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SYNOPSIS 

In a previous paper [Ng and McKinley (2008)], we demonstrated that gluten gels can best be 

understood as a polymeric network with a power-law frequency response that reflects the fractal 

structure of the gluten network. Large deformation tests in both transient shear and extension 

show that in the absence of rigid starch fillers these networks are also time-strain factorizable up 

to very large strain amplitudes ( ).  In the present work, we further explore the non-linear 

rheological behavior of these critical gels by considering the material response obtained in large 

amplitude oscillatory shear (LAOS) over a wide range of strains and frequencies. We use a 

Lissajous representation to compare the measured material response with the predictions of a 

network theory that is consistent with the proposed molecular structure of gluten gels. In the 

linear viscoelastic regime, the Lissajous figures are elliptical as expected and can be 

quantitatively described by the same power-law relaxation parameters determined independently 
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from earlier experiments. In the non-linear regime, the Lissajous curves show two prominent 

additional features. Firstly a gradual softening of the network indicated by the rotation of the 

major axis. This feature is accounted for in the model by the inclusion of a simple non-linear 

network destruction term that reflects the reduction in network connectivity as the polymer 

chains are increasingly stretched. Secondly, a distinct upturn in the viscoelastic stress is 

discernable at large strains. We show that this phenomenon can be modeled by considering the 

effects of finitely extensible segments in the elastic network.  We apply this model to other large 

amplitude transient flows such as the start-up of steady shear and extension.  In addition to 

quantitative prediction of the evolution of stress in the gluten gel, we find that the onset of 

strongly non-linear unsteady phenomena such as edge instability in shear and sample rupture 

during extension can be understood as consequences of the finite extensibility and increased 

dissociation of the network filaments. 
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I INTRODUCTION 

The rheological responses of biopolymer networks exhibit an intriguing variety of nonlinear 

phenomena. Commonly observed features include nonlinear softening, stiffening, reversibility 

and thixotropy, e.g. [Chaudhuri et al. (2007); Ewoldt et al. (2007); Ma et al. (1999); Storm et al. 

(2005)]. There are a wide variety of measurement techniques and a range of constitutive models 

that have been proposed for understanding these types of systems [Chaudhuri et al. (2007); 

Gittes and MacKintosh (1998); Janmey (1991); Storm et al. (2005)]. In this article, we will 

illustrate some of these features observed in a viscoelastic biopolymer gel that is formed by a 

hydrated gluten network. 

 Gluten is the generic name given to the insoluble protein fraction present in wheat flour. It is 

widely believed that the mechanical properties of this hydrated network state are intrinsically 

linked to the quality of the bread dough formed when the flour is mixed with water [Belton 

(1999); Bloksma (1990b); Ewart (1989); Kokelaar et al. (1996); Schofield and Blair (1937); 

Singh and MacRitchie (2001); Uthayakumaran et al. (2000)].  Recent tests [Ng and McKinley 

(2008)] have shown that under small amplitude oscillatory conditions, as well as in large 

deformations in either shear or extension, the gluten gel can best be understood as consisting of 

flexible/semi-flexible segments that are interconnected to form a gel network. The interstitial 

spaces are filled with water but have minimal direct effect on the rheology as little or no solvent 

contribution to the total stress can be detected. For time scales that are greater than the Rouse 

relaxation time of the polymeric network segments, we also demonstrated that the quasi-linear 

behavior in an unfilled gluten gel is time-strain separable up to large strains and can be well-

described by the generalized gel equation: 
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  (1) 

where  is the finger strain tensor. The expression can also be rewritten in terms of the finite 

strain rate tensor in the following way: 

  (2) 

where  [Bird et al. (1987a)]. 

 Our previous studies also showed that in start-up of steady shear tests, both the transient 

shear stress and first normal stress difference exhibited power-law growth up to a critical strain 

 at which point non-linear stress growth becomes significant and is followed rapidly by a 

viscometric instability leading to sample roll-up and ejection from the rheometer. The quasi-

linear behavior before the instability is given by equation (1) which can be integrated for 

homogeneous steady shearing to give [Winter and Mours (1997); Ng and McKinley (2008)]: 

  (3) 

The transient extensional stress difference in strips of gluten undergoing uniaxial elongation also 

closely followed the predicted behavior up to the point of rupture; with the normal stress 

difference given by: 

  (4) 

derived from Eq. (1) with the change of variable  .  In general, the material 

functions for these start-up tests are of a time-strain factorizable form, in which the stress 
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response is separated into a rate-dependent component of power-law form multiplied by a master 

strain function: 

  (5) 

This separable form is appropriate for a range of deformation, but will ultimately fail when the 

network is deformed severely.  Because of the difficulty in maintaining viscometric flow at large 

strains, the details of this progression into non-linear (non factorizable) behavior are still not well 

understood.  There are clear hints of strain-hardening in the network, however during transient 

experiments in which the stress is always growing this large additional stress growth leads to 

sample disruption (either by ejection from the gap in shear or cohesive rupture in extension). 

 Unlike deformations in the linear viscoelastic regime, there exists no standard non-linear 

rheological test that can readily provide all the complex viscoelastic parameters which 

characterize the non-linear rheological behavior of a material such as these polymeric gels. 

Typically, different tests are employed to probe different aspects of the non-linearity. We suggest 

that large amplitude oscillatory shear (LAOS) deformation [Dealy and Wissbrun (1990)] is a 

useful tool for understanding polymeric gels.  Large amplitude oscillatory deformations provide 

a number of rheometric advantages. Firstly, because the amplitude of oscillation can be 

progressively increased, we can probe deformation conditions close to the point of viscometric 

instabilities (e.g. immediately prior to the ejection of very elastic samples such as dough from the 

gap at large torsional strains). The measurements are taken under quasi-steady state; the imposed 

oscillations can be continued until any initial transient response has decayed and the shape of the 

resulting Lissajous, or more correctly ‘Lissajous-Bowditch’ curves [Bowditch (1815); Crowell 

(1981); Lissajous (1857)] remain time invariant, therefore the accuracy and repeatability are 

greatly improved when compared with transient start-up tests. Furthermore, the smoothly 
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varying deformation protocol can be precisely achieved experimentally, in contrast to the abrupt 

changes required for stress relaxation and start-up of steady flow tests. Also, since the tests are 

performed on conventional torsional rheometers, the experimental protocols are simpler and 

more convenient compared to non-linear tests involving large extensional deformations and/or 

high extensional rates such as filament stretching or wind-up tests [Ng et al. (2006); Rasmussen 

et al. (2008)].  Until recently, however, quantitative interpretation of the material response 

measured in a large amplitude oscillatory test has been far from obvious. 

