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Abstract
This paper presents a novel and practical non-parametric approximate dynamic program-

ming (ADP) algorithm that enjoys graceful, dimension-independent approximation and sample
complexity guarantees. In particular, we establish both theoretically and computationally that
our proposal can serve as a viable replacement to state of the art parametric ADP algorithms,
freeing the designer from carefully specifying an approximation architecture. We accomplish
this by ‘kernelizing’ a recent mathematical program for ADP (the ‘smoothed’ approximate LP)
proposed by Desai et al. (2011). Our theoretical guarantees establish that the quality of the
approximation produced by our procedure improves gracefully with sampling effort. Via a com-
putational study on a controlled queueing network, we show that our non-parametric procedure
outperforms the state of the art parametric ADP approaches and established heuristics.

1. Introduction

Problems of dynamic optimization in the face of uncertainty are frequently posed as Markov deci-
sion processes (MDPs). The central computational problem is then reduced to the computation of
an optimal ‘value’ or ‘cost-to-go’ function that encodes the value garnered under an optimal policy
starting from any given MDP state. MDPs for many problems of practical interest frequently have
intractably large state spaces precluding exact computation of the cost-to-go function. Approxi-
mate dynamic programming (ADP) is an umbrella term for algorithms designed to produce good
approximations to this function. Such approximations then imply a natural ‘greedy’ control policy.

ADP algorithms are, in large part, parametric in nature. In particular, the user specifies
an ‘approximation architecture’ (i.e., a set of basis functions) and the algorithm then produces
an approximation in the span of this basis. The strongest theoretical results available for such
algorithms typically share the following two features:

• The quality of the approximation produced is comparable with the best possible within the
basis specified.
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• The sample complexity or computational effort required for these algorithms scales, typically
polynomially, with the dimension of the basis.

These results highlight the importance of selecting a ‘good’ approximation architecture, and remain
somewhat dissatisfying in that additional sampling or computational effort cannot remedy a bad
approximation architecture.

In contrast, an ideal non-parametric approach would, in principle, free the user from carefully
specifying a suitable low-dimensional approximation architecture. Instead, the user would have
the liberty of selecting a very rich architecture (such as, say, the Haar basis). The quality of the
approximation produced by the algorithm would then improve — gracefully — with the extent
of computational or sampling effort expended, ultimately becoming exact. Unfortunately, existing
non-parametric proposals for ADP fall short of this ideal on one or more fronts. In particular, the
extant proposals include:
Non-parametric regression. The key computational step in approximate policy iteration methods
is approximate policy evaluation. This step involves solving the projected Bellman equation, a lin-
ear stochastic fixed point equation. A numerically stable approach to this is to perform regression
where the loss is the `2-norm of the Bellman error. This procedure is called least-squares temporal
differences (Bertsekas, 2007), and is a popular ADP method. By substituting this parametric re-
gression step with a suitable non-parametric regression procedure, Bethke et al. (2008), Engel et al.
(2003), and Xu et al. (2007) come up with corresponding non-parametric algorithms. Unfortunately
approximate policy iteration schemes have no convergence guarantees in parametric settings, and
these difficulties remain in non-parametric variations. It is consequently difficult to characterize
the computational effort or sample complexity required to produce a good approximation (if this
is at all possible) with such approaches. More importantly, the practical performance or viability
(given that many rounds of regression will typically be called for) of these methods is not clear.
Local averaging. Another idea has been to use kernel-based local averaging ideas to approximate
the solution of an MDP with that of a simpler variation on a sampled state space (e.g., Ormoneit
and Sen, 2002; Ormoneit and Glynn, 2002; Barreto et al., 2011). However, convergence rates for
local averaging methods are exponential in the dimension of the problem state space. As in our
setting, Dietterich and Wang (2002) construct kernel-based cost-to-go function approximations.
These are subsequently plugged in to various ad hoc optimization-based ADP formulations. While
their methods are closest in spirit to ours, they do not employ any regularization. This suggests
potentially poor sample complexity, and, indeed, they do not provide theoretical justification or
sample complexity results. Similarly, Ernst et al. (2005) replace the local averaging procedure used
for regression by Ormoneit and Sen (2002) with non-parametric regression procedures such as the
tree-based learning methods. This is done again without any theoretical justification.
Feature selection via `1-penalty (parametric). Closely related to our work, Kolter and Ng
(2009) and Petrik et al. (2010) consider modifying the approximate linear program with an `1-
regularization term to encourage sparse approximations in the span of a large, but necessarily
tractable set of features. Along these lines, Pazis and Parr (2011) discuss a non-parametric method
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that explicitly restricts the smoothness of the value function. However, sample complexity results
for this method are not provided and it appears unsuitable for high-dimensional problems (such
as, for instance, the queuing problem we consider in our experiments). In contrast to this line of
work, our approach will allow for approximations in a potentially full-dimensional approximation
architecture that capable of an exact representation of the value function, with a constraint on an
appropriate `2-norm of the weight vector to provide regularization.

This paper presents what we believe is a practical, non-parametric ADP algorithm that enjoys
non-trivial approximation and sample complexity guarantees. In particular, we establish both theo-
retically and computationally that our proposal can serve as a viable replacement to state-of-the-art
parametric ADP algorithms based on linear programming, freeing the designer from carefully spec-
ifying an approximation architecture. In greater detail, we make the following contributions:

• A new mathematical programming formulation. We rigorously develop a kernel-based vari-
ation of the ‘smoothed’ approximate LP (SALP) approach to ADP proposed by Desai et al.
(2011). The resulting mathematical program, which we dub the regularized smoothed approx-
imate LP (RSALP), is distinct from simply substituting the local averaging approximation
above in the SALP formulation. We develop a companion active set method that is capable
of solving this mathematical program rapidly and with limited memory requirements.

• Theoretical guarantees.1 Our algorithm can be interpreted as solving an approximate linear
program in a (potentially infinite dimensional) Hilbert space. We provide a probabilistic upper
bound on the approximation error of the algorithm relative to the best possible approximation
one may compute in this space subject to a regularization constraint. We show that the
number of samples grows polynomially as a a function of a regularization parameter. As this
regularization parameter is allowed to grow, so does the set of permissible approximations,
eventually permitting an exact approximation.

The sampling requirements for our method are independent of the dimension of the approx-
imation architecture. Instead, they grow with the desired complexity of the approximation.
This result can be seen as the ‘right’ generalization of the prior parametric approximate LP
approaches of de Farias and Van Roy (2003, 2004); Desai et al. (2011), where, in contrast,
sample complexity grows with the dimension of the approximating architecture.

• A computational study. To study the efficacy of our approach, we consider an MDP arising
from a challenging queueing network scheduling problem. We demonstrate that our method
yields significant improvements over tailored heuristics and parametric ADP methods, all
while using a generic high-dimensional approximation architecture. In particular, these results
suggest the possibility of solving a challenging high-dimensional MDP using an entirely generic
approach.

1These guarantees come under assumption of being able to sample from a certain idealized distribution. This is
a common requirement in the analysis of ADP algorithms that enjoy approximation guarantees for general MDPs
(de Farias and Van Roy, 2004; Van Roy, 2006; Desai et al., 2011).
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The organization of the paper is as follows: In Section 2, we formulate an infinite dimensional
LP for our problem, and present an effective approximate solution approach. Section 3 provides
theoretical guarantees for the quality of the approximations computed via our non-parametric
algorithm. Theorem 1 in that Section provides our main guarantee. In Section 4, we provide an
active set method that can be used to efficiently solve the required quadratic optimization problem
central to our approach while respecting practical memory constraints. We also establishing the
correctness of our active set approach. Section 5 describes a numerical study for a criss-cross
queueing system benchmarking our approach against approximate linear programming approaches
and tailor made heuristics. Section 6 concludes.

