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1. Introduction

1.1 Background and Motivation Nisan and Ronen [14] introduced the field of “Algorithmic
Mechanism Design” by studying the problem of truthful scheduling on unrelated machines, a problem
that takes a central place in this field ever since. The problem of job scheduling on unrelated machines is
classic in the disciplines of CS and OR. In this problem, a designer needs to assign n jobs to m machines,
where it takes machine i tji time units to process job j. If machine i is assigned a set Si of jobs it needs∑
j∈Si

tji time units in order to complete its assignment. This is termed the “load” of the machine. A
popular goal is to find an assignment that minimizes the makespan – the maximal load over all machines.
This corresponds to the time where the processing of all jobs will be completed. Other popular goals are
to minimize the sum of completion times of the schedule and to minimize the lp norm of the schedule.

Nisan and Ronen add a game-theoretic viewpoint to this model, in the spirit of mechanism design: the
machines are viewed as selfish “workers”, and the processing times of each machine/worker are private
information to that machine. In addition, each machine incurs a fixed cost of say one dollar for each time
unit it devotes to processing its given tasks. The utility of each machine is quasi-linear – the payment she
receives for her work minus the cost incurred to her by performing her assigned work. Before assigning
the jobs to the machines, the designer now needs to first extract the processing times from the different
machines (considering the possibility that a machine may misreport her true processing times if this will
increase her utility), and in addition, determine payments to the machines in order to compensate them
for their efforts.

An easy observation made by Nisan and Ronen is that the well-known VCG mechanism guarantees
a makespan of at most m times the optimal makespan, while making it the dominant strategy of each
machine to report its true type.1 Following the OR/CS literature this m factor is called the approximation
ratio of the mechanism. Clearly, an m approximation ratio is a very large ratio. A main technical effort of

1The VCG mechanism, in our context, assigns each job to the machine i that has the lowest cost for this job, and makes

a payment equal to the second lowest cost of this job to machine i. One can verify that, in this mechanism, and regardless

of the reports of the other machines, machine i will maximize its utility by reporting her true cost vector. Equivalently,

truthfulness is a dominant strategy.
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Nisan and Ronen was to show that nothing better is possible. They succeeded in this only very partially,
showing that no truthful deterministic mechanism2 can obtain an approximation ratio better than 2,
i.e. every truthful mechanism must sometimes result in an assignment with makespan at least twice the
optimal makespan. Nisan and Ronen were unable to close the large gap between 2 and m, but conjectured
that the upper bound is tight:

Conjecture (Nisan-Ronen): No truthful deterministic mechanism for unrelated job scheduling can
achieve an approximation ratio better than m to the makespan.

This problem gained increasing importance in the algorithmic-game-theory community over the past
decade, for three main reasons:

• Demonstrates the interaction between game-theory, OR, and CS: This scheduling
problem is fundamental in OR and CS, and captures many real-world situations. The assumption
that the machines are selfish entities is a very natural extension of the scheduling model that has
been studied for decades. Successful application of game-theoretic tools that will yield scheduling
methods that are resistant to selfish behavior may therefore be influential both theoretically and
practically.

• Suggests unconventional goals for mechanism design models: Mechanism design usu-
ally considers two possible design goals – either maximize the “social welfare” or the designer’s
revenue. While these two goals are indeed very natural, the unrelated job-scheduling problem
demonstrates that settings adjusted from different disciplines may yield new goals. In fact, one
may view the makespan-minimization goal as a variant of a max-min fairness condition, connect-
ing this mechanism design problem to social choice issues. The problem may also be viewed as a
very basic principal-agent model. Regardless of the interpretation, the point is that the study of
an implementation goal different than welfare maximization or revenue maximization in a classic
incomplete information setting may enrich the set of tools that mechanism design offers.

• Serves as a tool to study the possibility – impossibility border of dominant-strategy
implementability in multi-dimensional settings: The theory of mechanism design is still
vague and unclear about what kinds of dominant-strategy mechanisms other than VCG exist
when the domain of players’ types is multi-dimensional. This problem is an excellent example,
and one may hope that a successful resolution will generalize to other settings as well, or at least
yield new methods for the exploration of the general issue.

A decade later, although gaining increasing importance and being extensively studied, the conjecture of
Nisan and Ronen is far from being solved. In fact, despite many efforts by the community, no additional
evidence, to either support the conjecture or to weaken the belief in it, has been provided. Only recently,
Christodoulou et al. [6] were able to slightly improve the lower bound from 2 to 2.41, further improving it
to 2.61 later by Koutsoupias and Vidali [11]. Mu’alem and Schapira [13] and Christodoulou et al. [4] prove
a similar lower bound of 2 − (1/m) for randomized and fractional mechanisms, respectively. Dobzinski
and Sundararajan [9] and Christodoulou et al. [5] attempted to characterize truthful mechanisms for this
problem, but succeeded in doing so only for the very limited case of 2 machines. The result of Dobzinski
and Sundararajan also yields a lower bound of 2 on the approximation ratio w.r.t the weighted sum of
completion times of any truthful mechanism. All these papers involve many non-trivial observations and
technicalities, further emphasizing the basic difficulties that this problem entails.

A different line of research attempted to find special cases of the problem that can be successfully
solved. Archer and Tardos [2] suggested to restrict players’ types to be “one-parameter” by studying the
model of related machines: the processing time of a job j on machine i is determined by dividing its
“basic” processing time (which is now fixed and known) by the “speed” of machine i (which is the only
private parameter of the machine). Mechanisms for single-dimensional problems are easier to design,
and indeed this model gives rise to many positive results. Archer and Tardos show that there exists
a truthful mechanism that always results in the optimal makespan for this setting. Many other works
examined the computational complexity of the various possible mechanisms, with two recent notable
truthful PTASs that essentially conclude all computational efforts in this direction by Dhangwatnotai et
al. [8] and Christodoulou, et al. [7]. Back in the multi-parameter setting, Lavi and Swamy [12] consider

2A truthful mechanism is a direct mechanism in which reporting the true type is a dominant strategy.
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a special case where processing times can take only two possible values, “low” and “high”, and give
several truthful mechanisms with constant-factor approximation ratios. Yu [16] extends this result to a
two-range-values variant of the problem.

Interestingly, all the known lower bounds are just small constants, and there are no super-constant lower
bounds. Furthermore, as mentioned before, several truthful mechanisms that provide good approximation
ratios for non-trivial special cases have been presented. At this point, the skeptical reader may start
doubting the correctness of the Nisan-Ronen conjecture. Perhaps one should interpret the low values
of the upper bounds for the special cases and the previous lower bounds as a signal that a truthful
mechanism with a good approximation ratio does exist?

1.2 Our Result In this paper we give the first strong, concrete evidence to the correctness of the
Nisan-Ronen conjecture.

Theorem: No anonymous truthful mechanism for job-scheduling on unrelated machines can achieve an
approximation ratio better than m with respect to the makespan.

The theorem abstracts away from the specific technicalities of the makespan optimization goal, and thus
we are able to show with almost no additional technical effort similar lower bounds for other optimization
criteria as well. For example, we show a lower bound of m for the sum of completion times, and a lower
bound of m1−1/p for minimizing the lp norm. In all cases we show that the VCG mechanism obtains
exactly these bounds, and is thus in this respect the best truthful mechanism which is anonymous.

A mechanism is anonymous, roughly speaking, if whenever two machines switch costs, the job assign-
ments of the two machines also switch.3 Note that this is the best lower bound possible as the Nisan-Ronen
algorithm is anonymous. Let us explicitly spell out why the class of anonymous mechanisms is of interest:

• Algorithmic Perspective: The classic algorithms for scheduling on unrelated machines are
indeed anonymous. There does not seem to be an algorithmic reason that explains why a specific
naming of the machines can help.

