemma A2. (1) If ψL
ψH

≤ pL(1)
pH(1) and φ(rQ) ≥ 2(1−δpH(0))µ, the −45◦ line segment ulur can be self-

generated under the (H,H) effort pair, where ul = (1−δ)−1(δpH(1)µ−ψH ,−δpH(1)µ+φ(rQ)−ψH )

and ur = (1 − δ)−1(−δpH(1)µ+ φ(rQ) − ψH , δpH(1)µ− ψH). Further, ulur cannot be extended at

either end without losing self-sustainability, and there is no −45◦ line segment below (to the left of)

ulur that can be self-generated under the (H,H) effort pair.

(2) If ψL
ψH

> pL(1)
pH(1) and φ(rQ) ≥ 2((1−δ)µ+ψH), the −45◦ line segment ulur can be self-generated

under the (H,H) effort pair, where ul = (1 − δ)−1(0, φ(rQ) − 2ψH) and ur = (1 − δ)−1(φ(rQ) −
2ψH , 0). There is no −45◦ line segment below (or to the left of) ulur that can be self-generated

under the (H,H) effort pair.

Proof. (1) Assume that the left end point of the line segment, ul, is generated from the expected

continuation utility vector Ûl. To push ul to the top left, by equations (4.37)-(4.38), we should

choose q = (0, Q), and hence

ul = δÛl + (0, φ(rQ)) − (ψH , ψH). (A.13)
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The vector Ûl is created from the set of continuation utility vectors {Ul(x)}, all lying on the line

segment ulur. To push ul to the top left, we should push Ûl to the top left as much as possible.

From Figure 12 and Lemma A1(3), the minimum horizontal and vertical distance between Ûl and

Ul(0, 1) is pH(1)µ, and the minimum is reached if Ul(0, 1), Ul(0, 0) and M1(0) are of the same

point. Therefore, to generate the leftmost Ûl, Ul(0, 1) and Ul(0, 0) must coincide with the left

endpoint of the line segment, ul. Hence, as illustrated in Figure 13,

Ûl = ul + (pH(1)µ,−pH(1)µ). (A.14)

Substituting (A.14) into (A.13), we obtain

ul = (1 − δ)−1(δpH(1)µ− ψH ,−δpH(1)µ + φ(rQ) − ψH).

Similarly, we can obtain the right end point of the line segment

ur = (1 − δ)−1(−δpH(1)µ+ φ(rQ) − ψH , δpH(1)µ− ψH).

It follows that

ur − ul = (1 − δ)−1[φ(rQ) − 2δpH(1)µ](1,−1).

By Lemma A1, to generate Ûl from {Ul(x)}, we must have Ul(1, 0) − Ul(0, 1) = (2µ,−2µ).

Thus, to contain all {Ul(x)}, ulur must be long enough, i.e., (1 − δ)−1[φ(rQ) − 2δpH(1)µ] ≥ 2µ.

That is, φ(rQ) ≥ 2(1 − δ + δpH(1))µ, or,

φ(rQ) ≥ 2(1 − δpH(0))µ.

Here, we implicitly assumed that ul1 ≥ 0 (and ur2 ≥ 0), i.e., δpH(1)µ ≥ ψH , which implies

∆ψpH(1)/(pH (1) − pL(1)) ≥ ψH , (ψH − ψL)pH(1) ≥ ψH(pH(1) − pL(1)), or ψL
ψH

≤ pL(1)
pH(1) .

Now, we show that there is no −45◦ line segment below (or to the left of) ulur that can be

self-generated under the (H,H) effort pair. A −45◦ line is defined by an equation u1 + u2 = k,

for some constant k. A −45◦ line segment is below or to the left of another −45◦ line segment

if the former has a smaller k in its defining equation. Suppose L is the lowest −45◦ line segment

that can be self-generated under the (H,H) effort pair, with a defining equation u1 + u2 = k, for

a certain k > 0. For any feasible u under the (H,H) efforts, equations (4.37)-(4.38) imply that

u = δÛ + t − (ψH , ψH), for certain Û ∈ Ŝ∗
HH and t ∈ conv(T ) (randomized volume allocation is

needed to create a t vector in conv(T ) \ T ). Similar to the situation illustrated in Figure 11(c) for

determining S∞
LL, any u ∈ L must be generated from certain Û ∈ L and t ∈ conv(T ). Because

conv(T ) = (φ(0), φ(rQ))(φ(rQ), φ(0)), any t ∈ conv(T ) corresponds to a volume allocation (q̃1, q̃2)

that randomizes between (0, Q) and (Q, 0) and hence satisfies E[φ(rq̃1)+φ(rq̃2)] = φ(rQ). Thus, by

(4.37)-(4.38), we have u1 +u2 = δ(Û1 + Û2)+φ(rQ)−2ψH , which implies k = δk+φ(rQ)−2ψH , or

k = (1 − δ)−1(φ(rQ) − 2ψH). Clearly, both ul and ur lie on the line segment L and ulur coincides

with L.
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(2) When ul1 < 0 (and ur2 < 0), i.e., ψL
ψH

> pL(1)
pH(1) , because u ∈ R

2
+, the line segment ulur

would be truncated by the two axes, becoming ulur. Because ul1 = 0 and ul1 + ul2 = ul1 + ul2 =

(1 − δ)−1[φ(rQ) − 2ψH ], we have ul2 = (1 − δ)−1[φ(rQ) − 2ψH ]. Thus, the two end points of the

truncated line segment are ul = (1 − δ)−1(0, φ(rQ) − 2ψH) and ur = (1 − δ)−1(φ(rQ) − 2ψH , 0).

For the truncated line segment ulur to be self-sustainable, it must be long enough as well. That

is, (1 − δ)−1[φ(rQ) − 2ψH ] ≥ 2µ, or φ(rQ) ≥ 2((1 − δ)µ + ψH). In addition, because both ul and

ur lie on the line segment L defined above, ulur is the lowest possible self-sustainable line segment

under the (H,H) effort pair.

Proof. [Proof of the Theorem] By Lemma A2, under the (H,H) effort pair, the line segments ulur

and ulur can be self-generated in the two cases, respectively, and there is no other self-sustainable

line segment below (or to the left of) them. Thus, ulur, ulur ⊂ S∗
HH and they can potentially be

S∗ (or part of which) in their respective cases. We verify this by showing that the other effort pairs

cannot generate any u vector below ulur or ulur.