2. Formulation

2.1. Preliminaries

Consider a discrete time Markov decision process with finite state space S and finite action space
A. We denote by xt and at respectively, the state and action at time t. For notational simplicity,
and without loss of generality, we assume that all actions are permissible at any given state. We
assume time-homogeneous Markovian dynamics: conditioned on being at state x and taking action
a, the system transitions to state x′ with probability p(x, x′, a) independent of the past. A policy
is a map µ : S → A, so that

Jµ(x) , Ex,µ
[ ∞∑
t=0

αtgxt,at

]

represents the expected (discounted, infinite horizon) cost-to-go under policy µ starting at state
x, with the discount factor α ∈ (0, 1). Letting Π denote the set of all policies, our goal is to find
an optimal policy µ∗ such that µ∗ ∈ argmaxµ∈Π J

µ(x) for all x ∈ S (it is well known that such a
policy exists). We denote the optimal cost-to-go function by J∗ , Jµ

∗ . An optimal policy µ∗ can
be recovered as a ‘greedy’ policy with respect to J∗,

µ∗(x) ∈ argmin
a∈A

gx,a + αEx,a[J∗(X ′)],

where we define the expectation Ex,a[f(X ′)] ,
∑
x′∈S p(x, x′, a)f(x′), for all functions f : S → R on

the state space.
Since in practical applications the state space S is often intractably large, exact computation of

J∗ is untenable. ADP algorithms are principally tasked with computing approximations to J∗ of the
form J∗(x) ≈ z>Φ(x) , J̃(x), where Φ: S → Rm is referred to as an ‘approximation architecture’
or a basis and must be provided as input to the ADP algorithm. The ADP algorithm computes a
‘weight’ vector z ∈ Rm. One then employs a policy that is greedy with respect to the corresponding
approximation J̃ .
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2.2. Primal Formulation

The approach we propose is based on the LP formulation of dynamic programming. It was observed
by Manne (1960) that the optimal cost-to-go J∗ can be obtained by solving the following linear
program:

(1)

maximize ν>J

subject to J(x) ≤ ga,x + αEx,a[J(X ′)], ∀ x ∈ S, a ∈ A,
J ∈ RS ,

for any strictly positive state-relevance weight vector ν ∈ RS+. Motivated by this, a series of ADP
algorithms (Schweitzer and Seidman, 1985; de Farias and Van Roy, 2003; Desai et al., 2011) have
been proposed that compute a weight vector z by solving an appropriate modification of (1). In
particular, Desai et al. (2011) propose solving the following optimization problem:

(2)

maximize
∑
x∈S

νxz
>Φ(x)− κ

∑
x∈S

πxsx

subject to z>Φ(x) ≤ ga,x + αEx,a[z>Φ(X ′)] + sx, ∀ x ∈ S, a ∈ A,
z ∈ Rm, s ∈ RS+.

Here κ > 0 is a penalty parameter and π ∈ RS+ is a strictly positive distribution on S. In considering
the above program, notice that if one insisted that the slack variables s were precisely 0, the program
(2) would be identical to (1), with the additional restriction to value function approximations of the
form J(x) = z>Φ(x). This case is known as the approximate linear program (ALP), and was first
proposed by Schweitzer and Seidman (1985). de Farias and Van Roy (2003) provided a pioneering
analysis that, stated loosely, showed

‖J∗ − z∗>Φ‖1,ν ≤
2

1− α inf
z
‖J∗ − z>Φ‖∞,

for an optimal solution z∗ to the ALP. Desai et al. (2011) showed that these bounds could be
improved upon by ‘smoothing’ the constraints of the ALP, i.e., permitting positive slacks. The
resulting program (2) is called the smoothed approximate linear program (SALP). In both instances,
in the general case of a large state space, one must solve a ‘sampled’ version of the above program.

Now, consider allowing Φ to map from S to a general (potentially infinite dimensional) Hilbert
space H. We use bold letters to denote elements in the Hilbert space H, e.g., the weight vector
is denoted by z ∈ H. We further suppress the dependence on Φ and denote the elements of
H corresponding to their counterparts in S by bold letters. Hence, for example, x , Φ(x) and
X , Φ(X). Denote the image of the state space under the map Φ by X , Φ(S); X ⊂ H. The
analogous value function approximation in this case would be given by

(3) J̃z,b(x) , 〈x, z〉+ b = 〈Φ(x), z〉+ b,
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where b is a scalar offset corresponding to a constant basis function.2 The following generalization
of (2) — which we dub the regularized SALP (RSALP) — then essentially suggests itself:

(4)

maximize
∑
x∈S

νx〈x, z〉+ b− κ
∑
x∈S

πxsx −
Γ
2 〈z, z〉

subject to 〈x, z〉+ b ≤ ga,x + αEx,a[〈X′, z〉+ b] + sx, ∀ x ∈ S, a ∈ A,
z ∈ H, b ∈ R, s ∈ RS+.

The only new ingredient in the program above is the fact that we regularize the weight vector z
using the parameter Γ > 0. Penalizing the objective of (4) the according to the square of the norm
‖z‖H ,

√
〈z, z〉 anticipates that we will eventually resort to sampling in solving this program. In

a sampled setting, regularization is necessary to avoid over-fitting and, in particular, to construct
an approximation that generalizes well to unsampled states. This regularization, which plays a
crucial role both in theory and practice, is easily missed if one directly ‘plugs in’ a local averaging
approximation in place of z>Φ(x), as is the case in the earlier work of Dietterich and Wang (2002),
or a more general non-parametric approximation as in the work of Ernst et al. (2005).

Since the RSALP of (4) can be interpreted as a regularized stochastic optimization problem,
one may hope to solve it via its sample average approximation. To this end, define the likelihood
ratio wx , νx/πx, and let Ŝ ⊂ S be a set of N states sampled independently according to the
distribution π. The sample average approximation of (4) is then

(5)

maximize 1
N

∑
x∈Ŝ

wx〈x, z〉+ b− κ

N

∑
x∈Ŝ

sx −
Γ
2 〈z, z〉

subject to 〈x, z〉+ b ≤ ga,x + αEx,a[〈X′, z〉+ b] + sx, ∀ x ∈ Ŝ, a ∈ A,
z ∈ H, b ∈ R, s ∈ RŜ+.

We call this program the sampled RSALP. Even if |Ŝ| were small, it is still not clear that this
program can be solved effectively. We will, in fact, solve the dual to this problem.

2.3. Dual Formulation

We begin by establishing some notation. Let Nx,a , {x} ∪ {x′ ∈ S : p(x, x′, a) > 0} denote
the set of states that can be reached starting at a state x ∈ S given an action a ∈ A. For any
states x, x′ ∈ S and action a ∈ A, define qx,x′,a , 1{x=x′}−αp(x, x′, a). Now, define the symmetric
positive semi-definite matrix Q ∈ R(Ŝ×A)×(Ŝ×A) according to

(6) Q(x, a, x′, a′) ,
∑

y∈Nx,a
y′∈Nx′,a′

qx,y,aqx′,y′,a′〈y,y′〉,

2Separating the scalar offset b from the linear term parameterized by z will permit us to regularize these two
quantities differently in the sequel.
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the vector R ∈ RŜ×A according to

(7) R(x, a) , Γgx,a −
1
N

∑
x′∈Ŝ
y∈Nx,a

wx′qx,y,a〈y,x′〉,

and the scalar S as
S , −

∑
x∈Ŝ

∑
y∈Ŝ

wxwy〈x,y〉.

Notice that Q, R and S depend only on inner products in X (and other easily computable
quantities). The dual to (5) is then given by:

(8)

minimize 1
2λ
>Qλ+R>λ+ S

subject to
∑
a∈A

λx,a ≤
κ

N
, ∀ x ∈ Ŝ,∑

x∈Ŝ
a∈A

λx,a = 1
1− α,

λ ∈ RŜ×A+ .

Assuming that Q, R and S can be easily computed, this finite dimensional quadratic program,
is tractable – its size is polynomial in the number of sampled states. We may recover a primal
solution (i.e., the weight vector z∗) from an optimal dual solution:

Proposition 1. Programs (5) and (8) have equal (finite) optimal values. The optimal solution to
(8) is attained at some λ∗. The optimal solution to (5) is attained at some (z∗, s∗, b∗) with

(9) z∗ = 1
Γ

 1
N

∑
x∈Ŝ

wxx−
∑

x∈Ŝ,a∈A

λ∗x,a

(
x− αEx,a[X′]

) .
Having solved this program, we may, using Proposition 1, recover our approximate cost-to-go

function J̃(x) = 〈z∗,x〉+ b∗ as

(10) J̃(x) = 1
Γ

[
−

∑
∈Ŝ,a∈A

λ∗y,a
(
〈y,x〉 − αEy,a[〈X′,x〉]

)
+ 1
N

∑
y∈Ŝ

wy〈y,x〉
]

+ b∗.

A policy greedy with respect to J̃ is not affected by constant translations, hence in (10), the value
of b∗ can be set to be zero arbitrarily. Again note that given λ∗, evaluation of J̃ only involves inner
products in X .

