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Executive Summary 

Regional accessibility to air transportation is often of interest to airport executives, politicians, 

and the general public due to the positive economic impacts of frequent commercial airline 

service. However, measuring access to air service can be challenging, particularly for regions 

with multiple airports. While many models exist to measure airline network connectivity at 

individual airports, there is limited literature on the geographic aggregation of these metrics to 

assess regional accessibility.  

 

In this paper, we propose a new methodology to construct U.S. regional airport catchment areas 

using U.S. Census Bureau Primary Statistical Areas (PSAs). Using a connectivity index that 

evaluates airports on the quantity and quality of available service, air service accessibility scores 

are computed on a regional level for 323 PSAs from 2007-2012. We find that most U.S. regions 

lost access to air service during the study period in the midst of domestic schedule rationalization 

and airline “capacity discipline.” Accessibility scores for each PSA from 2007 to 2012 are 

available in an appendix. 

 

On average, metropolitan regions in the United States lost about 11.6% of their accessibility to 

commercial air transportation between 2007 and 2012. Mid-sized regions of 500,000 - 5 million 

people lost the most access to air service—about 14.4% on average—aligning with past work 

that suggests that medium-sized communities have been harmed most by airline capacity 

discipline. In multi-airport regions, losses in service at primary airports outweighed some 

consolidation in service at larger hubs, leading to net losses in accessibility in most cases. 

 

The results of the accessibility model can be used by regional planners, policy-makers, and 

airport officials to understand how various regions in the U.S. lost or gained access to air 

transportation as a result of the Great Recession and airline capacity strategies. Additionally, the 

proposed catchment area definition provides a useful framework for further discussion of the 

demographic and geographic determinants of successful commercial air service. 

 

1.  Introduction 

Metropolitan regions in the United States rely on their airports to connect residents, businesses, 

governmental officials, and tourists to the rest of the country and the world. Frequent and well-

connected commercial airline service is therefore valuable to communities of all sizes, since it 

encourages trade and the free movement of people, goods, capital, and ideas. Along with the 

intangible benefits of increased personal mobility, past research has also shown a relationship 

between accessibility to airline service and business location, suggesting a further economic 

value to high quality air transportation service (Stilwell 2013). 

 

Given these benefits, having reasonable access to one or more airports with well-connected 

airline service is important to regions throughout the United States. Airports at which new 
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nonstop service is added are often lauded by local residents and businesses; conversely, a cut in 

available service can often leave an airport and a region scrambling to replace the connectivity 

that has been lost. To wit, airports of all sizes often offer financial incentives directly to airlines 

in exchange for new service (Weatherill 2006; Smyth et al. 2012; Malina et al. 2012). 

 

Measuring regional accessibility to air transportation has been the subject of an increasingly 

robust body of literature in recent years. Grubesic and Zook (2007), Yamaguchi (2007), 

Matisziw and Grubesic (2010), Jenkins (2011), Halpern and Bråthen (2011), Ryerson and Kim 

(2013), and others have created accessibility models to assess the quality of air service available 

in various geographic regions. Yet while assessing accessibility to airline service is fairly 

straightforward in regions with only a single airport, researchers have often struggled to 

represent accessibility in regions with multiple airports, or “multi-airport regions.” 

 

Indeed, some recent work (Fuellhart et al. 2013) has made the case that examining the individual 

airport level alone is inadequate to understand passenger choice and accessibility levels in multi-

airport regions. As airlines removed service from smaller U.S. airports at a quicker pace than 

larger airports by keeping capacity growth low through a strategy referred to as “capacity 

discipline,” these multi-airport regions have grown in importance (Wittman and Swelbar 2013). 

While many models exist to measure airline network connectivity at individual airports, there is 

limited literature on the geographic aggregation of these metrics to assess regional accessibility, 

particularly in regions with multiple airports.  

 

Furthermore, it can be challenging to identify geographic airport catchment areas to properly 

assess the airports to which residents of a specific community have access. Defining airport 

catchment areas geographically can require some specialized knowledge of the region's 

demographic and economic characteristics, as well as the travel patterns of local residents. 

Choosing a simple distance-based radius around an airport is often used as a proxy for the 

airport's catchment area, but the size and shape of this radius may vary for communities in 

different regions based on residents' propensity to travel large distances to reach a nearby airport, 

the modes of transit available for airport access, and the geographic size of each metropolitan 

region. 

 

Therefore, in any analysis of regional accessibility, a more robust definition of airport catchment 

areas is necessary. Maertens (2012) and Suau-Sanchez et al. (2014), in applications for Europe, 

suggest using land cover areas defined by governmental organizations to define airport 

catchment areas. Maertens (2012) uses Nomenclature of Units for Territorial Statistics 3  

(NUTS 3) regions to define catchment areas, whereas Suau-Sanchez et al. (2014) use the 

CORINE land cover created by the European Environmental Agency. Such land covers are 

attractive because they are defined by local experts, can be heterogenous in shape, and can pass 

through or disregard political barriers (such as the boundaries between U.S. states). 
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In the United States, the U.S. Census Bureau defines several groups of land covers to group 

communities into geographic metropolitan regions. These land covers are naturally suited to be 

treated as airport catchment areas. Recognizing the fact that passengers will often drive for 

several hours or more to access an airport with better service or lower fares, we use the largest 

geographic regions defined by the U.S. Census Bureau: the Primary Statistical Area (PSA). PSAs 

often incorporate multiple urban subunits (Metropolitan Statistical Areas (MSAs) and 

Micropolitan Statistical Areas (μSAs)) and often contain within their boundaries several primary 

commercial service airports, making them an ideal unit of analysis for a macroscopic view of air 

service accessibility. 

 

In this paper, we propose a new methodology for computing accessibility to commercial airline 

service for metropolitan regions in the United States. To do so, we first map U.S. commercial 

service airports into PSA catchment areas and discuss some general characteristics. Then, 

adapting an airport connectivity model first introduced in Wittman and Swelbar (2014) that takes 

into account the quality and quantity of available non-stop and connecting service, we compute 

regional air service accessibility for 323 U.S. PSAs from 2007-2012. Taking a cue from 

Brueckner et al. (2014), we compute accessibility between regions, not airports, such that flights 

from Boston to Chicago/O'Hare and from Manchester, N.H. to Chicago/Midway are both treated 

equally as flights from the “Boston area” to the “Chicago area.” 

 

The resulting air service accessibility index provides a way to rank and compare the quality of air 

service available in regions of various sizes across the United States. We provide a ranking of 

most-connected regions and investigate changes in air service accessibility as a result of 

changing airline networks, paying particular attention to how accessibility changed in different 

ways in regions of various sizes. Finally, we discuss some future extensions to the work that take 

advantage of the PSA-based catchment area definition introduced for U.S. airports. 

 

The remainder of this paper is structured as follows: Section 2 focuses on defining airport 

catchment areas. We discuss some recent literature and limitations to current approaches, and 

introduce the U.S. Census Bureau Primary Statistical Area (PSA) as a proposed airport 

catchment area. In Section 3, we turn our attention to accessibility modeling; we discuss some 

recent developments in the literature and introduce our modification to the Wittman and Swelbar 

(2014) Airport Connectivity Quality Index. In Section 4, we provide some relevant results from 

the accessibility model calculation, including maps that show which regions gained and lost the 

most air service accessibility from 2007-2012. Section 5 concludes, discusses some overall 

implications, and discusses some future extensions. 
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2.  Defining Airport Catchment Areas using Primary Statistical Areas 

Building an air service accessibility model requires three components: (1) a model of airport 

connectivity, (2) a methodology by which to aggregate airports into geographic regions of 

service (i.e., “catchment areas”), and (3) a methodology by which to compute regional 

accessibility for regions with more than one airport (“multi-airport regions”).  