Note that ulur and ulur are both on the −45◦ line L : u1 + u2 = k, for k = (1 − δ)−1(φ(rQ) −
2ψH). By equations (4.46) and (A.12), to generate a continuation utility vector with the smallest

u1+u2 under any effort pair (a1, a2), the manufacturer must choose volume allocation (0, Q), (Q, 0),

or a randomization between the two, such that φ(rq1) + φ(rq2) = φ(rQ) (or E[φ(rq1) + φ(rq2)] =

φ(rQ)). This is similar to the situation illustrated in Figure 11(c) for determining S∞
LL.

Consider the (L,L) effort pair. From any U ∈ L, by (4.9)-(4.10), we have u1 +u2 = δ(U1 +U2)+

φ(rq1)+φ(rq2)−2ψL = δk+φ(rQ)−2ψL = k+2∆ψ > k, because δk+φ(rQ)−2ψH = k. Thus, the

resulting u must lie above the line L. Consider the (H,L) effort pair next. By Proposition 1 and

Figure 2, when both U(0) and U(1) are drawn from L, we have Û ∈ L as well. By (4.22)-(4.23),

we have u1 +u2 = δ(Û1 + Û2)+ φ(rq1) +φ(rq2)−ψH −ψL = δk+φ(rQ)−ψH −ψL = k+ ∆ψ > k.

Thus, the resulting u lies above the line L. Similarly, under the (L,H) effort pair, any u created

from U(0) and U(1) on L must lie above L as well.

Therefore, the line segment ulur or ulur can only be sustained under the (H,H) effort pair,

and any u vector on or below the −45◦ line L must be generated by the (H,H) effort pair alone.

We can easily verify that no u vector below L can be generated by the (H,H) effort pair. Hence we

must have ulur ⊂ S∗. In the case of ulur, it must be S∗ itself because it extends to the two axes.

Finally, consider the manufacturer’s optimal value function. Assume that V ∗(u) = V
∗
, for all

u ∈ ulur, in case (1). Because the corresponding {U(x)} are all on ulur, by (4.25)-(4.30), we have

V
∗

= δV
∗
+ (πH − r)Q, and V

∗
= (1 − δ)−1(πH − r)Q. Thus, the function V ∗(u) = V

∗
, u ∈ ulur,

is self-sustainable. Because V
∗

is the highest achievable expected value for the manufacturer given

any effort history, we must have V ∗(u) = V
∗
, for all u ∈ ulur. The same can be shown for case

(2).
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Figure 14: Generating Û in a Symmetric Way.

A.8 Proof of Proposition 4

Proof. By Lemma A1 and Figure 12, an expected continuation utility vector Û can be generated

from a set of U(x) that all lie on a −45◦ line segment passing through Û, with U(0, 0) and U(1, 1)

lying between U(0, 1) and U(1, 0) and U(1, 0) = U(0, 1)+ (2µ,−2µ). By adjusting the positions of

{U(x)}, we can obtain a symmetric layout such that U(0, 1) = Û+(−µ, µ), U(1, 0) = Û+(µ,−µ),

and U(0, 0) = U(1, 1) = Û, as illustrated in Figure 14.

In the first case of Theorem 3, all U(x) must be drawn from the self-sustainable line segment u ∈
ulur, which implies that a Û vector can be generated through the above symmetric layout if and only

if Û ∈ ũlũr, where ũl = ul+(µ,−µ) = (1−δ)−1((1−δpH (0))µ−ψH ,−(1−δpH (0))µ+φ(rQ)−ψH )

and ũr = ur + (−µ, µ) = (1 − δ)−1(−(1 − δpH(0))µ+ φ(rQ) − ψH , (1 − δpH(0))µ− ψH). Consider

any u ∈ ũlũr. If we choose Û = u, we would have u = δu + (φ(rq1), φ(rq2)) − (ψH , ψH) and

u = (1 − δ)−1(φ(rq1) − ψH , φ(rq2) − ψH). There always exists a random volume allocation (q̃1, q̃2)

(randomizing between (0, Q) and (Q, 0)) such that Eφ(rq̃1) + Eφ(rq̃2) = φ(rQ) and Eφ(rq̃1) ∈
[(1 − δpH(0))µ,−(1 − δpH(0))µ+ φ(rQ)] ⊂ [0, φ(rQ)]. With this random volume allocation, u can

be self-generated. Thus, for any u ∈ ũlũr, it is feasible to choose Û = u. Because any Û ∈ ũlũr

can be generated through the aforementioned symmetric layout, we have U(0, 1) = u + (−µ, µ),

U(1, 0) = u + (µ,−µ), and U(0, 0) = U(1, 1) = u, which proves part (1) of the proposition.

By the proof of Lemma A2 and Figure 13, a Û vector that can be generated from the line

segment ulur must be at least pH(1)µ away from each end point horizontally and vertically. Thus,

any u vector close enough to ul or ur cannot be generated by letting Û = u. These u vectors can be

created from Ûl or Ûr, the Û vector corresponding to ul or ur, along with proper volume allocations.

By Figure 13, ul is generated from Ul(0, 0) = Ul(0, 1) = ul, Ul(1, 1) = ul + pH(1)−pH(0)
pH(1) (µ,−µ),

and Ul(1, 0) = ul+(2µ,−2µ). Hence part (2) of the proposition is obtained. Part (3) can be shown

similarly.
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B Appendix: Extensions

In the base model studied in previous sections, we have made some assumptions that simplify our

analysis. In this appendix, we relax some important assumptions and show that our main results

are robust under such extensions. For completeness, most discussions in Section 6 of the main paper

are repeated here.

B.1 Asymmetric Suppliers

The basic model (3.6)-(3.9) assumes that the two suppliers are symmetric, with regard to their

utility functions, cost functions, unit margins, value contributions, etc. This assumption allows us

to concentrate on the most valuable circumstances for dynamic volume allocation. Suppose, for

example, the suppliers’ unit margins are unequal. Then the manufacturer would tend to allocate

less volume to the supplier demanding the higher margin, and hence the power of volume allocation

as an incentive lever would diminish. Nevertheless, as shown below, the main results of this paper

can be extended to the setting with unequal supplier margins.

Suppose supplier i’s unit margin is ri, i = 1, 2. The manufacturer’s problem (4.1)-(4.6) of

inducing efforts (a1, a2) only needs minor modifications: replacing the term rQ in the objective

function by r1q1 + r2q2, and replacing the terms rq1 and rq2 in the constraints by r1q1 and r2q2,

respectively. It is straightforward to verify that Lemma 1 is still valid. Thus, the problems for

inducing efforts (L,L), (H,L), (L,H), and (H,H) in Subsection 4.1 are all valid except for the

above modifications in the objective functions and constraints. It implies that the lower level

problems in Propositions 1 and 2, when inducing efforts (H,L), (L,H), and (H,H), are the same

as before, and hence the relationship between the expected continuation utility vector Û and the

set of continuation utility vectors {U(x)}x∈{0,1}2 (or {U(xi)}xi∈{0,1}) is unchanged. Consequently,

Figures 2, 3, and Proposition 3 bear no change as well.

