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Abstract In this paper, we consider adjustable robust versions of convex optimiza-

tion problems with uncertain constraints and objectives and show that under fairly

general assumptions, a static robust solution provides a good approximation for these

adjustable robust problems. An adjustable robust optimization problem is usually in-

tractable since it requires to compute a solution for all possible realizations of uncertain

parameters, while an optimal static solution can be computed efficiently in most cases

if the corresponding deterministic problem is tractable. The performance of the optimal

static robust solution is related to a fundamental geometric property, namely, the sym-

metry of the uncertainty set. Our work allows for the constraint and objective function

coefficients to be uncertain and for the constraints and objective functions to be convex,

thereby providing significant extensions of the results in [8] and [9] where only linear

objective and linear constraints were considered. The models in this paper encompass

a wide variety of problems in revenue management, resource allocation under uncer-

tainty, scheduling problems with uncertain processing times, semidefinite optimization

among many others. To the best of our knowledge, these are the first approximation

bounds for adjustable robust convex optimization problems in such generality.
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1 Introduction

In most real world problems, problem parameters are uncertain at the optimization

or decision-making phase. Solutions obtained via deterministic optimization might be

sensitive to even small perturbations in the problem parameters that might render them

highly infeasible or suboptimal. Stochastic optimization was introduced by Dantzig [12]

and Beale [1], and since then has been extensively studied in the literature to address

the uncertainty in problem parameters. A stochastic optimization approach assumes

a probability distribution over the uncertain parameters and seeks to optimize the

expected value of the objective function. We refer the reader to several textbooks

including Infanger [18], Kall and Wallace [19], Prekopa [21], Shapiro [22], Shapiro et

al. [23] and the references therein for a comprehensive review of stochastic optimization.

While the stochastic optimization approach has its merits, it is by and large com-

putationally intractable even when the constraint and objective functions are linear.

Shapiro and Nemirovski [24] give hardness results for two-stage and multi-stage stochas-

tic optimization problems where they show that the multi-stage stochastic optimization

problem is computationally intractable even if approximate solutions are desired. Dyer

and Stougie [13] show that a multi-stage stochastic optimization problem where the

distribution of uncertain parameters in any stage also depends on the decisions in past

stages is PSPACE-hard. Even for the stochastic problems that can be solved efficiently,

it is difficult to estimate the probability distributions of the uncertain parameters from

historical data to formulate the problem.

More recently, the robust optimization approach has been considered to address

optimization under uncertainty and has been studied extensively (see Ben-Tal and

Nemirovski [4], [5] and [6], El Ghaoui and Lebret [14], Bertsimas and Sim [10,11],

Goldfarb and Iyengar [16]). In a robust optimization approach, the uncertain parame-

ters are assumed to belong to some uncertainty set and the goal is to construct a single

(static) solution that is feasible for all possible realizations of the uncertain parame-

ters from the set and optimizes the worst-case objective. We point the reader to the

survey by Bertsimas et al. [7] and the book by Ben-Tal et al. [2] and the references

therein for an extensive review of the literature in robust optimization. This approach

is significantly more tractable as compared to a stochastic optimization approach and

the robust problem is equivalent to the corresponding deterministic problem in com-

putational complexity for a large class of problems and uncertainty sets (Bertsimas et

al. [7]). However, the robust optimization approach may have the following drawbacks.

Since it optimizes over the worst-case realization of the uncertain parameters, it may

produce conservative solutions that may not perform well in the expected value sense.

Moreover, the robust approach computes a single (static) solution even for a multi-stage

problem with several stages of decision-making as opposed a fully-adjustable solution

where decisions in each stage depend on the actual realizations of the parameters in

past stages. This may further add to the conservativeness.

Another approach is to consider solutions that are fully-adjustable in each stage

and depend on the realizations of the parameters in past stages and optimize over

the worst case. Such solution approaches have been considered in the literature and

referred to as adjustable robust policies (see Ben-Tal et al. [3] and the book by Ben-Tal

et al. [2] for a detailed discussion of these policies). Unfortunately, the adjustable robust

problem is computationally intractable in general. Feige et al. [15] show that it is hard

to approximate even a two-stage set covering linear program within a factor of Ω(logn)

for a general uncertainty set. Bertsimas and Goyal [8] show that a static solution (a
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single solution that is feasible for all possible realizations of the uncertain parameters)

is a 2-approximation for the adjustable robust as well as a stochastic optimization

problem with linear constraints and objective with right hand side uncertainty if the

uncertainty set belongs to the non-negative orthant and is perfectly symmetric such as

a hypercube or an ellipsoid. Bertsimas et al. [9] give two significant generalizations of

the result in [8] where they show that the performance of the static solution for the

adjustable robust and the stochastic problem depends on a fundamental geometric

property of the uncertainty namely symmetry. The authors consider a generalized

notion of symmetry introduced in Minkowski [20], where the symmetry of a convex

set is a number between 0 and 1. The symmetry of a set being equal to one implies

that it is perfectly symmetric (such as an ellipsoid). Furthermore, they also generalize

the static robust solution policy to a finitely adjustable solution policy for the multi-

stage stochastic and adjustable robust optimization problems and give a similar bound

on its performance that is related to the symmetry of the uncertainty sets.

The models in [8] and [9] consider only covering constraints of the form aTx ≥
b, a ∈ Rn and b ≥ 0 and the uncertainty appears only in the right hand side of

the constraints. While these are fairly general models, they do not handle packing

constraints and uncertainty in constraint coefficients. They do not capture several im-

portant applications such as revenue management and resource allocation problems

under uncertain resource requirements, where we have packing constraints and uncer-

tainty in constraint coefficients. In a typical revenue management problem, we need

to allocate of scarce resources to a demand with uncertain resource requirements such

that the total revenue is maximized. As an example, consider a multi-period problem

where there is a single resource with capacity h ∈ R+, and in each period k = 1, . . . , T ,

a demand arrives and requires an uncertain amount, bk of that resource and we obtain

revenue dk per unit of demand satisfied. The goal in each period is to decide on the

fraction of demand that should be satisfied such that the worst case revenue over all

future resource requirements is maximized.