• Mechanism Design Perspective: Indeed, it is very easy to come up with non-anonymous
mechanisms. However, are non-anonymous mechanisms more powerful than anonymous ones?
All state-of-the-art mechanisms for the special cases in the recent literature are anonymous
(for example Lavi and Swamy [12] and Dhangwatnotai et al. [8]). This might suggest that
anonymous mechanisms for this problem are as powerful as non-anonymous mechanisms.4 In
fact, a separation between the power of these two classes will be remarkable.

• Game-Theoretic Importance: Not only are anonymous games interesting from a mechanism-
design perspective, they are well-studied also from a wider game-theoretic point of view. In
particular, anonymity is a compelling design requirement in many contexts as there is no dis-
crimination between the players, and is therefore commonly studied in game theory as a whole.

At the very least, our result shows that if the Nisan-Ronen conjecture is false and there are mechanisms
that provide a reasonable approximation ratio, then they must be “strange”.

1.3 Tools and Techniques Our proof shows that the “difficult” instance is actually the most
simple instance from an algorithmic point of view: it is the instance in which all costs are between 1 and
1 + ε, and the cost vectors are ordered such that one cost vector completely dominates the former one,
coordinate-wise. We prove that every truthful anonymous mechanism with a finite approximation ratio
(with respect to a variety of optimization goals) must allocate all jobs to the machine with the lowest
cost vector. This immediately yields a makespan which is m times the optimum by taking an instance

3For the mechanism to “notice” that the machines have switched costs, we of course require that the cost vectors of the

machines are distinct. See the preliminaries section for a formal definition.
4There is a single example in a different context (“digital goods”) where it is proved by Aggarwal et al. [1] that anonymous

mechanisms are less powerful . However, this setting is a single-parameter one, comparing to our much complicated multi-

parameter setting. Thus, one may doubt whether a complicated derandomization process, similar to the one used by

Aggrawal et al., might be applicable in our multi-parameter setting. Furthermore, we have no evidence that randomized

mechanisms for scheduling are significantly more powerful than deterministic ones.
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with m machines and n = m jobs. It is the difficulty that the VCG mechanism encounters, and we show
that all anonymous mechanisms suffer from the same drawback.

The proof works inductively, starting from the observation that if we have only a single job, then every
anonymous mechanism must allocate it to the lowest-cost machine. Unfortunately, this simple fact is
not true when more jobs are added (for mechanisms that do not provide a good approximation ratio).
The proof proceeds by following a subtle inductive process that requires substantial amount of technical
work, which allows us to consider instances with increasing number of jobs. The approximation property
is crucially used in the induction, as without it the claim is false (i.e. there exist truthful mechanisms
that do not assign all jobs to the machine with the lowest cost vector, but also do not guarantee any
finite approximation ratio).

As the previous proofs do, we bootstrap the basic difficulty that truthfulness casts: given a specific
assignment for one instance, truthfulness implies some restrictions on the possible assignments of all
other instances that differ from the original instance by exactly one machine. Nisan and Ronen prove
their lower bound by simply considering two such neighboring instances (i.e., a single transition from
one instance to another). The other lower bounds that were mentioned above consider longer paths of
instances, by this improving the lower bound. The inductive techniques we develop let us tackle much
longer paths of instances.5 This is the key point that enables us to obtain the optimal lower bound. We
believe that this is the main novelty of our proof.

Another important technical reason for our success in proving the lower bound is the way we exploit
the weak monotonicity property. It is known that every truthful mechanism is also weakly monotone (see
the preliminaries for a definition). However previous proofs mainly used a limited and straightforward
corollary of weak monotonicity: a machine that declares a vector of costs t and is allocated a bundle S,
will be allocated the same bundle S when raising the costs of the jobs not in S and lowering the costs
of the jobs in S. We use the weak monotonicity property in a broader way, taking into account also the
amount of which the costs of the jobs changes, whether allocated to the machine or not.

1.4 Future Directions Our proof gives strong evidence that deterministic mechanisms for this
central problem do not have much power. Can the anonymity assumption be dropped? Our novel
inductive method enables us to reach what seems to be the “correct” difficulty of truthful mechanisms.
Thus, we believe that the inductive method and the new technical machinery we introduce might be the
basis for further enhancements, to construct lower bounds without the anonymity assumption, though
we have not managed to do so yet.

To this end, an interesting observation is that the anonymity property can easily be dropped in the
fractional case, since, given any truthful approximation mechanism, one can construct an anonymous
mechanism that averages over all permutations of players. This keeps the truthfulness and the approxi-
mation properties, and inserts anonymity. It might be possible, thus, to extend our proof to the fractional
case, assuming anonymity without loss of generality, and obtain a general lower bound using this route.

1.5 Paper Organization The rest of the paper is organized as follows. Section 2 details the
definition of the problem, the various notations we use, and the weak monotonicity condition and some
of its corollaries. Section 3 describes the main theorem and the various lower bounds it implies, while
Section 4 describes the proof of the main theorem. Section 6 summarizes and discusses a few conceptual
issues.

2. Preliminaries

2.1 Job Scheduling for Various Optimization Goals We have m machines and n jobs, where
N = {1, ..., n}. Let tji > 0 denote the time that machine i takes to process job j. A “cost vector” for

machine i is a vector ti = (tji )
n
j=1. For every subset S ⊆ N we denote by ti(S) =

∑
j∈S t

j
i the total time it

takes machine i to process the jobs in S. We sometimes describe an instance of this problem by a matrix
in which the ith row is the cost vector of machine i, ~ti. We use stars ,“*”, to indicate jobs’ assignments; a
star next to the entry tji indicates that machine i is assigned job j. For example, in the following matrix

5A notable exception is Koutsoupias and Vidali [11] which also uses induction. The induction used here is very different.
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machine i’s cost vector is (t1i , . . . , t
n
i ) and all the jobs are assigned to machine 1:

t11∗ . . . tn1∗
...

t1m−1 . . . tnm−1

t1m . . . tnm


Let T = <m×n>0 be the space of all possible instances, and A be the space of all possible allocations of
jobs to machines. An allocation rule is a function f : T → A that allocates the jobs to the machines, i.e.,
for some instance t, f(t) = S = (S1, ..., Sm) ∈ A, where Si is the set of jobs allocated to machine i by f .

A designer wishes to implement an allocation rule f : T → A that optimizes some global criterion that
measures the quality of the schedule. We consider the following widely studied criteria:

• Makespan: The “makespan” of a schedule S = (S1, ..., Sm) is defined as m(S) = maxmi=1 ti(Si).
This is the time by which all jobs will be processed, according to the schedule. It is probably the
most popular criterion studied in the scheduling literature.

• The lp norm: The lp norm of a schedule, for some p ≥ 1, is defined as Lp(S) =
(
∑m
i=1 ti(Si)

p)1/p. L∞ is exactly the makespan criterion defined above, and the rational to move
to Lp for some finite p is to give more weight to all the load differences between the machines,
not only to the machine with the heaviest load.

• Sum of completion times: The completion time of a job in a given schedule is the time at
which the job ends.6 This criterion is appropriate if jobs’ output is useful even if other jobs have
not finished. In this case for example the designer may prefer to schedule short jobs before long
jobs.

The literature considers many more optimization goals, for example a weighted version of the last goal.
We focus attention on three optimization criteria for the sake of conciseness, but we should mention that
we could not find a criterion for which our method does not work.