7



2.4. Kernels

As pointed out earlier, the sampled RSALP is potentially difficult to work with. Proposition 1
establishes that solving this program (via its dual) is a computation that scales polynomially
in N so that it can be solved efficiently provided inner products in H can be evaluated cheaply.
Alternatively, we may have arrived at a similar conclusion by observing that in any optimal solution
to (5), we must have that z∗ ∈ span

{
x : x ∈ Ŝ ∪ N (Ŝ)

}
, where N (Ŝ) denotes the set of states

that can be reached from the sampled states of Ŝ in a single transition. Then, one can restrict the
feasible region of (5) to this subspace. In either approach, we observe that one need not necessarily
have explicitly characterized the feature map Φ(·); knowing 〈Φ(x),Φ(y)〉 for all x, y ∈ S would
suffice and so the algorithm designer can focus on simply specifying these inner products. This
leads us to what is popularly referred to as the ‘kernel trick’ which we discuss next without the
assumption that S is necessarily a finite set.

A kernel is a map K : S × S → R; we will call such a kernel positive definite if for any finite
collection of elements {xi}1≤i≤n in S, the Gram matrix G ∈ Rn×n defined by Gij , K(xi, xj)
is symmetric and positive semi-definite. Given such a kernel, we are assured of the existence
of a Hilbert space H and a map Φ: S → H such that3 〈Φ(x),Φ(y)〉 = K(x, y). The kernel
trick then allows us to implicitly work with this space H by replacing inner products of the form
〈x,y〉 , 〈Φ(x),Φ(y)〉 in (6), (7), and (10) by K(x, y). Of course, the quality of the approximation
one may produce depends on H and consequently on the kernel employed.

One case of special interest is where S is finite and the Gram matrix corresponding to this set
is positive definite. A kernel satisfying this condition is known as full-dimensional or full-rank. In
this case, we may take H to be the |S|-dimensional Euclidean space. Working with such a kernel
would imply working with an approximation architecture where any function J : S → R can be
exactly expressed in the form J(x) = 〈Φ(x), z〉, for some weight vector z ∈ H.

There are a number of kernels one can specify on the state space; we list a few examples here
for the case where S ⊂ Rn. The polynomial kernel is defined according to

K(x, y) , (1 + x>y)d.

A corresponding Hilbert space H is given by the span of all monomials of degree up to d on Rn. A
Gaussian kernel is defined according to

K(x, y) , exp
(
−‖x− y‖

2

σ

)
.

The Gaussian kernel is known to be full-dimensional (see, e.g., Theorem 2.18, Scholkopf and Smola,
2001), so that employing such a kernel in our setting would correspond to working with an infinite
dimensional approximation architecture. A thorough exposition on this topic, along with many

3A canonical such space is the so-called ‘reproducing kernel’ Hilbert space, by the Moore-Aronszajn theorem. For
certain sets S, Mercer’s theorem provides another important construction of such a Hilbert space.
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more examples can be found in the text of Scholkopf and Smola (2001).

2.5. Overall Procedure

Our development thus far suggests the following non-parametric algorithm that requires as input
a kernel K and the distributions π and ν. It also requires that we set the parameter κ and the
number of samples N .

1. Sample N states from a distribution π.

2. Solve (8) with

(11) Q(x, a, x′, a′) ,
∑

y∈Nx,a

∑
y′∈Nx′,a′

qx,y,aqx′,y′,a′K(y, y′),

and

(12) R(x, a) ,

Γgx,a −
1
N

∑
y∈Ŝ

∑
x′∈Nx,a

wyqx,x′,aK(y, x′)

 .
The value of S may be set to be zero.

3. Let λ∗ be the dual optimal. Define an approximate value function by

(13) J̃(x) , 1
Γ

 1
N

∑
y∈Ŝ

wyK(x, y)−
∑

y∈Ŝ,a∈A

λ∗y,a(K(x, y)− αEy,a[K(X ′, x)])

 .
In the next section we will develop theory to characterize the sample complexity of our procedure
and the approximation quality it provides. This theory will highlight the roles of the kernel K and
the sampling distributions used.

3. Approximation Guarantees

3.1. Overview

Recall that we are employing an approximation J̃z,b of the form

J̃z,b = 〈x, z〉+ b

parameterized by the weight vector z and the offset parameter b. For the purpose of establishing
theoretical guarantees, in this section, we will look at the following variation of the RSALP of (4):
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(14)

maximize
∑
x∈S

νx〈x, z〉+ b− κ
∑
x∈S

πxsx

subject to 〈x, z〉+ b ≤ ga,x + αEx,a[〈X′, z〉+ b] + sx, ∀ x ∈ S, a ∈ A,
‖z‖H ≤ C, |b| ≤ B,
z ∈ H, b ∈ R, s ∈ RS+.

Here, rather than regularizing by penalizing according to the weight vector z in the objective as in
(4), we regularize by restricting the size of the weight vector as a constraint. This regularization
constraint is parameterized by the scalar C ≥ 0. It is easy to see that (14) is equivalent to the
original problem (4), in the following sense: for any Γ > 0, there exists a C ≥ 0 so that for all B
sufficiently large, (4) and (14) have the same optimal solutions and value. Let C(Γ) by any such
value of C, corresponding to a particular Γ.

Now let
C
(
C(Γ), B

)
, {(z, b) ∈ H × R : ‖z‖H ≤ C(Γ), |b| ≤ B} .

The best approximation to J∗ within this set has `∞-approximation error

(15) inf
(z,b)∈C

(
C(Γ),B

) ‖J∗ − J̃z,b‖∞.

Now observe that if span {x : x ∈ S} ⊂ H has dimension |S| (i.e., if the kernel is full-dimensional),
there exists a z̃ ∈ H satisfying J̃z̃,0 = J∗. Consequently, for C(Γ) sufficiently large and any value
of B ≥ 0, we have that z̃ ∈ C

(
C(Γ), B

)
— the approximation error in (15) reduces to zero. More

generally, as C(Γ) and B grow large, we expect the approximation error in (15) to monotonically
decrease; the precise rate of this decrease will depend, of course, on the feature map Φ, which in
turn will depend on the kernel we employ.

Loosely speaking, in this section, we will demonstrate that:

1. For any given C(Γ) and B, exact solution of the RSALP (14) will produce an approxima-
tion with `∞-error comparable to the optimal `∞-error possible for approximations J̃z,b with
‖z‖H ≤ C(Γ) and b ≤ B.

2. Under a certain set of idealized assumptions, solving a sampled variation of the RSALP (14)
with a number of samples N

(
C(Γ), B

)
that scales gracefully with C(Γ), B, and other natural

parameters, produces a near optimal solution to the RSALP with high probability. These
sample complexity bounds will not depend on the dimension of the approximation architecture
H.

Since C(Γ) and B are parameters of the algorithm designer’s choosing, these results will effectively
show that with the ability to use a larger number of samples, the designer may choose larger
values of C(Γ) and B and consequently produce approximations of improving quality. Under mild
assumptions on the kernel, the approximation error can be made arbitrarily small in this fashion.
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3.2. Preliminaries and an Idealized Program

Before proceeding with our analysis, we introduce some preliminary notation. For a vector x ∈ Rn,
and a ‘weight’ vector v ∈ Rn+, we denote by ‖x‖v ,

∑n
i=1 vi|xi| the weighted 1-norm of x. Let

Ψ = {ψ ∈ RS : ψ ≥ 1}, be the set of all functions on the state space bounded from below by 1.
For any ψ ∈ Ψ, let us define the weighted ∞-norm ‖ · ‖∞,1/ψ by

||J ||∞,1/ψ , max
x∈S

|J(x)|/ψ(x).

Our use of such weighted norms will allow us to emphasize approximation error differently across
the state space. Further, we define

β(ψ) , max
x∈X , a∈A

∑
x′ p(x, x′, a)ψ(x′)

ψ(x) .

For a given ψ, β(ψ) gives us the worst-case expected gain of the Lyapunov function ψ for any state
action pair (x, a).

Finally, we define an idealized sampling distribution. Let ν be an arbitrary distribution over S
and denote by µ∗ and Pµ∗ an optimal policy and the transition probability matrix corresponding
to this policy, respectively. We define a distribution over S, πµ∗,ν according to

(16) π>µ∗,ν , (1− α)ν>(I − αPµ∗)−1 = (1− α)
∞∑
t=0

αtν>P tµ∗ .