Let xk be the fraction of demand in period k that is satisfied for k = 1, . . . ,K.

Note that in period k, we observe the resource requirements for demands in all periods

up to period k but do not know the resource requirements for future demands. The

multi-period adjustable robust revenue maximization problem can now be formulated

as follows.

max d1x1(b1) + min
b2∈U2

max
x2(b1,b2)

(
d2 · x2(b1, b2) + . . .

+ min
bK∈UK

max
xK(b1,...,bK)

dK · xK(b1, . . . , bK)) . . .
)

K∑
k=1

bk · xk(b1, . . . , bk) ≤ h, ∀bk ∈ Uk, k = 2, . . . ,K

0 ≤ xk(b1, . . . , bk) ≤ 1, ∀k = 1, . . . ,K.

(1.1)

In order to address such problems, we need to consider linear optimization problems

under constraint and objective coefficient uncertainty. Moreover, the framework in

[8] and [9] covers linear optimization problems, but not general convex optimization

problems. In this paper, we study adjustable robust versions of fairly general convex

optimization problems under uncertain convex constraints and objective. In particu-

lar, these include linear packing problems under constraint and objective uncertainty.

While computing an optimal adjustable robust solution is intractable, we show that an
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optimal static robust solution provides a good approximation for the adjustable robust

problem.

1.1 Models and Notation

We study the following adjustable robust version of a two-stage convex optimization

problem Πcons
AR (U) under uncertain constraints.

zconsAR (U) = max
x∈X

f1(x) + min
u∈U

max
y(u)∈Y

f2
(
y(u)

)
gi(x,y(u),u) ≤ ci, ∀u ∈ U , ∀i ∈ I,

(1.2)

where U ⊂ Rp+ is a compact convex set, I is the set of indices for the constraints,

ci ∈ R+ for all i ∈ I and functions f1 : Rn1
+ → R+, f2 : Rn2

+ → R+ and gi :

Rn1+n2+p
+ → R+, i ∈ I satisfy the following conditions:

(A1) The function f1 is concave and satisfies f1(0) = 0.

(A2) f2 is concave and satisfies f2(0) = 0.

(A3) For all i ∈ I, gi is convex in x and y, concave and increasing in u and satisfies,

g(0,0,u) = 0, ∀u ∈ U
∂gi
∂uj

≥ 0, ∀j = 1, . . . , p, ∀x ∈ X,y ∈ Y

Moreover, given x̂ ∈ X and ŷ ∈ Y , the problem maxu∈U gi(x̂, ŷ,u) is solvable in

polynomial time.

(A4) Sets X and Y are convex and 0 ∈ X, 0 ∈ Y .

Assumptions (A1)-(A4) are fairly general and model two-stage adjustable robust

versions of a large class of deterministic convex optimization problems. In Section 1.2 we

illustrate that they hold for several important application areas. The assumption that

the objective functions f1 and f2 are concave and the constraint functions gi(·), i ∈ I
are convex are necessary for the above problem to be a convex optimization problem.

The assumption that f1(0) = f2(0) = 0 is without loss of generality as we can always

translate f1 and f2 to satisfy this condition. In addition, we assume that for all i ∈ I,

gi is an increasing concave function of u and g(0,0,u) = 0 for all u ∈ U . We require

the concavity assumption for the tractability of the static-robust problem.

Note that Πcons
AR (U) is a two-stage problem where x denotes the first-stage decision.

The uncertain parameters u ∈ U materialize after the first-stage decisions have been

made and we can then select the second-stage or recourse decision y(u) that depends

on u. The goal is to find x ∈ X such that for all u ∈ U there is a feasible recourse

decision y(u) and the total objective: f1(x) + f2(y(u)) is maximized over the worst-

case choice of u ∈ U . We note that in Πcons
AR (U), we only model uncertainty in the

constraints (for all i ∈ I, the constraint function gi is a function of u in addition to

the decision variables x,y(u)). There is no uncertainty in the objective function. We

also consider the problem where uncertainty appears in both constraints as well as

objective functions. This model is described in (4.1).

Since computing an optimal fully-adjustable solution for (1.2) is intractable in

general even when f1, f2 and gi, i ∈ I are linear (see Dyer and Stougie [13]), we consider
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the corresponding static-robust problem ΠRob(U):

zconsRob (U) = max
x∈X,y∈Y

f1(x) + f2(y)

gi(x,y,u) ≤ ci, ∀u ∈ U , ∀i ∈ I,
(1.3)

We show that it is tractable to compute an optimal static robust solution to (1.3)

and we compare the performance of an optimal static robust solution for the adjustable

robust problem (1.2). Note that under assumptions (A1)− (A4), both (1.2) and (1.3)

are feasible as x = 0,y(u) = 0 for all u ∈ U is a feasible solution for (1.2) and

x = 0,y = 0 is a feasible solution for (1.3). Therefore,

zconsAR (U) ≥ zconsRob (U) ≥ 0.

1.2 Applications

In this section, we illustrate the wide modeling flexibility of (4.1) by placing a variety

of problem domains in this framework.