 

Before turning our attention to the airport connectivity model, this section examines some of the 

past literature regarding airport catchment areas and highlights some of the issues with 

commonly-used approaches. We then propose the use of U.S. Census Bureau Primary Statistical 

Areas (PSAs) as a reasonable proxy for airport catchment areas. After reviewing the Census 

Bureau land cover definitions, we discuss our methodology for mapping airports into PSAs and 

review some summary statistics for 323 U.S. PSAs that contained at least one primary 

commercial service airport. 

 

2.1  Literature Review: Catchment Areas 

Aviation forecasters and airport officials have long struggled to find an adaptable definition of an 

airport's catchment area. Understanding the catchment area of an airport is critical for marketing 

and forecasting efforts, as well as identifying which passengers in the catchment areas might be 

spilling to other airports in the region due to better offerings of frequencies or average fares at 

those airports. Traditionally, catchment areas are often created by drawing a circle of a fixed 

radius with a particular airport as the centroid (Wang 2000; McLay and Reynolds-Feighan 2006; 

Bilotkach et al. 2012). Any center of population or economic activity within the circle would be 

treated as being within the airport's catchment area. For some analyses, maximum travel times 

are used instead of distances when drawing the catchment area. 

 

Figure 1: 50-mile radius catchment areas for DCA (left) and ABQ (right). Source: Diio Mi 

 

Yet these traditional circular distance-based catchment areas rely on an arbitrary definition of 

travel time or distance, and may be too broad to fully explain passenger behavior. For instance, 
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consider the two catchment areas shown in Figure 1. In Figure 1, a catchment area with a 50-

mile radius has been drawn around two airports in the United States: Ronald Reagan Washington 

National Airport (DCA) and Albuquerque International Sunport (ABQ). The black regions on 

each map represent population centers.  

 

Note that the population centers in the Washington region fill almost the entire catchment area, 

whereas the Albuquerque population centers are located very close to the airport. The tolerance 

for driving distance in each of these regions may also vary; traffic in the Washington area may 

reduce the overall distance a passenger is willing to drive to an airport as compared to the 

Albuquerque region. Travel time to each airport in the region can also depend on local conditions 

and the existence of public transportation options to the airport. Therefore, it appears that the 

optimal catchment area size may vary based on the area of the country in which an airport is 

located, as well as the commuting patterns of local residents. Selecting a single distance radius is 

unlikely to capture how these preferences might change across regions. 

 

Additionally, setting a single radius-based catchment area assumes that metro regions take a 

circular shape. This is not always the case, particularly in coastal regions. For instance, consider 

Figure 2, which shows a 50-mile catchment area for Boston Logan International Airport (BOS), 

Note that almost half of the catchment area for BOS is in the Atlantic Ocean; meanwhile some 

areas of New Hampshire, Rhode Island, and western Massachusetts have been excluded from the 

catchment area. This may not be a realistic representation of the true airport choice decision 

faced by residents of the Boston metropolitan region. 

 

 
Figure 2: 50-mile radius catchment areas for BOS. Source: Diio Mi 
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Ultimately, defining catchment areas individually for each region would provide the most robust 

estimate of airport accessibility. However, doing so requires some degree of local knowledge of 

the cultural and geographic boundaries of each metropolitan region in the United States. While 

some authors have provided methodologies to define detailed catchment areas for individual 

regions (Fuellhart 2007; Lian and Rønnevik 2011; Lieshout 2012; Maertens 2012), this approach 

is infeasible in a macroscopic analysis of the entire country. 

 

Suau-Sanchez et al. (2014) have suggested using land covers defined by an external agency to 

sort airports into relevant catchment areas. The authors use the CORINE land cover data set 

created by the European Environmental Agency. Such an externally-provided data set is useful 

because it allows for a finer grain of analysis. Since the definition of land cover is made by 

professionals with specific knowledge about each community, desirable heterogeneity can result 

from these data sets. Yet while the CORINE land data have a higher degree of specificity than 

other available data sets in Europe, Suau-Sanchez et al. (2014) still rely on fixed-distance 

catchment areas of 25-100 km to compute regional population size and demographic 

characteristics. 

 

Instead of having to select an arbitrary distance-based catchment area, we can instead select a 

land cover to represent metropolitan areas that can be defined heterogenously across regions 

(Maertens 2012). That is, the resulting airport catchment areas would have different shapes and 

sizes based on the individual characteristics of the regions in question.  

 

To this end, the U.S. Census Bureau divides the United States into a series of geographic regions 

to aid with statistical and geographic analysis. These regions, which are referred to as Statistical 

Areas, are also associated with a wealth of Census data tailored to each region. Using predefined 

regional catchment areas like the ones created by the Census Bureau also has several advantages 

over the conventional distance-based or time-based approach: 

 

 Districts are defined consistently by a central authority, removing the need to make 

arbitrary judgments about the size and shape of catchment areas; 

 Census analysts use local knowledge to define districts/metro regions; they do not just 

use a single distance-based metric; 

 Census areas can cross political boundaries (such as state lines);  

 Using a pre-defined land cover helps to avoid the Modifiable Areal Unit Problem— 

an analytical bias that can exist when choosing an arbitrary unit or distance for analysis 

of a geographic area (Suau-Sanchez et al. 2014). 
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There are five levels of Statistical Area aggregation employed by the U.S. Census Bureau, based 

on the size of the community at the core of the statistical area. Figure 3 provides an overview of 

these five levels of aggregation. 

 
Figure 3: Schematic of U.S. Census Bureau Statistical Area Definitions 

 

The primary units of division used by the Census Bureau are the Metropolitan Statistical Area 

(MSA), which contain urban cores of more than 50,000 people, and the Micropolitan Statistical 

Area (μSAs), which contain urban cores of 10,000-50,000 people. As of 2014, there were 388 

MSAs and 541 μSAs in the United States. Together, MSAs and μSAs are called Core-Based 

Statistical Areas (CBSAs)—therefore, there were 929 CBSAs in the United States as of 2014. 

 

On a larger scale, Combined Statistical Areas (CSAs) are made up of two or more CBSAs. For 

instance, the New York-Newark, NY-NJ-CT-PA Combined Statistical Area is made up of 7 

MSAs and 1 μSA. In total, there were 169 CSAs in the United States in 2014.  

 

Since past research shows that passengers are willing to commute long distances by car to access 

an airport with a low fare or an attractive schedule (Fuellhart 2007; Fournier et al. 2007), these 

large Combined Statistical Areas are an attractive level of aggregation since they encompass 

large commuting regions that can often cross state boundaries. Figure 4 shows two representative 

CSAs in the New York and Boston metropolitan areas. Note that each of these two CSAs 

encompasses multiple counties in several states. 
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Figure 4: Combined Statistical Areas (CSAs) for New York and Boston. Source: U.S. Census Bureau 

 

Some large cities, like Phoenix, AZ, are not included in a Combined Statistical Area because 

their individual MSAs already contain all of the population centers in their region. Therefore, the 

Census Bureau has defined a fifth category of aggregation: Primary Statistical Areas (PSAs). 

Primary Statistical Areas cover all areas in the United States with urban cores of at least 10,000 

residents. They are composed of all 169 CSAs, as well as any MSAs and μSAs (such as Phoenix, 

AZ) that are not a component of a CSA. There were 574 PSAs in the United States as of 2014. 