This idealized distribution will play the role of the sampling distribution π in the sequel.
It is notationally convenient for us introduce the Bellman operator defined by

(TJ)(x) , min
a∈A

[
g(x, a) + αEx,a[J(X ′)]

]
,

for all x ∈ S and J : S → R. As before, let Ŝ be a set of N states drawn independently at random
from S; here we pick a specific sampling distribution π = πµ∗,ν . Given the definition of J̃z,b in (3),
the ‘idealized’ sampled program we consider is:

(17)

maximize ν>J̃z,b −
2

1− α
1
N

∑
x∈Ŝ

sx

subject to J̃z,b(x) ≤ T J̃z,b(x) + sx, ∀ x ∈ Ŝ,
‖z‖H ≤ C, |b| ≤ B,
z ∈ H, b ∈ R, s ∈ RŜ+.

This program is a sampled variant of (14) and is closely related to the sampled RSALP (5)
introduced in the last section. Before proceeding with an analysis of the quality of approximation
afforded by solving this program, we discuss its connection with the sampled RSALP (5) of the
previous section:
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1. The distributions ν and π: We allow for an arbitrary distribution ν, but given this distribution
require that π = πµ∗,ν . In particular, the distribution ν might be chosen as the empirical
distribution corresponding to N independent draws from S under some measure; one would
then draw N independent samples under π = πµ∗,ν to construct the second term in the
objective. In a sense, this is the only ‘serious’ idealized assumption we make here. Given
the broad nature of the class of problems considered it is hard to expect meaningful results
without an assumption of this sort, and indeed much of the antecedent literature considering
parametric LP based approaches makes such an assumption. When the sampling distribution
π is a close approximation to πµ∗,ν (say, the likelihood ratio between the two distributions
is bounded), then it is possible to provide natural extensions to our results that account for
how close the sampling distribution used is to the idealized sampling distribution.

2. Regularization: We regularize the weight vector z with an explicit constraint on ‖z‖H; this
permits a transparent analysis and is equivalent to placing the ‘soft’ regularization term
Γ
2 ‖z‖H in the objective. In particular, the notation C(Γ) makes this equivalence explicit. In
addition, we place a separate upper bound on the offset term B. This constraint is not binding
if B > 2KC + ‖g‖∞/(1 − α) but again, permits a transparent analysis of the dependence
of the sample complexity of solving our idealized program on the offset permitted by the
approximation architecture.

3. The choice of κ: The smoothing parameter κ can be interpreted as yet another regularization
parameter, here on the (one-sided) Bellman error permitted for our approximation. Our
idealized program chooses a specific value for this smoothing parameter, in line with that
chosen by Desai et al. (2011). Our experiments will use the same value of κ; experience with
the parametric SALP suggests that this is a good choice of the parameter in practice.

3.3. The Approximation Guarantee

Let (ẑ, b̂) be an optimal solution to the idealized sampled program (17) and let K , maxx∈S ‖x‖H.
Further define,

Ξ(C,B,K, δ) ,
(

4CK(1 + α) + 4B(1− α) + 2‖g‖∞
)(

1 +
√

1
2 ln(1/δ)

)
.

Notice that Ξ(C,B,K, δ)2 scales as the square of C, K, and B and further is O(ln 1/δ). The
following result will constitute our main approximation guarantee:

Theorem 1. For any ε, δ > 0, let N ≥ Ξ(C,B,K, δ)2/ε2. If (ẑ, b̂) is an optimal solution to (17),
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then with probability at least 1− δ − δ4,

∥∥∥J∗ − J̃ẑ,b̂

∥∥∥
1,ν
≤ inf
‖z‖H≤C, |b|≤B, ψ∈Ψ

‖J∗ − J̃z,b‖∞,1/ψ

(
ν>ψ +

2(π>µ∗,νψ)(αβ(ψ) + 1)
1− α

)

+ 4ε
1− α.

(18)

The remainder of this section is dedicated to parsing and interpreting this guarantee:

1. Optimal approximation error: Taking ψ to be the vector of all ones, we see that the right
side of the approximation guarantee (18) is bounded above by

3 + α

1− α inf
‖z‖H≤C, |b|≤B

‖J∗ − J̃z,b‖∞ + 4ε
1− α.

In particular, ignoring the ε-dependent error term, we see that the quality of approximation
provided by (ẑ, b̂) is essentially within a constant multiple (at most (3 + α)/(1 − α)) of the
optimal (in the sense of `∞-error) approximation to J∗ possible using a weight vector z and
offsets b permitted by the regularization constraints. This is a ‘structural’ error term that
will persist even if one were permitted to draw an arbitrarily large number of samples. It is
analogous to the approximation results produced in parametric settings with the important
distinction that one allows comparisons to approximations in potentially full-dimensional sets
which might, as we have argued earlier, be substantially superior.

2. Dimension independent sampling error: In addition to the structural error above, one incurs
an additional additive ‘sampling’ error that scales like 4ε/(1 − α). The result demonstrates
that

ε = O

(
(CK +B)

√
ln 1/δ√

N

)
This is an important contrast with existing parametric sample complexity guarantees. In
particular, existing guarantees typically depend on the dimension of the space spanned by the
basis function architecture {x : x ∈ S}. Here, this space may be full-dimensional, so that such
a dependence would translate to a vacuous guarantee. Instead we see that the dependence
on the approximation architecture is through the constants C, K and B. Of these K can, for
many interesting kernels be upper bounded by a constant that is independent of |S|, while
C and B are user-selected regularization bounds. Put another way, the guarantee allows for
arbitrary ‘simple’ (in the sense of ‖z‖H being small) approximations in a rich feature space
as opposed to restricting us to some a priori fixed, low-dimensional feature space. This yields
some intuition for why we expect the approach to perform well even with a relatively general
choice of kernel.

3. A non-parametric interpretation: As we have argued earlier, in the event that span {x : x ∈
S} is full-dimensional, there exists a choice of C and B for which the optimal approximation
error is, in fact, zero. A large number of kernels would guarantee such feature maps. More
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generally, as C and B grow large, inf‖z‖H≤C, |b|≤B ‖J
∗ − J̃z,b‖∞ will decrease. In order to

maintain the sampling error constant, one would then need to increase N at a rate that is
roughly Ω((CK + B)2). In summary, by increasing the number of samples in the sampled
program, we can (by increasing C and B appropriately) hope to compute approximations of
increasing quality, approaching an exact approximation. In the event that the feature space
permits good approximations that are ‘simple’ for that space (i.e., with ‖z‖H small), the
approach is capable of producing good approximations for a tractable number of samples.

3.4. Proof of Theorem 1

We prepare the ground for the proof by developing appropriate uniform concentration guarantees
for appropriate function classes.

3.4.1. Uniform Concentration Bounds

We begin with defining the empirical Rademacher complexity of a class of functions F from S to
R as

R̂n(F) = E
[

sup
f∈F

2
n

n∑
i=1

σif(Xi)
∣∣∣∣∣X1, X2, . . . , Xn

]
,

where σi are i.i.d. random variable that take value 1 with probability 1/2 and −1 with probability
1/2. The Xi are i.i.d. S-valued random variables drawn with the distribution π. We denote by
Rn(F) , ER̂n(F) the Rademacher complexity of F .

We begin with the following abstract sample complexity result: let F be a class of functions
mapping S to R that are uniformly bounded by some constant B. Moreover denote for any function
f ∈ F , the empirical expectation Ênf(X) , 1

n

∑n
i=1 f(Xi), where the Xi are i.i.d. random draws

from S as above. We then have the following sample complexity result:

Lemma 1.

P

sup
f∈F

Ef(X)− Ênf(X) ≥ Rn(F) +

√
2B2 ln(1/δ)

n

 ≤ δ.
This result is standard; for completeness, the proof may be found in Appendix B. Next, we

establish the Rademacher complexity of a specific class of functions. Fixing a policy µ, consider
then the set of functions mapping S to R defined according to:

FS,µ ,
{
x 7→ 〈x, z〉 − αEx,µ(x)[〈X′, z〉] : ‖z‖H ≤ C

}
.

We have:

Lemma 2. For any policy µ,
Rn (FS,µ) ≤ 2CK(1 + α)√

n
.
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Proof. Observe that, due to triangle inequality

‖x− αEx,µ(x)[X′]‖H ≤ ‖x‖H + αEx,µ(x)[‖X′‖H] ≤ K(1 + α),

for all x ∈ S. Now, let Xi be i.i.d. samples in S and Xi be the corresponding elements in H,

R̂n (FS,µ) = 2
n

E
[

sup
z: ‖z‖H≤C

〈∑
i

σi
(
Xi − αEXi,µ(Xi)[X

′]
)
, z

〉 ∣∣∣∣X1, . . . , Xn

]

≤ 2
n

E
[

sup
z: ‖z‖H≤C

∥∥∥∥∥∑
i

σi
(
Xi − αEXi,µ(Xi)[X

′]
)∥∥∥∥∥
H

‖z‖H
∣∣∣∣X1, . . . , Xn

]

= 2C
n

E
[∥∥∥∥∥∑

i

σi
(
Xi − αEXi,µ(Xi)[X

′]
)∥∥∥∥∥
H

∣∣∣∣X1, . . . , Xn

]

≤ 2C
n

√∑
i

‖Xi − αEXi,µ(Xi)[X′]‖2H

≤ 2CK(1 + α)√
n

.