1.2.1 Two-Stage Linear Optimization under Constraint Uncertainty

We first consider the classical two-stage adjustable robust linear maximization problem

with uncertainty in the constraint coefficients.

zLinAR(U) = max cTx + min
B∈U

max
y(B)∈Y

dTy(B)

Ax + By(B) ≤ h ∀B ∈ U
x ≥ 0

y(B) ≥ 0,

(1.4)

where A ∈ Rm×n1
+ is the first-stage constraint matrix, B is the uncertain second-

stage constraint matrix, c ∈ Rn1
+ , d ∈ Rn2

+ and h ∈ Rm+ . In the framework (1.2),

f1(x) = cTx that satisfies (A1), f2(y(B)) = dTy that satisfies (A2), and

gi(x,y,B) =

n1∑
j=1

Aijxj +

n2∑
j=1

Bijyj , i = 1, . . . ,m,

that satisfies (A3) as it is convex (linear) in x and y and concave (linear) and increasing

in B since x ≥ 0,y ≥ 0 and B ∈ Rm×n2
+ . Before discussing next several applications

of the framework of (1.4) we note that we can not model a linear covering constraint

in the framework (1.2), i.e., a constraint of the form aTx + uTy ≥ 1. To model this

constraint in (1.2), we require

g(x,y,u) = 1− aTx− uTy,

and the constraint can be formulated as g(x,y,u) ≤ 0. However, in this case g does

not satisfy (A3) as g(0,0,u) 6= 0. Even with this limitation, we are able to model
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many interesting and important applications that can not be formulated using models

in [8] and [9].

Revenue Management. We can model many revenue management problems in the

framework (1.4) as discussed briefly earlier. Here, we formulate a two-stage version of

the revenue management problem discussed in (1.1) in the framework (1.4) and we

consider the case where each demand possibly requires multiple resources in uncertain

amounts instead of a single resource. Suppose there are m resources with finite capacity

h ∈ Rm+ and two demand types: D1 (|D1| = n1) and D2 (|D2| = n2). Demands D1

have a known resource requirement given by a matrix A ∈ Rm×n1 (Aij denotes the

amount of resource i required per unit of demand j) and cj ∈ R+ is the revenue per unit

of satisfied demand j ∈ D1. The demands D2 have uncertain resource requirements

given by a matrix B ∈ U and dj is the revenue per unit of satisfied demand j ∈ D2.

The goal is to decide the optimal fraction of demands D1 that must be satisfied such

that the total worst case revenue is maximized.

To formulate this revenue management problem in the two-stage framework of (1.4),

let xj , j = 1, . . . , n1 denote the fraction of demand j ∈ D1 satisfied and the second-

stage variables yj(B), j = 1, . . . , n2 denote the fraction of demand j ∈ D2 satisfied.

The right-hand side of the constraints, h ∈ Rm+ , is the capacity vector of different

resources. Also,

X = [0, 1]n, Y = [0, 1]n.

With these parameters, the problem (1.4) formulates the above two-stage revenue man-

agement problem. This formulation can be extended to a multi-stage problem and

therefore, we can model a multi-stage resource allocation problem where there are

multiple demand types and all demands of type j arrive in stage j after irrevocable

allocation decisions have been made for demand types 1, . . . , j − 1.

Production Planning. We can formulate production planning problems under un-

certain production requirements as a special case of (1.4). In a production planning

problem, we need to produce n different products from m raw materials. Product j

generates a revenue of dj per unit for all j = 1, . . . , n and hi denotes the amount of raw

material i available for all i = 1, . . . ,m. If matrix B ∈ Rm×n denotes the uncertain

raw material requirements for all products, the robust production planning problem

can be formulated in the framework (1.4) with A = 0.

Network Design. We can also model a network design problem in the framework (1.4)

where the goal is to decide on edge capacities for satisfying an uncertain demand in the

framework of (1.4). In particular, consider the following problem: given an undirected

graph G = (V,E), let ce be the cost of one unit of capacity and ue be the maximum

possible capacity of edge e ∈ E. For any i, j ∈ V , rij is the uncertain demand from i to

j that realizes in the second-stage and let dij be the profit obtained from one unit of

flow from i to j. The goal is to decide on the capacity of the edges in the first stage and

the flow in the second-stage so that the total profit is maximized. This network design

problem arises in many important applications including capacity planning problems

under uncertain demand.

Let xe denote the fraction of total edge capacity ue that is not bought (recall we

are modeling in a maximization framework). Therefore, for all edges e ∈ E, (1 − xe)
is the fraction of edge capacity bought. Let Pij denote the set of paths from i to j for

i, j ∈ V . For any i, j ∈ V and P ∈ Pij , let fP (r) denote the flow on path P , when the
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demand vector is r. We can formulate the network design problem as follows.

max cTx + min
r∈U

∑
i,j∈V

dij

 ∑
P∈Pij

fP (r)


uexe +

∑
i,j∈V

∑
P∈Pij :e∈P

rijfP (r) ≤ ue, ∀e ∈ E

0 ≤ fP ≤ 1, ∀P ∈ Pij , ∀i, j ∈ V,

which falls within the framework (1.4).

1.2.2 Quadratically Constrained Problems

In this section, we formulate quadratically constrained problems under uncertainty in

the constraints in the framework of (1.2). Consider the following two-stage maximiza-

tion problem, ΠQuad
AR ,

zQuad
AR = max

x
cTx + min

Q∈U
max
y(Q)

dTy(Q)

xTPx + y(Q)TQy(Q) ≤ t, ∀ Q ∈ U
x ∈ Rn1

+

y(Q) ∈ Rn2
+ ,

(1.5)

where U ⊂ Sn2
+ ∩R

n2×n2
+ is the set of uncertain values Q ∈ Sn2

+ ∩R
n2×n2
+ and P ∈ Sn1

+
(Sn+ denotes the set of symmetric positive semidefinite matrices in dimension n × n).

In the framework of (1.2), u = Q and we have the following functions:

f1(x) = cTx,

f2(y) = dTy,

g(x,y,Q) = xTPx + yTQy.