 The experimental and analytical techniques of LAOS and Fourier transforms have been 

neatly summarized by Wilhelm (2002). Due to the conceptual familiarity of Fourier transforms, 

this framework of collecting and analyzing data is the most widely adopted. An alternative to 

Fourier analysis, based in the domain of strain and strain-rate rather than time, has been proposed 

by Cho et al. (2005). The method is based on symmetry arguments that decompose the Lissajous 

curves formed by parametric plots of stress as a function of strain and strain-rate into non-linear 

elastic and viscous components. More recently, Ewoldt and co-workers [Ewoldt et al. (2008)] 

have proposed a number of general measures of material moduli that capture the physical 

features embodied in Lissajous figures, and used these to generate a complete rheological 

fingerprint for a range of nonlinear viscoelastic materials such as wormlike micellar solutions 

and  pedal mucus collected from snails and slugs.  

 To the best of our knowledge, the only published study in which gluten gels were subjected 

to large amplitude oscillations was performed by Uthayakumaran et al. (2002). Their 

experiments consisted essentially of a strain sweep at fixed frequency in which the strain 

amplitude was gradually increased and the corresponding dynamic moduli were reported 

( , which were presumably the first-harmonic moduli typically output from 
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commercial rheometer software). The data show a gradual decrease in moduli for increasing 

strains that was interpreted as a strain-softening behavior.  Although this captures one global 

feature of the nonlinear network deformation, as we shall discuss later, reporting the apparent 

strain-dependent moduli of a soft nonlinear solid is not sufficient to fully characterize the 

rheological response of the network. A single harmonic measure such as the first harmonic 

moduli , cannot adequately capture the complete response of the system [Ewoldt et al. 

(2008); Wilhelm (2002)] if it is not discussed in context with the Lissajous curves or a more 

detailed Fourier decomposition of the stress-strain response during an oscillation cycle. 

 Lefebvre (2006) studied the Lissajous figures resulting from LAOS deformation of wheat 

flour dough which is a more complex system than a gluten gel due to the presence of the starch 

filler. The experiments were performed on a controlled stress rheometer, in which the oscillatory 

stress amplitude was gradually increased. Lefebvre analyzed the corresponding strain response in 

terms of a Fourier series and he suggested that the relative magnitude of the higher harmonics 

could be considered to be a measure of the non-linearity. Although this Fourier decomposition 

approach is complete and mathematically consistent [Wilhelm (2002)], it is difficult to develop a 

clear physical interpretation of these higher harmonic components. Furthermore, the controlled 

stress nature of these experiments makes it inconvenient to compare data against candidate 

constitutive equations in which the material stress is commonly written as a non-linear function 

of input strain or strain rate. Nevertheless, the Lissajous figures presented by Lefebvre do indeed 

show distinct non-linear behavior, the most prominent being the dramatic distortion from the 

elliptical shapes observed at moderate stresses  (i.e. ) and small strains ( ). 

 Phan-Thien et al. (2000) on the other hand performed large amplitude oscillations on a wheat 

flour dough using a controlled strain approach. As a result, they were able to propose a 
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constitutive equation that described the extreme softening behavior observed when the dough is 

subject to increasingly large strains ( ). The resulting constitutive model [Phan-Thien et 

al. (2000); Phan-Thien et al. (1997)] consists of a factorizable form with a linear viscoelastic 

response multiplied by an empirical softening function that is dependent on the strain.  Flour 

dough is a highly-filled suspension with a viscoelastic matrix and the onset of nonlinearity 

occurs at very small strains (0.1%) as compared to isolated (unfilled) gluten dough (3%) 

[Uthayakumaran et al. (2002)].  Thus, for flour dough, it is currently unclear how much of the 

nonlinearity can be attributed directly to the polymeric gluten gel network.   

 In the present work we study the non-linear rheological behavior of a model biopolymer 

network consisting of hydrated gluten using controlled-strain large amplitude oscillatory shear 

flow. Following the earlier work of Lefebvre (2006) and Phan-Thien et al. (2000), we analyze 

the Lissajous figures of the gluten gel resulting from controlled oscillatory forcing under various 

deformation amplitudes and frequencies. The experimental data collected are used to extend the 

generalized gel constitutive model described above to describe the progressive transition to non-

linear behavior that is observed experimentally. This model is based on the transient network 

ideas described in our earlier work [Ng and McKinley (2008)] and we then explain how each of 

the characteristic rheological features observed in the LAOS experiments arise from underlying 

changes in the microstructure of the gluten gel network. 
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II GLUTEN DOUGH PREPARATION 

Gluten dough was prepared by placing 10g of vital gluten (Arrowhead Mills, ~12% moisture 

content) in a mixograph bowl with 14g of water (total dough moisture content = 63% by weight). 

The mixture is then stirred, stretched and folded through the action of the mixograph pins for 12 

minutes [Gras et al. (2000)]. The torque exerted by the mixing action is monitored on a specially 

instrumented mixograph. In Figure 1 (a), we plot the typical torque signal as a function of mixing 

time. Frequently, a moving average signal corresponding to the slow variation of torque is cited 

to be indicative of dough development [Bloksma (1990b)]. The various stages of development 

can be summarized by the following: 

i. 0 – 500 s. Under-developed dough – mixing torque is low.  The sample is dry and lumpy. 

ii. 500-600 s. Dough development – both the local average torque signal and amplitude of 

fluctuations rise rapidly. Sample begins to form a cohesive dough that is stretched around 

the mixograph pins. 

iii. 600-900 s. Fully-developed dough – the amplitude of the averaged torque signal and the 

corresponding fluctuations reach a plateau. Gluten samples harvested at this stage give 

consistent results under rheometric tests. An enlarged detail of the fluctuations of the 

signal at this stage of development is shown in Figure 1 (b). 

iv. > 900 s. Over-developed dough – gradual decrease of torque signal. Dough samples 

collected at this stage are believed to have weak “functionality” [Bloksma (1990b)]. 

In fact, the mixing motion can be thought of as a composite series of large amplitude oscillatory 

tests. The epitrochoidal motion of the mixograph pins are given in Cartesian coordinates with 

origin at the center of the mixing bowl by the following equations [Buchholz (1990)]: 
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  (6) 

where r1 = 1.78cm, r2 = 0.89cm, and n/m=3/4 are the geometric parameters of the mixograph 

with four moving pins positioned at (θi,φi) = (0,0), (0,π), (π, 1/4π), (π, 5/4π) respectively.  The 

resulting deformation imposed on the dough by the four moving pins whirling around the three 

stationary pins is extremely complicated, and we show the contributions to the power spectrum 

of this epitrochoidal pin motion in Figure 1 (c) by the broken lines.  This power spectrum is 

calculated from the kinematic function that describes the distances between each of the moving 

pins with respect to the stationary pins. The transfer function that transforms the kinematic input 

of the rotating pins into the measured torque output is provided by the gluten gel itself, and 

results in the torque spectrum shown by the solid line in Figure 1 (c). It is this rheological 

response that we ultimately seek to characterize. A number of the kinematic peaks are clearly 

identifiable in the corresponding power spectrum computed from the measured torque response. 

The harmonic content of the mixograph deformation history is too complex to analyze 

systematically.  However, the periodic nature of the deformation suggests that we naturally 

should seek to decompose the system response into contributions that depend on the strain 

amplitude and deformation frequency using the concept of large amplitude oscillatory shear flow 

(LAOS). 
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III RHEOMETRY 

Shear rheometry experiments were performed under controlled strain conditions on the ARES 

rheometer and also under controlled stress conditions on the AR-G2 rheometer (TA instruments). 