 

Since the Primary Statistical Area is the largest unit of analysis that covers all areas of the United 

States with populations of over 10,000 people, it was selected as the level of aggregation for this 

study. That is, each airport's catchment area was defined as the entire PSA to which that airport 

belongs. In other words, a resident of the Boston-Worcester-Manchester PSA would have access 

to BOS, MHT, and PVD airports (and some other smaller airports within the region). This helps 

us capture the types of multi-airport choice decisions that passengers in these large multi-airport 

regions face when deciding which airport to use to travel. Furthermore, this definition of 

catchment areas will allow us to compute air service accessibility for each PSA in the United 

States. 

 

2.2  Dividing U.S. Airports into PSAs 

There are nearly 500 primary commercial service airports in the United States. To complete the 

accessibility analysis, each of these airports needed to be assigned to its correct Primary 

Statistical Area. Airports were mapped into PSAs using the following procedure: 
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1. First, latitude and longitude coordinates for each airport were obtained from the 

OpenFlights data project. OpenFlights is an open source website that contains geographic 

locational data for nearly 7,000 airports worldwide. 

2. Then, an application programming interface (API) from the Federal Communications 

Commission (FCC)
1
 was used to convert each airport's lat-long coordinates into a 15-

character US Census Bureau Census Block number, also known as a Federal Information 

Processing Standard (FIPS) code. These FIPS codes provide information about the state 

and region in which each airport is located. A Python script was used to repeatedly query 

the FCC API to obtain the necessary FIPS codes for each airport. 

3. A FIPS code to CBSA “crosswalk” created by the National Bureau of Economic 

Research
2
 was then used to convert each airport's FIPS code to the relevant Primary 

Statistical Area.  

4. Finally, airport mappings were spot-checked to ensure accuracy of the mapping process. 

 

In all, 462 primary commercial service airports in the United States were mapped into 323 of the 

country's 574 Primary Statistical Areas. 58 airports were located in regions that were too small to 

be mapped to a PSA; that is, areas with metropolitan urban cores of less than 10,000 people. In 

our analysis, we will focus on the airports in regions large enough to be mapped into PSAs. This 

leaves 404 airports in 323 PSAs as the sample size for this analysis.  

 

In the United States, 39 Primary Statistical Areas contained two or more airports. Table 1 shows 

some of these PSAs that could be classified as “multi-airport regions.” 

 

Primary Statistical Area # of Airports 

Boston-Worcester-Providence, MA-RI-NH-CT 8 

New York-Newark, NY-NJ-CT-PA 8 

Los Angeles-Long Beach, CA 6 

Las Vegas-Henderson, NV-AZ 6 

San Jose-San Francisco-Oakland, CA 5 

Kahului-Wailuku-Lahaina, HI 4 

Washington-Baltimore-Arlington, DC-MD-VA-WV-PA 4 

Orlando-Deltona-Daytona Beach, FL 3 

Miami-Fort Lauderdale-Port St. Lucie, FL 3 

Flagstaff, AZ 3 

29 other PSAs 2 

Table 1: PSAs Classified as Multi-Airport Regions 

 

                                                           
1
 More details about this API are available at http://www.fcc.gov/developers/census-block-conversions-api. 

2
 The crosswalk is available at http://www.nber.org/data/cbsa-msa-fips-ssa-county-crosswalk.html. 
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To summarize, we defined heterogeneously-shaped catchment areas for each U.S. airport based 

on the U.S. Census Bureau Primary Statistical Area in which the airport is located. We assume 

that any resident living in a PSA in which an airport is located can reasonably be expected to 

access that airport. This approach provides an advantage over simply constructing catchment 

areas based on a fixed distance-based radius, since PSAs are defined in a more nuanced, 

individualized manner that can better capture the commuting patterns and transportation options 

available to residents in each region. After mapping airports into PSAs, we found that 39 of these 

regions contained more than one airport—these “multi-airport regions” will be analyzed in more 

detail in subsequent sections.  

 

3. Measuring Air Service Accessibility in Geographic Regions 

After assigning airports into metropolitan regions (PSAs) and establishing airport catchment 

areas based on the geographies of those regions, we can turn our attention to defining air service 

accessibility based on the available scheduled service at each airport in the region. In this 

section, we review some recent work on creating accessibility indices and define our Air Service 

Accessibility Index, which modifies the Airport Connectivity Quality Index (ACQI) introduced 

in Wittman and Swelbar (2014) by computing the quality and quantity of service available 

between different regions as opposed to different airports.  

 

3. 1 Recent Advances in Connectivity and Accessibility Modeling 

In the past ten years, researchers from a variety of disciplines have given considerable attention 

to the properties and characteristics of the global air transportation network. These papers often 

examine the air transportation network in terms of its connectivity. Some papers, such as 

Guimerà et al. (2005) use network and graph theory concepts to measure the centrality and 

connectedness of the air transportation network. Others, like Goedeking (2010) and Malighetti et 

al. (2008), use time-of-day schedule data for a “representative day” to generate possible 

passenger itineraries, from which connectivity scores are then computed. In most of these 

analyses, connectivity is computed at an airport level of detail. As such, in regions with multiple 

airports, each airport's connectivity is treated separately. 

 

Accessibility models which define access to well-connected air service at a geographic or 

regional level appear less frequently in the literature, and the analyses in these papers are 

generally limited to only the largest cities. Derudder et al. (2007)  is one such example of a paper 

that examines the geographic air service connectivity of various cities using global distribution 

system (GDS) passenger booking data; in a more thorough US-centric analysis, Grubesic and 

Zook (2007) also use GDS data to measure air service accessibility in various U.S. metro 

regions.  

 

Following on this work, Matisziw and Grubesic (2010) create perhaps the most robust recent 

example of an air service accessibility index for U.S. metro regions. Matisziw and Grubesic 
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(2010) evaluate accessibility independently for 64,855 U.S. census tracts and 431 commercial 

service airports. While this paper provides a detailed overview of accessibility at a very fine level 

of detail, the airport catchment area issue still exists. Since the Matisziw and Grubesic (2010) 

analysis does not use a higher level of geographic regional aggregation to define catchment 

areas, such as the Primary Statistical Area, the authors introduce several arbitrary distance-based 

metrics to which census tracts have access to each airport. As discussed earlier, defining such a 

metric uniformly across the entire country can lead to inconsistent estimate of catchment area 

sizes. With reference to air passenger flows at airports, O’Kelly (2012) has noted the need to 

perform sensitivity analyses on these distance-based measures of spatial interaction. 

 

Finally, in a series of papers, Grubesic and Matisziw (2011), Matisziw et al. (2012), Grubesic et 

al. (2012), and Grubesic and Wei (2012) have considered the geographic characteristics and 

accessibility of the Essential Air Service program—a federal subsidy program intended to 

increase the amount of air service provided to small communities in the United States. These 

papers rightly identify that some airports that receive Essential Air Service subsidies may be in 

the catchment areas of larger regional airports. Since the EAS subsidies are only intended to be 

provided to communities in which residents would otherwise have no access to air transportation, 

those communities within the catchment areas of larger airports may be good targets for 

reductions in subsidies. 

 

3. 2 The Air Service Accessibility Index Model 

In this paper, we will use the PSA catchment areas defined in the previous section to avoid 

having to create arbitrary distance-based radii for our accessibility analysis. However, we still 

need to define a connectivity model that will be used to aggregate access to air service for 

airports within each region. To do so, we will modify an airport connectivity model introduced in 

Wittman and Swelbar (2014). The Airport Connectivity Quality Index measures connectivity at 

an airport based on the quantity and quality of available nonstop and connecting service. That is, 

an additional flight to a large airport will be given a higher weight in the model than an 

additional flight to a smaller airport.  

