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Abstract

In this paper, we study the first application of robust and adaptive optimization in
the Air Traffic Flow Management (ATFM) problem. The existing models for network-
wide ATFM assume deterministic capacity estimates across airports and sectors without
taking into account the uncertainty in capacities induced by weather. We introduce a
weather-front based approach to model the uncertainty inherent in airspace capacity es-
timates resulting from the impact of a small number of weather fronts moving across the
National Airspace (NAS). The key advantage of our uncertainty set construction is the
low-dimensionality (uncertainty in only two parameters govern the overall uncertainty
set for each airspace element). We formulate the consequent ATFM problem under ca-
pacity uncertainty within the robust and adaptive optimization framework and propose
tractable solution methodologies. Our theoretical contributions are as follows: i) we pro-
pose a polyhedral description of the convex hull of the discrete uncertainty set; ii) we
prove the equivalence of the robust problem to a modified instance of the deterministic
problem; and iii) we solve optimally the LP relaxation of the adaptive problem using
piece-wise affine policies where the number of pieces in an optimal policy are governed
by the number of extreme points in the uncertainty set. A particularly attractive fea-
ture is that for most practically encountered instances, an affine policy suffices to solve
the adaptive problem optimally. Finally, we report empirical results from the proposed
models on real-world flight schedules augmented with simulated weather fronts that illu-
minate the merits of our proposal. The key insights from our computational results are:
i) the robust problem inherits all the attractive properties of the deterministic problem
(e.g., superior integrality properties and fast computational times); and ii) the price of
robustness and adaptability is typically small.
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1 Introduction

Weather accounts for the majority of the total air traffic delays caused due to terminal,

en-route congestion and a myriad of other operational factors. To assess the impact of

weather on the total aviation delays, we consider the OPSNET1 delays data for the year

2009. As evidenced in the monthly delays plot in Figure 1, there is a significant spike in

the delays for the summer months (May-July), when there is pronounced convective weather

activity. Another statistic from the same source indicates that approximately 60% of total

delays is attributable to weather across 12 months of 2009. These two observations highlight

the importance of addressing weather induced capacity uncertainty for mitigating aviation

delays.

Air Traffic Flow Management (ATFM) refers to the set of tools and processes that are used

to alleviate congestion costs and ensure the goal of safe and expeditious aircraft movements.

Some of the main ATFM tools currently being deployed include Ground Delay Programs

(GDPs), Airspace Flow Programs (AFPs) and rerouting of aircrafts. The existing academic

models for network ATFM assume a deterministic estimate on the available capacities at

airports and sectors (airspace elements henceforth). Not accounting for capacity uncertainty

may lead to suboptimal and possibly infeasible solutions. This state of affairs invites a new

mathematical approach that incorporates the uncertainty inherent in the estimates of the

airspace resources to come up with a robust schedule.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2

2.5

3

3.5

4

4.5

5

5.5
x 10

4

Month

D
el
ay
s
(i
n
m
in
u
te
s)

Figure 1: OPSNET monthly delays for 2009.

The research literature on ATFM is rich and spans across more than two decades. Starting

with Odoni [18], who first conceptualized the problem of scheduling flights in real time in order

to minimize congestion costs, a plethora of models have been proposed to handle different

versions of the problem. The problem of assigning ground-delays in the context of a single-

airport (Single-Airport Ground-Holding Problem, SAGHP henceforth) has been studied in

1The Operations Network (OPSNET) is the official source of National Airspace (NAS) air traffic operations

and delay data.
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Terrab and Odoni [21]; and in the multiple airport setting in Terrab and Paulose [22], Vranas

et al. [23]. The problem of controlling release times and speed adjustments of aircraft while

air-borne for a network of airports taking into account the capacitated airspace has been

studied in Bertsimas and Stock-Patterson [11], Lindsay et al. [16]. For a detailed survey

of the various contributions and a taxonomy of all the problems, see Bertsimas and Odoni

[9] and Hoffman et al. [14]. Recently, the research community has attempted to overcome

the critical hurdle of fairness in ATFM models which had been conspicuously unaddressed

so far. Towards this goal, Bertsimas and Gupta [8] propose deterministic formulations for

the network-wide ATFM problem that incorporate fairness and collaboration. Specifically,

they propose discrete optimization models capable of controlling the number of reversals and

amount of overtaking in resulting flight sequences.

In contrast, the literature dealing simultaneously with stochastic airspace capacities has

been rather sparse. One of the first attempts at dealing with Stochastic SAGHP was by

Richetta and Odoni [19], [20]. Subsequently Ball et al. [1] proposed another model for

the same problem. Recently, Mukherjee and Hansen [17] study the SAGHP in a dynamic

stochastic setting. Kotnyek and Richetta [15] present equitable models for the stochastic

SAGHP and prove the equivalence of integrality and equity in the model presented in [20].

While there has been some work in a single-airport setting, we are not aware of any paper

which takes into account uncertainty in a network setting. Our study marks the first attempt

at modeling the network ATFM problem in a stochastic setting.

There are primarily two approaches in the literature to address decision-making under

uncertainty, namely, i) Stochastic Programming ; and ii) Robust Optimization. Dantzig [13]

proposed the approach of stochastic programming which entails generating scenarios for un-

certain data with appropriate probabilities. Unfortunately, this approach suffers significantly

from the practical difficulty of not knowing the exact distribution of the data to generate

relevant scenarios. Furthermore, it generally becomes intractable quickly as the number of

scenarios increases, thereby posing substantial computational challenges. In the last two

decades, an alternative approach by the name of robust optimization has been studied to

overcome these challenges (see Bertsimas et al. [4] and the recent book by Ben Tal et al.

[3] for extensive literature review and references). The key idea of robust optimization is to

construct appropriate uncertainty sets for the uncertain parameters that captures the prob-

abilistic properties of the problem. The goal subsequently is to construct a solution that is

feasible for all outcomes of the uncertainty set and which optimizes the worst-case objective.

The key advantage of robust optimization is that it presents a tractable framework to model

optimization problems under uncertainty. Specifically, the robust counterpart of a linear

optimization problem (LOP) is still a LOP [4].

Although, robust optimization has been successful in tractably solving many class of

optimization problems with uncertainty, it may suffer from a pitfall of the possibility of

highly conservative solutions. This is a consequence of the optimization over the worst-case

realization of the uncertain parameters. This drawback is further aggravated in multi-stage
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problems as robust optimization produces a single (static) solution. Consequently, there is an

alternative paradigm for multi-period decision-making called adaptive optimization wherein

decisions are adapted to capture the progressive information revealed over time. There are

two classes of models within adaptive optimization: i) policy-based full adaptability ; and ii)

finite adaptability.