The set T of one-period utility vectors generated from deterministic volume allocations, defined

in expression (4.40), changes to:

T = {(φ(r1q1), φ(r2q2)) : q1 + q2 = Q, q1, q2 ∈ [0, Q]}

= {(t1, t2) :
φ−1(t1)

r1
+
φ−1(t2)

r2
= Q, t1 ∈ [φ(0), φ(r1Q)], t2 ∈ [φ(0), φ(r2Q)]}. (B.1)

As an example, if the utility function is φ(w) =
√
w, i.e., φ−1(t) = t2, the new set T would be the

north-east quarter of an ellipse with radiuses
√
r1Q and

√
r2Q, as opposed to the circle with radius

√
rQ in the equal margin case. Equations (4.41) to (4.46) still hold true. Theorems 1 and 2 are also

valid, after minor modifications. They can be combined as follows.

Theorem B1. Suppose that r1 6= r2 and both suppliers’ reservation utility is 0. To induce ef-

forts (L,L) forever, the set of suppliers’ continuation utility vectors is S∞
LL = (1 − δ)−1[conv(T ) −

(ψL, ψL)] ∩ R
2
+. At any u ∈ S∞

LL, the optimal U equals u, the optimal volume allocation q satisfies
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φ(r1q1)/φ(r2q2) = u1/u2, and the manufacturer’s expected value is V∞
LL(u) = (1−δ)−1(πLQ−r1q1−

r2q2). In the optimal solution to the manufacturer’s problem, the upper boundary of the continuation

utility set S∗ coincides with S∞
LL, and the manufacturer’s optimal value at any u ∈ S∗ is given by

V ∗(u) = V∞
LL(u).

The proof of the theorem repeats those of Theorems 1 and 2 (and hence is omitted). Here, the

manufacturer’s expected value is only derived along the upper boundary of S∞
LL, where the optimal

volume allocation is unique but the value function V∞
LL(·) is not flat any more because the total

margin r1q1 + r2q2 is not constant. The theorem implies that the trapping behavior of the upper

boundary of S∗ extends to the unequal margin case.

The properties of the optimal solution along the lower boundary of S∗, characterized by Theorem

3 and Proposition 4, can be generalized as well. However, due to space limitation, a rigorous analysis

is omitted. The main modification required is that the line segment ulur (or ulur), self-generated

under the (H,H) efforts, is parallel to the line segment conv(T ) = (φ(0), φ(r2Q))(φ(r1Q), φ(0)),

whose slope is no longer −45◦ when the margins differ. Figures 6 and 14 need be modified as well,

by tilting the lines along the direction of conv(T ). In addition, the manufacturer’s expected value

along the line segment ulur (or ulur) now varies linearly between V ∗(ul) and V ∗(ur). Despite these

changes, the trapping behavior of the lower boundary of S∗ remains the same.

We remark that asymmetries in utility and cost functions can also be accommodated similarly,

by replacing φ(·) and ψ in problem (4.1)-(4.6) with φi(·) and φi, i = 1, 2, and the same solution

approach applies. The feasible region will not be symmetric along the 45◦ line but the results are

similar to those under the base model.

B.2 Fixed Total Payment

The additional problem at the start of period 1, given continuation utilities u0 = (u0
1, u

0
2) promised

to the suppliers at the beginning, is the following:

V 0(u0) = max
a,{U(x)}

E[π(x1)q + π(x2)q + V (U1(x), U2(x))| a] (B.2)

s.t. u0
i = E[Ui(x)| a] − ψai , i ∈ {1, 2}. (B.3)

This is a simple one-shot problem. The manufacturer’s optimal value function V 0(u0) retains

the structural properties of the function V (u) obtained from the recursive problem (6.2)-(6.5), and

the optimal contract has similar properties as in the volume allocation case.

B.3 Flexible Total Volume

In the base model, the manufacturer’s total business volume is a constant Q in every period. In

this extension, we allow the total volume to vary in an interval, [Qm, QM ]. We assume that the

manufacturer has a target volume Q0 ∈ [Qm, QM ] and incurs overorder and underorder penalties.
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Thus, the manufacturer’s total cost of procuring Q units, including the margins paid to the suppliers,

is described by a function g(Q) =

{
rQ+ βm(Q0 −Q), if Q ∈ [Qm, Q0),
rQ+ βM (Q−Q0), if Q ∈ [Q0, QM ],

for some nonnegative

coefficients βm and βM . When βm = βM = ∞, the model reduces to the base model with fixed total

volume; when βm = βM = 0, the model reduces to one without a target volume. To avoid trivial

cases, we assume πL < r+ βM , i.e., increasing the total volume beyond Q0 is not profitable for the

manufacturer at least in the low effort scenario; otherwise, the manufacturer would be tempted to

push the total volume all the way to QM .

The manufacturer’s problem (4.1)-(4.6) of inducing a given effort pair (a1, a2) only undergoes

minor modifications: the manufacturer’s total payment rQ in the objective function is replaced by

g(q1 + q2), and the volume constraint q1 + q2 = Q is replaced by q1 + q2 ∈ [Qm, QM ]. It can be

verified that Lemma 1 is intact. Thus, the problems of inducing (L,L), (H,L), (L,H), and (H,H)

effort pairs are all similar as before except the above modifications. As a result, the decomposition of

these problems is still valid, i.e., Propositions 1 and 2 are still true except for the necessary changes

in the objective functions and volume constraints in the upper level problems. Propositions 3 and 4

carry over without any modification. The robustness of these results reveals that the fundamental

incentive driver in the problem is unchanged under this generalization.

The flexibility in Q broadens the manufacturer’s choices, which enlarges the feasible set of

the suppliers’ continuation utilities and improves the manufacturer’s value function. Due to such

changes, Theorems 1, 2, and 3 need to be modified. The main result is that the trapping region

near the upper boundary of the feasible set S∗ and the recurrent set near the lower boundary are

both enlarged in general, as shown below.

Benchmark Contract: Inducing (L,L) Efforts Forever. The benchmark problem of in-

ducing efforts (L,L) forever can be solved similarly as in the base model. For convenience, define

the one-period utility set T (Q) given total volume Q ∈ [Qm, QM ] (under deterministic volume

allocation) as:

T (Q) = {(φ(rq1), φ(rq2)) : q1 + q2 = Q, q1, q2 ≥ 0}
= {(t1, t2) : φ−1(t1) + φ−1(t2) = rQ, t1, t2 ≥ φ(0)}, (B.4)

which is a concave curve in the (t1, t2) space but not a convex set. Let conv(T (Q)) be the convex hull

of T (Q), whose lower left boundary is the line segment (0, φ(rQ))(φ(rQ), 0) (recall that φ(0) = 0).