�

Now, consider the class of functions mapping S to R, defined according to:

FS,µ ,
{
x 7→

(
J̃z,b(x)− (TµJ̃z,b)(x)

)+
: ‖z‖H ≤ C, |b| ≤ B

}
.

Now, FS,µ = φ (FS,µ + (1− α)FB − gµ), where φ , (·)+ and FB , {x 7→ b : |b| ≤ B}. It is
easy to show that Rn(FB) ≤ 2B/

√
n, so that with the previous lemma, the results of Bartlett and

Mendelson (2002, Theorem 12, parts 4 and 5) allow us to conclude

Corollary 1.

Rn(FS,µ) ≤ 4CK(1 + α) + 4B(1− α) + 2‖gµ‖∞√
n

,
C√
n
.

Now, define
FS ,

{
x 7→

(
J̃z,b(x)− (T J̃z,b)(x)

)+
: ‖z‖H ≤ C, |b| ≤ B

}
.

We have:

Lemma 3. For every f ∈ FS we have that ‖f‖∞ ≤ C/2. Moreover,

P
(
ÊNf(X)− Ef(X) ≥ ε

)
≤ δ4,

provided N ≥ Ξ(C,B,K, δ)2/ε2.

The first claim above follows from routine algebra and the Cauchy-Schwartz inequality; the
second is Hoeffding’s inequality. Corollary 1, Lemma 1, and the first part of Lemma 3 yields the
following sample complexity result:
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Theorem 2. Provided N ≥ Ξ(C,B,K, δ)2/ε2 , we have

P

 sup
f∈F̄S,µ

Ef(X)− ÊNf(X) ≥ ε

 ≤ δ.
Theorem 2 will constitute a crucial sample complexity bound for our main result; we now

proceed with the proof of Theorem 1.

3.4.2. Proof of Theorem 1

Let (ẑ, b̂, ŝ) be the optimal solution to the sampled program (17). Define

ŝµ∗ , (J̃ẑ,b̂ − Tµ∗ J̃ẑ,b̂)
+.

Observe that we may assume, without loss of generality, that

ŝ = (J̃ẑ,b̂ − T J̃ẑ,b̂)
+,

so that ŝ ≥ ŝµ∗ . Now, by definition, J̃ẑ,b̂ ≤ Tµ∗ J̃ẑ,b̂+ ŝµ∗ , so that by Lemma 2 of Desai et al. (2011),
we have that

J̃ẑ,b̂ ≤ J
∗ + ∆∗ŝµ∗ ,

where ∆∗ = (I − αPµ∗)−1. Let π̂µ∗,ν be the empirical distribution obtained by sampling N states
according to πµ∗,ν . Now let z, b satisfying ‖z‖H ≤ C, |b| ≤ B be given, and define sz,b , (T J̃z,b −
J̃z,b)+. Then, (z, b, sz,b) constitute a feasible solution to (17). Finally, let ψ ∈ Ψ be arbitrary. We
then have with probability at least 1− δ − δ4,

‖J∗ − J̃ẑ,b̂‖1,ν = ‖J∗ − J̃ẑ,b̂ + ∆∗ŝµ∗ −∆∗ŝµ∗‖1,ν

≤ ‖J∗ − J̃ẑ,b̂ + ∆∗ŝµ∗‖1,ν + ‖∆∗ŝµ∗‖1,ν

= ν>
(
J∗ − J̃ẑ,b̂

)
+ 2ν>∆∗ŝµ∗

= ν>
(
J∗ − J̃ẑ,b̂

)
+ 2

1− απ
>
µ∗,ν ŝµ∗

≤ ν>
(
J∗ − J̃ẑ,b̂

)
+ 2

1− απ̂
>
µ∗,ν ŝµ∗ + 2ε

1− α

≤ ν>
(
J∗ − J̃ẑ,b̂

)
+ 2

1− απ̂
>
µ∗,ν ŝ+ 2ε

1− α

≤ ν>
(
J∗ − J̃z,b

)
+ 2

1− απ̂
>
µ∗,νsz,b + 2ε

1− α

≤ ν>
(
J∗ − J̃z,b

)
+ 2

1− απ
>
µ∗,νsz,b + 4ε

1− α.

≤ (ν>ψ)‖J∗ − J̃z,b‖∞,1/ψ + 2
1− α(π>µ∗,νψ)‖T J̃z,b − J̃z,b‖∞,1/ψ + 4ε

1− α.

(19)
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The second equality follows by our observation that J̃ẑ,b̂ ≤ J∗ + ∆∗ŝµ∗ and since ∆∗ŝµ∗ ≥ 0. The
second inequality above holds with probability at least 1− δ by virtue of Theorem 2 and the fact
that ŝµ∗ ∈ FS,µ∗ . The subsequent inequality follows from our observation that ŝ ≥ ŝµ∗ . The fourth
inequality follows from the assumed optimality of (ẑ, b̂, ŝ) for the sampled program (17) and the
feasibility of (z, b, sz,b) for the same. The fifth inequality holds with probability 1− δ4 and follows
from the Hoeffding bound in Lemma 3 since sz,b ∈ FS . The final in equality follows from the
observation that for any s ∈ RS , ψ ∈ Ψ a and probability vector ν, ν>s ≤ (ν>ψ)‖s‖∞,1/ψ.

Now the proof of Theorem 2 of Desai et al. (2011) establishes that for any ψ ∈ Ψ and J ∈ RS ,
we have,

‖TJ − J‖∞,1/ψ ≤ (1 + αβ(ψ))‖J∗ − J‖∞,1/ψ.

Applied to (19), this yields

‖J∗ − J̃ẑ,b̂‖1,ν ≤ ‖J
∗ − J̃z,b‖∞,1/ψ

(
ν>ψ +

2(π>µ∗,νψ)(αβ(ψ) + 1)
1− α

)
+ 4ε

1− α.

Since our choice of z, b was arbitrary (beyond satisfying ‖z‖H ≤ C, |b| ≤ B), the result follows.

4. Numerical Scheme

This section outlines an efficient numerical scheme we use to solve the regularized SALP. In partic-
ular, we would like to solve the sampled dual problem (8), introduced in Section 2.3, in order to find
an approximation to the optimal cost-to-go function. This approach requires solving a quadratic
program (QP) with N ×A variables, where N , |Ŝ| is the number of sampled states and A , |A|
is the number of possible actions. Furthermore, constructing the coefficient matrices Q and R for
(8) requires O(N2A2H2) arithmetic operations, where H is the maximum number of states that
can be reached from an arbitrary state-action pair, i.e.,

H , max
(x,a)∈S×A

∣∣{x′ ∈ S : p(x, x′, a) > 0}
∣∣.

These computationally expensive steps may prevent scaling up solution of the QP to a large number
of samples. Also, an off-the-shelf QP solver will typically store the matrix Q in memory, so that
the memory required to solve our QP with an off-the-shelf solver effectively scales like O(N2A2).

In this section, we develop an iterative scheme to solve the program (8) that, by exploiting
problem structure, enjoys low computational complexity per iteration and attractive memory re-
quirements. Our scheme is an active set method in the vein of the approaches used by Osuna et al.
(1997) and Joachims (1999), among others, for solving large SVM problems. The broad steps of
the scheme are as follows:

1. At the tth iteration, a subset B ⊂ Ŝ × A of the decision variables of (8) – the ‘active set’
– is chosen. Only variables in this set may be changed in a given iteration; these changes
must preserve feasibility of the new solution that results. Our algorithm will limit the size of

17



the active set to two variables, i.e., |B| = 2. The methodology for choosing this active set is
crucial and will be described in the sequel.

2. Given the subset B, we solve (8) for λ(t), where all variables except those in B must remain
unchanged. In other words, λ(t)

x,a , λ
(t−1)
x,a for all (x, a) /∈ B. This entails the solution of a QP

with only |B| decision variables. In our case, we will be able to solve this problem in closed
form.