Within the fully-adaptable framework, the most extensively studied class of policies is

affine2. The success of affine policies is due to its computational tractability and strong

empirical evidence reported in a variety of application settings. Bertsimas et al. [5] study

the performance of affine policies in two-stage adaptive problem. They show that affine

policies are optimal for two-stage adaptive optimization problem for simplex uncertainty

sets. These advances in robust and multi-stage adaptive optimization theory and technology

facilitates our endeavor of addressing uncertainty in the typically large scale ATFM models.

1.1 Our Proposal

Our overall strategy to address capacity uncertainty in the network-wide ATFM problem

under the robust and adaptive paradigm consists of two inter-related issues:

• Issue I: Model of weather-induced uncertain capacity. We propose a low-dimensional

uncertainty model (viz., which can be described by few underlying parameters) that

intuitively captures the dynamics of moving weather fronts. Normally, the most severe

disruptions occur due to the presence of an ongoing weather front which traverses

through some part of the NAS. We believe that the uncertainty governing the movement

of this weather front is dictated by the uncertainty in the time of arrival, the duration

of impact and the reduction in capacity commensurate with the intensity of the front.

The overall uncertainty model is the result of the impact of a small number of weather

fronts moving across the NAS. We refer to this model as a weather-front based approach.

• Issue II: Tractable solution methodologies for the robust and adaptive ATFM problem.

Given the model for capacity uncertainty, we invoke the recent advances in the theory

of robust and adaptive optimization as surveyed earlier to solve the uncertain ATFM

problem. Specifically, we prove the equivalence of the robust problem to a modified

instance of the deterministic problem and solve optimally the LP relaxation of the

adaptive problem using affine policies. The latter task is achieved by counting the

number of extreme points in our uncertainty set which govern the number of affine

pieces needed in an optimal recourse.

Contributions and Outline. The key contributions of this paper are as follows: a)

we model weather uncertainty in a way that is consistent with existing data, yet it

2Affine policies have been studied extensively in control theory (please refer to survey by Bemporad et al.

[2] for details).

4



allows the development of a tractable robust and adaptive optimization approach; b)

our approach maintains the strong integrality properties of the deterministic model by

developing appropriate theoretical results; and c) we report computational results to

validate that our approach is promising.

The paper is structured as follows: Section 2 introduces our modeling approach for

uncertain capacity and formalizes the robust and adaptive ATFM problem. Section

3 describes our uncertainty model under a mathematical programming framework.

Section 4 presents the tractable solution methodologies for the robust and adaptive

problem. Section 5 reports computational results. Section 6 presents the conclusions

and directions for further research.

Preliminaries. We fix some notation now that we use throughout the rest of the

paper. We denote by e the unit vector (1, . . . , 1) comprising of all ones. The dimension

is implicit in the context (e.g., e′w where w ∈ R
3 =⇒ e ∈ R

3). Furthermore, vertical

vector concatenation is denoted by the comma (,) operator, e.g., u = (u1, . . . , un) ∈ R
n

and v = (v1, . . . , vn) ∈ R
n, then (u,v) , (u1, . . . , un, v1, . . . , vn).

We refer to vectors specific to time-period t in two ways: i) including the in-

dex in parenthesis, e.g., w(t), or ii) as a subscript, e.g., wt. We define, for any

time-varying vector quantity {bt ∈ R
n}t=1,...,T , the following stacked vector b[t] ,

(b1,b2, . . . ,bt−1) ∈ R
n×(t−1), which represents measurements available at the begin-

ning of period t. We use
⊕

to denote polyhedron concatenation. More precisely, for

two polyhedron P1 and P2, P1

⊕
P2 = {(x, y)| x ∈ P1, y ∈ P2}.

2 ATFM Problem under Capacity Uncertainty

In this section, we first describe the deterministic ATFM problem. Subsequently, we

introduce our model of capacity uncertainty. Finally, we end by formalizing the robust

and adaptive models we intend to solve.

2.1 Deterministic ATFM Problem: Notation and Model

Here, we reproduce an augmented version of the well-studied Bertsimas Stock-Patterson

model [11] for the deterministic ATFM problem proposed recently by Bertsimas and

Gupta [8]. As mentioned in the Introduction, this latter model incorporates the crit-

ical aspect of fairness amongst airlines by controlling the number of reversals in the

resulting flight sequences.
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Notation. The model’s formulation requires definition of the following notation:

K : set of airports,

F : set of flights,

T : set of time periods,

S : set of sectors,

Sf ⊆ S : set of sectors that can be flown by flight f,

C : set of pairs of flights that are continued,

R : set of pairs of flights that are reversible (definition below),

P f
i : sector i’s preceding sector in flight f’s path,

Lf
i : sector i’s subsequent sector in flight f’s path,

Dk(t) : departure capacity of airport k at time t,

Ak(t) : arrival capacity of airport k at time t,

Sj(t) : capacity of sector j at time t,

df : scheduled departure time of flight f,

af : scheduled arrival time of flight f,

sf : turnaround time of an airplane after flight f,

origf : airport of departure of flight f,

destf : airport of arrival of flight f,

lfj : minimum number of time units that flight f must spend in sector j,

M : maximum permissible delay for a flight,

δ : tradeoff parameter between ground-hold and air-borne delay costs,

T f
j = [T f

j , T
f

j ] : set of feasible time periods for flight f to arrive in sector j,

T reversal
f,f ′ : set of time-periods common for flights f and f ′ where a reversal could occur.

Definition 2.1. A pair of flights (f, f ′) belongs to R if destf = destf ′ and af ≤ af ′ ≤

af +M .

For each pair of flights (f, f ′) ∈ R, we count a reversal , if in the resulting solution,

flight f ′ arrives before flight f (i.e., ∃t such that wf ′

destf ′ ,t
> wf

destf ,t
). Figure 2 depicts

a reversible pair of flights (f, f ′) ∈ R.

The Decision Variables. The decision variables are:

wf
j,t =

{

1, if flight f arrives at sector j by time t,

0, otherwise.
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af af +M

af ′ af ′ +M

Feasible times of arrival for flight f

Feasible times of arrival for flight f ′

T reversal
f,f ′

Figure 2: A reversible pair of flights (f, f ′) ∈ R.

This definition of the decision variables, using “by” instead of “at”, is critical to the

understanding of the formulation. The variables are defined only for the set of sectors

an aircraft may fly through on its route to the destination airports. In addition,

variables are used for the departure and the arrival airports, in order to determine the

optimal times for departure and for arrival.

In addition, for each element (f, f ′) ∈ R, we introduce the following new variable:

sf,f ′ =

{

1, if there is a reversal,

0, otherwise.