The objective functions f1, f2 are concave (linear) and satisfy (A1) and (A2). The

constraint function, g is convex in x and y since P and Q are positive semidefinite,

and concave (linear) in Q. Also, g(0,0,Q) = 0 for all Q ∈ U and it is increasing in Q

as
∂g(x,y,Q)

∂Qij
= yiyj ≥ 0, ∀i, j = 1, . . . , n2, ∀x,y ≥ 0.

Therefore, g satisfies Assumption (A3) and problem (1.5) can be modeled in the frame-

work of (1.2). An example of (1.5) includes a portfolio optimization problem where the

covariance matrix is uncertain and the goal is to find a portfolio such that the return

is maximized and the worst-case variance is at most a given threshold t. Since this is

a one-period problem and there is no recourse decision unlike (1.5), we can formulate

it as a static-robust problem in the framework of (1.3) where x = 0, y denotes the

portfolio vector, and u = Q where Q is the uncertain covariance matrix. As above, the

functions f2 and g are defined as

f2(y) = dTy, g(x,y,Q) = yTQy.
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1.2.3 Semidefinite Programming

In this section, we formulate semidefinite optimization problems under uncertain con-

straints in the framework of (1.2). Consider the following two-stage maximization prob-

lem, ΠSDP
AR :

zSDP
AR = max

X
C ·X + min

Q∈U
max
Y (Q)

D · Y (Q)

P ·X + Q · Y (Q) ≤ t, ∀ Q ∈ U

X ∈ Sn1
+ ∩R

n1×n1
+

Y (Q) ∈ Sn2
+ ∩R

n2×n2
+ , ∀Q ∈ U ,

(1.6)

where U ⊂ Rn2×n2
+ and P ∈ Rn1×n1

+ . Note that C ·X denotes the trace of matrices

C and X. In the general framework of (1.2), we have the following functions:

f1(X) = C ·X,

f2(Y ) = D · Y ,
g(X,Y ,Q) = P ·X + Q · Y .

The functions f1, f2 are linear functions and satisfy (A1) and (A2). The constraint

function g is linear in X, Y and also in u = Q. Also, g(0,0,Q) = 0 for all Q ∈ U and

g is increasing in u = Q as

∂g

∂Qij
= Yij ≥ 0, ∀i, j = 1, . . . , n2, ∀Y ∈ Sn2

+ ∩R
n2×n2
+ .

Therefore, g satisfies Assumption (A3).

2 Contributions

In this paper, we show that the two-stage adjustable robust convex optimization prob-

lem under uncertainty as defined in (1.2) can be well approximated by an optimal

solution to the corresponding robust version defined in (1.3) under Assumptions (A1)-

(A4). Furthermore, we show that an optimal static-robust solution can be computed

in polynomial time. We relate the performance of the static robust solution for the

adjustable robust problems to fundamental geometric properties of the uncertainty

set, namely, symmetry and the translation factor. Let us introduce these geometric

properties in order to discuss the results further.

Symmetry of a convex set. Given a nonempty compact convex set U ⊂ Rm and a

point u ∈ U , we define the symmetry of u with respect to U as follows:

sym(u,U) := max{α ≥ 0 : u + α(u− u′) ∈ U , ∀u′ ∈ U}. (2.1)

Then, the symmetry of U is defined as follows.

sym(U) = max
u∈U

sym(u,U), (2.2)

and the maximizer of the above quantity is referred to as the point of symmetry of U .

This notion of symmetry was introduced in [20]. In general, 1/m ≤ sym(U) ≤ 1 and

if the set U is absolutely symmetric sym(U) = 1.
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The translation factor ρ(u,U). For a convex compact set U ⊂ Rm+ , following [9], we

define a translation factor ρ(u,U), the translation factor of u ∈ U with respect to U ,

as follows.

ρ(u,U) = min{α ∈ R+ | U − (1− α) · u ⊂ Rm+ }.

In other words, U ′ := U − (1 − ρ)u is the maximum possible translation of U in the

direction −u such that U ′ ⊂ Rm+ . Figure 1 gives a geometric picture. Note that for

α = 1, U − (1−α) ·u = U ⊂ Rm+ . Therefore, 0 < ρ ≤ 1. And ρ approaches 0, when the

set U moves away from the origin. If there exists u ∈ U such that u is at the boundary

of Rm+ , then ρ = 1. We denote

ρ(U) := ρ(u0,U),

where u0 is the symmetry point of the set U .

Fig. 1 Geometry of the translation factor.

For the two-stage adjustable robust convex optimization problem, Πcons
AR (U) as de-

fined in (1.2) where the constraints are uncertain, we show that

zconsRob (U) ≤ zconsAR (U) ≤
(

1 +
ρ

s

)
· zconsRob (U),

where zconsRob (U) is the objective value of an optimal static robust solution of (1.3)

and s = sym(U) and ρ = ρ(U) are the symmetry and the translation factors of

the uncertainty set U . In particular, if the uncertainty set U is symmetric (such as a

hypercube, ellipsoid, or a norm-ball), the bound is 2, i.e., the objective value of the

optimal adjustable robust solution is at most twice the objective value of an optimal

static-robust solution.
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We note that most commonly used uncertainty sets are absolutely symmetric. For

instance, a parameter uncertainty is very commonly modeled as an interval leading to a

hypercube uncertainty set. If we want to avoid possibly conservative corner points in the

uncertainty sets, we consider uncertainty sets like ellipsoids and other norm-balls which

are also absolutely symmetric. Therefore, an optimal static robust solution that can be

computed efficiently provides a good approximation for the adjustable robust problem.

This bounds are similar to the bounds presented in [8] and [9] for the performance

of a static robust solution for adjustable robust linear minimization problems where

the uncertainty appears in the right hand side of the constraints. However, the models

studied in this paper are very general and address uncertain convex constraints and

objectives as opposed to just linear problems. To the best of our knowledge, these are

the first approximation bounds for adjustable robust convex optimization problems in

such generality.