3. Finally, if the prior step does not result in a decrease in objective value we conclude that we
are at an optimal solution; Proposition 2 establishes that this is, in fact, a correct termination
criterion.

In the following section, we will establish an approach for selecting the active set at each
iteration and show how Step 2 above can be solved while maintaining feasibility at each iteration.
We will establish that steps one and two together need no more that O(NA logNA) arithmetic
operations and comparisons, and moreover that the memory requirement for our procedure scales
like O(NA). Finally, we will establish that our termination criterion is correct: in particular, if
no descent direction of cardinality at most two exists at a given feasible point, we must be at an
optimal solution.

4.1. Subset Selection

The first step in the active set method is to choose the subset B ⊂ Ŝ × A of decision variables
to optimize over. Given the convex objective in (8), if the prior iteration of the algorithm is at a
sub-optimal point λ , λ(t−1), then there exists a direction d ∈ RŜ×A such that λ + εd is feasible
with a lower objective value for ε > 0 sufficiently small. To select a subset to optimize over, we
look for such a descent direction d of low cardinality ‖d0‖0 ≤ q, i.e., a vector d that is zero on all
but at most q components. If such a direction can be found, then we can use the set of non-zero
indices of d as our set B.

This problem of finding a ‘sparse’ descent direction d can be posed as

(20)

minimize h(λ)>d

subject to
∑
a∈A

dx,a ≤ 0, ∀ x ∈ Ŝ with
∑
x∈A

λx,a = κ

N
,

dx,a ≥ 0, ∀ (x, a) ∈ Ŝ × A with λx,a = 0,∑
x∈Ŝ
a∈A

dx,a = 0,

||d||0 ≤ q,
||d||∞ ≤ 1,
d ∈ RŜ×A.

Here, h(λ) , Qλ+R is the gradient of the objective of (8) at a feasible point λ, thus the objective
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h(λ)>d seeks to find a direction d of steepest descent. The first three constraints ensure that d is
a feasible direction. The constraint ‖d‖0 ≤ q is added to ensure that the direction is of cardinality
at most q. Finally, the constraint ‖d‖∞ ≤ 1 is added to ensure that the program is bounded, and
may be viewed as normalizing the scale of the direction d.

The program (20) is, in general, a challenging mixed integer program because of the cardinality
constraint. Joachims (1999) discusses an algorithm to solve a similar problem of finding a low
cardinality descent direction in an SVM classification setting. Their problem can be easily solved
provided that the cardinality q is even, however no such solution seems to exist for our case.
However, in our case, when q = 2, there is a tractable way to solve (20). We will restrict attention
to this special case, i.e., consider only descent directions of cardinality two. In Section 4.3, we will
establish that this is, in fact, sufficient: if the prior iterate λ is sub-optimal, then there will exist a
direction of descent of cardinality two.

To begin, define the sets

P1 ,

{
(x, a) ∈ Ŝ × A : λa,x = 0

}
, P2 ,

{
x ∈ Ŝ :

∑
a∈A

λx,a = κ

N

}
.

Consider the following procedure:

1. Sort the set of indices Ŝ×A according to their corresponding component values in the gradient
vector h(λ). Call this sorted list L1.

2. Denote by (x1, a1) the largest element of L1 such that (x1, a1) /∈ P1, and denote by (x2, a2)
the smallest element of L1 such that x2 /∈ P2. Add the tuple (x1, a1, x2, a2) to the list L2.

3. Consider all x ∈ P2. For each such x, denote by (x, a1) the largest element of L1 such that
(x, a1) /∈ P1, and denote by (x, a2) the smallest element of L1. Add each tuple (x, a1, x, a2)
to L2.

4. Choose the element (x∗1, a∗1, x∗2, a∗2) of L2 that optimizes

(21) min
(x1,a1,x2,a2)∈L2

h(λ)x2,a2 − h(λ)x1,a1 .

Set dx∗1,a∗1 = −1, dx∗2,a∗2 = 1, and all other components of d to zero..

This procedure finds a direction of maximum descent of cardinality two by examining considering
candidate index pairs (x1, a1, x2, a2) for which h(λ)x2,a1−h(λ)x1,a1 is minimal. Instead of consider-
ing at all N2A2 such pairs, the routine selectively checks only pairs with describe feasible directions
with respect to the constraints of (20). Step 2 considers all feasible pairs with different states x,
while Step 3 considers all pairs with the same state. It is thus easy to see that the output of this
procedure is an optimal solution to (20), i.e., a direction of steepest descent of cardinality two.
Further, if the value of the minimal objective (21) determined by this procedure is non-negative,
then no descent direction of cardinality two exists, and the algorithm terminates.

19



In terms of computational complexity, this subset selection step requires us to first compute the
gradient of the objective function h(λ) , Qλ + R. If the gradient is known at the first iteration,
then we can update it at each step by generating two columns of Q, since λ only changes at two
co-ordinates. Hence, the gradient calculation can be performed in O(NA) time, and with O(NA)
storage (since it is not necessary to store Q). For Step 1 of the subset selection procedure, the
component indices must be sorted in the order given by the gradient h(λ). This operation requires
computational effort of the order O(NA logNA). With the sorted indices, the effort required in
the remaining steps to find the steepest direction is via the outlined procedure is O(NA). Thus,
our subset selection step requires a total of O(NA logNA) arithmetic operations and comparisons.

The initialization of the gradient requires O(N2A2) effort. In the cases where such a com-
putation is prohibitive, one can think of many approaches to approximately evaluate the initial
gradient. For example, if we use the Gaussian kernel, the matrix Q will have most of its large
entries close to the diagonal. In this case, instead of the expensive evaluation of Q, we can only
evaluate the entries Q(x, a, x′, a′) where x = x′ and the set the rest of them to zero. This block
diagonal approximation might be used to initialize the gradient. Another approach is to sample
from the distribution induced by λ to approximately evaluate Qλ. As the algorithm makes progress
it evaluates new columns of Q. With a bit of book-keeping one could get rid of the errors asso-
ciated with the gradient initialization. The convergence properties of the active set method with
approximate initialization is an issue not tackled in this paper.

4.2. QP Sub-problem

Given a prior iterate λ(t−1), and a subset B , {(x1, a1), (x2, a2)} of decision variable components
of cardinality two as computed in Section 4.1, we have the restricted optimization problem

(22)

minimize
∑

(x,a)∈B

∑
(x′,a′)∈B

λx′,a′Q(x, a, x′, a′)λx,a

+
∑

(x,a)∈B
λx,a

R(x, a) + 2
∑

(x′,a′)/∈B
Q(x, a, x′, a′)λ(t−1)

x′,a′


subject to

∑
a: (x,a)∈B

λx,a ≤
κ

N
−

∑
a: (x,a)/∈B

λ(t−1)
x,a , ∀ x ∈ {x1, x2}

∑
(x,a)∈B

λx,a = 1
1− α −

∑
(x,a)/∈B

λ(t−1)
x,a ,

λ ∈ RB+.

This sub-problem has small dimension. In fact, the equality constraint implies that λx1,a1 + λx2,a2

is constant, hence, the problem is in fact a one-dimensional QP that can be solved in closed form.
Further, to construct this QP, two columns of Q are required to be generated. This requires
computation effort of order O(NA).

Note that the subset B is chosen so that it is guaranteed to contain a descent direction, according
to the procedure in Section 4.1. Then, the solution of (20) will produce an iterate λ(t) that is feasible
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for the original problem (22) and has lower objective value than the prior iterate λ(t−1).

4.3. Correctness of Termination Condition

The following proposition establishes the correctness of our active set method: if the prior iterate
λ , λ(t−1) is sub-optimal, then there must exist a direction of descent of cardinality two. Our iter-
ative procedure will therefore improve the solution, and will only terminate when global optimality
is achieved.

Proposition 2. If λ ∈ RŜ×A is feasible but sub-optimal for (8) then, there exists a descent direction
of cardinality two.

The proof of Proposition 2 requires the following lemma:

Lemma 4. Suppose x, y ∈ Rn are vectors such that 1>x = 0 and x>y < 0. Then there exist
co-ordinates {i, j}, such that yi < yj, xi > 0, and xj < 0.

Proof. Define the index sets S+ , {i : xi > 0} and S− , {i : xi < 0}. Under the given
hypotheses, both sets are non-empty. Using the fact that 1>x = 0, define

Z ,
∑
i∈S+

xi =
∑
i∈S−

(xi)−,

where (xi)− , −min(xi, 0) is the negative part of the scalar xi. Observe that Z > 0. Further,
since x>y < 0,

1
Z

∑
i∈S+

xiyi <
1
Z

∑
i∈S−

(xi)−yi.