The TFMP model. The cost function for each flight consists of a linear combination

of ground-hold delay (GD) and air-borne delay (AD) with a tradeoff parameter δ > 1

as air-borne delay is more costly. Consequently, the complete description of the TFMP

model is as follows:

IZTFMP = min
w,s

∑

f∈F

(

δ ·
( ∑

t∈T f
destf

t · (wf
destf ,t

− wf
destf ,t−1)− af

)

+ (1− δ)

( ∑

t∈T f
origf

t · (wf
origf ,t

− wf
origf ,t−1)− df

)
)

+ λ ·




∑

(f,f ′)∈R

sf,f ′
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subject to:
∑

f∈F :origf=k

(wf
k,t − wf

k,t−1) ≤ Dk(t), ∀k ∈ K, t ∈ T , (1a)

∑

f∈F :destf=k

(wf
k,t − wf

k,t−1) ≤ Ak(t), ∀k ∈ K, t ∈ T , (1b)

∑

f∈F :j∈Sf ,j
′=L

f
j

(wf
j,t − wf

j′,t) ≤ Sj(t), ∀j ∈ S, t ∈ T , (1c)

wf
j,t − wf

j′,t−lfj′
≤ 0, ∀f ∈ F , t ∈ T f

j , j ∈ Sf : j 6= origf , j
′ = P f

j ,

(1d)

wf
origf ,t

− wf ′

destf ′ ,t−sf
≤ 0, ∀(f, f ′) ∈ C, ∀t ∈ T f

k , (1e)

wf
j,t−1 − wf

j,t ≤ 0, ∀f ∈ F , j ∈ Sf , t ∈ T f
j , (1f)

wf ′

destf ′ ,t
≤ wf

destf ,t
+ sf,f ′ , ∀(f, f ′) ∈ R, t ∈ T reversal

f,f ′ , (1g)

wf
destf ,t

≤ wf ′

destf ′ ,t
+ 1− sf,f ′ , ∀(f, f ′) ∈ R, t ∈ T reversal

f,f ′ , (1h)

sf,f ′ ∈ {0, 1}, ∀(f, f ′) ∈ R, (1i)

wf
j,t ∈ {0, 1}, ∀f ∈ F , j ∈ Sf , t ∈ T f

j . (1j)

The first three sets of constraints take into account the capacities of the various ele-

ments of the system. Constraints (1a) ensure that the number of flights which may

take off from airport k at time t, will not exceed the departure capacity of airport k

at time t. Likewise, Constraints (1b) ensure that the number of flights which may

arrive at airport k at time t, will not exceed the arrival capacity of airport k at time

t. Finally, Constraints (1c) ensure that the total number of flights which may feasibly

be in Sector j at time t will not exceed the capacity of Sector j at time t.

The next three sets of constraints capture the various connectivities - namely sector,

flight and time connectivity. Constraints (1d) stipulate that a flight cannot arrive at

Sector j by time t if it has not arrived at the preceding sector by time t− lfj′ . In other

words, a flight cannot enter the next sector on its path until it has spent at least lfj′

time units (the minimum possible) traveling through one of the preceding sectors on

its current path. Constraints (1e) represent connectivity between flights. They handle

the cases in which a flight is continued, i.e., the flight’s aircraft is scheduled to perform

a subsequent flight within some user-specified time interval. The first flight in such

cases is denoted as f ′ and the subsequent flight as f , while sf is the minimum amount

of time needed to prepare flight f for departure, following the landing of flight f ′.

Constraints (1f) ensure connectivity in time. Thus, if a flight has arrived at element j

by time t̃, then wf
j,t has to have a value of 1 for all later time periods (t ≥ t̃).

If there is a reversal between flights f and f ′, i.e., sf,f ′ = 1, then Constraint (1g)

becomes redundant and Constraint (1h) stipulates that if flight f has arrived by time
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t, then flight f ′ has to arrive by that time, hence ensuring that flight f cannot arrive

before flight f ′. Similarly, if there is no reversal, i.e., sf,f ′ = 0, then Constraint (1h)

becomes redundant and Constraint (1g) stipulates that if flight f ′ has arrived by time

t, then flight f has to arrive by that time, hence ensuring that flight f ′ cannot arrive

before flight f . Thus, we are able to model a reversal with the addition of only one

variable (sf,f ′).

For clearer exposition, we work with the following concise description of (TFMP)

in the remainder of this paper (the variables w below are assumed to include s):

IZTFMP = min
w

c′w

s.t. Aw ≤ b,

w ∈ {0, 1}n.

(2)

Given the deterministic capacity estimate b, our next task is to construct an ap-

propriate set of possible capacity realizations. We will denote this set by U . We will

refer to the TFMP problem with the added complexity of weather-induced uncertain

capacity as TFMPWU where WU is the abbreviation of weather-induced uncertainty.

2.2 Model of weather-front induced capacity uncertainty

In this section, we model capacity uncertainty by considering the impact of a small

number of weather fronts moving across the airspace. An important advantage of this

approach is that a few parameters can be used to capture the dynamics of a weather-

front; thereby, leading to a low-dimensional description of the uncertainty set.

To motivate our approach, consider a day in which it is known with high fidelity

that the storm would start during a certain time-period of the day (say, 4 to 6 pm on

a particular day). But, within this two hour interval, it is difficult to predict the exact

time of arrival of storm, and thus it seems prudent to consider uncertainty in the time

of arrival. Furthermore, the resulting drop in capacity over the planning period is not

known exactly. An overly pessimistic estimate might result in loss of capacity, whereas,

an optimistic estimate might impact the subsequent connections if the actual reduction

is worse. Thus, there is uncertainty associated with the intensity of weather disruption.

Finally, the last time of the impact of the storm (or alternatively, the duration of the

storm) is not known precisely and should be captured in the uncertainty set. Thus,

we feel, that a reasonable set of parameters which correctly capture the dynamics of a

weather front are the time of arrival, the duration and the capacity reduction.

Exact description for single airspace element. Following this discussion, we next

describe the uncertainty set for a single airspace element. The key parameters of the

weather-front affecting the said airspace element are:
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1. Actual time of arrival: Ta ∈ {T a, . . . , T a}.

2. Duration: d ∈ {d, . . . , d}.

3. Reduction in capacity: α ∈ {α, . . . , α}.

Subsequently, we use Tb to denote Ta + d (time of revival of the weather-front), which

implies that given the bounds on Ta and d, we have Tb ∈ {T a + d, . . . , T a + d}.

For a particular realization of the three parameters, Ta, d and α, the capacity vector b

can be written as follows:

b = (C, . . . , C, αC, . . . , αC, C, . . . , C),

that is (see also Figure 3),

bk =

{
αC, k ∈ {Ta, . . . , Tb},

C, k ∈ T \ {Ta, . . . , Tb}.

Assumption 1. We assume that the value of α is such that αC is an integer because

of two reasons: i) it is not practical to have fractional capacity and ii) the integrality

proofs presented later become simplified as a result of this assumption.