For each such goal, the designer aims to minimize the value of the criterion for the outputted schedule.
For a given criterion C, let OPT be the allocation rule that outputs a schedule with the minimal value
of C, for any instance t ∈ T . Since the allocation rule will be required to satisfy other properties
(e.g. truthfulness as detailed below) the designer may choose a rule different than OPT. It is common to
compare a given allocation rule f to the optimal allocation rule, OPT, by its “approximation ratio”:

Definition 2.1 (Approximation Ratio) An allocation rule f is an “α-approximation with respect to
C”, for some real number α ≥ 1, if for any t ∈ T , f outputs a schedule with value of C at most α times
the optimal value of C for t. α is termed the “approximation ratio” of f .

For example, f is an α-approximation with respect to the makespan if m(f(t)) ≤ α ·m(OPT (t)) for every
t ∈ T . These definitions imply that we study only deterministic allocation rules.

A common property of the above goals, as well as of most other goals that are studied in the scheduling
literature, is the following decisiveness property. Our proof abstracts away from the technicalities of the
various optimization goals by relying instead on decisiveness.

Definition 2.2 (Decisiveness) An allocation rule f is “decisive” if there exists a constant c ≥ 1 (that
may depend on m,n but not on the input cost vector t) that satisfies the following condition for every

t ∈ T : if there exists a machine i such that, for every j ∈ N , tji < mini′∈{1,...,i−1,i+1,...,m},j′∈N t
j′

i′ /c, then
f(t) assigns all jobs to machine i.

In other words, an allocation rule is decisive if a machine may always receive all jobs by declaring some
“attractive” costs for these jobs, compared to the other declared costs. All the criteria described above
imply decisiveness:

6In this case the schedule should additionally specify an order over all jobs assigned to the same machine, but one can

show that on a given machine jobs should be executed by increasing job lengths.
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Proposition 2.1 If an allocation rule f is an α-approximation with respect to either the makespan, the
lp norm, or the sum of completion times, then f is decisive.

Proof.

Makespan and the lp norm: Fix c = αn. We show that if there exists a machine i such that

tji < mini′∈{1,...,i−1,i+1,...,m},j′∈N t
j′

i′ /c for every j ∈ N then all jobs must be assigned to i. Assume
towards a contradiction that there exists a job j′ that is assigned to some machine l 6= i. Therefore

both the makespan and the lp norm of this schedule have value at least tj
′

l . For every job j we have

tji < tj
′

l /(αn). Thus
∑
j t
j
i < ·t

j′

l /α or equivalently tj
′

l > α
∑
j t
j
i . The optimal makespan and the

optimal lp norm for t, on the other hand, are at most
∑
j t
j
i by assigning all jobs to machine i. Thus the

approximation in this case is larger than α, a contradiction.

Sum of completion times: We show that c = α · n2. If the allocation rule assigns a job j′ to some

machine l 6= i then the completion time of j′ alone is at least tj
′

l . For every job j we have tji < tj
′

l /(αn
2).

Thus
∑
j t
j
i < n · tj

′

l /(αn
2) or equivalently tj

′

l > αn
∑
j t
j
i . The optimal solution, on the other hand, is at

most n
∑
j t
j
i by assigning all jobs to machine i. Thus the approximation in this case is larger than α, a

contradiction. �

2.2 A Mechanism-Design Setup Following Nisan and Ronen [14], we study a setup where each
machine i is an individual utility-maximizing entity (“worker”), that privately knows her cost vector ti.
We assume that the cost of one time-unit for the worker is one monetary unit, hence the identification
between the cost vector and the time vector. The machine may receive a payment to compensate her
for the cost of processing her assignment, and the machine’s utility is assumed to be quasi-linear: total
payment minus total cost.

A designer needs to assign the jobs to the machines in order to minimize the makespan of the schedule,
and for this purpose she constructs a direct mechanism.7 A direct mechanism consists of an allocation
function f , and a payment function pi : T → < for every machine i. I.e., the players are being asked to
report a type, given these reports t = (t1, . . . , tm) the mechanism announces f(t) as the allocation, and
pays pi(t) monetary units to machine i.

A “truthful mechanism” is a direct mechanism in which reporting the true cost vector is a dominant
strategy for every player. One such mechanism is the VCG mechanism, which (in this case) assigns each
job independently to the machine with the smallest cost for that job.8 VCG has an approximation ratio
of m, the number of machines. To see this, define an “ordered instance” t to be a tuple of types t1, ..., tm
such that, for every job j, tjm > . . . > tj2 > tj1. Thus, if t is an ordered instance, VCG assigns all jobs

to machine 1, and if for each j, 1 + ε > tjm > tjm−1 > . . . > tj2 > tj1 = 1 and m = n the approximation
ratio of f approaches m as ε → 0. Since m can be arbitrarily bad, we ask if there exist other truthful
mechanisms with a better approximation ratio.

The VCG mechanism is anonymous, in the sense that for every permutation of the reports, the job-
assignments permute in the same way. In other words, VCG does not rely on the machines’ identities. This
paper shows that VCG provides the best approximation ratio among all truthful anonymous mechanisms
for all the optimization criteria described above. In the formal definition of this notion, there is one issue
we need to be careful about – the case where two machines have identical cost vectors. In this case,
switching their cost vectors will not change the instance, and so it does not make sense to require that
their job allocation will switch. Therefore we require anonymity only for instances with “no ties”:

Definition 2.3 (No ties) An instance t is with “no ties” if for every two machines i, i′ and every job
j, tji 6= tji′ . In other words, in the matrix representation of t, there are no two identical entries in the
same column (but there might be identical entries in the same row).

Definition 2.4 (Anonymity) An allocation rule f is anonymous if for every instance t with no ties,
and for every two machines i, i′, if machine i receives Si in f(t) then machine i′ receives Si in f(t̃),

7See Section 6 for a discussion on the implications of our result on indirect mechanisms.
8The payment for each job is the second-lowest cost for that job.
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where in t̃ the cost vector of machine i is ti′ , the cost vector of machine i′ is ti, and the rest of the cost
vectors are as in t.

We note that we cast no requirements on instances with ties. We also note that this is a rather weak
anonymity requirement since we do not permute all players, and since we do not require that the job
allocation of the other players remain the same.

2.3 Monotonicity and Implementability An allocation rule f is implementable if there exist
payment rules p1, ..., pm such that the mechanism M = (f, p1, ..., pm) is truthful. The following is a
necessary condition for implementability:

Definition 2.5 (Weak Monotonicity; Bikhchandani et al. [3]) An allocation function f is
weakly monotone if for every machine i, every t−i ∈ T−i

9 and ti, t
′
i ∈ Ti the following property is

satisfied: suppose that fi(ti, t−i) = Si and that fi(t
′
i, t−i) = S′i, then ti(Si)− ti(S′i) ≤ t′i(Si)− t′i(S′i).

Bikhchandani et al. [3] show that if f is implementable then f must be weakly monotone. Throughout
our proofs we will use this property instead of the property of truthfulness, which will save us the trouble
of handling mechanisms and payments. Thus our theorem holds for all weakly monotone allocation rules.
Weak monotonicity casts several implications that we use in our proofs:

Claim 2.1 Suppose that f is weakly monotone, fix t ∈ T , and let Si = fi(t) be the set of jobs assigned
to machine i by f in t. Then,

(i) Fix t̃i ∈ Ti that satisfies, ∀j ∈ Si, t̃ji < tji , and ∀j ∈ N \ Si, t̃ji > tji . Then Si = fi(t̃i, t−i).