 

While the ACQI model can be used to compute connectivity for individual airports, the method 

of aggregating these scores across regions with multiple airports remains unclear. Additionally, 

when measuring accessibility, Brueckner et al. (2014) have recently argued that in multi-airport 

regions, the amount of service from one airport to another does not matter as much as the level of 

service from the entire region to other regions. That is, we should not compute accessibility 

separately for each of the airports in the Washington-Baltimore-Arlington, DC-MD-VA-WV-PA 

Primary Statistical Area, but instead consider how well connected the entire PSA is to other 

PSAs in the country. This approach takes a “city-pair” definition of air service accessibility, as 

opposed to an “airport-pair” definition as in past work such as Grubesic and Zook (2007) and 

Matisziw and Grubesic (2010). 
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Following Wittman and Swelbar (2014), the Air Service Accessibility Index (ASAI) score for a 

Primary Statistical Area is defined as follows: let P be a set of all PSAs in which there is at least 

one airport, and T be a set of region types to which each region     is mapped.
3
 Then, the 

ASAI score for a region     is: 

 

      ∑            ∑       
      

 

 

where: 

 fp,t  is the average number of daily scheduled flights per destination from region p to 

region type t 

 dp,t is the number of nonstop destination regions of type t served from region p. 

 d’p,t is the number of online or codeshare connecting regions of type t served from region 

p. 

 wt is a weighting factor based on the size of the region type t. 

   is a scaling factor that weights the importance of nonstop service vs. one-stop service. 

 

The ASAI computes regional accessibility based on the quality and quantity of available service 

from a region to other regions in the U.S., as well as international destinations. Destination 

quality is differentiated by the weighting term wt, which varies based on the region type of each 

destination. In other words, an additional flight to a large, economically important region would 

be given a higher weight than service to a smaller, less economically important region. 

 

While regions could be assigned into categories using a variety of different factors, in this 

analysis, region types are defined based on 2012 U.S. Census Bureau estimates of population 

within each region. For each region type t, the weighting term wt was computed by dividing that 

region type's average population by the average population of the largest region type. This ratio 

ensures that flights to the largest regions are given the highest weight. Table 2 lists the region 

types used in this analysis, as well as the wt weighting terms used for each region. 

 

Region Type # of PSAs Avg. Population (2012) wt 

5+ million 12 9,630,884 1.0 

1 – 5 million 47 2,025,759 0.21 

250,000 – 1 million 91 518,668 0.05 

10,000 – 250,000 168 114,117 0.01 

International 343 N/A 1.0 

Table 2: PSA Region Types and Accessibility Model Weighting Terms 

                                                           
3
 Region types could be defined based on population size, economic characteristics, or other factors 
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Note that international destinations were assigned a wt weighting term of 1.0, such that an 

international flight is valued equally highly as an additional flight to one of the 12 largest regions 

in the United States. While this represents the importance that international service plays in 

many U.S. regions, this weight is subject to sensitivity analysis. The ASAI model was tested 

using international airport weighting values that varied between 0.75 and 1.25. In each case, 

small changes to the international weighting term wt result in only limited changes in the rank 

order of regions within the ASAI model. Therefore, a simple weight of 1.0 was chosen for 

international destinations to reduce complexity. 

 

Additionally, the ASAI score for each region is also a function of the weighting term  , which 

measures the relative value of non-stop versus connecting service. That is, if   were set equal to 

1, an additional non-stop flight would be equally valuable as an additional connecting flight. In 

reality, however, passengers prefer non-stop service to connecting service. This relationship is 

often modeled using the Quality of Service Index (QSI), a heuristic used by airline and airport 

planners to assess the change in market share that results from additional non-stop or connecting 

frequencies. 

 

In the QSI model, weights are applied to non-stop, one-stop, and connecting itineraries to 

express customer preferences for each of these itineraries. While academic literature surrounding 

the QSI model is very limited, some practical applications (e.g. Kayloe 2010, Welch 2012) 

suggest “one-stop” weighting terms of between 0.25 and 0.4. Additionally, Emrich and Harris 

(2008) have suggested that connecting itineraries are “up to eight times as valuable” as 

connecting itineraries for passengers. Following this work, the weighting term   was set to 

0.125. A sensitivity analysis was also performed on this parameter on values from 0.03 to 0.3; 

again, small changes in   resulted in only minimal changes to the rank order of regions in the 

ASAI model. 

 

4.  Results of the Air Service Accessibility Index Model for U.S. Primary 

Statistical Areas 

 

4.1  Computing ASAI scores for U.S. PSAs 

Based on the Air Service Accessibility Index model, accessibility scores for the years 2007-2012 

were computed for each of the 323 Primary Statistical Areas with at least one airport. Index 

scores were computed using schedule data from Diio Mi, which accesses the Innovata Schedule 

Reference Service (SRS) database. This schedule data includes information on airline schedules 

for over 800 airlines worldwide, including full schedule coverage of airlines that operate in the 

United States. The number of regions served from each PSA, as well as the levels of service to 

each region, were extracted from the schedule data for each year. 
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It is useful to examine the geographic picture of air service accessibility in the United States to 

see how accessibility is distributed throughout the country. Figure 5 shows the ASAI scores of 

each U.S. Primary Statistical Area in 2007, whereas Figure 6 shows the ASAI scores of each 

PSA in 2012. 

 
Figure 5: Air Service Accessibility Index scores for U.S. Primary Statistical Areas (2007) 

 

 
Figure 6: Air Service Accessibility Index scores for U.S. Primary Statistical Areas (2012) 
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As the figures show, air service accessibility is generally clustered around large metropolitan 

regions, and then falls off quickly in hinterland regions. Reduced accessibility in some peripheral 

PSAs may cause residents of those cities to leave their PSAs to commute to a nearby region with 

better accessibility. While this behavior is not directly modeled in this analysis, the movement of 

passengers across PSA regions is an important factor to consider, particularly at the borders of 

PSAs with one another. Clusters of accessibility exist in the “Northeast Corridor” from Boston to 

Washington, DC, in the Los Angeles and San Francisco metro regions, in Southern Florida, and 

in the Seattle-Portland area. 

 

4. 2 Regional Analysis of Air Service Accessibility 

We can also examine in detail some regions with particularly high accessibility. While a full 

ranking of all 323 PSAs by accessibility score is available in the appendix, Table 3 shows the 12 

PSAs with the highest ASAI scores in 2012. The table also shows how many airports were 

located within each PSA, as well as the percent change in score from 2007-2012. 

 

Rank 

(2007) 

Rank 

(2012) 
Name of PSA 

# of 

Airports 

ASAI 

(2007) 

ASAI 

(2012) 

% 

Change 

1 1 New York-Newark, NY-NJ-CT-PA 8 954.38 841.42 -11.8% 

2 2 Chicago-Naperville, IL-IN-WI 2 874.13 790.28 -9.6% 

3 3 Atlanta--Athens-Clarke County--Sandy Springs, GA 2 792.74 745.65 -5.9% 

4 4 Washington-Baltimore-Arlington, DC-MD-VA-WV-PA 4 687.20 633.95 -7.7% 

6 5 Dallas-Fort Worth, TX-OK 2 679.01 583.57 -8.5% 

5 6 Los Angeles-Long Beach, CA 6 638.03 576.01 -15.2% 

8 7 San Jose-San Francisco-Oakland, CA 5 542.66 485.03 -8.1% 

10 8 Charlotte-Concord, NC-SC 1 527.69 459.14 8.5% 

7 9 Houston-The Woodlands, TX 2 454.44 450.46 -17.0% 

11 10 Denver-Aurora, CO 1 423.01 415.68 0.7% 

13 11 Miami-Fort Lauderdale-Port St. Lucie, FL 3 412.75 377.67 -5.5% 

9 12 Boston-Worcester-Providence, MA-RI-NH-CT 8 401.02 372.92 -17.9% 

Table 3: Top 12 Primary Statistical Areas by 2012 ASAI Scores 

 

As Table 3 shows, the rankings of the top 7 PSAs by accessibility remained relatively unchanged 

from 2007-2012. However, some single-airport PSAs moved up in the rankings over those years; 

Charlotte-Concord, NC-SC increased its ranking from 10th to 8th from 2007-2012, and Denver-

Aurora, CO increased its ranking from 11th to 10th over the same time period. These two regions 

were the only two PSAs in the top 30 to show an increase in ASAI from 2007-2012, as they 

benefited from bolstered hub service. Charlotte-Douglas International Airport (CLT) saw 

increased service from US Airways, and Southwest Airlines, Frontier Airlines, and United 

Airlines built up additional service at Denver International Airport (DEN) in the Denver-Aurora, 

CO PSA. 
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However, most regions saw a decrease in air service accessibility from 2007-2012 as airlines cut 

available service and limited the amount of connecting service at secondary hubs. This can be 

seen broadly in Figure 7, which shows the percent change in ASAI score for each PSA from 

2007 to 2012. 