Ta Ta + d

C

(1− α)C

αC

Figure 3: Depiction of the capacity profile under a weather-front based uncertainty set for

a single affected airspace element. The plot is for a particular realization of the parameters

(Ta, d, α).

Example 2.1. We now give a concrete example of the uncertainty set we are trying

to model. Suppose, we have a time-horizon of 5 periods, i.e, T = 5. Moreover, let

Ta ∈ {3, 4}, d ∈ {1, 2}, α ∈ {0.6, 0.8} and C = 30. Then, U =
{
(30, 30, 18, 30, 30),

(30, 30, 18, 18, 30), (30, 30, 30, 18, 30), (30, 30, 30, 18, 18), (30, 30, 24, 30, 30),

(30, 30, 24, 24, 30), (30, 30, 30, 24, 30), (30, 30, 30, 24, 24)
}
.

To concretely motivate the appropriateness of our proposal for modeling the ca-

pacity uncertainty, we present practical evidence of the applicability of fitting step

functions to actual capacity profiles. Figure 4 plots the capacity profiles for two sec-

tors from data obtained from Lincoln Labs. It should be evident from the plot that

fitting these profiles by step functions is an appropriate engineering approximation.
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Figure 4: Illustration of the applicability of step functions to model capacity profiles. AC

denotes actual sector capacity and SF denotes the step function capacity. ZHU 24 and ZHU

30 are sector titles.

Extending to an airspace setting. We now extend the uncertainty set proposed for

a single airspace element to multiple airspace elements. We define a weather front as an

entity which is independent of all weather disturbances from other fronts. Suppose we

have k weather fronts (denoted by W1,W2, . . . ,Wk) over the course of a day. On a typ-

ical day, k would take a small value (say k = 3, 4). We model the traversal of a weather

front through the day by dividing it into a number of phases, where a phase transition

materializes when the spatial or temporal composition of the front changes substan-

tially. Each weather front Wi is further decomposed into phases: (W1
i , . . . , W

pi
i ),

where pi is the number of phases of the ith weather front. Wj
i captures the snapshot

of the weather front during phase j as follows:

• Wj
i (S) : set of sectors impacted by the ith weather front during phase j

• Wj
i (K) : set of airports impacted by the ith weather front during phase j

Ta1 Tb1

C

(1− α1)C

Ta2 Tb2

C

(1− α2)C

Ta3
Tb3

C

(1− α3)C

Figure 5: Traversal of a weather-front across the NAS. It has three phases over the course of

its existence.

Model of weather front propagation. A key distinction between the modeling
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approach for a single airspace element and multiple airspace elements is the augmented

set of parameters governing the uncertainty set for the latter case. Specifically, we

introduce another parameter L which captures the lag between the front’s time of

arrival across consecutive phases. During phase I, the parameters (Ta1 , d1, α1) govern

the capacity realizations for W1
i . Subsequently, the lag (denoted by L1) dictates the

set of parameters (Ta2 , d2, α2) of the weather front in phase II, and so on so forth. This

way we model the strong correlation of Ta2 with Ta1 . More generally,

Tak = Tak−1
+ Lk−1 = Ta1 +

k−1∑

j=1

Lj

We model the uncertainty inherent in Lj in an analogous way as Ta, i.e., Lj ∈

{Lj, . . . , Lj}. Subsequently, the range of possible values for Tak is given by {T ak−1
+

Lk−1, . . . , T ak−1
+ Lk−1}. Note that, even though we use the additional parameter Lj

for front propagation, the eventual description is described completely by (Ta, d, α).

2.3 Models

We now formalize the setting in which we intend to solve the robust and adaptive

ATFM problem. Using the discretization T = {1, . . . , T} introduced in the formulation

of TFMP (the deterministic ATFM problem), the right-hand side capacity vector in

the formulation TFMP can be decomposed into time indexed sub-vectors, i.e., it can

be written as:

b = (b1, . . . ,bT ),

where bt has the following description:

bt = (bA
t ,b

D
t ,b

S
t ).

bA
t ,b

D
t ,b

S
t correspond to the components of bt pertaining to the arrival capacity at

airports, departure capacity at airports and sector capacities respectively.

bA
t =

(
A1(t), . . . , A|K|(t)

)
; bD

t =
(
D1(t), . . . , D|K|(t)

)
; bS

t =
(
S1(t), . . . , S|S|(t)

)
;

Multi-stage models. We first present the multi-stage adaptive and robust optimiza-
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tion models (over T periods):

IZAdapt = min
w1,wi(b[i])

[

c′1w1 +max
b∈U

[

c′2w2(b[2]) + · · ·+

max
b∈U

[
c′T−1wT−1(b[T−1]) + max

b∈U
c′TwT (b[T ])

]]
]

s.t.A1w1 +
T∑

i=2

Aiwi(b[i]) ≤ b, ∀b ∈ U , (ΠT
Adapt)

wi(b[i]) ∈ {0, 1}ni.

In the problem ΠT
Adapt, the uncertainty only affects the right-hand side capacity vector

b. The constraint matrices Ai and the cost vectors ci are assumed certain. The only

restriction on the uncertainty set U is that U ⊆ R
n
+ or U ⊆ Z

n
+ (this corresponds

to the requirement of non-negative capacities). The equivalent robust version of the

multi-stage adaptive problem is as follows:

IZRob = min
w

T∑

i=1

ciwi

s.t.
T∑

i=1

Aiwi ≤ b, ∀b ∈ U , (ΠRob)

wi ∈ {0, 1}ni.

Let ZAdapt and ZRob denote the optimal objective function for the LP Relaxation.

In the remainder of the paper, we denote by TFMPWUAdapt, the TFMPWU

problem incorporating adaptability and TFMPWURob, the TFMPWU problem in-

corporating robustness.

3 Characterization of Weather-front Induced Uncertainty Set

We now proceed towards incorporating the discrete uncertainty set introduced in Sec-

tion 2 within a mathematical programming framework to solve TFMPWURob and

TFMPWUAdapt.

3.1 The need for conv(U)

A LOP under a discrete uncertainty set does not have a similar fate. In fact, the

robust problem under discrete uncertainty set is NP-Hard, in general. Consider the
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following general robust problem (RobDU denotes robust optimization problem under

discrete uncertainty set):

ZRobDU = min
x

c′x

s.t. Ax ≤ b, ∀b ∈ U0.
(3)

Lemma 1. RobDU is NP-Hard.

Not surprisingly, we need an alternative tractable line of attack for the case of

discrete uncertainty sets. A standard approach to overcome this hurdle is to work

with its convex hull to enable a polyhedral description. Hence, if the convex hull

of the discrete uncertainty set can be written as a polyhedral set, then the robust

counterpart is efficiently solvable. We formalize below the equivalence of solving over

a discrete set and over the convex hull of this set3.