The rest of the paper is structured as follows. In Section 3, we show that for two-

stage adjustable robust convex optimization problems under constraint uncertainty

only, we show that the static solution provides a good approximation under fairly gen-

eral assumptions. We further show in Section 3.1 that an optimal static solution can be

arbitrarily worse than an optimal fully-adjustable solution for stochastic optimization

problems under constraint uncertainty even for a linear model. In Section 4, we extend

the results to incorporate uncertainty both in constraints and the objective. In Section

5, we extend further the results to multi-stage problems.

3 Two-stage Adjustable Robust Convex Optimization

In this section, we prove the following bound on the performance of static robust

solutions with respect to an optimal fully-adjustable solution.

Theorem 1 Consider the problem defined in (1.2) and the corresponding robust prob-

lem defined in (1.3). Let s = sym(U) and ρ = ρ(U). Then, under Assumptions (A1)-

(A4)

zconsRob (U) ≤ zconsAR (U) ≤
(

1 +
ρ

s

)
· zconsRob (U).

In preparation of the proof of Theorem 1 we present several lemmas.

Lemma 1 (Bertsimas et al. [9]) Let U ⊂ Rp+ be a compact convex set and let u0

be the point of symmetry of U . Then,

u ≤
(

1 +
ρ(U)

sym(U)

)
u0, ∀u ∈ U . (3.1)

Lemma 2 For any 0 ≤ α ≤ 1, x ∈ X,y ∈ Y , u ∈ U ,

(a) Under Assumption (A1), f1(αx) ≥ αf1(x).

(b) Under Assumption (A2), f2(αy) ≥ αf2(y).

(c) Under Assumption (A3), for all i ∈ I, gi(αx, αy,u) ≤ αgi(x,y,u).

Proof (a) Recall that f1 is concave and f1(0) = 0 from (A1). Therefore, for any

0 ≤ α ≤ 1,

f1(αx) = f1((1− α)0 + αx)

≥ (1− α)f1(0) + αf1(x)

= αf1(x),
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where the second last inequality follows from concavity of f1 and the last equation

follows as f1(0) = 0. A similar argument also proves part (b), i.e.,

f2(αy) ≥ αf2(y).

(c) For any i ∈ I, under Assumption (A3) gi is jointly convex in x and y and

gi(0,0,u) = 0 for all u ∈ U . Therefore, for any 0 ≤ α ≤ 1,

gi(αx, αy,u) = gi
(
(1− α)(0,0,u) + α(x,y,u)

)
≤ (1− α)gi(0,0,u) + αgi(x,y,u)

= αgi(x,y,u).

Lemma 3 For any β ≥ 1, x ∈ X,y ∈ Y , u ∈ U and under Assumption (A3)

gi(x,y, βu) ≤ βgi(x,y,u).

Proof Since gi is concave and increasing in u, we have

gi(x,y,u) = gi

((
1− 1

β

)(
x,y,0

)
+

1

β

(
x,y, βu

))
≥
(

1− 1

β

)
gi(x,y,0) +

1

β
gi(x,y, βu)

≥ 1

β
gi(x,y, βu),

where the second last inequality follows as gi is concave in u and the last inequality

follows as gi(x,y,0) ≥ 0 for all x ∈ X,y ∈ Y .

Proof of Theorem 1 Let u0 be the point of symmetry of U (that is the maximizer

in (2.2)) and s = sym(u0,U). Suppose x∗,y∗(u) for all u ∈ U be an optimal fully

adjustable solution for (4.1). Therefore,

zconsAR (U) = f1(x∗) + min
u∈U

f2(y∗(u)) ≤ f1(x∗) + f2(y∗(u0)). (3.2)

Let

α =
1

(1 + ρ/s)
,

and let x̂ = αx∗ and ŷ = αy∗(u0). First, we show that x̂ ∈ X and ŷ ∈ Y . Recall that

X and Y are convex and 0 ∈ X,0 ∈ Y . Also, x∗ ∈ X,y∗(u0) ∈ Y . Therefore,

(1− α)0 + αx∗ = x̂ ∈ X, (1− α)0 + αy∗(u0) = ŷ ∈ Y.

For any i ∈ I, u ∈ U we have

gi(x̂, ŷ,u) = gi(αx
∗, αy∗(u0),u)

≤ α · gi(x∗,y∗(u0),u) (3.3)

≤ α · gi
(
x∗,y∗(u0),

1

α
u0

)
(3.4)

≤ α · 1

α
· gi(x∗,y∗(u0),u0) (3.5)

≤ ci,
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where (3.3) follows from Lemma 2(c). Inequality (3.4) follows as gi is increasing in

u and u ≤ (1/α)u0 from (3.1). Inequality (3.5) follows from Lemma 3 and the last

inequality follows as x∗,y∗ is a feasible fully-adjustable solution. Therefore, x̂, ŷ is a

feasible solution for (1.3).

Let zconsRob (U) be as defined in (1.3). Now,

zconsRob (U) ≥ f1(x̂) + f2(ŷ)

= f1(αx∗) + f2
(
αy∗(u0)

)
≥ αf1(x∗) + αf2

(
y∗(u0)

)
(3.6)

= α
(
f1(x∗) + f2(y∗(u0))

)
≥ α · zconsAR (U), (3.7)

where (3.6) follows from Lemma 2(a) and 2(b) and (3.7) follows from (3.2).

We next show that we can efficiently compute an optimal static-robust solution to (1.3).

Theorem 2 Under Assumptions (A1)-(A4) an optimal static robust solution to (1.3)

can be computed in polynomial time.