 

 
Figure 7: Changes in Air Service Accessibility Index scores for U.S. Primary Statistical Areas, 2007-2012 

 

There are several reasons why most U.S. metropolitan regions saw a decline in average air 

service accessibility from 2007-2012. Most significantly, the number of flights at most U.S. 

airports decreased from 2007-2012 as airlines reconfigured their networks and practiced 

“capacity discipline” in the face of high fuel prices and a recessed economy (Wittman and 

Swelbar 2013). Even after the economy started to recover in 2011, airlines continued to keep 

capacity growth low in an effort to raise yields and increase load factors. As such, many U.S. 

airports saw the cuts in service they received in the midst of the economic downturn persist as a 

result of capacity discipline. As a result, the number of destinations accessible from many 

regions, as well as the number of flights to those destinations, decreased during the time period, 

leading to a decrease in air service accessibility. 

 

These cuts were felt most heavily by mid-sized airports like Cincinnati/Northern Kentucky 

International Airport (CVG) and Memphis International Airport (MEM). These airports had 

served as secondary connecting hubs for major network carrier Delta Air Lines. After Delta 

merged with Northwest Airlines, it began rationalizing its network, which included cutting 

service to these secondary hubs. Although passengers throughout the Delta system could still 

reach approximately the same number of destinations connecting through Atlanta Hartsfield-

Jackson International Airport (ATL), the severe cuts in service at CVG and MEM meant that the 
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Cincinnati and Memphis Primary Statistical Areas saw a tremendous decline in air service 

accessibility from 2007-2012. 

 

The same pattern of network rationalization also negatively affected secondary airports in multi-

airport regions—for instance, in the San Francisco primary statistical area, flights at Oakland 

International Airport (OAK) and Mineta San Jose International Airport (SJC) both decreased by 

over 35% from 2007-2012 (Wittman and Swelbar 2013). Even though flights and connectivity at 

San Francisco International Airport (SFO) increased by over 20% during the same time period, 

the magnitude of the reduction in service at OAK and SJC meant the San Jose-San Francisco-

Oakland, CA PSA lost 8.1% of its air service accessibility from 2007-2012. In other words, the 

service cuts at secondary airports outweighed any gain in service at primary airports in multi-

airport regions, leaving these Primary Statistical Areas with less access to air transportation than 

before the recession. 

 

Since medium-sized airports were most affected by airline cuts during the capacity discipline 

period, we would also expect medium-sized geographic regions to have seen the largest decrease 

in air service accessibility over the same time period. Table 4 shows the average Air Service 

Accessibility Index scores for 2007 and 2012, as well as the percent change in accessibility, for 

primary statistical regions of various population sizes. The population estimates for each Primary 

Statistical Region were obtained from U.S. Census Bureau Population Estimation Program (PEP) 

for the year 2012. 

 

PSA Population 

(2012) 

# of PSAs Average ASAI 

(2007) 

Average ASAI 

(2012) 

% Change in Avg. 

ASAI 

5+ million 12 608.56 546.51 -10.2% 

1 – 5 million 47 160.78 137.66 -14.4% 

0.5 – 1 million 43 41.93 35.95 -14.3% 

250,000 – 500,000 48 27.03 23.73 -12.2% 

100,000 – 250,000 90 14.68 13.37 -8.9% 

< 100,000 79 5.76 6.62 14.9% 

Total4 319 62.07 54.84 -11.6% 

Table 4: Average ASAI scores for PSAs of various population sizes, 2007-2012 

 

As could be expected, Table 4 shows that there is a general positive correlation between 

population size and air service accessibility. That is, regions with larger populations can be 

expected to have better access to well-connected air service. There are several reasons for this 

relationship; larger regions may have more demand for air transportation, leading to better 

service or more destinations. Higher populations may also signal a larger base of economic 

                                                           
4
 Population estimates were not available for four PSAs in Puerto Rico. 
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activity in that region; this could also cause better connected air service to be scheduled to that 

region to take advantage of the strong local economy.  

 

Note also from Table 4 that geographic regions of different sizes felt the effects of airline 

capacity discipline in diverse ways. Very large regions of over 5 million residents saw their 

average Air Service Accessibility Index score decrease by 10.2% from 2007-2012. While this is 

a significant decline, it is less than the average decline of 11.6% for all regions smover the same 

period. Medium-sized regions with populations of 0.5 million - 5 million felt the biggest brunt of 

the decline in service at medium-sized U.S. airports. These regions lost about 14.3% of their air 

service accessibility, on average, from 2007-2012.  

 

It may be surprising that the very smallest regions, particularly those of less than 100,000 people, 

were the only regions to see a net increase in their air service accessibility over this period. Note 

that these regions started with a baseline of very little service, and have been the target of several 

government subsidy programs (the Essential Air Service program and the Small Community Air 

Service Development Grant program) which were intended to increase the amount of air service 

to small communities by subsidizing the carriers that provided this service. These programs seem 

to have worked effectively; many small regions saw a dramatic increase in their air service 

accessibility form 2007-2012. However, the large increase in accessibility in some small regions 

can all mask other regions of this size that lost significant amounts of accessibility over the same 

period as carriers discontinued some or all commercial air service. 

 

5.  Conclusions and Future Work 

This paper introduced two main contributions to the air service accessibility literature: a 

definition of airport catchment areas based on U.S. Census Bureau Primary Statistical Areas 

(PSAs), and an accessibility model that aims to measure the level of accessibility to commercial 

air transportation in each of these geographic regions. The PSA-based catchment area definition 

offers an improvement over traditional distance-based catchment area definitions because it does 

not rely on an arbitrary assignment of a distance-based radius. The heterogeneously defined 

PSAs reflect local knowledge about the commuting patterns of area residents and can cross 

political borders.  

 

However, it is worthwhile to identify some caveats with this approach, such as the performance 

of the catchment area definition on the borders of the Primary Statistical Areas. This definition 

may exclude residents in a nearby community from having “access” to an airport, solely due to 

the definition of the PSA. Additionally, residents in all areas of the PSA are assumed to have 

equal access to all airports within the PSA. This assumption could be further refined by a 

decaying “travel function” for computing accessibility within each PSA. Finally, it may be the 

case that the PSA definition is still not large enough to model the draw of extremely well-

connected airports to regions that are two or three hours away. Residents in regions with poor 
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accessibility may drive to a nearby PSA with better air service accessibility, which would 

increase the size of the catchment area of these larger airports (Fournier et al. 2007).  