A Peltier plate and a 25mm parallel plate fixture with 1mm gap separation were used in all tests. 

Approximately 2 g of the freshly-mixed gluten dough was placed on the Peltier plate, and the 

upper plate was then brought down to compress the sample to the specified thickness. Excess 

dough was trimmed with a razor blade. The Peltier plate was held at a fixed temperature of 22ºC, 

to represent typical room temperature. Slip was eliminated by applying adhesive-backed 

sandpaper (600 grit McMaster Carr 47185A51) to the surfaces of both the Peltier plate and the 

parallel plate tool. Drying of the sample at the outer edges was minimized by painting the 

exposed surface of the dough with a low-viscosity silicone oil.  Additional details and the results 

of both linear viscoelastic characterization and startup tests in shear and extension are reported 

elsewhere [Ng and McKinley (2008)]. 

IV LINEAR VISCOELASTICITY AND NETWORK STRUCTURE OF 

GLUTEN GELS 

We begin by outlining the key features of gluten gel viscoelasticity elucidated in our previous 

publication [Ng and McKinley (2008)]. In that study we showed that the gluten gel forms a 

polydisperse network of macromolecular strands held between junction points. This 

polydispersity is reflected in the power-law like relaxation function which can be visualized as a 

series of Maxwell modes capturing the response of the fractal gel at different length and time 

scales. The fundamental material response can be decomposed into two regimes. At low 
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Figure 1 (a) Measured mixograph output (torque in arbitrary units) vs. mixing time for a 
typical gluten dough. (b) Detail of temporal oscillations in the measured torque signal from 
700-720s due to the periodic motion of the pins. (c) Power spectrum of the measured 
mixograph torque (solid line) from 700-800s. Peaks correspond to harmonics calculated from 
the epitrochoidal motion of the four moving pins in relation to the three stationary pins in the 
mixograph bowl. 
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frequencies ( rad s-1), the linear viscoelastic properties of the gluten dough exhibit a 

critical-gel–like behavior, as shown in Figure 2 [Chambon and Winter (1987); Winter and 

Chambon (1986); Winter and Mours (1997)], in which the dynamic moduli are power-law 

functions of the imposed frequency and are inter-related by the following simple expression: 

  (7) 

where S is the gel strength (in Pa sn) and n is the gel index (or the gel exponent). 

 We can draw upon the idea that this power-law behavior is a summation of contributions 

from structural elements of varying length scales, and re-express the power law relaxation 

modulus over a finite range of time ( ) as a summation of discrete relaxation modes 

with frequency response given by: 

  (8) 

where the time constants of the characteristic relaxation modes are bounded by the range of 

available data to ,  and are interconnected by a recursion 

relationship . To be consistent with the continuous power-law relaxation modulus of a 

critical gel the modulus scale for each relaxation mode is set by the expression: 

  (9) 

Under high frequency excitations ( rad s-1), small amplitude oscillatory shearing tests on 

the the gel show that it also exhibits an additional Rouse-like relaxation regime reflecting the 

linear viscoelastic response of individual network segments between the crosslinks [Winter and 
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Mours (1997)]. The additional contributions to the dynamic moduli in this regime can be 

expressed as a Rouse spectrum: 

  (10) 

, and ,  are the relaxation time and modulus of the Rouse segments. 

 Therefore, in general, we can write the complete linear viscoelastic response of the gluten gel 

as: 

  (11) 

The dynamic moduli obtained from small amplitude controlled stress experiments at stress 

amplitude of  are plotted in Figure 2. The experimental data are in excellent 

agreement with equation (7) to (11) and the linear viscoelastic parameters (S = 1300 ± 100 Pa, n 

= 0.17, GR = 803 Pa, = 0.05s) are consistent with data obtained through other small strain 

measurements such as step strain relaxation and creep [Ng and McKinley (2008)]. From the 

Rouse relaxation modulus, we can estimate the segment length between junction points in the 

gluten network to be . 
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Figure 2 Storage and loss moduli of a gluten gel measured in small amplitude oscillation 
(circles) at T = 22º C. Solid lines represent predictions from equation (7) to (11), the 
superposition of power-law gel and Rouse 
models: , . The response of a gluten gel 
dissolved in 8M Urea solution (triangles) and the corresponding reconstituted dough (squares) 
are also shown. The dissolved gluten shows a viscoelastic fluid-like behavior with 
significantly lower moduli. The gluten gel that is reformed by diluting the solution with water 
to wash out the Urea is almost identical to the original sample.  
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Figure 2 also illustrates the strong but reversible physico-chemical nature of the cross-links 

in a gluten gel. Although the gel network is formed by hydration in water, it is not soluble in 

water: introducing more water during the process of mixing does not “dilute” the gel, instead the 

excess water forms a pool at the bottom of the mixing bowl [Ng and McKinley (2008)]. 

However, it is possible to disrupt the network structure formed by the glutenin chains by diluting 

the gluten gel in 8M Urea solution (5 g gluten in 35 ml of 8M Urea solution). The resulting 

mixture exhibits the characteristic response of a weakly viscoelastic liquid with dramatically 

reduced storage and loss moduli. Draining this solution through a 30 µm sieve leaves no 

significant residues. The diluted solution still shows a Rouse-like viscoelastic response 

characteristic of a semi-dilute or concentrated solution (model shown for , 

 in Figure 2 for sample treated in urea). Furthermore, the screening effect of the Urea 

is reversible. If the mixture is poured into a large beaker of water, filaments will appear which 

coagulate rapidly into a gluten dough. The linear viscoelastic properties of the gel harvested from 

this reformation process are also plotted in Figure 2. The gel shows a complete recovery to the 

original values of the moduli indicating the physical interactions at junction points are reversibly 

disrupted by the presence of Urea. 

These observations suggest that the original gel network is predominantly held together by 

temporary physical interactions at junction points such as hydrogen bonds or possibly 

hydrophobic interactions [Creeth (1978); Zou et al. (1998)], while the macromolecular backbone 

of the glutenin chains is not significantly affected by the Urea treatment. They are also consistent 

with the proposed structural model of Letang et al. (1999); the hydrogen bonds or hydrophobic 

interactions allow the individual structural elements (composed of gluten molecules) to percolate 

and form a sample-spanning network structure which is consistent with the critical gel model. 
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 We can highlight some general features of gluten gels and many other biopolymer networks 

by comparing and contrasting the results from this set of experiments to a familiar substance: 

vulcanized rubber consisting of polymer strands that have been cross-linked at network junctions 

[Treloar (2005)]. Due to the permanence of the covalent cross-links, rubbers display strong 

elasticity with little dissipation. However, beyond a typical yield strain or stress, the intra-

molecular bonds within the macromolecular strands can rupture, causing the network to be 

irreversibly damaged; this event is manifested macroscopically as a progressive strain-softening 

and ultimately cohesive failure. In the case of gluten gels, these permanent cross-links are 

replaced by hydrogen bonds and hydrophobic interactions between chains. Since the strength of 

these junctions are typically weaker than those in covalent bonds, the tensile force accumulated 

under large strains within the polymer strands can be released by yielding of these inter-

molecular junction points, thus avoiding irreversible rupture of the network segments. 