Proof We show that given any x ∈ X,y ∈ Y , we can solve the separation problem in

polynomial time, i.e., verify that x,y is feasible to (4.4) or find a violated constraint in

polynomial time. From the equivalence between separation and optimization [17], we

know that an optimal solution to (4.4) can be computed in polynomial time.

The separation problem is the following: given a solution x̂ ∈ X, ŷ ∈ Y , we need

to decide whether there exist i ∈ I and u ∈ U such that gi(x̂, ŷ,u) > ci. Let

zi = max
u∈U

gi(x̂, ŷ,u).

Under Assumption (A3), gi is concave in u and U is convex, and the above maximiza-

tion problem is a convex optimization problem that can be solved efficiently. Thus, we

can compute zi for all i ∈ I. If for any i′ ∈ I, zi′ > ci′ , then there exists u ∈ U such

that

gi(x̂, ŷ,u) > ci,

which implies that x̂, ŷ is not feasible for (1.3). On the other hand, if zi ≤ ci for all

i ∈ I, it implies that

gi(x̂, ŷ,u) ≤ ci, ∀u ∈ U , i ∈ I,

implying that x̂, ŷ is feasible. Hence, the separation problem can be solved in polyno-

mial time.

3.1 Large Gap Instance for Stochastic Optimization

While we show that the performance of a static robust solution for the adjustable robust

maximization problem under uncertain convex constraints and objective is good under

fairly general assumptions, the same is not true for the stochastic optimization problem

under constraint uncertainty even for a linear problem. Consider the following instance.

max Eθ[x(θ)]

θx(θ) ≤ 1, ∀θ ∈ [1/eM , 1],
(3.8)
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where θ is uniformly distributed between 1/eM and 1 for some large M ∈ R. It is easy to

see that the optimal objective value of a fully-adjustable solution is M(1− e−M ) while

the optimal static solution is x = 1 with objective value 1. Therefore, the static solution

can be arbitrarily worse as compared to a fully-adjustable solution for the stochastic

optimization problem under constraint coefficient uncertainty. Note that an adjustable

robust solution can also be highly suboptimal for the stochastic optimization problem

in general, however, the above example shows that we can not prove similar bounds

on the performance of static solutions for the case of stochastic convex optimization

problems under similar assumptions.

4 Two-stage Robust Convex Optimization: Constraint and Objective

Uncertainty

In this section, we consider an extension to the model when both constraints and

objective are uncertain. In particular, we study the following adjustable robust version

of a two-stage convex optimization problem ΠAR(U) under uncertain constraint and

objective functions.

zAR(U) = max
x∈X

f1(x) + min
u∈U

max
y(u)∈Y

f2
(
y(u),u

)
gi(x,y(u),u) ≤ ci, ∀u ∈ U , ∀i ∈ I,

(4.1)

where U ⊂ Rp+ is a compact convex set, I is the set of indices for the constraints,

ci ∈ R+ for all i ∈ I. Similar to (1.2), the objective function f1 : Rn1 → R+ satisfies

(A1), the constraint function gi : Rn1+n2+p → R+, i ∈ I satisfies (A3), and sets X

and Y satisfy (A4). We also make the following assumption for f2.

(A5) f2 : Rn2+p → R+ is concave in y and convex and decreasing in u and satisfies

f2(0,u) = 0,∀u ∈ U ,

f2(y, βu) ≥ 1

β
· f2(y,u), ∀β ≥ 1,y ∈ Y,u ∈ U .

(4.2)

Moreover, we assume that given ŷ ∈ Y , the problem minu∈U f2(ŷ,u) is solvable

in polynomial time.

This assumption is necessary for the tractability of the separation problem for comput-

ing an optimal static robust solution. Note that the second-stage objective function,

f2 depends on both, the decision variable y(u), as well as the uncertain vector u ∈ U .

Therefore, we can model uncertainty in the objective function in this framework while

in (1.2), the objective function was not uncertain.

As an example of an application that can be formulated in the framework (4.1),

consider the following maximization problem with a fractional objective under con-

straint and objective uncertainty. We first consider the classical two-stage adjustable

robust linear maximization problem with uncertainty in the constraint coefficients and

in the objective.

zFracAR (U) = max cTx + min
(B,d)∈U

max
y(B,d)∈Y

n2∑
j=1

1

dj
· y(B,d)

Ax + By(B,d) ≤ h ∀(B,d) ∈ U
x ≥ 0

y(B,d) ≥ 0,

(4.3)
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where A ∈ Rm×n1
+ is the first-stage constraint matrix, B is the uncertain second-stage

constraint matrix and d define the uncertain second-stage objective and (B,d) ∈ U ⊂
Rm×n2×n2
+ , c ∈ Rn1

+ and h ∈ Rm+ . In the framework (4.1), f1(x) = cTx that satisfies

Assumption (A1),

gi(x,y, (B,d)) =

n1∑
j=1

Aijxj +

n2∑
j=1

Bijyj , i = 1, . . . ,m,

that satisfies Assumption (A3) as it is convex (linear) in x and y and concave (linear)

and increasing in (B,d) since x ≥ 0,y ≥ 0 and B ∈ Rm×n2
+ . Also,

f2(y, (B,d)) =

n2∑
j=1

1

dj
· yj .

Note that f2 satisfies Assumption (A5): f2 is concave (linear) in y and convex in d

(and therefore, (B,d)). Also, f2 is decreasing in (B,d) and for all (B,d) ∈ U , β ≥ 1,

f2 satisfies (4.2), i.e., f2(0, (B,d)) = 0, and

f2(y, β(B,d)) =

n2∑
j=1

1

βdj
yj

=
1

β

n2∑
j=1

1

dj
yj

=
1

β
f2(y, (B,d)).