 

After 462 primary commercial service airports were mapped into 323 U.S. PSAs, an accessibility 

index model based on the quantity and quality of available service from a region was used to 

compute a measure of air service accessibility for each PSA. As opposed to other connectivity 

and accessibility models that compare service on an airport-to-airport basis, our model considers 

service on a region-to-region basis, such that flights from BOS-ORD and MHT-MDW would 

both be considered as service from the “Boston area” to the “Chicago area.” 

 

We computed air service accessibility for each of the 323 PSAs with at least one airport on a 

yearly basis from 2007-2012. We found that, on average, U.S. regions lost about 11.6% of their 

accessibility to air service during the study period as airlines consolidated service and restricted 

the sizes of their networks. In multi-airport regions, losses in service at secondary airports 

outpaced potential gains at primary airports; many of these regions lost significant amounts of 

accessibility over the study period. On the other hand, some regions with only one airport, such 

as Charlotte, NC and Denver, CO, saw gains in accessibility as their region's airports added 

flights and destinations. In general, mid-sized regions with populations of 0.5 million to 5 

million people lost the most accessibility from 2007-2012—an average decline of about 14.3%. 

 

Airport planners, particularly those in multi-airport regions, could use the accessibility model 

developed in this paper to understand how their region gained or lost access to air transportation 

during six of the most turbulent years in the domestic airline industry in recent memory. Planners 

will also want to monitor how future changes to the U.S. domestic airline industry, such as the 

merger of American Airlines and US Airways, will continue to affect air service accessibility as 

the combined carrier consolidates its network. Administrators of small community airport 

subsidy programs may also be interested in examining the general success of smaller regions in 

gaining accessibility to well-connected air service in our model. 

 

There are many possible extensions to this approach of catchment area definition and 

accessibility modeling. One attractive area of future research is an examination of the 

demographic determinants of regional air traffic accessibility. One of the benefits of using U.S. 

Census areas as the definition of airport catchment areas is that there is a wealth of detailed 

demographic data that is already aggregated on the PSA level. Future researchers may wish to 

use these data to explore which characteristics of a region are correlated with better air service 

accessibility. Additionally, as in Lieshout (2012), future work could consider dynamic changes 

in catchment areas over time, or the market shares of individual airports within each catchment 

area. In any event, a better understanding of airport catchment areas will help airport officials 

better measure potential demand within airport regions, and can lead to more accurate fleet and 

network planning on the behalf of airlines in the future. 
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Appendix B – Air Service Accessibility Scores for U.S. Metropolitan Regions 

Rank 
(2012) 

Region 
Population 

(2012) 
# of 

Airports 
ASAI 

(2007) 
ASAI 

(2008) 
ASAI 

(2009) 
ASAI 

(2010) 
ASAI 

(2011) 
ASAI 

(2012) 
% Change 

(07-12) 
1 New York-Newark, NY-NJ-CT-PA 23,362,099 8 954.38 916.95 861.34 857.01 863.02 841.42 -11.8% 

2 Chicago-Naperville, IL-IN-WI 9,899,902 2 874.13 818.41 761.76 794.33 806.33 790.28 -9.6% 

3 Atlanta--Athens-Clarke County--Sandy Springs, GA 6,092,295 2 792.74 781.81 782.98 764.01 742.51 745.65 -5.9% 

4 Washington-Baltimore-Arlington, DC-MD-VA-WV-PA 9,331,587 4 687.20 664.21 651.91 661.06 658.30 633.95 -7.7% 

5 Dallas-Fort Worth, TX-OK 7,095,411 2 638.03 611.60 597.72 592.62 582.47 583.57 -8.5% 

6 Los Angeles-Long Beach, CA 18,238,998 6 679.01 628.02 560.49 567.83 573.78 576.01 -15.2% 

7 San Jose-San Francisco-Oakland, CA 8,370,967 5 527.69 503.50 462.41 455.84 460.32 485.03 -8.1% 

8 Charlotte-Concord, NC-SC 2,454,619 1 423.01 430.92 417.87 435.46 447.05 459.14 8.5% 

9 Houston-The Woodlands, TX 6,371,677 2 542.66 521.97 482.10 467.46 450.88 450.46 -17.0% 

10 Denver-Aurora, CO 3,214,218 1 412.75 410.25 402.30 423.01 423.68 415.68 0.7% 

11 Miami-Fort Lauderdale-Port St. Lucie, FL 6,375,434 3 399.60 388.96 360.70 379.87 387.93 377.67 -5.5% 

12 Boston-Worcester-Providence, MA-RI-NH-CT 7,991,371 8 454.44 430.85 403.34 409.53 412.15 372.92 -17.9% 

13 Detroit-Warren-Ann Arbor, MI 5,311,449 2 401.02 401.22 386.88 398.43 388.18 367.18 -8.4% 

14 Philadelphia-Reading-Camden, PA-NJ-DE-MD 7,129,428 2 351.85 346.08 343.94 349.38 345.74 334.00 -5.1% 

15 Phoenix-Mesa-Scottsdale, AZ 4,329,534 2 369.41 352.50 327.63 319.67 330.96 329.89 -10.7% 

16 Las Vegas-Henderson, NV-AZ 2,247,056 6 378.26 355.37 320.66 305.76 314.19 307.99 -18.6% 

17 Minneapolis-St. Paul, MN-WI 3,759,978 1 316.35 309.55 304.41 301.96 298.67 299.99 -5.2% 

18 Orlando-Deltona-Daytona Beach, FL 2,920,603 3 336.88 319.24 287.66 289.08 287.98 275.57 -18.2% 

19 Seattle-Tacoma, WA 4,399,332 2 276.00 280.76 261.09 257.40 257.21 250.64 -9.2% 

20 Cleveland-Akron-Canton, OH 3,497,711 2 246.25 237.94 208.59 204.29 198.51 194.85 -20.9% 

21 Salt Lake City-Provo-Orem, UT 2,350,274 2 215.54 206.61 206.07 204.42 195.27 183.30 -15.0% 

22 Tampa-St. Petersburg-Clearwater, FL 2,842,878 2 227.83 214.24 184.41 183.15 178.10 174.82 -23.3% 

23 San Diego-Carlsbad, CA 3,177,063 2 212.16 207.21 184.61 178.16 172.70 174.67 -17.7% 

24 St. Louis-St. Charles-Farmington, MO-IL 2,900,605 1 220.40 213.99 185.30 164.73 164.05 162.83 -26.1% 

25 Raleigh-Durham-Chapel Hill, NC 1,998,808 1 188.35 177.13 168.63 163.22 159.09 159.53 -15.3% 

26 Portland-Vancouver-Salem, OR-WA 2,992,924 1 179.17 175.77 154.50 153.22 148.02 152.60 -14.8% 

27 Nashville-Davidson--Murfreesboro, TN 1,845,235 1 148.94 144.56 140.03 140.11 138.68 142.13 -4.6% 

28 Pittsburgh-New Castle-Weirton, PA-OH-WV 2,661,369 2 182.87 157.37 141.34 138.25 141.81 135.73 -25.8% 

29 Kansas City-Overland Park-Kansas City, MO-KS 2,376,631 1 156.56 146.65 133.17 133.34 133.75 129.42 -17.3% 

30 Cincinnati-Wilmington-Maysville, OH-KY-IN 2,188,001 1 295.51 263.03 203.75 155.24 142.63 128.27 -56.6% 

31 Columbus-Marion-Zanesville, OH 2,348,495 1 144.36 135.95 131.48 128.69 130.41 126.12 -12.6% 

32 Indianapolis-Carmel-Muncie, IN 2,310,360 1 144.90 146.48 134.20 129.10 123.06 123.87 -14.5% 

33 Austin-Round Rock, TX 1,834,303 1 127.55 129.16 114.87 114.91 116.16 120.81 -5.3% 

34 Memphis-Forrest City, TN-MS-AR 1,369,548 2 195.59 199.57 186.99 183.08 156.67 118.20 -39.6% 

35 New Orleans-Metairie-Hammond, LA-MS 1,452,502 1 109.02 116.54 113.01 115.15 117.04 117.47 7.8% 

36 Milwaukee-Racine-Waukesha, WI 2,037,542 1 149.36 143.39 138.84 155.37 137.64 107.41 -28.1% 

37 San Antonio-New Braunfels, TX 2,234,003 1 113.59 115.54 108.74 111.00 109.00 106.79 -6.0% 
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Appendix B (continued) – Air Service Accessibility Scores for U.S. Metropolitan Regions 