Furthermore, these transient junction points have the potential to reform if the material is 

returned to a state of lower stress, allowing the network to regain its original gel strength.  

Similar responses can be seen in other aqueous polymeric gels including associative polymer 

solutions, mucin gels, and actin gels. 

 As an alternate approach to disrupting the junction point interactions through chemical 

means, we can also explore the dynamics of reforming and breaking these bonds through 

mechanical methods, i.e. through the application of large stresses and strains. We expect a 

decrease in the modulus of the material as the applied strain is increased because the tensile force 

carried by individual network segments will increase with strain, leading to a greater probability 

of breakage [Evans and Ritchie (1999)]. This phenomenon has already been observed in gluten 

gels and results in the strain-softening reported by Uthayakumaran et al. (2002).  We seek to 
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model and quantify such observations within the context of the power law critical-gel model and 

the microstructural changes described above. 

 However, to this point, we have only presented data on the linear viscoelastic response of the 

gluten gel; for the controlled stress tests shown in Figure 2, the strain amplitude of the imposed 

oscillation was largest ( ) for the lowest frequency data , and is still well 

within the linear regime of the gluten gel at this frequency.  

 Under these linear viscoelastic conditions, the output signal (strain in this case) is sinusoidal; 

the two dynamic moduli G’ and G” are clearly defined as the in-phase and out-of-phase 

component with respect to the input signal. The linear viscoelastic moduli are independent of 

strain amplitude and the corresponding Lissajous figures [Philippoff (1966); Tee and Dealy 

(1975)] are found to be elliptical for all frequencies. For nonlinear viscoelastic materials such as 

polymer melts and gels, the simple linear decomposition of the data is insufficient as the strain is 

increased because the periodic output signal deviates from a purely sinusoidal form [Cho et al. 

(2005); Ewoldt et al. (2008); Philippoff (1966); Tee and Dealy (1975); Wilhelm (2002)]. 

Measuring the systematic deviation from the linear response can be viewed as a technique for 

highlighting the key distinguishing features of a given material, especially if one possesses a 

language or framework for quantitatively describing this rheological fingerprint. The modeling 

and quantification of these non-linear features for gluten gels will be the subject of the following 

sections. 

V NON-LINEAR DEFORMATION OF GLUTEN GEL 

In this section, we first describe and quantify the key rheological features exhibited by a gluten 

gel under large amplitude oscillatory shear (LAOS). We then construct a constitutive model 
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based on the network structure of the gel and demonstrate how this formulation is able to 

describe quantitatively a range of non-linear rheological phenomena observed in physically-

crosslinked biopolymer gels.  

A. Large Amplitude Oscillatory Shear 

In contrast to linear viscoelastic experiments, for large amplitude oscillations the material 

parameters are formally treated as functions of both the oscillation frequency and strain 

amplitude rather than just frequency alone [Dealy and Wissbrun (1990)]. The most common 

form of expressing this material response is through the use of Fourier decomposition [Wilhelm 

(2002)]  For imposed deformation , the departure from a linear (sinusoidal) stress 

response at a given frequency and strain amplitude is contained in the higher Fourier harmonics: 

  (12) 

where  and  represent, respectively, the elastic and viscous contribution to the stress 

response at a given frequency  and amplitude . In the linear viscoelastic domain ( ), 

we require the contribution from these higher harmonics to tend to zero such that the simple 

sinusoidal response is recovered. 

  (13) 

In this framework, each experiment can be thought of as probing the material response at a 

particular point in a two-dimensional parameter space with frequency  on one axis and strain 

amplitude  on the other. This representation is often referred to as a Pipkin diagram [Pipkin 
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(1972)].  Ewoldt et al. (2008) have recently described a systematic language and framework for 

analyzing nonlinear rheological behavior in this Pipkin space, and we will adopt this framework 

here. 

 The characteristic shapes of these Lissajous figures for a gluten gel undergoing LAOS 

deformation over a range of strain amplitudes ( ) at  = 1.0 s-1 are plotted in 

Figure 3. At small strains ( ), the Lissajous figures are essentially elliptical and therefore 

the material response is consistent with the linear viscoelastic model described by Equations (7) 

through (11). The shapes of the ellipses and the values of the viscoelastic moduli are only a 

function of frequency and are independent of strain amplitude. Equation (13) can be rewritten to 

eliminate the explicit time dependence by substituting the identities  and 

, to give 

  (14) 

where the magnitude of the complex modulus is .  For any frequency , this 

equation describes an ellipse with major and minor axis centered at the origin and enclosed area 

. 

 As the strain amplitude is increased, the material response and shape of the Lissajous curves 

shown in Figure 3 deviate significantly from this simple behavior. A number of visually 

distinctive features can be observed: Firstly a gradual “softening” of the material is indicated by 

the clockwise rotation of the major axis towards the strain-axis.  Secondly, a distinct “stiffening,” 

indicated by the upturn of the shear stress, is observed at large strains. The magnitude of the 

enclosed area also increases with increasing frequency, indicating an increasingly dissipative 
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response [Dealy and Wissbrun (1990)].   It is evident that this wealth of non-linear features 

cannot be fully captured by simply reporting the dynamic moduli G'  and G"  familiar 

from linear viscoelasticity. To illustrate this, we plot three different measures of the elastic 

moduli as a function of strain in Figure 4. 

 The parameters  and  are the first and third in-phase (real) Fourier coefficient of the 

output signal (from equation (12)). The first harmonic coefficient  represents the typical 

method of calculating storage moduli employed by rheometer software. For strain sweep 

experiments, frequently only the values  and  are reported, this is often justified by the fact 

that the higher harmonics are small [Smith et al. (1970); Wyss et al. (2007)] for example  is 

less than 12% in this case. But simply inspecting the relative magnitude of the first and third 

harmonic coefficient will not reveal the dramatic changes in the shape of the Lissajous curves 

observed at large strains in Figure 3.  The Chebyshev decomposition outlined by Ewoldt et al. 