(ii) Fix J ⊆ N \Si, and a real number δ > 0. Fix t̃i ∈ Ti that satisfies, ∀j ∈ J , t̃ji − t
j
i ≥ nδ, ∀j ∈ Si,

t̃ji ≤ t
j
i , and ∀j ∈ N \ J \ Si, tji − t̃

j
i < δ. Let S̃i = fi(t̃i, t−i). Then J ∩ S̃i = ∅.

Proof.

1. Let S̃i = fi(t̃i, t−i). Weak monotonicity implies ti(Si) − ti(S̃i) ≤ t̃i(Si) − t̃i(S̃i). Therefore
ti(Si \ S̃i)− ti(S̃i \Si) ≤ t̃i(Si \ S̃i)− t̃i(S̃i \Si). Since ti(Si \ S̃i) > t̃i(Si \ S̃i) and ti(S̃i \Si) < t̃i(S̃i \Si)
it must follow that Si \ S̃i = S̃i \ Si = ∅, implying the claim.

2. Suppose by contradiction that |J ∩ S̃i| > 0. Then

t̃i(S̃i \ Si)− ti(S̃i \ Si) ≥ nδ + t̃i(S̃i \ Si \ J)− ti(S̃i \ Si \ J) > 0 ≥ t̃i(Si \ S̃i)− ti(Si \ S̃i).

Thus t̃i(S̃i)− ti(S̃i) > t̃i(Si)− ti(Si), which contradicts weak monotonicity.
�

3. Main Theorem and Implied Lower Bounds Recall that an ordered instance t is a tuple of
types t1, ..., tm such that, for every job j, tjm > . . . > tj2 > tj1. Our main theorem is:

Theorem 3.1 Let M = (f, p) be a truthful anonymous mechanism that is decisive. Then, for every
ordered instance t, M allocates all jobs to machine 1.

The proof of this theorem is given in Section 4. We believe that on top of the applications of the
theorem, the proof itself is of interest. This theorem enables us to give optimal lower bounds to the
various optimization goals we consider:

Proposition 3.1 VCG has the best approximation ratio for the makespan, the lp norm, and the sum of
completion times, among all truthful and anonymous mechanisms. Specifically,

(i) Every truthful anonymous mechanism has an approximation ratio of at least m with respect to
the makespan. Furthermore, VCG provides exactly this approximation ratio.

(ii) Every truthful anonymous mechanism has an approximation ratio at least m1−1/p with respect to
the lp norm for all p ≥ 1. Furthermore, VCG provides exactly this approximation ratio.

9We follow the standard notation: t−i denotes the costs of all machines but i.
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(iii) Every truthful anonymous mechanism has an approximation ratio of at least m with respect to
the sum of completion times. Furthermore, VCG provides exactly this approximation ratio.10

Proof.

Makespan: To see that any truthful anonymous mechanism has an approximation ratio at least m, fix
some ε > 0 and consider an ordered instance with n = m jobs such that 1 + ε > tjm > . . . > tj2 > tj1 = 1
for every job j. By theorem 3.1 any truthful anonymous mechanism assigns all jobs to machine 1, hence
the makespan is m. The optimal makespan is at most 1 + ε, and the claim follows. Nisan and Ronen [14]
show that VCG has an approximation ratio of m.

The lp norm: To see that any truthful anonymous mechanism has an approximation ratio at least
m1−1/p, consider the same ordered instance from the previous paragraph. Any truthful anonymous
mechanism assigns all jobs to machine 1, hence the lp norm of its schedule is m. The optimal schedule
assigns one job to each machine, thus the load of each machine is at most 1 + ε, and the lp norm of this
schedule is at least m1/p. Thus the approximation ratio of any truthful anonymous mechanism is at least
m1−1/p.

We now show that the approximation ratio of VCG is m1−1/p. Fix some instance t, and let (a1, ..., am)
and (o1, ..., om) be VCG’s resulting load vector and OPT’s resulting load vector, respectively. We need

to show that [
∑m

i=1(ai)
p∑m

i=1(oi)p
]1/p ≤ m1−1/p. Let x =

∑m
i=1 ai. First, note that

∑m
i=1 oi ≥ x since VCG assigns

every job j to a machine i with minimal tji . This implies that
∑m
i=1(oi)

p ≥ m[ xm ]p as
∑m
i=1(oi)

p is
minimal when all the loads oi are equal. We also have

∑m
i=1(ai)

p ≤ [
∑m
i=1(ai)]

p = xp. All this implies:

[

∑m
i=1(ai)

p∑m
i=1(oi)p

]1/p ≤ [
xp

m[ xm ]p
]1/p = m1−1/p,

and the claim follows.

Sum of completion times: To see that any truthful anonymous mechanism has an approximation ratio
at least m, fix some ε > 0 and some integer β, and consider an ordered instance with n = βm jobs such
that 1 + ε > tjm > . . . > tj2 > tj1 = 1 for every job j. By theorem 3.1 any truthful anonymous mechanism

assigns all jobs to machine 1. Therefore its sum of completion times is 1+2+ · · ·+n = n(n+1)
2 . If however

every machine is assigned β = n
m jobs then the total completion time is m(1 + 2 + . . . + n

m ) = n(β+1)
2

(we neglect the ε in the calculation). Therefore the approximation ratio of the mechanism is at least

(n(n+1)
2 )/(n(β+1)

2 ) = m(n+1)
n+m ≤ m. As n grows to infinity this term approaches m, and the claim follows.

To see that the approximation ratio of VCG is m(n+1)
n+m , fix some t ∈ T , and let aj = mini t

j
i (i.e. aj

is the time that VCG needs to process j). Suppose w.l.og. that a1 ≤ a2 ≤ · · · ≤ an. We assume that
on each machine the fastest job assigned to it is processed first, the second fastest job second and so on.
Thus the total completion time of VCG is at most X = a1 +(a1 +a2)+(a1 +a2 +a3)+ · · ·+(a1 + · · ·+an).
Let OPT denote the optimal sum of completion times. We bound X/OPT by looking at the problem
of scheduling on identical machines. Consider the problem of scheduling n jobs whose processing times
are a1, . . . , an (on every machine since machines are identical). Let Cr be the optimal (minimal) sum of
completion times for scheduling these jobs on r identical machines, for any r ≥ 1. Note that OPT ≥ Cm
since lowering the costs of the jobs from tji to aj cannot increase the sum of completion times, and that
C1 ≥ X by definition. Eastman et al. [10] show that Cm ≥ C1

n+m
m(n+1) , implying the claim. �

4. Proof of Main Theorem In this section we prove our main theorem. Recall that an ordered
instance t is a tuple of types t1, ..., tm such that, for every job j, tjm > . . . > tj2 > tj1. We need to show
that, if M = (f, p) is a truthful anonymous mechanism that is decisive, then for every ordered instance
t, M allocates all jobs to machine 1. Let c be the constant implied by the definition of decisiveness. The
proof is by induction, using various intermediary cost vectors (instances) that are variations over the
original cost vector t. For this purpose we use the following notation:

10The proof shows the more concrete approximation ratio
m(n+1)
n+m

≤ m for VCG, and that this is tight if n ≥ m. If

n < m, it can be shown that the approximation ratio of VCG is n+1
2

, and that this is the best possible for any anonymous

truthful mechanism, using similar arguments.
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t11 · · · tj1 δ · · · δ

t12 · · · tj2 a2 · · · a2

...
...

...
...

t1i−1 · · · tji−1 ai−1 · · · ai−1

t1i · · · tji tj+1
i · · · tni

...
...