Lemma 2. Let U0 denote a discrete set. Then, the robust problem ZRobDU is equivalent

to:
ZRobConvDU = min

x
c′x

s.t. Ax ≤ b, ∀b ∈ conv(U0).
(4)

where conv(U0) denotes the convex hull of U0.

Consequently, we subject ourselves to the challenge of generating a polyhedral

description for conv(U) (under the discrete uncertainty set introduced in Section 2.2).

Our first key contribution (documented in Section 3.2) culminates with the success in

this challenge.

3.2 Polyhedral description of conv(U)

We use the following auxiliary variables:

yt =

{

1, if capacity drops by time t,

0, otherwise.
zt =

{

1, if capacity revives by time t,

0, otherwise.

The variables yt and zt are defined for t ∈ {T a, . . . , T b}. But, given that the capac-

ity drop cannot occur after T a and capacity revival cannot occur before T b, we can set

a few variables as parameters at the outset, namely,

{

yt = 1, t ∈ {T a, . . . , T b}; zt = 0, t ∈ {T a, . . . , T b − 1}; zt = 1, t ∈ {T b}
}

3the proofs of the two lemmas are available in the full version and can be requested from the author
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We give a mathematical description of the uncertainty set for the capacity profile

as depicted in Figure 3. We start by providing a description for a particular realization

of α:

Uα =
{
b ∈ Z

m
+ | bt = C(1− yt) + αCyt + (1− α)Czt, ∀t ∈ {T a, . . . , T b};

bt = C, ∀t ∈ T \ {T a, . . . , T b};

yt ≤ yt+1; zt ≤ zt+1; zt ≤ yt;

yTa
= 1; zT b−1 = 0; zT b

= 1; yt, zt ∈ {0, 1}
}

Let |Uα| = K, where K = (T a − T a + 1) × (d − d + 1). The K elements of Uα are

indexed by (i, j) where i ∈ {T a, . . . , T a}, j ∈ {i + d, . . . , i + d}. bi,j can be written

concretely as follows:

bi,jk =

{

αC, k ∈ {i, . . . , j},

C, k ∈ T \ {i, . . . , j}.
(5)

A polyhedral description of conv(Uα). Our goal now is to come up with a polyhe-

dral description of conv(Uα) (denoted by Qα). We claim that the following polyhedron

is precisely Qα:

Pα =
{
b ∈ R

m
+ | bt = C(1− yt) + αCyt + (1− α)Czt, ∀t ∈ {T a, . . . , T b};

bt = C, ∀t ∈ T \ {T a, . . . , T b};

yt ≤ yt+1; zt ≤ zt+1; zt ≤ yt;

yTa
= 1; zT b−1 = 0; zT b

= 1; 0 ≤ yt, zt ≤ 1
}

Remark 1. In the description of Uα and Pα, it is useful to note that if T a < T b, then,

the constraints zt ≤ yt are redundant and hence, can be removed from the polyhedral

description.

Proposition 1.

Qα = Pα (6)

Proof. We use a technique to prove integrality of a polyhedron based on randomization

known as Randomized Rounding (please refer to Chapter 3 of Bertsimas and Weisman-

tel [12] for details). Let y∗, z∗ be an optimal solution of the following problem:

ZLP = min
y,z

c′y + d′z

s.t. (y, z) ∈ X .
(7)

where X = {y, z| yt ≤ yt+1, zt ≤ zt+1, zt ≤ yt, t ∈ {T a, . . . , T b}; 0 ≤ yt, zt ≤ 1}.
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Outline of the argument: From y∗, z∗, we create a new random integer solution (y,

z), that is feasible in X . Subsequently, we show that E[c′y + d′z] = ZLP = c′y∗+d′z∗.

This shows that ZIP = ZLP, and, since this is true for an arbitrary cost vector c and

d, the polyhedron X is integral.

The randomization we use is as follows: we sort the values y∗, z∗ from smallest to

largest in the interval [0, 1]. We generate a random variable U distributed uniformly

in [0,1]. The rounding is done as follows:

yt =

{

1, y∗t ≥ U ,

0, y∗t < U .
zt =

{

1, z∗t ≥ U ,

0, z∗t < U .

The solution produced is clearly feasible because yt ≤ yt+1 and zt ≤ zt+1 is trivially

satisfied. Moreover, zt ≤ yt because z∗t ≤ y∗t , and after rounding zt can never become

1 unless yt becomes 1 (see Figure 6 for an easy visualization).

0 1

y∗2 is rounded to 0

U uniformly generated between 0 and 1

y∗4 is rounded to 1

z∗3 is rounded to 0 z∗4 is rounded to 1

y∗1 y∗2 y∗3 y∗4

z∗1 z∗2 z∗3 z∗4

Figure 6: Illustration of the geometry of the randomized rounding algorithm for proving the

integrality of polyhedron X . y∗, z∗ satisfy y∗t ≤ y∗t+1, z
∗
t ≤ z∗t+1 and z∗t ≤ y∗t .

Let ZH be the value of the solution produced. The expected value of the solution

is:

E[ZH] =
∑

t∈{T a,...,T b}

ctP(yt = 1) + dtP(zt = 1)

=
∑

t∈{T a,...,T b}

ctP(y
∗
t ≤ U) + dtP(z

∗
t ≤ U)

=
∑

t∈{T a,...,T b}

cty
∗
t + dtz

∗
t

= ZLP

and thus ZIP = ZLP. Since, c and d are arbitrary, the polyhedron X is integral. This

implies that Pα is integral (using Assumption 1).
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The overall uncertainty set for the capacity profile as depicted in Figure 3 is as follows:

U =




⋃

α∈{α,...,α}

Uα





A polyhedral description of conv(U). Let Q = conv(U) denote the convex hull of

U . We show that Pα is precisely conv(U).

Proposition 2.

Q = Qα (8)

Proof. Note the following relation,

⋃

α∈{α,...,α}

Qα =
⋃

α∈{α,...,α}

conv(Uα) ⊆ conv
( ⋃

α∈{α,...,α}

Uα

)

= conv(U) = Q

In particular, for α = α,

Qα ⊆ Q (9)

Next, we show that U ⊆ Qα by using the equivalence of Qα and Pα from Proposition 1.

For a particular value of α, let bi,j ∈ Uα. Consider the following4:

yk =







0, if k ∈
{
T a, . . . , T a + i− 1

}
,

1−α
1−α

, if k ∈
{
T a + i, . . . ,min(T a − 1, T a + j − 1)

}
,

1, otherwise.

zk =







0, if k ∈
{
T a, . . . ,min(T a − 1, T a + j − 1)

}
,

α−α

1−α
, if k ∈

{
min(T a, T a + j), . . . , T a + j − 1

}
,

1, otherwise.