(2008) shows that even small numerical values of computed quantities such as  can represent 

 substantial nonlinearities in the stress decomposition because of the numerical front factors 

(typically with values of ¼ or smaller) that arise from the orthogonality relationships between 

different harmonic modes.   
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Figure 3 Lissajous-Bowditch curves after 12 oscillatory cycles for a gluten gel at fixed 
frequency  with (a) = 0.02, 0.05, 0.10, (b) =  0.10, 0.20, 0.50, (c) = 0.50, 
1.00, 2.00, (d) = 2.0 and 6.00. As the imposed strain amplitude  increases from (a) to (d), 
the magnitude of the maximum stress grows and the axes are rescaled. Experimental data are 
plotted as open symbols. The decomposed elastic stresses are shown in the lower panel as a 
dotted line for .  Predictions from the nonlinear generalized gel model described in the 
text are plotted as a solid line for each strain amplitude. 
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Figure 4 Dynamic moduli of gluten gel undergoing a strain-sweep (ARES rheometer, 
controlled strain mode) at . The elastic modulus  and  are the first and third 
in-phase Fourier coefficient of the output signal, is typically quoted as the “storage 
modulus”; and  are the small and large strain moduli respectively, see equations (15), 
(16) and S is the stiffening ratio defined in equation (19). 
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Instead, we use the geometrically-based definitions proposed by Ewoldt et al. (2008) as a 

simple yet practical method of quantifying these features in the Lissajous curves.  In that work, 

the authors describe a number of complimentary definitions of relevant elastic moduli:  is the 

small strain dynamic modulus, which can be defined as the slope of the elastic Lissajous curve as 

it crosses through zero strain, 

 . (15) 

 Similarly,  is the large strain modulus and is defined as the secant or slope of the line 

connecting the origin to the stress measured at maximum strain, 

 . (16) 

In the linear viscoelastic regime, it can be shown that ,  and  are all mathematically 

equivalent measures of the dynamic modulus by substituting these definitions (15)-(16) into 

equation (14).  For  we calculate the stress at the maximum strain : 

  (17) 

And similarly, for we calculate the rate of change of the stress with imposed strain by 

differentiating eq. (14) and evaluating it at . 



 25 

  (18) 

As the strain amplitude is increased,  does not remain constant, instead we see a gradual 

decrease in this measure of the small strain modulus which corresponds to the observed softening 

or clockwise rotation of the ellipse. The absolute value of  also decreases, however, this 

decrease is less “severe” compared to that observed in . These features can be interpreted 

jointly as the strain stiffening at large strains observed in the Lissajous figures and can be 

unambiguously parameterized by defining the following differential ratio between these two 

moduli. 

  (19) 

The ratio S may be referred to as a stiffening ratio [Ewoldt et al. (2008)]. For an ideal linear 

viscoelastic system S = 0.  A positive stiffening ratio implies stiffening of the viscoelastic 

network at large strains as observed in the Lissajous plots presented here. 

 Alternatively, we can visualize the elastic component by considering the method of 

decomposition described by Cho et al. (2005). This method utilizes symmetry arguments to 

define an elastic and viscous contribution to the shear stress that are purely odd (anti-symmetric) 

functions of strain and strain rate respectively: 

  (20) 
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in which  is the elastic contribution to the stress calculated through the following expression: 

  (21) 

 where  and . The normalized elastic components are plotted in 

Figure 5. 

 

 

Figure 5 Normalized elastic stress extracted from the Lissajous curves for = 0.03, 0.1, 
0.3, 1.0, 3.0, 6.0 at  and T = 22º C.  
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The normalized stress is calculated by dividing the stress by the “zero strain” modulus 

 and strain amplitude ; the numerical value is 

calculated from small strain experiments at  = 1 rad s-1 and is found to be 

 for this gluten gel.  The clockwise rotation and non-linear stiffening of 

the elastic stress as the strain amplitude is increased are both clearly discerned using this 

technique. 

 The complete set of tests on the gluten gel can be compactly represented in the resulting 

rheological fingerprint shown in Figure 6. Each Lissajous curve represents the stress strain 

response over a single oscillation cycle at a specific set of coordinates  in the Pipkin 

space. The curves are shown after the initial transient response has decayed and reached a quasi-

steady state, or in other words, these curves represent periodic attractors and the shapes are time 

invariant for successive cycles. Typically for gluten gels, this approach to a limit cycle requires a 

minimum of 4 periods of imposed deformation. We consider this initial transient decay or 

apparent thixotropic response further in Section V.D. Presenting the data in this manner gives a 

qualitative overview of the salient features over the range of strain amplitude and oscillation 

frequency as the material response transitions from the linear to non-linear regime. 
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Figure 6. Rheological fingerprint of a gluten gel in Large Amplitude Oscillatory Shear 
(LAOS) flow. The shapes and maximum stress amplitude of each Lissajous curve is 
presented in a Pipkin space spanning , . In each case, the 
data represents the sixth cycle of the LAOS test and there are at least 80 experimental 
data points in each cycle. The relative error  (defined in equation (33)) is given on the 
top left of each sub-figure, while the maximum stress associated with each limit cycle is 
displayed at the bottom right. The solid lines represent the predictions from the FENE 
network model discussed in section VB, equation (24). 
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B. Network Model 

We have described the non-linear features exhibited by a well-mixed gluten-water system under 

oscillatory shear qualitatively and introduced quantitative measures that highlight their 

magnitude and physical significance. In the following section, we consider how such features 

can be connected to the microstructural behavior of the gluten gel. A number of constitutive 

models with varying levels of complexities are available for doughs [Bagley et al. (1988); 

Charalambides et al. (2006); Phan-Thien et al. (1997); Ramkumar et al. (1996); Wang and 

Kokini (1995)].  In this article we select a level of complexity that is sufficient to explain the 

observed features, but yet simple enough so that we are not overwhelmed by a large number of 

equations containing an excessive number of material parameters to be fitted. 

 In our previous work [Ng and McKinley (2008)] and in section IV, we have shown that the 

rheology of gluten can be well represented in terms of the response of a transient nonlinear 

elastic network, and we therefore begin by modeling the gluten gel as a transient network of 

interacting filaments. The basic concepts underlying such network theories are succinctly 

outlined in Bird et al. (1987b), and the canonical LAOS responses of a prototypical network 

theory have been classified by Sim et al. (2003). The gel is idealized as an affinely deforming 

network and we refer to the filaments spanning junction points as elastic segments. These 

segments are assumed to have a distribution of end-to-end vectors . 

 The contribution to the total stress tensor  resulting from the distribution of chain stretch 

and orientation for each species k can be written as: 

  (22) 
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Where  is the ensemble average of the second order tensor ,  is the number 

density of the kth segments in the network, H is the Hookean spring constant of an elastic 

segment and  represents the non-linearity of the elastic restoring force as the stretch of the 

segment is increased. The transient nature of the network is reflected in a continuous dissociation 

of network junctions characterized by a rate of destruction , and a rebirth of junctions 

that are in the equilibrium state at a constant rate Lk. Hence the evolution equation of the second 

order tensor  can be written in the following way: 

  (23) 

where  is the mean square length of the segment at equilibrium and the 

subscript (1) indicates the usual upper convected derivative. 

 Equations (22) and (23) can also be expressed in terms of the dimensionless microstructural 

tensor  

  (24) 

where  and  is the contribution of the k segments to the elastic 

modulus of the transient network. 

 To capture the stiffening effect observed in our experiments, we consider a commonly used 

non-linear spring law [Bird (2007); Bird et al. (1987b); van den Brule (1993)] of the FENE-P 

form: 
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  (25) 

where  denotes the trace operator and b is the FENE parameter that 

characterizes the limit of extensibility of the polymeric strand. The functional form of equation 

(25) is illustrated in Figure 7(b). Other nonlinear spring laws with additional parameters have 

also been used to describe the finite extensibility in an elastic network [Evans and Ritchie 

(1999); Janmey (1991); Storm et al. (2005)] but will not be considered further here. 