Since the weighted average of y over S− is more than its weighted average over S+, we can pick an
element in S+, i and an element of S−, j such that yi < yj . �

Proof of Proposition 2. If λ is sub-optimal, since (8) is a convex quadratic program, there will
exist some vector d ∈ RŜ×A is a feasible descent direction at λ. Let g , h(λ) be the gradient at
that point. We must have that g>d < 0, so that it is a descent direction, and that d satisfies the
first three constraints of (20), so that it is a feasible direction.

Define

T ,
{
x ∈ Ŝ :

∑
a∈A

λx,a = κ

N
, max
a∈A

dx,a > 0, min
a∈A

dx,a < 0
}
, Px , {a ∈ A : dx,a 6= 0}.

First, consider the case of T = ∅. In this case, for all x such that
∑
a∈A λx,a = κ/N , we have

dx,a ≤ 0. Since d is a descent direction, we have g>d < 0. Lemma 4 can be applied to get a pair
(x1, a1) and (x2, a2) such that dx1,a1 > 0 and dx2,a2 < 0, with gx1,a1 < gx2,a2 . Further x1 is such
that

∑
a∈A λx1,a < κ/N and (x2, a2) is such that λx2,a2 > 0. These conditions ensure that if (x1, a1)

and (x2, a2) are increased and decreased respectively in the same amount, then the objective is

21



decreased. And hence we obtain a descent direction of cardinality 2. By assuming that T = ∅, we
have avoided the corner case of not being able to increase dx1,a1 due to

∑
a∈A λx1,a = κ/N .

For T 6= ∅, without loss of generality, assume that |Px| = 2 for each x ∈ T , i.e., d has exactly
two non-zero components corresponding to the state x. This is justified at the end of the proof.
Denote these indices by (x, a+) and (x, a−), so that dx,a+ > 0 and dx,a− < 0. From the first
constraint of (20), we must have that dx,a+ ≤ (dx,a−)−.

There are two cases:

(i) Suppose gx,a+ < gx,a− , for some x ∈ T .

Then, we can define a descent direction d̃ ∈ RŜ×A of cardinality two by setting d̃x,a+ = 1,
d̃x,a− = −1, and all other components of d̃ to zero.

(ii) Suppose that gx,a+ ≥ gx,a− , for all x ∈ T .

For all x ∈ T , define d̂x , (dx,a−)− − dx,a+ ≥ 0. Then, the fact that
∑
x,a dx,a = 0 implies

that

(23)
∑
x/∈T
a∈A

dx,a −
∑
x∈T

d̂x = 0.

At the same time, for all x ∈ T , we have that

dx,a+gx,a+ + dx,a−gx,a− = −d̂xgx,a− + dx,a+(gx,a+ − gx,a−) ≥ −d̂xgx,a− .

Then, since d is a descent direction, we have that

(24)
∑
x/∈T
a∈A

dx,agx,a −
∑
x∈T

d̂xgx,a− < 0.

Now, define the vector d̃ ∈ RŜ×A by

d̃x,a =


dx,a if x /∈ T ,

−d̂x if x ∈ T and (x, a) = (x, a−),

0 otherwise.

Applying Lemma 4 to (23) and (24), there must be a pair of indices (x1, a1) and (x2, a2)
such that d̃x1,a1 > 0, d̃x2,a2 < 0 and gx1,a1 < gx2,a2 . For such (x1, a1) and (x2, a2) we have
a descent direction where we can increase λx1,a1 and decrease λx2,a2 by the same amount
and get a decrease in the objective. Note that since d̃x1,a1 > 0, we have that dx1,a1 > 0 and
x1 /∈ T , hence

∑
a λx1,a < κ/N . Also, by construction, (x2, a2) is chosen such that dx2,a2 < 0,

implying that λx2,a2 > 0. Thus the specified direction is also feasible, and we have a feasible
descent direction of cardinality two.
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λ4 = 0.08

Figure 1: The queueing network example.

Finally, to complete the proof, consider the case where there are some x ∈ T with |Px| > 2, i.e.,
d has more than two non-zero components corresponding to the state x. For each x ∈ T , define

A+
x , {a ∈ A : dx,a > 0}, A−x , {a ∈ A : dx,a < 0},

a1 ∈ argmin
a∈A+

x

gx,a, a2 ∈ argmax
a∈A−x

gx,a.

Define a new direction d̃ ∈ RŜ×A by

d̃x,a =


∑
a′∈A+

x
dx,a′ if x ∈ T and (x, a) = (x, a1),∑

a′∈A−x dx,a
′ if x ∈ T and (x, a) = (x, a2),

dx,a otherwise.

It is easy to verify that d̃ is also a feasible descent direction. Furthermore, d̃ has only two non-zero
components corresponding to each start x ∈ T . �

5. Case Study: A Queueing Network

This section considers the problem of controlling the queuing network illustrated in Figure 1, with
the objective of minimizing long run average delay. There are two ‘flows’ in this network: the first
though server 1 followed by server 2 (with buffering at queues 1 and 2, respectively), and the second
through server 2 followed by server 1 (with buffering at queues 4 and 3, respectively). Here, all
inter-arrival and service times are exponential with rate parameters summarized in Figure 1.

This specific network has been studied by de Farias and Van Roy (2003); Chen and Meyn
(1998); Kumar and Seidman (1990), for example, and closely related networks have been studied
by Harrison and Wein (1989); Kushner and Martins (1996); Martins et al. (1996); Kumar and
Muthuraman (2004). It is widely considered to be a challenging control problem. As such, a lot
of thought has been invested in designing scheduling policies with networks of this type in mind.
Our goal in this section will be two fold. First, we will show that the RSALP, used ‘out-of-the-box’
with a generic kernel, can match or surpass the performance of tailor made heuristics and state of
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the art parametric ADP methods. Second, we will show that the RSALP can be solved efficiently.

5.1. MDP Formulation

Although the control problem at hand is nominally a continuous time problem, it is routinely
converted into a discrete time problem via a standard uniformization device; see Moallemi et al.
(2008), for instance, for an explicit such example. In the equivalent discrete time problem, at most
a single event can occur in a given epoch, corresponding either to the arrival of a job at queues 1
or 4, or the arrival of a service token for one of the four queues with probability proportional to
the corresponding rates. The state of the system is described by the number of jobs is each of the
four queues, so that S , Z4

+, whereas the action space A consists of four potential actions each
corresponding to a matching between servers and queues. We take the single period cost as the
total number of jobs in the system, so that gx,a = ‖x‖1; note that minimizing the average number
of jobs in the system is equivalent to minimizing average delay by Little’s law. Finally, we take
α = 0.9 as our discount factor.4

5.2. Approaches

The following scheduling approaches were considered for the queueing problem:

RSALP (this paper). We solve (8) using the active set method outlined in Section 4, taking as our
kernel the standard Gaussian radial basis function kernel K(x, y) , exp

(
−‖x− y‖22/h

)
, with the

bandwidth parameter5 h , 100. Note that this implicitly corresponds to an full-dimensional basis
function architecture. Since the idealized sampling distribution, πµ∗,ν is unavailable to us, we use
in its place the geometric distribution

(25) π(x) , (1− ζ)4ζ‖x‖1 ,

with the sampling parameter ζ set at 0.9. This choice mimics that of de Farias and Van Roy (2003).
The regularization parameter Γ was chosen via a line-search;6 we report results for Γ , 10−6. In
accordance with the theory we set the constraint violation parameter κ , 2/(1− α), as suggested
by the analysis of Section 3, as well as by Desai et al. (2011) for the SALP.

SALP (Desai et al., 2011). The SALP formulation (2), is, as discussed earlier, the parametric
counterpart to the RSALP. It may be viewed as a generalization of the ALP approach proposed
by de Farias and Van Roy (2003) and has been demonstrated to provide substantial performance
benefits relative to the ALP approach. Our choice of parameters for the SALP mirrors those for the
RSALP to the extent possible, so as to allow for an ‘apples-to-apples’ comparison. Thus, as earlier,
we solve the sample average approximation of this program using the same sampling distribution

4Note that while we will solve a problem with a discounted infinite horizon optimality criterion, we will report
long run average costs. This is in keeping with Desai et al. (2011) and de Farias and Van Roy (2003)

5The sensitivity of our results to this bandwidth parameter appears minimal.
6Again, performance does not appear to be very sensitive to Γ, so that a crude line-search appears to suffice.