Define the one-period utility set for an interval of volumes [Qa, Qb] as

T ([Qa, Qb]) = ∪Q∈[Qa,Qb]T (Q).

Theorem 1 can be generalized as follows (as illustrated in Figures 15 and 16):

Theorem B2. Suppose both suppliers’ reservation utility is 0. To induce efforts (L,L) forever, the

set of suppliers’ continuation utility vectors is S∞
LL = (1− δ)−1[conv(T ([Qm, QM ]))− (ψL, ψL)]∩R

2
+
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and the manufacturer’s value function V∞
LL(u) is given by: (1) If πL − r + βm ≥ 0,

V∞
LL(u) =





(1−δ)(u1+u2)−φ(rQm)
φ(rQ0)−φ(rQm) · (πL−r+βm)(Q0−Qm)

1−δ

+ (πL−r+βm)Qm−βmQ0

1−δ ,
if u ∈ R

2
+ and u1 + u2 ∈ [φ(rQm)

1−δ , φ(rQ0)
1−δ ),

(πL−r)Q0

1−δ , if u ∈ conv(T (Q0))−(ψL,ψL)
1−δ ∩ R

2
+,

(πL−r−βM )Q+βMQ0

1−δ , if u ∈ T (Q)−(ψL,ψL)
1−δ ∩ R

2
+ for Q ∈ (Q0, QM ];

(2) If πL − r + βm < 0,

V∞
LL(u) =





(πL−r+βm)Qm−βmQ0

1−δ , if u ∈ conv(T (Qm))−(ψL,ψL)
1−δ ∩ R

2
+,

(πL−r+βm)Q−βmQ0

1−δ , if u ∈ T (Q)−(ψL,ψL)
1−δ ∩ R

2
+ for Q ∈ (Qm, Q0],

(πL−r−βM )Q+βMQ0

1−δ , if u ∈ T (Q)−(ψL,ψL)
1−δ ∩ R

2
+ for Q ∈ (Q0, QM ].

At any u ∈ S∞
LL, an optimal choice of U is u. The optimal U is unique and the optimal volume

allocation q satisfies φ(rq1)/φ(rq2) = u1/u2, for u ∈ (1 − δ)−1[T ([Q0, QM ]) − (ψL, ψL)] ∩ R
2
+ if

πL − r + βm ≥ 0, or u ∈ (1 − δ)−1[T ([Qm, QM ]) − (ψL, ψL)] ∩ R
2
+ if πL − r + βm < 0.
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Figure 15: (a) The set S∞
LL and indifference curves of V∞

LL(·), and (b) the section of V∞
LL(·) at

u1 = u2, when πL − r + βm > 0 and ψL = 0.

When πL − r + βm > 0, the indifference curves of the manufacturer’s value function V∞
LL(·)

are illustrated in Figure 15(a) and the section of the function along the 45◦ ray in the u plane

(such that u1 = u2) is illustrated in Figure 15(b). In this case, (πL − r)Q0 > max{(πL − r +

βm)Qm− βmQ0, (πL− r− βM )QM +βMQ0}, and thus V∞
LL(·) has a flat top over the middle subset

of S∞
LL highlighted in Figure 15(a) (which is the set S∞

LL in the base model). V∞
LL(·) decreases as

u moves away from the middle. Over the lower left subset of S∞
LL, V∞

LL(·) is a convex combination

of (1 − δ)−1[(πL − r + βm)Qm − βmQ0] and (1 − δ)−1(πL − r)Q0 with proper weights. When

πL−r+βm < 0, we have (πL−r+βm)Qm−βmQ0 > (πL−r)Q0 > (πL−r−βM)QM+βMQ0, and thus

V∞
LL(·) has a flat top over the lower left subset of S∞

LL illustrated in Figure 16(a). As shown in Figure
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Figure 16: (a) The set S∞
LL and indifference curves of V∞

LL(·), and (b) the section of V∞
LL(·) at

u1 = u2, when πL − r + βm < 0 and ψL = 0.

16(b), the manufacturer’s value declines as u moves toward the upper boundary of S∞
LL and the slope

is steeper when Q ∈ (Q0, QM ] than when Q ∈ (Qm, Q0] because πL − r − βM < πL − r + βm < 0.

By Theorem B2, every point on the declining part of V∞
LL(·) is a trapping point, created from a

total volume in [Q0, QM ] or [Qm, QM ], depending on the sign of πL− r+ βm. Therefore, the set of

potential trapping points is enlarged as a result of the flexibility of Q.

To prove the theorem, we first show the following lemmas:

Lemma B1. In the (t1, t2) utility plane, the curve T (Q) is decreasing and concave everywhere.

Proof. By definition, T (Q) = {(φ(rq1), φ(rq2)) : q1 + q2 = Q, q1, q2 ≥ 0} = {(φ(z), φ(rQ − z)) :

z ∈ [0, rQ]}. In the (t1, t2) plane (where t1 is on the horizontal axis and t2 on the vertical axis),

the upper left endpoint of T (Q) corresponds to z = 0 and the lower right endpoint corresponds to

z = rQ. The slope of T (Q) at z ∈ [0, rQ] is given by:

s(z;Q) =
−φ′(rQ− z)

φ′(z)
< 0.

The inequality follows from the fact that φ′(·) > 0. Thus, T (Q) is decreasing everywhere. The

derivative of the slope at z ∈ [0, rQ] is given by:

s′(z;Q) =
φ′′(rQ− z)φ′(z) + φ′(rQ− z)φ′′(z)

[φ′(z)]2
< 0.

The inequality follows from the fact that φ′(·) > 0 and φ′′(·) < 0. Thus, the slope of T (Q) is

decreasing everywhere and T (Q) is concave.

Lemma B2. Suppose t ∈ T (Q), t′ ∈ T (Q′), and t′′ = λt + (1 − λ)t′ for some Q > 0, Q′ > 0, and

λ ∈ (0, 1). Then, t′′ lies below T (Q′′), where Q′′ = λQ+ (1 − λ)Q′.
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Proof. By definition, (t1, t2) = (φ(rq1), φ(rq2)) for some q1, q2 ≥ 0 such that q1 + q2 = Q; (t′1, t
′
2) =

(φ(rq′1), φ(rq′2)) for some q′1, q
′
2 ≥ 0 such that q′1 + q′2 = Q′; and (t′′1, t

′′
2) = (λφ(rq1) + (1 −

λ)φ(rq′1), λφ(rq2) + (1 − λ)φ(rq′2)).