Rank 
(2012) 

Region 
Population 

(2012) 
# of 

Airports 
ASAI 

(2007) 
ASAI 

(2008) 
ASAI 

(2009) 
ASAI 

(2010) 
ASAI 

(2011) 
ASAI 

(2012) 
% Change 

(07-12) 
39 Virginia Beach-Norfolk, VA-NC 1,803,080 2 117.93 114.43 109.92 110.44 106.95 99.46 -15.7% 

40 Sacramento-Roseville, CA 2,462,722 1 122.47 114.66 97.09 95.40 96.96 95.66 -21.9% 

41 Hartford-West Hartford, CT 1,488,570 1 104.27 98.55 87.91 89.30 95.12 90.26 -13.4% 

42 Jacksonville-St. Marys-Palatka, FL-GA 1,502,515 1 107.99 102.22 95.28 97.59 98.38 89.83 -16.8% 

43 Richmond, VA 1,231,980 1 96.58 98.31 93.72 90.74 90.52 87.68 -9.2% 

44 Kahului-Wailuku-Lahaina, HI 158,316 4 110.32 95.92 93.26 90.81 87.91 86.07 -22.0% 

45 Cape Coral-Fort Myers-Naples, FL 977,720 1 96.99 94.44 88.60 90.11 87.73 84.61 -12.8% 

46 Louisville/Jefferson County--Elizabethtown--Madison, KY-IN 1,478,637 1 85.77 84.79 81.22 81.58 79.76 79.34 -7.5% 

47 San Juan-Carolina, PR #N/A 2 78.21 76.50 76.87 77.70 73.57 76.96 -1.6% 

48 Albuquerque-Santa Fe-Las Vegas, NM 1,162,777 2 90.01 88.30 79.86 81.06 79.47 76.10 -15.5% 

49 Rochester-Batavia-Seneca Falls, NY 1,177,566 1 86.65 85.20 81.35 80.06 75.88 75.67 -12.7% 

50 Oklahoma City-Shawnee, OK 1,367,325 1 75.73 75.09 69.72 70.92 69.51 72.60 -4.1% 

51 Charleston-North Charleston, SC 697,439 1 69.95 72.35 70.35 69.48 73.66 72.20 3.2% 

52 Omaha-Council Bluffs-Fremont, NE-IA 922,051 1 75.68 73.49 71.41 72.00 69.42 68.47 -9.5% 

53 Syracuse-Auburn, NY 740,486 1 79.17 76.40 72.50 73.15 70.16 68.30 -13.7% 

54 Dayton-Springfield-Sidney, OH 1,079,417 1 78.70 77.59 72.07 72.11 69.04 67.48 -14.3% 

55 Tulsa-Muskogee-Bartlesville, OK 1,122,259 1 72.70 72.70 66.94 68.83 68.15 66.78 -8.1% 

56 Greensboro--Winston-Salem--High Point, NC 1,611,243 1 79.16 76.56 70.86 68.05 65.40 65.98 -16.7% 

57 Birmingham-Hoover-Talladega, AL 1,309,818 1 69.37 70.30 68.34 68.70 64.45 64.73 -6.7% 

58 Albany-Schenectady, NY 1,170,483 1 78.51 74.13 69.49 67.07 69.94 64.29 -18.1% 

59 Hilo, HI 189,191 2 81.20 71.17 73.75 62.31 61.84 63.00 -22.4% 

60 Knoxville-Morristown-Sevierville, TN 1,091,370 1 65.94 65.46 66.78 68.06 65.94 62.35 -5.4% 

61 Grand Rapids-Wyoming-Muskegon, MI 1,395,128 2 63.24 62.79 60.53 62.31 63.45 61.93 -2.1% 

62 Greenville-Spartanburg-Anderson, SC 1,384,996 1 64.63 62.79 57.78 58.04 61.33 60.21 -6.8% 

63 Little Rock-North Little Rock, AR 893,610 1 66.23 64.42 66.26 66.68 62.40 60.04 -9.3% 

64 Urban Honolulu, HI 976,372 1 64.84 62.56 56.65 59.25 56.69 57.30 -11.6% 

65 Portland-Lewiston-South Portland, ME 625,726 1 62.33 62.92 61.05 59.13 59.71 56.56 -9.3% 

66 El Paso-Las Cruces, TX-NM 1,045,180 1 54.10 55.61 55.86 58.03 55.95 55.17 2.0% 

67 Harrisburg-York-Lebanon, PA 1,228,559 1 56.04 54.06 51.11 54.95 56.71 53.01 -5.4% 

68 Fayetteville-Springdale-Rogers, AR-MO 482,200 1 57.21 58.51 54.94 54.75 53.50 52.96 -7.4% 

69 Savannah-Hinesville-Statesboro, GA 516,154 1 59.83 59.74 57.39 58.89 56.13 52.75 -11.8% 

70 Des Moines-Ames-West Des Moines, IA 742,936 1 58.97 60.16 55.75 52.30 52.78 52.36 -11.2% 

71 Tucson-Nogales, AZ 1,039,697 1 67.93 66.32 53.91 54.05 52.18 51.98 -23.5% 

72 Madison-Janesville-Beloit, WI 843,793 1 52.78 53.28 48.87 47.57 49.77 49.89 -5.5% 

73 Columbia-Orangeburg-Newberry, SC 913,797 1 56.81 58.94 55.98 54.48 51.39 48.80 -14.1% 

74 Burlington-South Burlington, VT 213,701 1 59.96 60.67 57.15 52.86 52.38 47.94 -20.0% 

75 Pensacola-Ferry Pass-Brent, FL 461,227 1 47.44 45.46 42.41 48.09 47.18 47.70 0.5% 

76 Kapaa, HI 68,434 1 15.95 17.79 48.15 42.79 41.79 44.67 180.0% 
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Appendix B (continued) – Air Service Accessibility Scores for U.S. Metropolitan Regions 
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(2007) 
ASAI 
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(2009) 
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(2010) 
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(2011) 
ASAI 

(2012) 
% Change 

(07-12) 
77 Lexington-Fayette--Richmond--Frankfort, KY 703,271 1 49.75 49.95 46.75 49.63 49.90 44.62 -10.3% 