 Next we turn our attention to the term describing the rate of destruction ( ) of elastic 

segments. For the transient network at equilibrium, the rate of creation of network junctions has 

to be exactly balanced by the rate of destruction (by definition of equilibrium).  However, under 

increasing deformation, as individual filaments become increasingly stretched, the probability of 

them detaching from the network increases and thus the corresponding rate of destruction should 

also increase. In effect, the average magnitude of the second moment tensor  is reduced 

with increasing deformation amplitudes, leading to a softening that is manifested in the Lissajous 

figures as an apparent clockwise rotation of the major axis of the ellipse. We model this effect by 

assuming an empirical first order network destruction rate that is a function of the magnitude of 

the microstructural stretch : 

  (26) 

where  is a constant to be determined that characterizes this increased rate of network 

breakage. The scalar parameter is the linear viscoelastic relaxation time, i.e. the 
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characteristic structural relaxation time in the limit of infinitesimal microstructural deformation 

( ).  

 Furthermore, we require the rate of network destruction to become increasingly rapid as the 

tension in the network filaments diverges near the finite extensibility limit (in that ). 

Once more, we express this as a FENE like term: 

  (27) 

We combine equations (26) and (27) to write a non-linear rate of network destruction that 

captures these two physical ideas: 

  (28) 

The corresponding rate of creation required to maintain steady state at equilibrium conditions 

( ) is then: 

  (29) 

The deviatoric stress tensor  can then be written as: 

  (30) 

where  is the equilibrium contribution of this mode to the isotropic stress or 

elastic ‘pressure’ in the gel. 
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Various techniques for obtaining the linear viscoelastic parameters that characterize these 

relaxation modes were outlined by Ng and McKinley (2008). Here, we extend this idea to the 

nonlinear regime and represent the response as a series of non-linear network modes each of the 

form equation (30) such that 

 . (31) 

 In this form, the network model will give linear viscoelastic response that is identical to 

equation (7) through (11) and yet still allow for the non-linear features to become apparent at 

large strains. 

 We summarize the construction of this model in Figure 7. The linear viscoelastic parameters 

of the model, S =1400 Pa sn, n = 0.175, = 803 Pa and  = 0.05 s, are obtained by fitting 

equations (7) through (11) to the small amplitude oscillatory shear (SAOS) data or other 

equivalent linear viscoelastic measurements. The gel parameters S and n are then combined to 

generate a series of discrete modal relaxation times  with zeroth order 

modulus ; here  is an arbitrarily chosen maximum time scale,  s, 

and K (taken here to be K=30) is the total number of gel modes to span the relevant time scale.  

This conversion is illustrated in Figure 7a.  This series of gel modes, 

, together with the Rouse modes, 

, capture the entire relaxation spectrum of the gluten gel and 

provides an excellent approximation to the powerlaw relaxation function . 
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Figure 7. Summary of constitutive parameters in the FENE network model. 

(a) The critical gel-like behavior observed in linear viscoelastic tests is approximated by a 
series of Maxwell relaxation modes; . The total relaxation 

modulus is given by . (b) Non linear functions in the network model. A 

FENE type spring law is used as the non linear modulus  and is characterized by the 

finite extensibility limit b. The rate of junction destruction , is characterized by two 
additional parameters; C1 describes an increase in the network destruction rate at intermediate 
microstructural deformations;  modifies the FENE function by allowing the junction points 
to be destroyed close to, but before, the finite extensibility limit b is reached. (c) Lissajous 
figures for LAOS tests on a gluten dough at  . The quasi-linear formulation with C1 = 0 
and  grossly over predicts the stress. Inclusion of the C1 term gives strain softening 
(clockwise rotation of ellipse). A small degree of strain-stiffening is apparent at large strain 
when the non-linear FENE spring law is introduced. 
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 Finally, we recall that the linear viscoelastic network response of the gluten gel in an 

arbitrary deformation can be represented as a summation of individual modes such that: 

  (32) 

The numerical values of the two non-linear model parameters  = 3.0 and b = 90 are obtained 

by a manual fitting process to the large amplitude oscillatory shear (LAOS) data. For the sake of 

simplicity, the same values for  and b are used for all modes 1 ≤ k ≤ K. The respective 

contributions from each of these non-linear parameters are illustrated in Figure 7 (c). This value 

of b is within the range of typical reported values of finite extensibility (10 < b < 1000) [Bird et 

al. (1987b)] and corresponds to a stretching of the network segment through approximately 10 

times its original length. 

We now return to the Lissajous curves presented in Figure 3 and Figure 6, and compare the 

curves with the predictions of the FENE network model which are also plotted on the same 

figure. It is apparent that the network model is able to capture both the global rotation and local 

stiffening of the measured data with reasonable quantitative agreement. An estimate of the 

relative R.M.S. error is also given on the plot. The relative error  is calculated from the 

set of N data points for a given strain amplitude and frequency through the following definition: 

  (33) 

The deviations between the model and data are most apparent at intermediate to large strains 

( ). In general, the measured apparent stress is slightly larger than the model prediction. 
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This trend is consistent with the small systematic error expected from the inhomogeneous 

deformation of torsional parallel plate measurements (for a material that exhibits overall 

softening or thinning with increased deformation).  In the nonlinear regime the inhomogeneous 

deformation field makes calculation of the true stress for a large-amplitude time-varying 

deformation imprecise.  Expressions for calculating the true rim stress for solid-like materials 

can be found in Phan-Thien et al. (2000).  See the supplementary material at [URL will be 

inserted by AIP] for a detailed discussion of the errors between apparent and true stresses, and a 

method for systematically and efficiently correcting experimental data. 

In addition to the errors induced by measurement imprecision, the discrepancy between 

model and experiment may also arise from an over-simplification of the softening function used 

in equation (26). Further improvements to this function are discussed in Section VI. 

 

C. Frequency Dependence of Lissajous Figures 

Returning once more to the rheological fingerprint for the gluten gel shown in Figure 6, we see 

that the qualitative effect of increasing strains are similar at all frequencies. As already noted in 

the figure and in equation (14), at small strains ( ) the Lissajous curves are elliptical and the 

resulting frequency response is well predicted by either the integral power-law or differential 

multimode forms of the critical gel and Rouse spectrum presented in section IV or by the linear 

viscoelastic limit of the multi-mode FENE network model. 

 In Figure 8, we focus on the comparison between the network predictions and the measured 

Lissajous curves of varying frequencies at large strains ( ). As the oscillatory frequency 

increases, the maximum shear stress attained in each cycle increases and the area enclosed by the 
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curve also increases; corresponding to an increasingly dissipative material response. The model 

provides a good qualitative agreement, the changes in shape and enclosed area of the Lissajous 

curves are captured by the network model while other salient features such as the clockwise 

rotation and local strain stiffening are also present in the predicted response.  Further 

improvements to the quantitative accuracy of the model are discussed briefly in the conclusion 

section. 
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Figure 8 Lissajous curves of a gluten gel performed at large amplitude for a range of 
frequencies  = 0.1, 1,0 and 10 s-1 at . The FENE network model correctly 
predicts the trends and magnitude of stress over the frequency range probed. 