Moreover, we expand bk using:

bk = C(1− yk) + αCyk + (1− α)Czk

4The reason for the complicated indexing is that yTa

is set to 1 in the polyhedral description Pα. Therefore,

the definitions of yk and zk need to account for whether the capacity drop occurs before or after T a. Hence,

the need for min(T a − 1, T a + j − 1).
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for all possible combinations of yk and zk over the various indices as shown below:

bk =







C + 0 + 0 = C, if k ∈
{
T a, . . . , T a + i− 1

}
,

(
α−α

1−α

)
C + α

(
1−α
1−α

)
C + 0 = αC, if k ∈

{
T a + i, . . . ,min(T a − 1, T a + j − 1)

}
,

0 + αC + (1− α)
(
α−α

1−α

)
C = αC, if k ∈

{
min(T a, T a + j), . . . , T a + j − 1

}
,

0 + αC + (1− α)C = C, if k ∈
{
T a + j, . . . , T b

}
.

(10)

But, (10) has exactly the form of (5), the element bi,j ∈ Uα. Hence, bi,j ∈ Pα. This

implies Uα ⊆ Pα. Since α is arbitrary, therefore,

U ⊆ Pα = Qα
︸ ︷︷ ︸

Using Proposition 1

Note thatQα is a convex set (a polyhedron). This implies that all convex combinations

of the set U belongs to Qα. But, conv(U) is precisely Q. Hence,

Q ⊆ Qα (11)

The proposition subsequently follows from (9) and (11).

We now have the equipment to state the main theorem of this section:

Theorem 1.

Q = Pα (12)

Proof. The proof follows trivially from Proposition 1 and Proposition 2.

Remark 2. An important takeaway of the polyhedral description Pα is that the explicit

description of the uncertainty governing the parameter α is not required. All that is

needed as input is the worst cast realization of α (viz. α). This further simplifies the

input requirements and implies that only two parameters Ta and d govern the overall

uncertainty set.

Let Pe
αij

denote the uncertain realizations for airspace element e. The overall un-

certainty set spanning all airspace elements is given by:

Poverall =
⊕

i=1,...,k,j=1,...,pi,

e∈Wj
i (S)∪W

j
i (K)

Pe
αij

4 Solution Methodologies

In this section, we propose solution approaches for the robust and adaptive versions

of the TFMP problem under the uncertainty sets constructed in Section 3.
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4.1 Robust TFMP

We explicitly characterize an equivalent form of the robust TFMP problem as a specific

instance of the deterministic TFMP problem for an arbitrary uncertainty set.

Definition 4.1. bmin = (b1, b2, . . . , bm), where bi = min
{
bi| b ∈ U

}
.

Theorem 2. For an arbitrary uncertainty set U for the right hand side capacity,

TFMPWURob is equivalent to solving the following modified TFMP instance:

IZTFMPWURob = min
w

c′w

s.t. Aw ≤ bmin,

w ∈ {0, 1}n.

(13)

Proof. We show the equivalence of the set of feasible solutions of TFMPWURob (de-

noted by W) with the instance of TFMP where the right-hand side is bmin (denoted by

W). Specifically, W =
{
w ∈ {0, 1}n|Aw ≤ b, b ∈ U

}
and W =

{
w ∈ {0, 1}n|Aw ≤

bmin

}
.

Suppose w ∈ W, then for the ith constraint, we have:

a′
iw ≤ bi, ∀b ∈ U ,

⇒ a′
iw ≤ min

b∈U
bi = bi. (14)

Since i is arbitrary, (14) further implies the following:

a′
iw ≤ min

b∈U
bi, i = 1, . . . , m

⇒Aw ≤ bmin,

⇒w ∈ W . (15)

Suppose w ∈ W , then by definition of bmin:

bmin ≤ b, ∀b ∈ U ,

⇒Aw ≤ b, ∀b ∈ U ,

⇒w ∈ W. (16)

From (15) and (16), we have W = W . The proposition subsequently follows, as the set

of feasible solutions of the two problems and the objective function being minimized

is exactly the same.

Since TFMP is efficiently solvable in practice and has superior integrality properties,

Proposition 2 suggests that TFMPWURob is no harder to solve than TFMP.
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4.2 Adaptive TFMP

In this section, we explicitly propose ways to solve the LP Relaxation of TFMP-

WUAdapt optimally. Bertsimas and Goyal [6] study the two-stage adaptive optimiza-

tion problem Π2
Adapt and show the optimality of affine policy for a simplex5 uncertainty

set. Although, the results reported in Bertsimas and Goyal [6] are for a two-stage adap-

tive model, they are true for multi-stage adaptive problems too. Since, the TFMP

problem is inherently a multi-period problem, it is appropriate that we extend the

result for multiple periods as done below (please refer to Appendix A for the proof):

Theorem 3. Consider the problem ΠT
Adapt(U) such that U is a simplex. Then, there is

an optimal multi-stage solution ŵi(b) such that ŵi(b) are affine functions of b, i.e.,

for all b ∈ U ,

ŵi(b) = Pib+ qi, (17)

where Pi ∈ R
ni×m, qi ∈ R

ni.

One piece of the piece-wise affine
policy corresponds to this simplex

Figure 7: An example illustrating the partition of a polyehdral uncertainty set into multiple

simplices. Shown is a polyhedral set in R
2 broken into three simplices.

Our next step is to quantify the number of extreme points in our uncertainty set for

the TFMP problem. Table 1 enumerates the number of extreme points in the different

constructions of the polyhedral description of the uncertainty set U . Algorithm 1 sum-

marizes a procedure to solve the LP Relaxation of TFMPWUAdapt after considering

the value of E .

Algorithm 1 Solving the LP Relaxation of TFMPWUAdapt

• If E ≤ m+ 1, then an affine policy for the recourse variables is optimal.

• If E > m + 1, then divide the uncertainty set into multiple simplices each having

m + 1 extreme points. Subsequently, a piecewise affine policy is optimal for this

case.