Because φ(·) is strictly concave, we have λφ(rq1) + (1 − λ)φ(rq′1) < φ(λrq1 + (1 − λ)rq′1) and

λφ(rq2) + (1 − λ)φ(rq′2) < φ(λrq2 + (1 − λ)rq′2). Because φ−1(·) is increasing, we have

φ−1(t′′1) + φ−1(t′′2) = φ−1(λφ(rq1) + (1 − λ)φ(rq′1)) + φ−1(λφ(rq2) + (1 − λ)φ(rq′2))

< φ−1(φ(λrq1 + (1 − λ)rq′1)) + φ−1(φ(λrq2 + (1 − λ)rq′2))

= λrq1 + (1 − λ)rq′1 + λrq2 + (1 − λ)rq′2

= λrQ+ (1 − λ)rQ′ = rQ′′.

By the definition of T (Q′′), the point (t′′1 , t
′′
2) lies below the curve T (Q′′) in the (t1, t2) plane.

Now, we prove the theorem:

Proof. [Proof of Theorem B2] Given the total volume Q, Theorem 1 states that: (1) The manu-

facturer’s continuation value (1−δ)−1(πLQ−g(Q)) can be achieved over the suppliers’ continuation

utility set S∞
LL(Q) = (1−δ)−1[conv(T (Q))−(ψL, ψL)]∩R

2
+, i.e., V∞

LL(u;Q) = (1−δ)−1(πLQ−g(Q))

for u ∈ S∞
LL(Q); (2) For any u ∈ S∞

LL(Q), an optimal choice of the future utility vector U = u; (3)

For any u ∈ S∞
LL(Q) = (1 − δ)−1[T (Q) − (ψL, ψL)] ∩ R

2
+, the optimal U is unique and the optimal

volume allocation q satisfies φ(rq1)/φ(rq2) = u1/u2.

Now, letQ vary in the interval [Qm, QM ]. Define S∞
LL([Qa, Qb]) = ∪Q∈[Qa,Qb]S

∞
LL(Q), S∞

LL([Qa, Qb]) =

∪Q∈[Qa,Qb]S
∞
LL(Q), S∞

LL([Qa, Qb]) = ∪Q∈[Qa,Qb]S
∞
LL(Q), etc. Then, the suppliers’ continuation util-

ity set is given by S∞
LL([Qm, QM ]) = (1 − δ)−1[conv(T ([Qm, QM ])) − (ψL, ψL)] ∩ R

2
+. Because

g(Q) =

{
rQ+ βm(Q0 −Q), if Q ∈ [Qm, Q0),
rQ+ βM (Q−Q0), if Q ∈ [Q0, QM ],

the manufacturer’s one-period profit from total

volume Q is πLQ− g(Q) =

{
(πL − r + βm)Q− βmQ0, if Q ∈ [Qm, Q0),
(πL − r − βM )Q+ βMQ0, if Q ∈ [Q0, QM ].

Thus, given a fixed Q

from the interval [Qm, QM ], the manufacturer’s value function V∞
LL(·;Q) has three cases:

V∞
LL(u;Q) =





(1 − δ)−1[(πL − r + βm)Q− βmQ0], if Q ∈ [Qm, Q0),
(1 − δ)−1(πL − r)Q0, if Q = Q0,
(1 − δ)−1[(πL − r − βM )Q+ βMQ0], if Q ∈ (Q0, QM ],

(B.5)

for all u ∈ S∞
LL(Q). When Q varies in [Qm, QM ], the manufacturer’s value function V∞

LL(·) is formed

by the upper convex hull of the collection of functions {V∞
LL(·;Q)}Q∈[Qm,QM ]. The shape of this

convex hull depends on the sign of πL − r + βm as follows:

(1) Assume πL − r + βm > 0. Consider three regions of u.

(i) Recall that πL − r − βM < 0. Thus, we have V∞
LL(·;Q0) > max{V∞

LL(·;Qm), V∞
LL(·;QM )}.

It follows that V∞
LL(·) has a flat top over the set S∞

LL(Q0), i.e., V∞
LL(u) = V∞

LL(u;Q0) for all u ∈
S∞
LL(Q0), as illustrated in Figure 15.
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(ii) Consider the region S∞
LL((Q0, QM ]) = (1 − δ)−1[T ((Q0, QM ]) − (ψL, ψL)] ∩ R

2
+. Any u

in S∞
LL((Q0, QM ]) must belong to the set S∞

LL(Q) = (1 − δ)−1[T (Q) − (ψL, ψL)] ∩ R
2
+ for some

(unique) Q ∈ (Q0, QM ], which can be denoted by Q(u). Intuitively, the continuation utility vector

u is created by splitting the total volume Q(u) in a specific (deterministic) way forever. We show

that V∞
LL(u) = V∞

LL(u;Q(u)) for all u ∈ S∞
LL((Q0, QM ]). It suffices to verify that the function

V∞
LL(·) so defined is concave over S∞

LL((Q0, QM ]). Consider any points uA,uB ∈ S∞
LL((Q0, QM ]) and

uλ = λuA + (1 − λ)uB for some λ ∈ (0, 1). By Lemma B2, uλ lies below the curve S∞
LL(Q̂) in the

u plane, where Q̂ = λQ(uA) + (1 − λ)Q(uB). Thus, Q(uλ) < Q̂. Because V∞
LL(·;Q) is decreasing

and linear in Q ∈ (Q0, QM ] (by equation (B.5), V∞
LL(u;Q) is flat in u for a given Q), we have

V∞
LL(uλ;Q(uλ)) > V∞

LL(·; Q̂) = λV∞
LL(uA;Q(uA)) + (1 − λ)V∞

LL(uB ;Q(uB)). By the definition of

concave functions, the function V∞
LL(u) = V∞

LL(u;Q(u)) is concave in the domain S∞
LL((Q0, QM ]).

(If uλ lies below S∞
LL(Q0), the total volume Q(uλ) is out of the range (Q0, QM ]. But in that case

we must have uλ ∈ S∞
LL(Q0) and, as shown before, V∞

LL(uλ) = V∞
LL(uλ;Q0). We just need to replace

Q(uλ) with Q0 in the above argument.)

(iii) The lower boundary of each set S∞
LL(Q) is the line segment S∞

LL(Q) = {u : u1 + u2 =

(1 − δ)−1φ(rQ);u1, u2 ≥ 0}. For each u, there is a unique Q such that u ∈ S∞
LL(Q), or Q =

φ−1((1 − δ)(u1 + u2))/r. Thus, over the set S∞
LL([Qm, Q0)), which consists of the lower boundaries

when Q ∈ [Qm, Q0), the surface of the collection of functions {V∞
LL(·;Q)}Q∈[Qm,Q0) is given by

Ṽ∞
LL(u) = (1−δ)−1[(πL−r+βm)Q−βmQ0] = (1−δ)−1[(πL−r+βm)φ−1((1−δ)(u1+u2))/r−βmQ0].