...
...

t1m · · · tjm tj+1
m · · · tnm


Figure 1: An illustration of an instance that is a ({1, ..., j}, i)-projection of t, as in Def. 4.1

Definition 4.1 Fix J ⊆ N and 2 ≤ i ≤ m + 1. Let J̄ = N \ J . An instance s is a (J, i)-projection of
an ordered instance t if there exist m real numbers am > ... > a2 > δ > 0 that satisfy

am < min
j∈J̄

tj2, δ <
a2

2nc
, δ < min

j∈J

tj2 − t
j
1

2n
− am

(where c is the constant that follows from the decisiveness property), such that s has the following structure
(see also the illustration in Figure 1):

(i) sj1 = tj1 for every j ∈ J , and sj1 = δ for every j ∈ J̄ .

(ii) For every machine 2 ≤ i′ ≤ i− 1, sji′ = tji′ for every j ∈ J , and sji′ = ai′ for every j ∈ J̄ .

(iii) For every machine i ≤ i′ ≤ m, si′ = ti′ .

It can be verified that, for any instance t ∈ T and for any J ⊆ N and 2 ≤ i ≤ m + 1, the set of
(J, i)-projections of t is non-empty.

We prove by induction on |J |, i that in any (J, i)-projection of any ordered instance t, machine 1 must
be allocated all jobs. Since an (N, i)-projection of t is t itself (regardless of i), Theorem 3.1 follows from
the inductive hypothesis. Our inductive argument advances over |J | = 1, .., n, and, for every fixed J , over
i = m + 1, ..., 2. Thus, throughout, we fix J, i and assume that the inductive hypothesis is true for any
(J ′, i′)-projection of any ordered instance t, where either |J ′| < |J | and 2 ≤ i′ ≤ m + 1, or J ′ = J and
i < i′ ≤ m+ 1. The base of the induction (|J | = 1, i = m+ 1) is proved exactly like the inductive step,
as all claims below hold for this case as well.

We divide the proof to three parts. In Section 4.1 we prove three basic claims that will be used in the
main argument. In Section 4.2 we construct several specific scenarios and prove their technical properties.
Section 4.3 uses these scenarios to prove the inductive hypothesis.

4.1 Core Arguments We prove three claims that serve as a starting point to the inductive proof:
(1) that machines i, ...,m cannot be allocated any job, (2) that machine 1 either receives all jobs in J
or none of them, and (3) that if machine 1 receives all jobs in J then it receives all jobs 1, ..., n. These
claims hold also for |J | = 1. Each claim is accompanied by a figure that illustrates the main argument.

Claim 4.1 In any (J, i)-projection of any ordered instance t, machines i, ...,m do not receive any job
(i.e. machines 1, ..., i− 1 receive all jobs).

Proof. (See illustration in Figure 2). For i = m + 1 the claim is immediate, thus assume i ≤ m.
Assume towards a contradiction that there exists an instance s = (s1, ..., sm) which is a (J, i)-projection
of some ordered instance t = (t1, ..., tm) (with constants am > ... > a2 > δ), and a machine r ≥ i such
that machine r receives a non-empty set of jobs in instance s. Since all the inequalities in Definition 4.1
are strict, there exists ε∗ > 0 such that (s2− ε∗, s−2) is a (J, i)-projection of (t2− ε∗, t−2) (the subtraction
is coordinate-wise). Therefore if we let t̃r = t2 − ε∗ and s̃r = s2 − ε∗ we get that s̃ = (s̃r, s−r), i.e. the
instance where the cost vector of machine r is s̃r and the other cost vectors are as in s, is a (J, i + 1)-
projection of (t̃r, t−r), with constants a−r, a2 − ε∗, δ. By the inductive hypothesis machine 1 receives all
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t11 · · · tj1 δ · · · δ

t12 · · · tj2 a2 · · · a2

...
...

...
...

t1i−1 · · · tji−1 ai−1 · · · ai−1

t1i ∗ · · · tji tj+1
i · · · tni

...
...

...
...

t1m · · · tjm tj+1
m · · · tnm



V



t11 · · · tj1 δ · · · δ

t12 · · · tj2 a2 · · · a2

...
...

...
...

t1i−1 · · · tji−1 ai−1 · · · ai−1

(t12 − ε)∗ · · · tji − ε a2 − ε · · · a2 − ε
...

...
...

...
t1m · · · tjm tj+1

m · · · tnm


Figure 2: Illustration of the argument in claim 4.1. If there exists an instance similar to the left instance,
where machine i receives a job in J , we move to an instance similar to the right instance, which is (shown
to be) a (J, i + 1)-projection of some ordered instance. Weak monotonicity and the transition from the
left instance to the right instance imply that machine i must receive a job in J in the right instance,
contradicting the inductive assumption.

jobs in s̃. However by weak monotonicity since in the transition from s to s̃ only machine r changed its
cost vector, from sr to s̃r, and since s̃r is strictly smaller than sr (coordinate-wise), the fact that machine
r receives a non-empty set of jobs in s implies that machine r must receive a non-empty set of jobs in s̃,
a contradiction. �

Claim 4.2 Fix some instance s that is a (J, i′)-projection of some ordered instance t, for the currently
fixed J in the induction argument, and for any 2 ≤ i′ ≤ m+ 1. 11 If machine 1 receives some of the jobs
in J in instance s, then it must receive all jobs in J in the instance s.

Proof. (See illustration in Figure 3). If |J | = 1 the claim is trivially true, so assume |J | > 1.
Suppose that the mechanism assigns a set S of jobs to machine 1 in the instance s, and assume towards
a contradiction that J ∩S 6= ∅ and J \S 6= ∅. Let am > ... > a2 > δ be the constants from Definition 4.1.
Let J∗ = J \S. Note that 0 < |J∗| < |J | and J∗ ⊆ J . Consider the following cost vector s̃1 for machine 1,
where δ̃ < δ will be chosen below such that s̃ = (s̃1, s−1) will be a (J∗, 2)-projection of itself. 12

s̃j1 =

 tj1 + nδ j ∈ J∗

δ̃ otherwise

11Recall that we are inside a proof by induction, i.e. we prove for (J, i) by assuming correctness for “previous” instances.

However we emphasize that this claim is stated and proved for any (J, i′), i.e. also for i′ < i coupled with the set J that is

fixed in the current induction step (the set J is not changed in this claim, only the index i).
12Notice that by Definition 4.1, an instance t may be a (J, 2)-projection of itself (but only for i = 2), if tj1 = δ for every

j ∈ J̄ , and if δ is very small relative to the other job costs and relative to the difference (tj2 − t
j
1).



t11∗ · · · tj1 δ · · · δ

t12 · · · tj2∗ a2 · · · a2

...
...

...
...

t1i−1 · · · tji−1 ai−1 · · · ai−1

t1i · · · tji tj+1
i · · · tni

...
...

...
...

t1m · · · tjm tj+1
m · · · tnm



V



δ̃∗ · · · tj1 + nδ δ̃ · · · δ̃

t12 · · · tj2 a2 · · · a2

...
...

...
...

t1i−1 · · · tji−1 ai−1 · · · ai−1

t1i · · · tji tj+1
i · · · tni

...
...

...
...

t1m · · · tjm tj+1
m · · · tnm


Figure 3: Illustration of the argument in claim 4.2. If there exists an instance similar to the left instance,
where machine 1 receives some of the jobs in J but not all of them (in the figure – job 1 but not job
j), we move to an instance similar to the right instance, which is (shown to be) a (J∗, i)-projection of
itself for some J∗ we define in the proof. Weak monotonicity and the transition from the left instance to
the right instance imply that machine 1 cannot receive any job in J∗ (in particular, job j in the figure),
contradicting the inductive assumption.
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t11∗ · · · tj1∗ δ∗ · · · δ

t12 · · · tj2∗ a2 · · · a2∗
...