Specifically, we tried values of the form Γ = 10k, for k between −12 and 2.
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π as in (25), and we set κ , 2/(1 − α). Being a parametric approach, one needs to specify an
appropriate approximation architecture. Approximation architectures that span polynomials are
known to work well for queueing problem. We use the basis functions used by de Farias and Van Roy
(2003) for a similar problem modeled directly in discrete time. In particular, we use all monomials
with degree at most 3, which we will call the cubic basis, as our approximation architectures.

Longest Queue First (generic). This is a simple heuristic approach: at any given time, a server
chooses to work on the longest queue from among those it can service.

Max-Weight (Tassiulas and Ephremides, 1992). Max-Weight is a well known scheduling heuristic
for queueing networks. The policy is obtained as the greedy policy with respect to a value function
approximation of the form

J̃MW (x) ,
4∑
i=1
|xi|1+ε,

given a parameter ε > 0. This policy has been extensively studied and shown to have a number
of good properties, for example, being throughput optimal (Dai and Lin, 2005) and offering good
performance for critically loaded settings (Stolyar, 2004). Via a line-search we chose to use ε , 1.5
as the exponent for our experiments.

5.3. Results

Policies were evaluated using a common set of arrival process sample paths. The performance
metric we report for each control policy is the long run average number of jobs in the system under
that policy,

1
T

T∑
t=1
‖xt‖,

where we set T , 10000. We further average this random quantity over an ensemble of 300 sample
paths.

Further, in order to generate SALP and RSALP policies, state sampling is required. To under-
stand the effect of the sample size on the resulting policy performance, the different sample sizes
listed in Table 1 were used. Since the policies generated involve randomness to the sampled states,
we further average performance over 10 sets of sampled states. The results are reported in Table 1
and have the following salient features:

1. RSALP outperforms established policies: Approaches such as the Max-Weight or ‘parametric’
ADP with basis spanning polynomials have been previously shown to work well for the prob-
lem of interest. We see that the RSALP with more than 300 samples achieves performance
that is superior to these extant schemes.

2. Sampling improves performance: This is expected from the theory in Section 3. Ideally, as
the sample size is increased one should relax the regularization. However, for our experiments
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policy performance
Longest Queue 8.09
Max-Weight 6.55
sample size 1000 3000 5000 10000 15000

SALP, cubic basis 7.19 (1.76) 7.89 (1.76) 6.94 (1.15) 6.63 (0.92) 6.58 (1.12)
RSALP, Gaussian kernel 6.72 (0.39) 6.31 (0.11) 6.13 (0.08) 6.04 (0.05) 6.02 (0.06)

Table 1: Performance results in the queueing example. For the SALP and RSALP methods, the number
in the parenthesis gives the standard deviation across sample sets.

we noticed that the performance is quite insensitive to the parameter Γ. Nonetheless, it is
clear that larger sample sets yield a significant performance improvement.

3. RSALP in less sensitive to state sampling: We notice from the standard deviation values in
Table 1 that our approach gives policies whose performance varies significantly less across
different sample sets of the same size.

In summary, we view these results as indicative of the possibility that the RSALP may serve as a
practical and viable alternative to state-of-the-art parametric ADP techniques.

6. Conclusions

This paper set out to present a practical non-parametric algorithm for approximate dynamic pro-
gramming building upon the success of linear programming based methods that require the user
to specify an approximation architecture. We believe that the RSALP, presented and studied here,
is such an algorithm. In particular, the theoretical guarantees presented here establish the ‘non-
parametric’ nature of the algorithm by showing that increased sampling effort leads to improved
approximations. On the empirical front, we have shown that our essentially ‘generic’ procedure
was able to match the performance of tailor made heuristics as well as ADP approaches using pre-
specified approximation architectures. Nevertheless, several interesting directions for future work
are evident at this juncture:

• The choice of kernel: The choice of kernel matters in so much as the feature map it encodes
allows for approximations with small Hilbert norm (i.e., small C). Thus, a good choice
of kernel would require fewer samples to achieve a fixed approximation accuracy than a
poor choice of kernel. That said, picking a useful kernel is an apparently easier task than
picking a low-dimensional architecture — there are many full-dimensional kernels possible,
and with sufficient sampling, they will achieve arbitrarily good value function approximations.
Nevertheless, it would be valuable to understand the interplay between the choice of kernel
and the corresponding value of C for specific problem classes (asking for anything more general
appears rather difficult).
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• The active set method: In future work, we would like to fine tune/ build more extensible
software implementing our active set method for wider use. Given the generic nature of the
approach here, we anticipate that this can be a technology for high-dimensional MDPs that
can be used ‘out of the box’.
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A. Duality of the Sampled RSALP

Proof of Proposition 1. We begin with a few observations about the primal program, (5):

1. Because the objective function is coercive,7 weight vector z can be restricted without loss of
generality to some finite ball in H. The optimal value of the primal is consequently finite.

2. The primal has a feasible interior point: consider setting

z , 0, b , 0, sx , max(−min
a
gx,a, ε),

for some ε > 0.

3. The optimal value of the primal is achieved. To see this, we note that it suffices to restrict z to
the finite dimensional space spanned by the vectors

{
x : x ∈ Ŝ∪N (Ŝ)

}
, where N (Ŝ) denotes

the set of states that can be reached from the sampled states of Ŝ in a single transition. Then,
the feasible region of the primal can be restricted, without loss of optimality, to a compact
subset of H×RŜ ×R. Since the objective function of the primal is continuous, we know that
its optimal value must be achieved by the Weierstrass theorem.

7As ‖z‖H →∞, the objective value goes to −∞.
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We next derive the dual to (5). As in Luenberger (1997, Chapter 8), we define the Lagrangian:

L(z, b, s, λ) ,
〈
− 1
N

∑
x∈Ŝ

wxx +
∑

(x,a)∈Ŝ×A

λx,a
(
x− αEx,a[X′]

)
, z
〉

+ Γ
2 ||z||

2
H

+
∑
x∈Ŝ

sx

 κ

N
−
∑
a∈A)

λx,a

− b
1− (1− α)

∑
(x,a)∈Ŝ×A

λx,a

− ∑
(x,a)∈P̂

gx,aλx,a.

and define the dual function G(λ) , inf(z,b,s)∈D L(z, b, s, λ) where we denote by D the feasible region
of the primal problem. Now, observe that for any given λ, L(z, b, s, λ) is (uniquely) minimized at

(26) z∗(λ) = 1
Γ

 1
N

∑
x∈Ŝ

wxx−
∑

x∈Ŝ,a∈A

λx,a

(
x− αEx,a[X′]

) ,
for any finite b, s. This follows from the observation that for any z ∈ H, 〈z, z〉− 〈z̄, z〉 is minimized
at −1

2z by the Cauchy-Schwartz inequality. It follows immediately that on the set defining the
feasible region of the program (8), we must have that

G(λ) = 1
2λ
>Qλ+R>λ+ S

and moreover that G(λ) = +∞ outside that set. This suffices to establish that the dual problem
infλ≥0G(λ) is precisely program (8).

The first conclusion of Luenberger (1997, Theorem 1, pp. 224–225) and the first and second
observations we made at the outset of our proof then suffice to establish that programs (5) and (8)
have equal optimal values (i.e. strong duality holds) and that the optimal value of the dual program
is achieved at some λ∗. Our third observation, (26), and the second conclusion of Luenberger (1997,
Theorem 1, pp. 224–225) then suffice to establish our second claim. �

B. Proof of Lemma 1

Proof of Lemma 1. We begin with some preliminaries: Define

Z(X1, X2, . . . , Xn) , sup
f∈F

Ef(X)− Ênf(X).

Notice that ∣∣Z(X1, X2, . . . , Xi, . . . , Xn)− Z(X1, X2, . . . , X
′
i, . . . , Xn)

∣∣ ≤ 2B
n
.

McDiarmid’s inequality (or equivalently, Azuma’s inequality) then implies:

(27) P

Z − EZ ≥

√
2B2 ln(1/δ)

n

 ≤ δ.
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Now,

EZ = E
[

sup
f∈F

Ef(X)− Ênf(X)
]

= E
[

sup
f∈F

EÊnf(X)− Ênf(X)
]

≤ E
[

sup
f∈F

Ênf(X ′)− Ênf(X)
]

= E
[

sup
f∈F

1
n

n∑
i=1

σi
(
f(X ′i)− f(Xi)

)]

≤ E
[

sup
f∈F

2
n

n∑
i=1

σi (f(Xi))
]

= Rn(F)

With (27), this immediately yields the result. �
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