Because πL − r+ βm > 0 and φ−1(·) is convex increasing, the function Ṽ∞
LL(u) is convex increasing

in u1 + u2, as illustrated by the dashed line in Figure 15(b). Thus, over the set S∞
LL([Qm, Q0)), the

convex hull of Ṽ∞
LL(·), which gives V∞

LL(·), is the convex combination of Ṽ∞
LL(u)’s at the two edges

S∞
LL(Qm) and S∞

LL(Q0), with weights φ(rQ0)−(1−δ)(u1+u2)
φ(rQ0)−φ(rQm) and (1−δ)(u1+u2)−φ(rQm)

φ(rQ0)−φ(rQm) , respectively. As

a result,

V∞
LL(u) =

(1 − δ)(u1 + u2) − φ(rQm)

φ(rQ0) − φ(rQm)
· (πL − r + βm)(Q0 −Qm)

1 − δ
+

(πL − r + βm)Qm − βmQ0

1 − δ

for any u ∈ R
2
+ such that u1 + u2 ∈ (1 − δ)−1[φ(rQm), φ(rQ0)).

(2) Assume πL− r+βm < 0. Then, we have V∞
LL(·;Qm) > V∞

LL(·;Q0) > V∞
LL(·;QM ), and thus

V∞
LL(·) has a flat top over the set S∞

LL(Qm), i.e., V∞
LL(u) = V∞

LL(u;Qm) for all u ∈ S∞
LL(Qm), as illus-

trated in Figure 16. By equation (B.5), V∞
LL(·;Q) is decreasing in Q ∈ (Qm, QM ] and linear in both

(Qm, Q0] and (Q0, QM ]. Thus, similar to the case (1.ii) above, the function V∞
LL(u;Q(u)) is concave

in the sub-domains S∞
LL((Qm, Q0]) and S∞

LL((Q0, QM ]) separately, where Q(u) is the (unique) total

volume Q such that u ∈ S∞
LL(Q). Because πL−r−βM < πL−r+βm < 0, the slope of V∞

LL(u;Q(u))

in the sub-domain S∞
LL((Q0, QM ]) is steeper than that in the sub-domain S∞

LL((Qm, Q0]), as illus-

trated in Figure 16(b). So, when pieced together, V∞
LL(u;Q(u)) is still concave, over the entire set

S∞
LL((Qm, QM ]). Therefore, V∞

LL(u) equals V∞
LL(u;Q(u)) over S∞

LL((Qm, QM ]).

The proof is complete.
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Optimal Solution near the Upper and Lower Boundaries of S∗. Now, consider the

manufacturer’s optimal value function V ∗(·) and its domain S∗. Theorem 2 still holds after a

minor modification: the upper boundary of S∗ coincides with the upper boundaries of S∗
LL and

S∞
LL, i.e., S∗ = (1 − δ)−1[T (QM ) − (ψL, ψL)] ∩ R

2
+, and the manufacturer’s optimal value V ∗(u) =

(1 − δ)−1[(πL − r − βM )QM + βMQ0] for any u ∈ S∗. Recall that V ∗(·) is the convex hull of

the optimal objective functions of the four subproblems, V ∗
LL(·), V ∗

HL(·), V ∗
LH(·), and V ∗

HH(·), with

domains S∗
LL, S∗

HL, S∗
LH , and S∗

HH , respectively. If the sets S∗
HL, S∗

LH , and S∗
HH are relatively far

away from S∗ (e.g., when ψH ≫ ψL), V ∗(·) may contain a substantial portion of the declining part

of V∞
LL(·) discussed above. Thus, on (and possibly near) S∗, V ∗(·) is made up of all trapping points.

Next, consider the lower boundary of S∗, S∗. Define the set (line segment)

L∞
HH(Q) =





{u : u1 + u2 = φ(rQ)−2ψH
1−δ , u1, u2 ≥ δpH(1)µ−ψH

1−δ }, if ψL
ψH

≤ pL(1)
pH(1) , φ(rQ) ≥ 2(1 − δpH(0))µ,

{u : u1 + u2 = φ(rQ)−2ψH
1−δ , u1, u2 ≥ 0}, if ψL

ψH
> pL(1)

pH(1) , φ(rQ) ≥ 2((1 − δ)µ+ ψH),

∅, otherwise.

Theorem 3 can be summarized as follows: given a fixed total volume Q, the (H,H) effort pair can

be sustained and the manufacturer’s value V∞
HH(u;Q) = (1 − δ)−1(πHQ − g(Q)) can be achieved

over the set L∞
HH(Q) (if it is nonempty). The result still holds when Q varies in [Qm, QM ], and

the (H,H) effort pair can be sustained over the set L∞
HH([Qm, QM ]) = ∪Q∈[Qm,QM ]L

∞
HH(Q). In

addition, the manufacturer’s values can be improved by randomization. Let Q(u) be the (unique)

Q such that u ∈ L∞
HH(Q). The value function V∞

HH(u;Q(u)) is not concave in u and can be improved

by taking its upper convex hull, denoted by V∞
HH(u). The set L∞

HH([Qm, QM ]) and function V∞
HH(u)

are illustrated in Figure 17 (assuming L∞
HH(Qm) 6= ∅). The dashed curves in panels (b) and (c)

represent the function V∞
HH(u;Q(u)) along the 45◦-section.

We have the following result:

Theorem B3. (1) If πH−r−βM < 0, the manufacturer’s optimal value is V ∗(u) = (1−δ)−1(πH−
r)Q0 for u ∈ L∞

HH(Q0) and the line segment L∞
HH(Q0) is self-generated under the (H,H) effort

pair. If, further, L∞
HH(Qm) is nonempty, it must belong to S∗ and V ∗(u) = V∞

HH(u) for u ∈
L∞
HH([Qm, Q0]). (2) If πH − r − βM ≥ 0, V ∗(u) = (1 − δ)−1[(πH − r − βM )QM + βMQ0] for

u ∈ L∞
HH(QM ) and L∞

HH(QM ) is self-generated under the (H,H) effort pair. If, further, L∞
HH(Qm)

is nonempty, it must belong to S∗ and V ∗(u) = V∞
HH(u) for u ∈ L∞

HH([Qm, QM ]).