Number of Extreme Points Relative to the Number of Constraints. Table

1 implies that E increases exponentially with an increase in the number of airspace

5A simplex is a set which is generated by m+ 1 extreme points, where m is the number of constraints.
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Description Uncertainty Set # of Extreme Points

(Denoted By)

1 WF, Single
airspace element,

one phase
(EPi)

Pαi
=
{
b∈Rm

+ | bt=C(1−yt)+αiCyt

+(1−αi)Czt, ∀t∈{T ai
,...,T bi

};

bt=C, ∀t∈T \{T ai
,...,T bi

};

yt≤yt+1; zt≤zt+1; zt≤yt; 0≤yt,zt≤1
}

(T ai − T ai
+ 1)× (di − di + 1)

1 WF, Airspace,
one phase

(Ej
i )

PAS,OP
αi

=
⊕

k∈A Pk
αi

EP
|Wj

i (S)|+|Wj
i (K)|

i

1 WF, Airspace,
all phases

(Ei)
PAS,AP
αi

=
⊕pi

j=1 P
j
αi Πpi

j=1E
j
i

k WF, Airspace,
all phases

(E)
PAS,AP
α =

⊕k
i=1 Pαi

Πk
i=1Ei

Table 1: Number of extreme points for the weather-front based polytope. AS denotes

airspace, OP denotes one-phase and AP denotes all-phases.

elements affected by weather and an increase in the number of time-periods. In con-

trast, m ∝ (2|K| + |S|)|T | which implies that it increases linearly in the number of

airspace elements and the total number of time-periods. Consequently, in the asymp-

totic regime, E will dominate m. But, the case which is practically relevant pertains

to the number of extreme points when there is an upper bound on |Wj
i (K)|, |Wj

i (S)|

and the uncertainty set of Ta and d. Let,

τ = max
i

{

T ai − T ai
+ 1, di − di + 1

}

∆ = max
i,j

{

|Wj
i (S)|, |W

j
i (K)|

}

E can now be upper bounded by τ 4k∗∆∗P where P is the maximum number of phases

across all fronts. Table 2 lists an upper bound on E for various combinations of τ and

∆. The main observation is that if any of the two parameters τ or ∆ is less than 3,

then E is in the thousands and is thus less than the number of constraints.

τ ∆ Upper Bound on E

P = 1

1 1 1

2 2 256

2 3 4096

3 2 6561

3 3 531441

Table 2: Upper bound on the number of extreme points in the weather-front based uncer-

tainty set (k = 1).
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4.3 Characterizing the Price of Robustness and Adaptability

In this section, we study the relation between the optimal objective function values of

the deterministic, robust and adaptive versions of the TFMP problem.

bmin /∈ U bmin ∈ U

Figure 8: Example uncertainty sets with and without bmin (black filled circle denotes bmin).

Definition 4.2. The price of robustness and adaptability is:

• POR(TFMP) = IZTFMPRob − IZTFMP

• POA(TFMP) = IZTFMPAdapt − IZTFMP

To quantify the relative performance of the robust and adaptability problems, we

define the adaptability gap, denoted by AG(TFMP), to be the ratio of the robust cost

to the adaptive cost, i.e.:

Definition 4.3. AG(TFMP) = IZTFMPRob

IZTFMPAdapt

We now prove a result on the dependence of the relative optimal objective values of

the robust and adaptive problems on a specific property of the uncertainty set.

Proposition 3. Consider the multi-stage adaptive optimization problem ΠT
Adapt and

its robust counterpart ΠRob. If bmin ∈ U , then,

ZAdapt = ZRob.

Proof. Let w∗
1,w

∗
i , i ≥ 2 be an optimal solution of ΠRob and ŵ1, ŵi(b), ∀b ∈ U be an

optimal solution of ΠT
Adapt. Since w∗

1,w
∗
i , i ≥ 2 is optimal, it is also feasible for ΠRob.

Therefore,

A1w
∗
1 +

T∑

i=2

Aiw
∗
i ≤ b, ∀b ∈ U

This implies that the solution w1 = w∗
1; wi(b) = w∗

i , ∀b ∈ U is feasible for ΠT
Adapt.

ZAdapt ≤ c′1w
∗
1 +

T∑

i=2

c′iw
∗
i

= ZRob (18)
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Since bmin ∈ U ,

ZAdapt = c′1ŵ1 +max
b∈U

[

c′2ŵ2(b2) + · · ·+ (19)

max
b∈U

[
c′T−1ŵT−1(bT−1)+max

b∈U
c′T ŵT (bT )

]]

≥ c′1ŵ1 +
T∑

i=2

c′iŵi(bmin) (20)

Now, (ŵ1, ŵi(bmin)) is a feasible solution of ΠRob,

ZRob ≤ c′1ŵ1 +
T∑

i=2

c′iŵi(bmin)

≤ ZAdapt (21)

From (18) and (21),

ZRob = ZAdapt (22)

Proposition 3 leads to the following corollary:

Corollary 1. For the weather-front based uncertainty set with the underlying param-

eters (Ta, d, α), the following holds true:

1. if bmin /∈ U , then ZTFMP ≤ ZTFMPWUAdapt ≤ ZTFMPWURob, and AG(TFMP) ≥ 1.

2. if bmin ∈ U , then ZTFMP ≤ ZTFMPWUAdapt = ZTFMPWURob, and AG(TFMP) = 1.

5 Computational Results

In this section, we report computational results from the solution approaches intro-

duced in Section 4.

5.1 Experimental Setup

In our setup, the airspace is subdivided into sectors of equal dimensions (10 by 10)

that form a grid, thereby, having a total of 100 sectors. 55 major airports of the US

are then mapped to one of these 100 sectors based on its geographical coordinates.

The entire airspace is subsequently divided into three regions, namely, north-east,

23



south-west and central. Each of these regions is then subject to simulated weather-

fronts. The time of arrival, duration and capacity reduction of each weather-front

is generated randomly from appropriate intervals. This enables the construction of

uncertainty sets with varying degree of extreme points to study the implications on

the complexity of solving the robust/adaptive problems and the corresponding price.

Finally, the capacity inputs used for all the instances are at the “infeasibility border”,

i.e., values which when perturbed slightly on the conservative side lead to infeasibility

of the overall problem.

To solve the TFMPWURob and TFMPWUAdapt models (which use various un-

certainty sets), we use a new tool for robust optimization - Robust Optimization Made

Easy (ROME). We use the same tool to compute optimal solutions for the determin-

istic problem. Table 3 reports the performance of TFMPWURob whereas Table 4

reports the performance of TFMPWUAdapt. The running times reported in the table

correspond to both the solver time and the ROME input parsing time (which accounts

for majority of the total time). The following conclusions can be drawn from these

computational results:

• The integrality properties of the robust equivalent closely mimics the determin-

istic version which is known to have strong integrality properties (as evidenced

by the fact that in all cases the % non-integral solutions are less than 1%).

Furthermore, the running times for TFMPWURob compares favorably with the

deterministic counterpart. These two observations validate the theoretical ex-

pectation listed in Section 4.1. Finally, the performance of TFMPWURob is not

affected by the number of extreme points in the uncertainty set.

• The results for TFMPWUAdapt indicate that in terms of running times, TFMP-

WUAdapt is quite expensive when compared to TFMPWURob (this is expected

as the transformed LP from the adaptive instance is of a much larger size). Fur-

thermore, the complexity of the adaptive instance typically increases with the

number of extreme points.