...
...

...

t1i−1 · · · tji−1 ai−1 · · · ai−1

t1i · · · tji tj+1
i · · · tni

...
...

...
...

t1m · · · tjm tj+1
m · · · tnm



V



δ/2 · · · δ/2 δ/2 · · · 2δ

t12 · · · tj2 a2 · · · a2

...
...

...
...

t1i−1 · · · tji−1 ai−1 · · · ai−1

t1i · · · tji tj+1
i · · · tni

...
...

...
...

t1m · · · tjm tj+1
m · · · tnm


Figure 4: Illustration of the argument in claim 4.3. If there exists an instance similar to the left instance,
where machine 1 receives all jobs in J but not all jobs 1, ..., n (in the figure – jobs 1, ..., j + 1 but not job
n), we move to an instance similar to the right instance. Weak monotonicity and the transition from the
left instance to the right instance imply that machine 1 cannot receive all jobs (in particular, job n in
the figure), contradicting the approximation assumption.

We choose δ̃ as follows. Since δ < minj∈J
tj2−t

j
1

2n − a2 then minj∈J
tj2−(tj1+nδ)

2n − a2 > 0. Now,

• Fix ãm < a2 < minj∈J∗
tj2−(tj1+nδ)

2n , and additional m− 2 real numbers ã2 < ã3 < ... < ãm.

• Define δ̃ < δ such that δ̃ < ã2/(2nc) and δ̃ < minj∈J∗
tj2−(tj1+nδ)

2n − ãm.

Note that the constants {ãi}mi=2 do not appear in s̃ – we need them only to verify the projection according
to Def. 4.1. By construction of these constants, we have verified that s̃ is a (J∗, 2)-projection of itself.
Since |J∗| < |J | then by the inductive assumption machine 1 must receive all jobs 1, ..., n in s̃. However
weak monotonicity and the transition from s to s̃ imply (using claim 2.1, part 2) that machine 1 cannot
receive any job from J∗ in s̃, which is a contradiction. �

Claim 4.3 Fix some instance s that is a (J ′, i′)-projection of an ordered instance t, for any J ′ ⊆ N and
for any 2 ≤ i′ ≤ m+ 1. If machine 1 receives all jobs in J ′ in the instance s, then it must receive all jobs
1, ..., n in s.

Proof. (See illustration in Figure 4). Let S be the set of jobs allocated to machine 1 in the instance
s, and assume towards a contradiction that J ′ ⊆ S 6= N . Let {ai}mi=2, δ be constants showing that s is a
(J ′, i′)-projection of t (according to Definition 4.1). Consider the following cost vector s̃1 for machine 1:

s̃j1 =

{
δ/2 j ∈ S

2δ otherwise

Weak monotonicity and the transition from s to s̃ = (s̃1, s−1) imply (using claim 2.1, part 1) that
machine 1 receives S in s̃ as well. Thus not all jobs are allocated to machine 1 in s̃. However in s̃ we have
for any job j that s̃j1 ≤ 2δ < a2/c ≤ minj∈N,l=2,...,m s̃

j
l /c. Since f is decisive this implies that machine 1

must be allocated all jobs, a contradiction. �

4.2 Analysis of Some Useful Instances The proof of the inductive assumption starts by assuming
towards a contradiction that there exists an instance s for which machine 1 does not receive all jobs 1, ..., n,
and that s is a (J, i)-projection of some ordered instance t, with parameters {ai}mi=2, δ. By claims 4.2 and
4.3 machine 1 does not receive any of the jobs in J in the instance s. In this section we consider several
other scenarios, related to s, and prove some of their properties. These will be used in the next section
to lay out the main argument that shows a contradiction to the assumption about the existence of such
s, by this concluding the proof of the inductive hypothesis.

Let ỹ = minj∈J
tj2−t

j
1

2n − am − δ (by Definition 4.1 ỹ > 0) and y = min(δ, ỹ). For any γ ∈ (nδ, nδ + y),
let t1(γ) be the following cost vector:

tj1(γ) =

 tj1 + γ j ∈ J
γ−nδ

(4nc)2m+1 otherwise
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t11 · · · tj1 δ · · · δ

t12∗ · · · tj2∗ a2 · · · a2

...
...

...
...

t1i−1 · · · tji−1 ai−1 · · · ai−1

t1i · · · tji tj+1
i · · · tni

...
...

...
...

t1m · · · tjm tj+1
m · · · tnm



V



t11 + γ · · · tj1 + γ γ−nδ
(4nc)2m+1 · · · γ−nδ

(4nc)2m+1

t12 · · · tj2 a2 · · · a2

...
...

...
...

t1i−1 · · · tji−1 ai−1 · · · ai−1

t1i · · · tji tj+1
i · · · tni

...
...

...
...

t1m · · · tjm tj+1
m · · · tnm


Figure 5: Illustration of the argument in claim 4.4. Given an instance s (similar to the left instance)
which is a (J, i)-conversion of some ordered instance t, we define an instance s(γ) for γ ∈ (nδ, nδ + y),
similar to the right instance. If machine 1 does not receive any job in J in the instance s then weak
monotonicity implies that machine 1 does not receive any job in J in s(γ).



t11 + γ2 · · · tj1 + γ2
γ2−nδ

(4nc)2m+1 · · · γ2−nδ
(4nc)2m+1

t11 + γ1 · · · tj1 + γ1
γ1−nδ

(4nc)2m+1 · · · γ1−nδ
(4nc)2m+1

t13 · · · tj3 a3 · · · a3

...
...

...
...

t1i−1 · · · tji−1 ai−1 · · · ai−1

t1i · · · tji tj+1
i · · · tni

...
...

...
...

t1m · · · tjm tj+1
m · · · tnm


Figure 6: An illustration of the instance s̃ of Claim 4.5, assuming r = 2.

Claim 4.4 If machine 1 does not receive any job j ∈ J in s then all jobs in J are assigned to machines
2, ..., i− 1 in s(γ) = (t1(γ), s−1).

Proof. (See illustration in Figure 5). By definition, for any j ∈ J̄ we have tj1(γ) < y < δ, and for

any j ∈ J we have tj1(γ) − tj1 > nδ. Thus weak monotonicity and the transition from s to s(γ) imply
(using claim 2.1, part 2) that machine 1 cannot receive any job from J in s(γ). Furthermore, s(γ) is a
(J, i)-projection of t(γ) = (t1(γ), t−1), using {ai}mi=2 and δ̃ = γ−nδ

(4nc)2m+1 , since:

• ∀j ∈ J we have tj1(γ) < tj1 + 2nδ < tj1 + a2 < tj2 and therefore t(γ) is an ordered instance.

• δ̃ < (ỹ <) minj∈J
tj2−t

j
1(γ)

2n − am.