The flexibility in Q enlarges the recurrent region near the lower boundary of S∗. When πH −
r − βM < 0, as under the base model, the line segment L∞

HH(Q0) (if nonempty) is a recurrent set,

although it may lie in the interior of S∗ now; if the line segment L∞
HH(Qm) is nonempty, it must be

part of S∗ and the larger set L∞
HH([Qm, Q0]) is recurrent. When πH − r− βM ≥ 0, the existence of

a recurrent set is implied by a weaker condition that L∞
HH(QM ) 6= ∅; if L∞

HH(Qm) 6= ∅ in addition,

the whole set L∞
HH([Qm, QM ]) is a recurrent set. Intuitively, when πH−r−βM ≥ 0, a larger volume

leads to higher profit for the manufacturer and, in the meantime, dynamically allocating a larger
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Figure 17: (a) The set L∞
HH([Qm, QM ]), (b) the 45◦-section of function V∞

HH(·) when πH−r−βM < 0,
and (c) the 45◦-section of V∞

HH(·) when πH − r − βM > 0.

volume can create stronger incentives for the suppliers, so it is not only more appealing but also

easier for the manufacturer to induce high effort from both suppliers.

A proof of the theorem is provided below.

Proof. [Proof of Theorem B3] We prove part (1) of the theorem below, i.e., assuming πH − r −
βM < 0. Part (2) can be shown in the same way.

By Theorem 3, for a given total volume Q in the interval [Qm, QM ], if the set L∞
HH(Q) is

nonempty, the (H,H) effort pair can be sustained and the manufacturer’s value V∞
HH(u;Q) =

(1 − δ)−1(πHQ− g(Q)) can be achieved over L∞
HH(Q). More specifically, conditional on Q,

V∞
HH(u;Q) =





(1 − δ)−1[(πH − r + βm)Q− βmQ0], if Q ∈ [Qm, Q0),
(1 − δ)−1(πH − r)Q0, if Q = Q0,
(1 − δ)−1[(πH − r − βM )Q+ βMQ0], if Q ∈ (Q0, QM ],

(B.6)

for u ∈ L∞
HH(Q). Let Q(u) be the (unique) total volume Q such that u ∈ L∞

HH(Q).

Because πH − r+ βm > 0 (implied by πH − r > 0) and πH − r− βM < 0 (the assumption), the

manufacturer’s value (1 − δ)−1(πHQ− g(Q)) is maximized at Q = Q0. Thus, (1 − δ)−1(πH − r)Q0

is the highest achievable value for the manufacturer and his optimal value function must satisfy

V ∗(u) = (1 − δ)−1(πH − r)Q0 for u ∈ L∞
HH(Q0).

If, in addition, the line segment L∞
HH(Qm) is nonempty (as in Figure 17), the set L∞

HH([Qm, Q0])

is included in the domain S∗ of the optimal value function. Following the proof of Theorem 3, we

can show that if the total volume is fixed at Qm, no u vector can be sustained below (or to the left

of) the line L∞
HH(Qm) by any effort pair. Because a lower volume reduces the suppliers’ utilities,

the minimum value of u1 +u2 must be created from the minimum volume Qm. Thus, even when the
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total volume varies in [Qm, QM ], no u vector can be sustained below (or to the left of) L∞
HH(Qm).

As a result, L∞
HH(Qm) must be part of S∗. To show that the optimal value function V ∗(·) coincides

with V∞
HH(·) (the convex hull of the function V∞

HH(u;Q(u))) over the set L∞
HH([Qm, Q0]), we need

to show that for any u ∈ L∞
HH([Qm, Q0]) the highest value obtainable from any other effort pair,

(L,L), (H,L) or (L,H), cannot exceed V∞
HH(u).

The argument is similar to the proof of Theorem 3. Define a line segment L(k) = {u : u1 +u2 =

k, u1, u2 ≥ 0}, indexed by k. Let km = (1−δ)−1(φ(rQm)−2ψH) and k0 = (1−δ)−1(φ(rQ0)−2ψH).

Then L(km) and L(k0) contain the line segments L∞
HH(Qm) and L∞

HH(Q0), respectively. Consider

any vector u′ created under the (L,L) effort pair from a total volume Q′ ∈ [Qm, Q0] in the first

period and a continuation utility vector U′ ∈ L(k′) from the second period onward, for some

k′ ∈ [km, k0]. (The case Q′ ∈ (Q0, QM ] can be shown similarly.) By equations (4.9)-(4.10), we have

u′1 + u′2 = δ(U ′
1 + U ′

2) + φ(rq′1) + φ(rq′2) − 2ψL

≥ δk′ + φ(rQ′) − 2ψL

> δk′ + (1 − δ)
φ(rQ′) − 2ψH

1 − δ
, (B.7)

where the first inequality follows from the concavity of φ(·) and the assumption φ(0) = 0 (the

inequality still holds when randomized allocation (q̃′1, q̃
′
2) is considered). By expression (4.8) (with

the cost rQ replaced by g(Q)), the manufacturer’s continuation value at u′ is

VLL(u′) = δV∞
HH(U′) + (πL − r + βm)Q′ − βmQ0

< δV∞
HH(U′) + (1 − δ)

(πH − r + βm)Q′ − βmQ0

1 − δ

= δV∞
HH(U′) + (1 − δ)V∞

HH(·;Q′). (B.8)

Therefore, the point (u′, VLL(u′)) is dominated by the convex combination of the points (U′, V∞
HH(U′))

(with weight δ) and (w′, V∞
HH(w′;Q′)) (with weight 1 − δ), for some w′ ∈ L∞

HH(Q′). Because

V∞
HH(w′;Q′) ≤ V∞

HH(w′), (u′, VLL(u′)) is dominated by the convex combination of (U′, V∞
HH(U′))

and (w′, V∞
HH(w′)). Because V∞

HH(·) is concave, (u′, VLL(u′)) lies below the graph of V∞
HH(·).

Similarly, under the (H,L) or (L,H) effort pair, any point created by a future continuation

utility vector U′ ∈ L(k′) for some k′ ∈ [km, k0] lie below the graph of V∞
HH(·) as well. Thus, the

optimal value function V ∗(u) = V∞
HH(u) for all u ∈ L∞

HH([Qm, Q0]).

B.4 Multiple Effort Levels

In the base model, the suppliers’ effort level can be either H or L. In this extension, we add an

intermediate level, M . More effort levels can be treated similarly.

As in the two-effort-level case, assume that the disutilities of the effort levels and corresponding

probabilities of the good outcome are ordered such that ψH > ψM > ψL and pH(1) > pM (1) >
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pL(1). Define the effective marginal costs of effort as µHM = δ−1(ψH − ψM )/(pH(1) − pM(1)),

µML = δ−1(ψM − ψL)/(pM (1) − pL(1)), and µHL = δ−1(ψH − ψL)/(pH (1) − pL(1)).