Such a fractional objective can arise in problems where there is a functional relation-

ship between constraint and objective uncertainty. For instance, consider a revenue

management problem where the objective coefficients correspond to the price while

constraint coefficients correspond to the resource requirements. The uncertainty in

both these elements is driven by the uncertainty in demand: if a particular demand

j is high, the resource requirement would be high which implies the constraint coef-

ficients Bij , i = 1, . . . ,m are high, while the corresponding price, i.e., the objective

coefficient of yj is small. Therefore, we need a fractional objective function to model

such a functional relationship.

Since it is intractable to compute an optimal fully-adjustable solution for (4.1) in

general even when f1, f2 and gi, i ∈ I are linear (see Dyer and Stougie [13]), we consider

the following corresponding static robust problem, ΠRob(U).

zmax
Rob (U) = max

x∈X,y∈Y
f1(x) + min

u∈U
f2(y,u)

gi(x,y,u) ≤ ci, ∀u ∈ U , ∀i ∈ I,
(4.4)

We prove a bound on the performance of static robust solutions with respect to an

optimal fully-adjustable solution. In particular, we prove the following theorem.

Theorem 3 Consider the problem defined in (4.1) and the corresponding robust prob-

lem defined in (4.4). Let s = sym(U) and ρ = ρ(U). Then, under Assumptions (A1),

(A3)-(A5)

zRob(U) ≤ zAR(U) ≤
(

1 +
ρ

s

)2
· zRob(U).
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Note that the approximation bound is worse than the bound in Theorem 1 where

we consider the model, Πcons
AR (U) where only the constraints are uncertain. We first

show that we can efficiently compute an optimal static-robust solution to (4.4).

Theorem 4 Under Assumptions (A1), (A3)-(A5), an optimal static robust solution

to (4.4) can be computed in polynomial time.

Proof The separation problem is the following: given a solution x̂ ∈ X, ŷ ∈ Y, θ̂ ∈ R,

we need to decide whether there exist i ∈ I and u ∈ U such that gi(x̂, ŷ,u) > ci or

there exist u ∈ U such that f2(ŷ,u) < θ̂. The separation problem over the constraints

gi is same as in (1.3) and can be solved by computing

zi = max
u∈U

gi(x̂, ŷ,u),

which is a polynomial time solvable problem under Assumption (A3).

The objective function f2 is also uncertain and we need to verify whether θ̂ ≥
f2((ŷ,u for all u ∈ U . Let

θ = min
u∈U

f2(ŷ,u).

Since f2 is convex in u and U is convex, the above maximization problem is a convex

optimization problem and can be solved in polynomial time under Assumption (A5).

If θ < θ̂, there exists u ∈ U such that f2(ŷ,u) < θ̂.

Let us first prove the following property for f2.

Lemma 4 For any y ∈ Y , u ∈ U and 0 ≤ α ≤ 1,

f2(αy,u) ≥ αf2(y,u).

Proof Recall that f2 is concave in y and f2(0,u) = 0 for all u ∈ U . Therefore, for

any 0 ≤ α ≤ 1,

f2(αy,u) = f2((1− α)(0,u) + α(y,u))

≥ (1− α)f2(0,u) + αf2(y,u)

= αf2(y,u),

where the second last inequality follows from concavity of f2 and the last equation

follows as f2(0,u) = 0.

Proof of Theorem 3 Let u0 be the point of symmetry of U and s = sym(u0,U).

Suppose x∗,y∗(u) for all u ∈ U be an optimal fully adjustable solution for (4.1).

Therefore,

zAR(U) = f1(x∗) + min
u∈U

f2(y∗(u),u) ≤ f1(x∗) + f2(y∗(u0),u0). (4.5)

Let α = 1
(1+ρ/s)

, and let x̂ = αx∗ and ŷ = αy∗(u0). Using an argument similar to

the proof of Theorem 1, we can show that (x̂, ŷ) is a feasible solution for (4.4).
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Therefore,

zRob(U) ≥ f1(x̂) + min
u∈U

f2(ŷ,u)

≥ f1(x̂) + f2

(
ŷ,

1

α
u0

)
(4.6)

= f1(αx∗) + f2

(
αy∗(u0),

1

α
u0

)
≥ αf1(x∗) + f2

(
αy∗(u0),

1

α
u0

)
(4.7)

≥ αf1(x∗) + αf2

(
y∗(u0),

1

α
u0

)
(4.8)

≥ αf1(x∗) + α · αf2(y∗(u0),u0) (4.9)

≥ α2(f1(x∗) + f2(y∗(u0),u0)
)

(4.10)

≥ α2 · zAR(U), (4.11)

where (4.6) follows as f2 is decreasing in u (Assumption (A5)), and for all u ∈ U ,

u ≤ 1/α·u0. Inequality (4.7) follows from Lemma 2(a) and from (A1). Inequality (4.8)

follows from Lemma 4. Inequality (4.9) follows from (4.2). Inequality (4.10) follows as

α ≤ 1 and f1(x∗) ≥ 0 and the last inequality follows from (4.5).

5 Multi-stage Adjustable Robust Convex Optimization

In this section, we consider the multi-stage extension to the two-stage adjustable robust

convex optimization problems considered in previous sections. In a multi-stage problem,

uncertainty is revealed in multiple stages and the decision in each stage depends only

on the realization of the uncertain parameters in the past stages. Many applications

including the dynamic knapsack problem and the applications in revenue management

as discussed in (1.1) are examples of multi-stage problems.