Therefore, by claim 4.1, in s(γ) machines 2, ..., i− 1 receive all jobs in J . �

Claim 4.5 Assume that machine 1 does not receive any job j ∈ J in s. Then there exist γ1, γ2 ∈
(nδ, nδ + y), γ1 < γ2, such that

(i) there exists a machine r ∈ {2, ..., i−1} that receives some of the jobs in J in both instances s(γ1)
and s(γ2), and,

(ii) the instance s̃ in which the cost vector of machine 1 is t1(γ2), the cost vector of machine r is
t1(γ1), and the rest of the cost vectors are as in s is a (J, 2)-projection of itself. 13

Proof. (See illustration in Figure 6). Let x = y
(8nc)2m+1 , and α = 8nc. Define 2m+ 1 subintervals of

(nδ, nδ + y), where the d’th interval (d = 0, 1, ..., 2m) is (nδ + x
∑d−1
d′=0 α

d′ , nδ + x
∑d
d′=0 α

d′). Thus, the

13Definition 4.1 requires that machine 1 will be the lowest machine, and in s̃ machine r is the lowest machine, but

anonymity ensures that switching the cost vectors of machines 1 and r results in an equivalent instance, and this instance

is a (J, 2)-projection of itself. In fact we do not really need to rely on anonymity in this specific place, we can alternatively

define projection by using some permutation π of the machines, so that the machine π(l) is the l’th lowest machines for

l = 1, ...,m. We avoid this formalization as it just complicates notation.
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first interval (d=0) is (nδ, nδ + x) (i.e. of length x), the second interval (d = 1) is (nδ + x, nδ + x+ xα)
(i.e. of length xα), the third interval (d = 2) is (nδ+x+xα, nδ+x+xα+xα2) (i.e. of length xα2), and so
on. Since α > 2 we have x

∑2m
d′=0 α

d′ < xα2m+1 = y, which implies that all intervals are in (nδ, nδ + y).
Choose an arbitrary point γ in each interval d = 1, ..., 2m and label the interval as r, where machine r
receives some of the jobs in J in instance s(γ). Since there are 2m intervals and at most m− 1 possible
labels (recall that only machines 2, ..., i− 1 receive a non-empty set of jobs in J in s(γ)), there exist two
non-adjacent subintervals that are labeled by the same r, and we choose γ1, γ2 as the points taken from
these two intervals. This shows the first claimed property.

We now show that the instance s̃ where the cost vector of machine 1 is t1(γ2), the cost vector of
machine r is t1(γ1), and the rest of the cost vectors are as in s is a (J, 2)-projection of itself (notice that
s̃ is indeed an ordered instance). Let δ1 = γ1−nδ

(4nc)2m+1 and δ2 = γ2−nδ
(4nc)2m+1 . We rely on two inequalities:

• δ1 < δ2/(2nc): suppose that γ1, γ2 are from intervals d1, d2, respectively, where d2 ≥ d1 + 2.

Then, γ2 − nδ > x
∑d2−1
d′=0 α

d′ > xα
∑d1
d′=0 α

d′ > α(γ1 − nδ). Therefore,

δ2
δ1

=
γ2 − nδ
γ1 − nδ

> α > 2nc

• δ2 < (γ2 − γ1)/(4n): We have γ2 − γ1 = (γ2 − nδ) − (γ1 − nδ) and from the previous bullet we
have γ2− nδ > α(γ1− nδ). Also, since γ1 belongs to some interval d ≥ 1 (i.e. does not belong to
the first interval (nδ, nδ + x)), we have γ1 > nδ + x. Thus

γ2 − γ1

4n
≥ (α− 1)(γ1 − nδ)

4n
≥ γ1 − nδ > x =

y

α2m+1
>
γ2 − nδ
α2m+1

= δ2

Notice that the inequality δ2 < (γ2 − γ1)/(4n) also implies that δ2 <
γ2−γ1

2n − δ2.

To show that s̃ is a (J, 2)-projection of itself, choose small enough ε such that the inequalities in the
bullets above continue to hold when δ2 is replaced by δ2 − ε. Choose constants {ãi}mi=2 (needed for the
(J, 2)-projection) such that δ2 − ε < ã2 < · · · < ãm < δ2. Let us verify that the required inequalities of
Definition 4.1 hold:

• ãm < minj∈J̄ t
j
1(γ2) = δ2 by construction.

• δ1 < ã2
2nc since δ1 <

δ2−ε
2nc .

• δ1 < minj∈J
tj1(γ2)−tj1(γ1)

2n − ãm, since δ1 < δ2 <
γ2−γ1

2n − δ2.

Thus we have verified that s̃ is a (J, 2)-projection of itself, and the claim follows.

�

4.3 Bottom-line Argument We now formally conclude the inductive proof:

Claim 4.6 Fix J ⊆ N and 2 ≤ i ≤ m+ 1. In any (J, i)-projection of any ordered instance t, machine 1
must be allocated all jobs.

Proof. (See illustration in Figure 7). We prove by induction on |J |, i, where we advance over
|J | = 1, ..,m, and, for every fixed J , over i = m+ 1, ..., 2. Thus, we assume that the claim is true for any
(J ′, i′)-projection of any ordered instance t, where either |J ′| < |J | and 2 ≤ i′ ≤ m + 1, or J ′ = J and
i < i′ ≤ m + 1, and we prove for (J, i). The base of the induction (|J | = 1, i = m + 1) is by the same
proof below.

If i = 2 the claim follows immediately from claim 4.1. Thus assume i ≥ 3. Assume towards a
contradiction that there exists an instance s for which machine 1 does not receive all jobs 1, ..., n, and
that s is a (J, i)-projection of some ordered instance t, with parameters {ai}mi=2, δ. By claims 4.2 and
4.3 machine 1 does not receive any of the jobs in J in the instance s. Consider the following sequence of
instances:

A. The cost vector of machine 1 is t1(γ2) and the other cost vectors are as in s (this is the instance
s(γ2), as defined in the statement of claim 4.4). By construction (claims 4.4 and 4.5) machine 1 does not
receive any job from J and machine r receives some job(s) from J .
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t11 + γ2 · · · tj1 + γ2 δ2 · · · δ2
t12∗ · · · tj2 a2 · · · a2

t13 · · · tj3 a3 · · · a3

...
...

...
...

t1i−1 · · · tji−1 ai−1 · · · ai−1

t1i · · · tji tj+1
i · · · tni

...
...

...
...

t1m · · · tjm tj+1
m · · · tnm



V



t11 + γ2 · · · tj1 + γ2 δ2 · · · δ2
t11 ∗+γ1 · · · tj1 ∗+γ1∗ δ1∗ · · · δ1∗

t13 · · · tj3 a3 · · · a3

...
...

...
...

t1i−1 · · · tji−1 ai−1 · · · ai−1

t1i · · · tji tj+1
i · · · tni

...
...

...
...

t1m · · · tjm tj+1
m · · · tnm



V



t12 · · · tj2 a2 · · · a2

t11 + γ1 · · · tj1 + γ1 δ1 · · · δ1
t13 · · · tj3 a3 · · · a3

...
...

...
...

t1i−1 · · · tji−1 ai−1 · · · ai−1

t1i · · · tji tj+1
i · · · tni

...
...

...
...

t1m · · · tjm tj+1
m · · · tnm



Figure 7: Illustration of the argument in Claim 4.6, assuming r = 2. We start (A) in the top-left instance,
in which machine 2 receives some job(s) in J . We then move to the top-right instance (B), by lowering
the job-costs of machine 2, and we show that now machine 2 receives all jobs. We finally move (C) to
the bottom instance by increasing the costs of machine 1. By weak monotonicity it does not receive any
job in (C). However the instance (C) can be obtained from the instance s(γ1) by switching the costs of
machine 1 and machine r. Since in s(γ1) machine r receives a non-empty set of jobs, anonymity implies
that machine 1 must receive a non-empty set of jobs in (C), and we reach a contradiction.
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B. The cost vector of machine 1 is t1(γ2), the cost vector of machine r is t1(γ1), and the other cost
vectors are as before (this is the instance s̃, as defined in Claim 4.5). Recall that 2 ≤ r ≤ i − 1. For
any j ∈ J , nar < tjr − t

j
1(γ1) since γ1 ≤ 2nδ < ar and tjr − t

j
1 > 2nar. Therefore weak monotonicity and

the transition from sr to t1(γ1) imply that machine r must receive at least one job from J in s̃ since the
decrease in the cost of any job j ∈ J is more than nar and the total decrease of all jobs j ∈ J̄ is less
than nar. Since this instance is a (J, 2)-projection of itself, claims 4.2 and 4.3 imply that machine r must
receive all jobs 1, ..., n. In particular machine 1 does not receive any job.