Now we have nine possible effort pairs. After eliminating symmetric cases, six pairs are left,

which are (H,H), (H,M), (H,L), (M,M), (M,L), and (L,L). As a result, we have more sub-

problems to solve. For each effort pair (a1, a2), the manufacturer’s subproblem (4.1)-(4.6) is more

complex as well because there are two IC constraints for each supplier. For instance, to induce

a1 = M , the IC constraints for supplier 1, denoted by (IC1,MH) and (IC1,ML), would prevent the

supplier from deviating to effort H or L. Nevertheless, the subproblems can be simplified through

the following generalized version of Lemma 1:

Lemma B3. If µHM < µML, effort M will never be chosen by the suppliers and can be removed

from the problem formulation without loss of optimality. If µHM > µML, given any concave function

V (·) and continuation utility vector u, there exists an optimal solution to problem (4.1)-(4.6) such

that: (1) if ai = L, the IC constraints for supplier i do not bind; (2) if ai = M , constraint (ICi,ML)

binds while (ICi,MH) does not; (3) if ai = H, constraint (ICi,HM ) binds while (ICi,HL) does not.

If µHM = µML, the two IC constraints mentioned in case (2) or (3) above bind simultaneously.

Furthermore, in all circumstances, the future continuation utility vectors {U(x)} are independent

of xi if and only if ai = L, for i ∈ {1, 2}.

Proof. Because of the symmetry between the suppliers, it suffices to consider i = 1. Without loss

of generality, suppose that the manufacturer wants to induce effort a1 from supplier 1 through

continuation utility vectors {U(x)} that depends on both x1 and x2. Let a2 be the effort exerted

by supplier 2. Define U1(x1) = pa2(0)U1(x1, 0) + pa2(1)U1(x1, 1), for x1 ∈ {0, 1}. The expected

continuation utility for supplier 1 is given by δE[U 1(x1)
∣∣ a1] + φ(rq1) − ψa1 = δ[pa1(0)U 1(0) +

pa1(1)U 1(1)]+φ(rq1)−ψa1 = δ[U 1(0)+ pa1(1)(U 1(1)−U1(0))]+φ(rq1)−ψa1 . The variable part of

the continuation utility related to effort a1 is δpa1(1)(U 1(1)−U1(0))−ψa1 . Supplier 1’s continuation

utilities under efforts a1 and â1 differ by δ(pa1(1)−pâ1(1))(U 1(1)−U1(0))−(ψa1 −ψâ1) = δ(pa1(1)−
pâ1(1))(U 1(1)−U 1(0)−µa1â1). The constraint (IC1,a1â1) that ensures that supplier 1 prefers effort

a1 to â1 is equivalent to U1(1) − U1(0) ≥ µa1â1 when pa1(1) > pâ1(1) or U1(1) − U1(0) ≤ µa1â1

when pa1(1) < pâ1(1).

Now, assume µHM < µML. Because pL(1) < pM (1) < pH(1), the constraints (IC1,MH) and

(IC1,ML), which induce effort M , imply that µMH(= µHM ) ≥ U1(1) − U1(0) ≥ µML. But this

contradicts the assumption and therefore, supplier 1 will never choose effort M .

Next, assume µHM > µML. (1) The case ai = L can be shown by the same argument as in

Lemma 1. (2) Consider the case ai = M . By the argument above, the constraints (IC1,MH) and

(IC1,ML) are equivalent to µMH ≥ U1(1)−U1(0) ≥ µML. According to the proof of Lemma 1, the

gap U1(1)−U1(0) should be minimized at optimality. Thus, we have µMH > U1(1)−U1(0) = µML

at optimality, which implies that (IC1,ML) binds and (IC1,MH) holds with strict inequality. (3)
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Consider the case ai = H. The assumption µHM > µML, or ψH−ψM
pH(1)−pM (1) >

ψM−ψL
pM (1)−pL(1) , implies that

ψH−ψM
pH(1)−pM (1) >

(ψH−ψM )+(ψM−ψL)
(pH(1)−pM (1))+(pM (1)−pL(1)) >

ψM−ψL
pM (1)−pL(1) , or µHM > µHL > µML. According to the

result at the beginning of the proof, (IC1,HM ) and (IC1,HL) are equivalent to U1(1)−U1(0) ≥ µHM

and U1(1)−U 1(0) ≥ µHL, respectively. From µHM > µHL and the fact that the gap U1(1)−U 1(0)

is minimized at optimality, the two constraints imply that U1(1) − U1(0) = µHM > µHL, i.e.,

(IC1,HM ) binds and (IC1,HL) holds with strict inequality.

When µHM = µML, we have µHM = µHL = µML. It follows that (IC1,MH) and (IC1,ML) binds

simultaneously in case (2) and (IC1,HM ) and (IC1,HL) binds simultaneously in case (3).

By the same argument as in Lemma 1, we can show that to induce ai = L, {U(x)} should not

depend on xi at optimality, since no incentive is needed for supplier i; but to induce ai = M or H,

{U(x)} should be positively related to xi, to provide necessary incentive for supplier i.

The intuition behind the lemma is similar to the one in the base model: the future continuation

utility vector U(x) should increase with xi to motivate supplier i to exert non-trivial effort, and the

gap between supplier i’s expected continuation utilities U i(1) and U i(0) should be large enough to

overcome the pertinent effective marginal cost of effort, where U i(xi) =
∑

xj∈{0,1}
paj (xj)Ui(xi, xj)

for j 6= i.

By Lemma B3, the manufacturer’s subproblem (4.1)-(4.6) for effort pair (a1, a2) can be simplified

as follows: for ai = L, no IC constraint is present for supplier i; and for ai = M or H, the IC

constraint (ICi,ML) or (ICi,HM ) is present. Due to this simplification, the (L,L) subproblem is the

same as in the base model; the (H,L) and (M,L) subproblems are similar to the original (H,L)

subproblem; and the (H,H), (H,M), and (M,M) subproblems are similar to the original (H,H)

subproblem. The decomposition of these subproblems, and hence Propositions 1, 2, and 3, are also

similar as before, except that effort H for supplier i in the original propositions can be H or M

now and the constant µ should be µHM or µML, correspondingly. Because the (L,L) subproblem

does not change, the results about the (L,L)-forever benchmark and the upper boundary of S∗, i.e.,

Theorems 1 and 2, still hold true. Because the recurrent segment along the lower boundary of S∗ is

driven by the (H,H) subproblem, which only bears a minor modification by replacing constraints

(ICi,HL) with (ICi,HM ), Theorem 3 and Proposition 4 only need minor modifications as well: the

constant µ becomes µHM , and the effort L in the conditions of Theorem 3 becomes M .

In conclusion, the main results in the paper withstand the inclusion of more effort levels.
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