D. Transient Oscillatory Response 

The presence of very long relaxation times (for example  in Fig. 7) results in extended 

changes in the network structure of the critical gel as the equilibrium distribution of junctions 

break and reform following the inception of deformation; this gives rise to a form of thixotropic 

response. The transient behavior arising from these network changes is distinctly different from 

linear viscoelastic transients that involve infinitesimal changes to microstructure. 

 We illustrate the differences between small strain and large strain transient responses by 

considering a situation in which the imposed oscillatory strain amplitude is suddenly changed 

while we monitor the transient stress response. This is realized experimentally by changing the 

amplitude of oscillation from  to  at time t1, and then back to  again. 
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The experimental transient stress response is plotted in Figure 9a and b.  To scale out the large 

change in stress amplitude associated with the step change in strain, in Figure 9c we plot the 

transient modulus (or scaled stress) defined as: 

  (34) 

The experimental data  for s clearly shows a pronounced transient  decay during 

the first five cycles after the increase in oscillation amplitude. During this time the material 

progressively softens; as indicated by a decrease of the transient modulus by as much as ~40% 

(from 1300 Pa to 800 Pa).  Quasi-linear or linear viscoelastic constitutive models of the form:  

  (35) 

will in fact predict an increasing stress amplitude that converges rapidly to the linear viscoelastic 

modulus with a response of the form . The linear response is plotted in Figure 9c as a 

dotted line.  The long transient softening or apparent thixotropic response is captured more 

accurately by the inclusion of the finite-extensibility and strain-dependent network destruction 

terms as shown by the solid line in Figure 9.  These lines represent the response of the 

constitutive model given by equations (24) to (31). We emphasize that there are no adjustable 

parameters here; S and n are determined from linear viscoelastic experiments, the corresponding 

discrete spectrum for the linear response is given by equation (10). The nonlinear response is 

given by integrating equations (24) to (31) with b = 90, and = 3.0 (determined by fitting to the 

data in Figure 3). Furthermore, the predicted complete recovery to the small amplitude modulus 
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is also observed experimentally for times  = 169.6s. This can be understood by analogy to 

the experiments conducted by reversibly “breaking” the network structure through dilution with 

Urea and the subsequent reconstitution by washing out the Urea with water (Figure 2).  In large 

amplitude oscillations, the hydrogen bonds at network junctions are reversibly broken through 

mechanical loading and imposition of large strains on the network. Upon reduction of the 

imposed strain at = 169.6s, the reversible nature of the hydrogen bonding events means that 

the gel is able to reform its network structure. The oscillatory stress slowly decays over multiple 

cycles and relaxes back towards the elliptic limit cycle shown in Fig. 9(b).  Neither mechanical 

nor chemical treatment has an effect on the covalent interactions within the filaments, thus 

allowing complete recovery of the network structure when the “disruptions” are removed.  Such 

complete recovery contrasts with the irreversible rupture of covalent bonds in a chemical gel.  

The recovery of the gluten gel can also be contrasted with the incomplete recovery of wheat flour 

doughs, e.g. Hibberd and Wallace (1966), in which additional bonding interactions between the 

gluten chains and starch particles must be considered. These latter interactions can be described 

by damage functions [Tanner et al. (2008)] in which the network changes are permanent  and 

irreversible. 

E. Comparison with other non-linear deformations 

So far we have focused solely on the mechanical response under large amplitude oscillatory 

deformations, next we address briefly the rheological predictions of the finitely extensible 

network model in the start up of transient deformations.  We first compare the model predictions 

to the transient growth in the shear stress during the start up of steady shear flow. The model and 

data show good agreement with experimental data in the power-law regime  for which 
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 and .  In this regime, the predicted material response is also time-strain 

factorizable. Deviations from the power law growth and time-strain factorizability discussed in 

equation (5) are discernible when the strain-stiffening effect becomes significant. In fact the 

magnitude of the stress overshoot is grossly over predicted by the FENE network model. It is 

possible to reduce this apparent stress overshoot empirically by using an extremely non-linear 

elastic term [Phan-Thien et al. (1997)] that bounds the stress growth at very large strains. 

However, here we focus more on the causes of this apparent overshoot. Firstly, as discussed in 

our previous work [Ng and McKinley (2008)], video imaging shows that the sheared gluten 

sample begins to undergo an instability very rapidly after the onset of strain-stiffening ( ).  

As the imposed strain continues to accumulate, this instability ultimately leads to the sample 

rolling up and being ejected from the gap. The deformation in the gluten gel is no longer 

viscometric from the point of instability onwards. 
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Figure 9 Transient behavior of gluten gel. (a). Lissajous figures depicting material response 
when the strain amplitude of oscillation is increased from  to , then back to 

 again at a fixed frequency of  = 1.0 s-1; (b) enlarged view of the approach back to 
the small strain limit cycle for  = 169.6 s; (c) Temporal response of the scaled oscillatory 
stress or apparent modulus illustrating the transient nature of the network. 
The FENE network correctly predicts the transient stress growth and complete recovery of the 
gluten gel when the strain amplitude is reduced. 
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Figure 10 Start-up of steady shear flow at . The power-law growth in the shear 
stress and also in the normal stress difference is well predicted by the FENE network model up 
to , after which the non-linearity of the model over predicts the measured over-shoot in 
the normal stress difference and the shear stress. Improvements to the predictions can be made 
by using the modified network model; however, accurate constitutive modeling at large strains 
is difficult because the sample deformation deviates substantially from viscometric flow at 
torsional strains .  

  

Secondly, we may also attribute part of this discrepancy once again to the simplified evolution 

equation. The proposed form of equation (27) captures the increased probability of the breaking 

of a junction point as the tension in the stretched filament is increased; however although this 

functional form is reasonable, there is no reason to suppose that the rate of breakage should only 

diverge when the chains reach the finite extensible limit (i.e. ) The ultimate tensile 

strength supported by a junction point may be a finite value or, in other words, the probability of 

survival of a junction point should be able to tend to zero when a critical but finite value of 
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tension is sustained by a elastic segment. Therefore we consider a straightforward modification 

to the model by allowing the junctions to be completely destroyed slightly before the FENE 

limit. The modified rate of destruction can be written in the form 

  (36) 

The resulting stress response of this modified network model is essentially the same as equation 

(27) through (31), but the stress overshoots are slightly tempered. In Figure 10 we show that the 

predicted magnitude of the overshoot is much more reasonable for the chosen value of . 

 Finally, the use of FENE-P type models with closure approximations are known to result in 

over-prediction of transient stress growth [Keunings (1997)]. The reason being that the Peterlin 

closure approximation cannot accurately capture the statistical distribution of segment lengths at 

intermediate deformations near the point of finite extensibility and instead predicts that a fraction 

of the filaments may be deformed beyond the maximum allowable length. More accurate 

simulations utilizing Brownian dynamics typically reveal a much weaker overshoot behavior 

[Ghosh et al. (2001)]. 