Let us first introduce the multi-stage model. For each k = 1, . . . ,K, uk denotes the

uncertain parameters in stage k+1 and yk(u1, . . . ,uk) denote the decision in stage k+

1. Note that the decision in stage k+1 depends on the uncertain parameter realization

in stages 2 to k+1. The uncertain vector uk ∈ Uk for each k = 1, . . . ,K. In general, the

uncertainty set Uk in stage k+1 depends on the realization of the uncertain parameters

in previous stages. Such a multi-stage uncertainty evolution can be represented as a

directed layered network where each stage corresponds to a layer and the nodes in each

layer represent the possible uncertainty sets in that stage. Such an uncertainty network

is a generalization of the scenario tree model (see Shapiro et al. [23]) and is discussed in

detail in [9]. For a general uncertainty evolution network, a static solution is not a good

approximation of the fully-adjustable model. However, Bertsimas et al. [9] show that a

finitely adjustable solution where instead of a single (static) solution, a small number

of solutions is specified and for each possible realization of the uncertain parameters,

at least one of the solution is a good approximation for the linear constrained model

with right hand side and objective coefficient uncertainty. Moreover, the number of

solutions in the finitely adjustable solution policy depend on the total number of paths

from the root node in the uncertainty network to nodes corresponding to last stage.

Due to the space constraint and for the sake of notational convenience, we present

only the case where the uncertainty network is a single path. The ideas extend to the

case where there are multiple paths in the network in a straightforward manner using
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ideas from Bertsimas et al. [9] where we associate one solution for each path in the un-

certainty network to construct a finitely adjustable solution. We consider the following

adjustable robust maximization problem under constraint function uncertainty, Πmult
AR .

zmult
AR = max

x∈X
f1(x) + min

u1∈U1
max

y1(u1)

(
min

u2∈U2
max

y2(u1,u2)

(
. . .

min
uK∈UK

max
yK(u1,...,uK)

f2(y1(u1), . . . ,yK(u1, . . . ,uK))
)
. . .

)
gi(x,y1(u1), . . . ,yK(u1, . . . ,uK),u1, . . . ,uK) ≤ ci,

∀uk ∈ Uk, ∀i ∈ I, k ∈ [K]
(5.1)

where Uk ⊂ Rpk+ , k = 1, . . . ,K is a compact convex set, I is the set of indices for the

constraints, ci ∈ R+ for all i ∈ I and functions f1 : Rn → R+, f2 : R(n1+...+nk) →
R+ and gi : Rn+(n1+p1)+...+(nk+pk) → R+, i ∈ I satisfy Assumptions (A1)-(A4).

These assumptions can be translated to the assumptions in the multi-stage model by

assuming that u = (u1, . . . ,uK) and y = (y1, . . . ,yK). Note that we consider that the

uncertainty set Uk in stage k + 1 does not depend on the realization of the uncertain

parameters in the previous stages and thus, the uncertainty evolution network is a path.

We can formulate the corresponding static robust optimization problem as follows.

zmult
Rob = max f1(x) + f2(y1, . . . ,yK)

gi(x,y1, . . . ,yK ,u1, . . . ,uK) ≤ ci, ∀uk ∈ Uk, k = 1, . . . ,K ∀i ∈ I
x ∈ X
yk ∈ Yk, k = 1, . . . ,K.

(5.2)

The above multi-stage problem can be considered as a two-stage problem where the

second-stage decision is (y1, . . . ,yK) ∈ Y1 × . . . × Yk and the uncertain vector is

(u1, . . . ,uK) ∈ U1×. . .×UK . The multi-stage problem where the uncertainty evolution

network is a path essentially reduces to a two-stage problem. From Theorem 2, we know

that an optimal solution to (5.2) can be computed in polynomial time.

We show that a single (static) solution is a good approximation of the fully-

adjustable problem Πmult
AR when the uncertainty evolution network is a path. In partic-

ular, we prove the following theorem.

Theorem 5 Consider the problem Πmult
AR defined in (5.1) and the corresponding prob-

lem defined in (5.2). For all k = 1, . . . ,K, let sk = sym(Uk), ρk = ρ(Uk and

s = min
k=1,...,K

sk, ρ = max
k=1,...,K

ρk.

Then, under Assumptions (A1)-(A4)

zmult
Rob ≤ z

mult
AR ≤

(
1 +

ρ

s

)
· zmult
Rob .

In the interest of space, we only include a sketch of the proof which proceed along

similar lines as the proof of Theorem 1. We construct a feasible solution for (5.2)

from an optimal fully-adjustable solution for (5.1). In particular, if u0
k is the point of
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symmetry of Uk, and x∗,y∗k(u1, . . . ,uk) for all u1 ∈ U1, . . . ,uk ∈ Uk, k = 1, . . . ,K is

an optimal fully-adjustable solution for Πmult
AR . Then we show that the solution

x̂ =
1

(1 + ρ/s)
x∗, ŷk =

1

(1 + ρ/s)
y∗k(u0

1, . . . ,u
0
k), k = 1, . . . ,K,

is a feasible solution for (5.2) under Assumptions (A3) and (A4) satisfied by the

constraint functions. Moreover, under Assumptions (A1) and (A2) for the objective

functions, we show that this feasible solution has an objective value of 1/(1 + ρ/s)

fraction of zmult
AR , thus, proving the desired performance bound for static solutions.

6 Conclusions

In this paper, we propose a tractable approximation for very general adjustable robust

convex optimization problems where uncertainty appears both in the constraints as well

as the objective. In fact, we show that a static robust solution is a good approximation

for such problems under fairly general assumptions and the performance depends on the

geometric properties of the uncertainty set, namely, the symmetry and the translation

factor. The models considered in the paper are significant extensions of the results in [8]

and [9] and allow us to formulate important applications such as revenue management,

scheduling and portfolio optimization that were not addressed in the earlier work.

In any real-world problem, the choice of how to model uncertainty lies with the

modeler. Since our results relate the performance bounds to the geometric properties

of the uncertainty set, they provide useful guidance towards choosing a specific un-

certainty set for a particular application such that the performance of static-robust is

good. Moreover, since an optimal static solution can be computed efficiently in most

cases, the results in this paper provide a strong justification for the practical applica-

bility of the robust optimization approach in many important applications.
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