Characteristics of Robust Solutions. To study the nature of robust schedules,

we define two quantities which qualitatively capture the factors impacting the price

of robustness and the deviation in the robust schedule (relative to the deterministic

counterpart). The first is the percentage capacity reduction in the capacity vector

used to solve the robust problem (viz. bmin) relative to the deterministic capacity

estimate bdet (mathematically, this is 100 ∗ e′(bdet−bmin)
e′bdet

and will be denoted by CRed

henceforth). This quantity is expected to govern the price of robustness in that higher

the reduction, higher is the objective cost for the robust problem (ZRob → ∞ as

bmin → 0). The second quantity (somewhat correlated with the first one) is the

difference in the deterministic and robust flight schedules. It is defined as e′(aDet−aRob)
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Region ZDet Sol. Time ZRob Sol. Time % Nonint Uncertainty Set

(# of Flights) (sec.) (sec.) (# of EPs)

208 378 229 407 0 81

North-East 227 515 230 643 0 256

(500-1000) 145 636 161.5 638 0.15 729

935 4839 971.5 4721 0 20736000

650 1996 677 1984 0 81

Central 647 1770 675 1779 0 729

(500-1000) 935 4685 1013 4607 0 4299816

240 401 248 402 0.10 1679616

642 1937 647 1977 0 400

South-West 137 578 144 566 0.10 256

(500-1000) 208 358 208 387 0 7962624

935 4540 1044 4713 0 65536000

Table 3: Computational Experience with TFMPWURob.

Region ZRob Sol. Time ZAdapt Sol. Time % Nonint Uncertainty Set

(# of Flights) (sec.) (sec.) (# of EPs)

92 84 92 265 0 81

North-East 29.5 73 29.5 491 0 128

(100-150) 54 55 54 369 0 256

113 127 113 326 0 4096

27 43 27 813 0 1428

Central 22 34 22 287 0 225

(100-150) 86 98 86 257 0 729

35 63 35 382 0 1728

75 86 75 250 0 64

South-West 42 87 42 431 0 1296

(100-150) 123 133 123 519 0 144

99 106 99 294 0 1728

Table 4: Computational Experience with TFMPWUAdapt.
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where the vector a consists of the time of arrival of all flights at its destination airport

(Det corresponds to deterministic and Rob to the robust problem). Figure 9 plots

the price of robustness and schedule deviation as a function of CRed. The key insight

from the plot is that when bmin is “close” to the deterministic capacity, the price of

robustness is quite small and the deterministic schedule can be adjusted to make it

feasible for uncertain scenarios.
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Figure 9: Characteristics of Robust Solutions. Left: POR as a function of capacity reduction.

Right: Deviation in the robust schedule. The red line corresponds to the best linear fit.
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Figure 10: Left: Running times for deterministic and robust problems. Right: Running

times for adaptive problem. C denotes CPLEX solver time and T denotes Total time (in-

cluding parsing time).

6 Conclusions

This study attempts to present a framework for solving network air traffic flow man-

agement problems in a stochastic setting under the robust and adaptive optimization
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paradigm. We introduce a new weather-front based approach to construct uncertainty

set of possible capacity realizations. The key benefit of this approach is the low-

dimensionality of the resulting discrete sets (as uncertainty in only two parameters

govern the uncertainty set for each airspace element). We formulate the consequent

robust and adaptive problems and propose tractable solution methodologies. We prove

the equivalence of the robust problem to a new deterministic instance. For the adap-

tive problem, an important takeaway is that the number of extreme points is typically

less than the number of constraints for most practical instances, thereby implying that

an affine policy is optimal. Computational experience with the robust and adaptive

models validate the practical promise of our proposal.

Appendix

A Power of Affine Policies in Multistage Adaptive Optimiza-

tion

Proof of Theorem 3:

Proof. Let w∗
i (b) be an optimal solution of ΠT

Adapt(U). We will construct an alternative

solution ŵi(b) such that ŵi(b) are affine functions of b for i ≥ 2 and the worst case

cost of this solution is equal to ZAdapt. Let

Q =
[(
b1 − bm+1

)
. . .
(
bm − bm+1

)]

(23)

Since b1, . . . ,bm+1 are affinely independent, (b1−bm+1), . . . , (bm−bm+1) are linearly

independent and Q is an invertible full-rank matrix. For any b ∈ U , ∃γ, 0 ≤ γ ≤

1, e′γ = 1,

b =

m+1∑

i=1

γib
i, (24)

b =
m∑

i=1

γi(b
i − bm+1) + bm+1, (25)

b = Q · γ + bm+1, γ = (γ1, . . . , γm)
T . (26)

Since Q is invertible, we have,

Q−1
(
b− bm+1

)
= γ (27)

Let

Wi =
[(
w∗

i (b
1)−w∗

i (b
m+1)

)
. . .
(
w∗

i (b
m)−w∗

i (b
m+1)

)]

27



For all b ∈ U , where b =
∑m+1

j=1 γjb
j for 0 ≤ γ ≤ 1, consider the following solution:

ŵi(b) = WiQ
−1(b− bm+1) +w∗

i (b
m+1)

= Wiγ +w∗
i (b

m+1)

=

m+1∑

j=1

γjw
∗
i (b

j)

The worst case cost of the solution ŵi(b) can be bounded as follows:

max
b∈U

c′iŵi(b) = max
b∈U

c′i

m+1∑

j=1

γjw
∗
i (b

j)

= max
b∈U

m+1∑

j=1

γjc
′
iw

∗
i (b

j)

≤ max
j=1,...,m+1

c′iw
∗
i (b

j) (28)

Consider the worst-case objective cost for the last two stages:

max
b∈U

[

c′T−1ŵT−1(b) + max
b∈U

c′T ŵT (b)
]

≤ max
b∈U

[

c′T−1ŵT−1(b) + max
j=1,...,m+1

c′Tw
∗
T (b

j)
]

(29)

≤ max
j=1,...,m+1

c′T−1w
∗
T−1(b

j) + max
j=1,...,m+1

c′Tw
∗
T (b

j)

(30)

This indicates that the worst-case objective cost becomes separable. Using the same

argument one step at a time in the backward direction (i.e., for i = T − 2, . . . , 1), we

have,

c′1ŵ1 +max
b∈U

[

c′2ŵ2(b) + · · ·+

max
b∈U

[
c′T−1ŵT−1(b) + max

b∈U
c′T ŵT (b)

]]

≤ c′1w
∗ +

T∑

i=2

[

max
j=1,...,m+1

c′iw
∗
i (b

j)
]

≤ ZT
Adapt

Therefore, the worst case cost of the solution ŵi(b) is equal to the optimal cost of

ΠT
Adapt(U), which implies that the affine policy for each stage (after first) is optimal.
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