 The constitutive model can also be used to predict the evolution of the stress in start-up of 

uniaxial extension flow as depicted in Figure 11. The data are collected on a wind-up drum type 

rheometer that has been discussed in detail in a previous publication [Ng and McKinley (2008)]. 

The quasilinear model predicts an initial power-law response with  before 

transitioning to an affine neo-Hookean response beyond a critical strain (for clarity, the quasi-

linear response is shown only for  in Figure 11). The FENE network over-predicts the 

magnitude of the strain-hardening growth in the normal stress difference that occurs just before 
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the sample ruptures, while the modified network model gives more reasonable stress growth 

functions. The fact that the point of rupture occurs extremely close to the finite extensibility 

plateau should not be surprising, since the mass rupturing of network junctions dramatically 

reduces the rate of stress growth in the system and can lead to tearing or necking as implied in 

the Considère criterion [Considère (1885); Pearson and Connelly (1982); McKinley and 

Hassager (1999); Ng et al. (2006)]. 

 Significantly, the maximum extensibility of dough is often quoted as a measure of its quality 

[Bloksma (1990b); Bloksma (1990a); Dobraszczyk (2004); Ewart (1989); Kokelaar et al. (1996); 

Sliwinski et al. (2004); van Vliet et al. (1992)], and this is the first piece of direct evidence that 

shows how the apparent extensibility (defined as the maximum strain achieved before rupture) of 

a dough can be linked to molecular phenomena, and be predicted or at least estimated by 

performing shear experiments at large oscillatory amplitudes: a reasonable estimate of the 

extensibility of a dough-like material can be inferred if the linear viscoelastic relaxation function 

 and the finite extensibility parameter b are known. The magnitude of the stress 

may be over predicted by the bare FENE-P model (as shown in Figure 10) without additional 

experiments, but this does not affect the values of the critical strains. 
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Figure 11 Transient extensional stress difference upon inception of uni-axial elongation for 
deformation rates 0.03 < < 3.0 s-1; experimental data is limited by sample rupture.  Two 
experimental runs were performed at each strain rate to ensure reproducibility.  The form of 
the quasi-linear simulation is shown for reference at .  The FENE network over 
predicts the magnitude of stress, this can be remedied by a simple modification; see Eq.(36).  
The strain and time to rupture corresponds closely to that predicted by the finite extensibility 
limit determined from LAOS with b = 90 and  = 5. 
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VI CONCLUSIONS 

In this article, we investigated the mechanical properties of a gluten gel through large amplitude 

oscillatory shear (LAOS). This experimental technique allowed us to study the rheological 

response over a range of strain amplitudes  and frequencies  with good accuracy and 

repeatability up to the point of viscometric instability without destruction of the sample. From 

the LAOS data, we are able to generate a rheological fingerprint of the gluten gel that in turn 

forms the basis for devising a constitutive equation capable of predicting the transient evolution 

of the stress in a range of nonlinear flows. 

 We have built upon the critical gel-like response documented in our earlier work to construct 

a constitutive model that captures the microscopic origin of the non-linear behavior in a gluten 

gel. The non-linearity of the constitutive equation is encapsulated in two simple functions, 

namely a FENE spring law that captures the strain-stiffening in the network and a non-linear 

network destruction term that reflects the observed softening behavior at intermediate strains.  

These two functions are coupled with two model parameters (S, n) that characterize the well-

known power-law relaxation of a critical gel. We have demonstrated how this relatively low 

level of complexity in the constitutive model is sufficient to capture the important non-linear 

features observed in both transient shear and extensional deformations. Further improvements to 

the quantitative agreement between experiment and model can be made by fine tuning the forms 

of these non-linear functions and will be the subject of future work. We briefly describe some of 

the possible modifications here. 

 Perhaps most importantly, we have based our model on the multi-mode approach described 

in equation (8). Because of the frequency independence of the Lissajous fingerprint in Figure 6 
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and time-strain separability, we have assumed all the modes to have the same non-linear 

behavior (i.e. same values of the nonlinear model parameters b, and ) in order to minimize 

the number of adjustable model parameters. This allowed us to concentrate on the essential 

features of these non-linearities and highlight their respective relationships to physical material 

properties. We compared the model predictions to experimental observations and showed that 

indeed using just four linear (S, n,  and ) and three non-linear (b,  and ) viscoelastic 

parameters are sufficient to capture the transient rheological behavior of this complex cross-

linked gel to a surprising degree of accuracy over a wide range of strains  and frequencies . 

We could of course relax this assumption and allow each of these modes (which represent 

network structures at different length scales) to exhibit different non-linear behavior.  To map 

out these effects thoroughly, a detailed sweep of the Pipkin space shown in Figure 6 would be 

required to find the corresponding modal parameters (bk, and ). 

 We have also, perhaps naively, assumed an extremely simple form for describing the non-

linear softening (equation (28)). One can easily imagine more sophisticated functions to describe 

the complex energy landscape. For example, we can increase the order of the polynomial such 

that: 

  (37) 

Alternatively, other functions such as exponential, hyperbolic or even functions that include the 

rate of strain can be adopted. Rather than the empirical approach, Evans and Ritchie (1999) have 

suggested a bond dissociation model with an energy landscape that has a single energy barrier. 

The characteristics of this barrier are determined by both the magnitude and rate of loading of the 

tensile force in the elastic segments. 
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 Finally, we note that more complex spring laws may better approximate the semi-flexible 

nature of the gluten chains that comprise the network segments [van den Brule (1993)]. A 

possible candidate is the Worm-Like Chain law (WLC) that has been used with reasonable 

success in describing biopolymer gel networks [Storm et al. (2005)]. Evans and Ritchie 

(1999)also investigated the force-extension behavior of a WLC when it is coupled with their 

non-linear network destruction equation; the resulting rate of network dissociation is of an 

exponential form. Currently, there exists no strong evidence to prefer one function over another 

and this seemingly endless list of possible modifications merely illustrates the flexibility of the 

transient network approach [Hyun et al. (2002)].  LAOS experiments over a wide range of strain 

amplitudes and frequencies can help in narrowing down the most appropriate functional forms. 

 To conclude, we note the strong similarities between this gluten gel and other bio-polymer 

networks in terms of the strain-stiffening observed and the ability to regain the equilibrium 

strength even after severe deformations and softening [Chaudhuri et al. (2007)]. The latter 

feature also bears strong resemblance to the so called reversible polymer networks that are held 

together by hydrogen bonding at the network junctions [Sijbesma et al. (1997)]. These junctions 

can yield before the macromolecular strands are irreversibly ruptured as a result of the 

application of external strain and are subsequently reformed when the material is returned to its 

equilibrium state. This idea can be simply demonstrated by the fact that if a gluten dough is cut 

into halves, the two halves can be recombined by simply holding them together. An analogous 

method is to disrupt the hydrogen bonds chemically with 8M urea solution; The gel can then be 

reconstituted by simply reintroducing water to wash out the Urea. Such similarities suggest that 

the multiple-mode finitely extensible network model developed here can find applications in a 

much a wider context. 
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