C. The cost of machine 1 is sr, the cost of machine r is t1(γ1), and the other cost vectors are as in s.
We call this instance s∗. By weak monotonicity machine 1 does not receive any job in the instance s∗.
However s∗ can be obtained from the instance s(γ1) by switching the costs of machine 1 and machine
r. Since in s(γ1) machine r receives a non-empty set of jobs (claim 4.5), and the instance s(γ1) is with
no ties, anonymity implies that machine 1 must receive a non-empty set of jobs in s∗, and we reach a
contradiction.

We have reached a contradiction, and thus we conclude that machine 1 receives all jobs 1, ..., n in the
instance s, as claimed. �

Since a (N, i)-projection of t is t itself (regardless of i), Theorem 3.1 follows from claim 4.6.

5. Example: Illustrating the Induction To give a concrete feel to the induction process in the
proof we go over its various steps for the following example instance:1 1 1

2 2 2
3 3 3


We will advance in a top to bottom fashion, as follows.

5.1 The phase of a ({1, 2, 3}, 4)-projection Assuming the correctness of all claims for all smaller
projections, we wish to show that, in the original instance, all jobs are allocated to machine 1. We follow
the bottom-line argument in section 4.3. By claim 4.2 (we demonstrate its proof as well in section 5.2
below), machine 1 either receives all jobs, or none of them. Suppose by contradiction that machine 1 does
not receive any job in this instance, and that machine 3 receives some jobs both in the original instance
and in the following instance: 1.5 1.5 1.5

2 2 2∗
3∗ 3∗ 3


(in this second instance, machine 1 raises all its costs; by weak monotonicity it still does not receive any
job.) Weak monotonicity implies that machine 3 receives some jobs when it lowers all its costs to be 1,
as in the following instance: 1.5 1.5 1.5

2 2 2
1∗ 1∗ 1∗


(claim 4.2 again implies that machine 3 receives all jobs in this instance.) In particular, machine 1
does not receive any job. Now when machine 1 increases all costs to 3, as in the instance below, weak
monotonicity implies that machine 1 still does not receive any job.

 3 3 3
2 2 2∗
1∗ 1∗ 1


However this is a contradiction to anonymity (compare to the original instance; since machines 1 and 3
switched costs and in the original instance machine 3 received some jobs, in the last instance machine 1
should receive the same set of jobs). We have therefore obtained a contradiction, and the claim follows.
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5.2 Claim 4.2 for the ({1, 2, 3}, 4)-projection We wish to show that, in the original instance,
if machine 1 receives some of the jobs then it receives all jobs. Assume towards a contradiction that
machine 1 receives a strict non-empty subset of the jobs, for example:1∗ 1∗ 1

2 2 2∗
3 3 3


Weak monotonicity implies the following assignment in the following instance:

0.0001∗ 0.0001∗ 1.01
2 2 2
3 3 3∗


(weak monotonicity implies that the third job can be placed on either machine 2 or 3, but not on
machine 1.) However this instance is a ({3}, 2)-projection of the instance:

1.01 1.01 1.01
2 2 2
3 3 3


(for example, with parameters δ = 0.0001, a2 = 0.08, a3 = 0.09, and taking the decisiveness parameter c
to be 10.) But this contradicts the inductive assumption (in a ({3}, 2)-projection, machine 1 receives all
jobs). This shows that, in the original instance, if machine 1 receives some of the jobs then it receives all
of them.

6. Summary and Discussion We have shown that every truthful anonymous mechanism for the
problem of job-scheduling on unrelated machines must obtain an approximation ratio of at least m,
the number of machines. The proof shows that every truthful anonymous mechanism with a finite
approximation ratio assigns the jobs as the VCG mechanism, for “ordered instances” (i.e. instances in
which the cost vector of machine i + 1 is larger (coordinate-wise) than the cost vector of machine i, for
every i = 1, ...,m− 1.

The proof uses weak monotonicity to reason about the connection between various different instances,
related to an ordered instance t. It starts with a simple instance in which the machines’ costs for job 1
are identical to their costs of the job in t, and the costs of the other jobs are “small enough”, and shows
that in this instance machine 1 must be assigned all jobs. The proof then gradually increases the costs of
the machines to be the costs in t, in a specific way that repeatedly uses weak monotonicity to argue that
the fact that in the current instance all jobs are assigned to machine 1 implies that in the next instance
this variant will still hold. Anonymity is used in the process in one specific crucial place.

The approximation assumption is also used in one crucial place, and is necessary since without it the
claim is false. For example, maximal-in-range mechanisms other than VCG are also truthful. A maximal-
in-range mechanism fixes a strict subset Ã of all possible assignments A and chooses the assignment with
maximal welfare among the assignments in Ã.

In this paper we study direct mechanisms that have truthfulness as a dominant-strategy. One may
also consider indirect scheduling mechanisms. By the revelation principle, any indirect mechanism can
be converted to a direct one, and in order to take our anonymity assumption into account, we must
consider only symmetric equilibria of indirect mechanisms. Thus, our theorem implies that there does
not exist an indirect scheduling mechanism with a symmetric ex-post equilibrium outcome that is a c-
approximation to the optimal makespan. Indirect mechanisms with asymmetric equilibria translate to
direct non-anonymous mechanisms, for which the problem remains open.

The striking simplicity of VCG, that manages to “internalize” the goal of the mechanism, may tempt
the naive mechanism designer to believe that such methods are possible also for other implementation
goals. Roberts [15] shows that this is not true if the domain of preferences is unrestricted – only VCG
and other affine maximizers are implementable. We show a conceptually similar claim for a scheduling
domain – every anonymous truthful mechanism identifies with VCG over a large family of instances.
However this conceptual similarity is misleading, as the scheduling domain is so restricted that it admits
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many implementable non-affine-maximizers. For example, allocating each job independently using some
non-affine-maximizer mechanism for single-dimensional domains (those are abundant). Thus our result
is not implied by Roberts’ result, nor is it a generalization of it. It belongs to a different class of results,
that add conditions on top of implementability (here, we require makespan approximation), and show
using these extra conditions that VCG is the best possible. This is different than Roberts in a subtle
way, since without the extra conditions many other implementable functions exist.

We should emphasize that while we characterize “many” instances, we certainly do not characterize all
of them, and the general characterization question remains open (and very interesting). Christodoulou
et al. [5] show such a characterization for two players/machines, which involves “threshold mechanisms”.
Thus, a conjecture in the spirit of Robert’s result would be to show that every mechanism is either
threshold or affine minimizer.

We have already mentioned in the Introduction the future research direction of understanding the
power of randomized scheduling mechanisms. Another interesting direction is to limit the domain so
that machines’ costs will be limited. It is clear from our proof that we need an extremely reach domain
of possible job costs. What happens if the domain is bounded, or being restricted in other meaningful
ways? Lavi and Swamy [12] demonstrate a possibility in this direction, and it is interesting to know if
more can be done. Another possible direction is to consider a probability distribution over the instances,
and/or use weaker solution concepts.
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