78 Huntsville-Decatur-Albertville, AL 679,743 1 48.23 49.39 47.64 50.24 48.85 44.54 -7.6% 

79 Reno-Carson City-Fernley, NV 587,004 1 63.86 60.51 47.67 50.16 47.35 43.86 -31.3% 

80 Jackson-Vicksburg-Brookhaven, MS 669,133 1 54.32 53.20 49.78 48.13 44.89 43.80 -19.4% 

81 Wichita-Arkansas City-Winfield, KS 672,393 1 52.35 52.69 48.10 46.35 43.87 42.63 -18.6% 

82 Cedar Rapids-Iowa City, IA 419,992 1 43.67 43.76 43.63 34.06 41.28 42.16 -3.5% 

83 Colorado Springs, CO 668,353 1 47.56 47.78 44.18 44.43 39.93 40.42 -15.0% 

84 Baton Rouge, LA 815,298 1 45.89 45.01 41.16 40.76 40.30 39.47 -14.0% 

85 Charleston-Huntington-Ashland, WV-OH-KY 705,264 2 40.67 40.13 38.78 40.21 42.16 38.14 -6.2% 

86 Myrtle Beach-Conway, SC-NC 454,731 1 43.12 42.49 41.46 43.49 37.03 37.01 -14.2% 

87 Davenport-Moline, IA-IL 474,226 1 40.21 41.31 40.57 38.70 36.74 36.47 -9.3% 

88 Asheville-Brevard, NC 465,255 1 33.79 35.24 37.14 41.16 40.26 36.13 6.9% 

89 Roanoke, VA 310,118 1 41.61 40.87 37.99 37.56 35.93 36.03 -13.4% 

90 Santa Maria-Santa Barbara, CA 431,249 2 47.40 45.01 40.19 37.80 35.48 35.82 -24.4% 

91 Crestview-Fort Walton Beach-Destin, FL 247,665 1 35.15 36.90 36.10 36.02 35.32 35.58 1.2% 

92 Tallahassee-Bainbridge, FL-GA 402,880 1 38.45 39.45 38.33 37.03 33.55 35.22 -8.4% 

93 Shreveport-Bossier City, LA 447,193 1 42.35 42.81 39.27 37.48 35.28 34.62 -18.2% 

94 Springfield-Branson, MO 529,141 1 39.96 41.19 38.49 37.79 34.36 33.94 -15.1% 

95 Edwards-Glenwood Springs, CO 126,090 2 33.02 34.80 33.01 33.37 32.84 33.68 2.0% 

96 Charlottesville, VA 222,860 1 33.97 34.14 32.61 31.63 31.92 32.96 -3.0% 

97 Scranton--Wilkes-Barre--Hazleton, PA 563,629 1 29.24 32.51 33.61 31.71 34.37 32.72 11.9% 

98 Fort Wayne-Huntington-Auburn, IN 616,785 1 36.99 37.57 33.59 31.67 32.33 32.26 -12.8% 

99 Wilmington, NC 263,429 1 30.95 32.29 30.31 31.31 31.91 32.15 3.9% 

100 Lafayette-Opelousas-Morgan City, LA 611,774 1 33.16 33.54 32.85 31.09 31.47 32.14 -3.1% 

101 Peoria-Canton, IL 417,098 1 32.33 33.53 31.48 24.55 25.87 32.06 -0.9% 

102 Fresno-Madera, CA 1,100,113 1 40.84 38.61 35.23 34.60 31.84 31.89 -21.9% 

103 Chattanooga-Cleveland-Dalton, TN-GA-AL 936,142 1 30.35 32.38 29.90 30.80 32.09 31.89 5.1% 

104 North Port-Sarasota, FL 917,203 2 42.59 43.45 32.54 30.09 29.96 31.74 -25.5% 

105 Corpus Christi-Kingsville-Alice, TX 511,319 1 40.56 39.85 33.10 32.95 32.32 31.29 -22.8% 

106 Midland-Odessa, TX 295,987 1 30.75 30.70 30.81 31.24 30.34 31.26 1.7% 

107 Mobile-Daphne-Fairhope, AL 604,726 1 33.73 35.12 33.92 33.57 32.58 31.14 -7.7% 

108 Killeen-Temple, TX 420,375 1 34.84 35.27 34.19 33.99 32.17 30.47 -12.5% 

109 Boise City-Mountain Home-Ontario, ID-OR 717,388 1 46.87 46.02 39.09 31.58 31.49 29.60 -36.9% 

110 Key West, FL 74,809 1 39.54 36.61 30.10 30.56 28.43 29.50 -25.4% 

111 Gulfport-Biloxi-Pascagoula, MS 379,582 1 36.05 38.23 32.66 33.06 31.17 29.49 -18.2% 

112 Lubbock-Levelland, TX 320,741 1 33.30 33.11 32.02 30.49 30.13 29.02 -12.9% 

113 South Bend-Elkhart-Mishawaka, IN-MI 721,296 1 34.86 35.98 31.89 30.73 29.37 28.44 -18.4% 

114 Amarillo-Borger, TX 279,500 1 32.04 31.46 30.11 29.52 28.48 28.39 -11.4% 
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Appendix B (continued) – Air Service Accessibility Scores for U.S. Metropolitan Regions 
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115 Vineyard Haven, MA 17,041 1 31.32 31.33 30.75 30.69 33.55 28.30 -9.7% 

116 Sioux Falls, SD 237,251 1 25.12 25.08 24.98 28.09 29.43 27.99 11.4% 

117 Brownsville-Harlingen-Raymondville, TX 437,615 2 30.98 30.96 30.69 30.24 29.89 27.98 -9.7% 

118 Bangor, ME 153,746 1 35.69 32.77 30.93 28.13 29.03 27.75 -22.2% 

119 Evansville, IN-KY 313,433 1 30.71 31.42 28.24 26.53 28.61 27.62 -10.1% 

120 Alexandria, LA 154,441 1 28.85 29.12 28.27 27.41 27.73 26.78 -7.2% 

121 McAllen-Edinburg, TX 868,167 1 32.75 29.47 22.33 21.64 27.08 26.49 -19.1% 

122 Traverse City, MI 145,283 1 28.81 25.43 28.36 28.01 26.13 26.20 -9.1% 

123 Bloomington-Pontiac, IL 227,362 1 32.28 32.77 30.30 29.75 29.11 26.09 -19.2% 

124 Augusta-Richmond County, GA-SC 575,898 1 24.89 26.00 27.17 29.41 30.12 25.65 3.1% 

125 Fayetteville-Lumberton-Laurinburg, NC 546,175 1 21.45 22.31 23.39 25.42 26.43 25.62 19.5% 

126 Gainesville-Lake City, FL 336,198 1 23.77 23.25 21.37 23.11 23.90 25.62 7.8% 

127 Montgomery, AL 377,149 1 26.32 26.94 24.57 25.23 26.12 25.59 -2.8% 

128 Appleton-Oshkosh-Neenah, WI 397,244 1 32.93 31.67 28.95 28.58 26.99 25.57 -22.4% 

129 Anchorage, AK 392,535 1 31.39 32.53 28.26 30.64 27.53 25.03 -20.2% 

130 Green Bay-Shawano, WI 357,045 1 35.28 34.96 26.39 26.72 28.81 24.52 -30.5% 

131 Monroe-Ruston-Bastrop, LA 252,294 1 28.21 27.70 26.16 25.77 25.70 24.49 -13.2% 

132 Ithaca-Cortland, NY 152,028 1 26.27 26.60 27.21 26.60 25.88 24.32 -7.4% 

133 Jackson, WY-ID 31,727 1 21.24 23.10 22.23 21.23 20.55 24.18 13.9% 

134 Bozeman, MT 92,614 2 22.21 24.13 22.38 22.88 21.59 23.92 7.7% 

135 State College-DuBois, PA 236,355 1 27.27 27.66 23.61 23.35 27.28 23.28 -14.7% 

136 Spokane-Spokane Valley-Coeur d'Alene, WA-ID 674,610 1 29.79 29.62 23.49 26.99 23.26 23.08 -22.5% 

137 Montrose, CO 40,725 1 24.44 25.36 24.57 24.40 24.22 22.29 -8.8% 

138 Johnson City-Kingsport-Bristol, TN-VA 509,690 1 23.86 25.05 25.07 24.72 25.10 21.89 -8.3% 

139 Elmira-Corning, NY 187,974 1 19.64 18.79 18.04 17.08 18.58 21.80 11.0% 

140 Salinas, CA 426,762 1 28.62 26.88 23.46 22.07 21.33 21.68 -24.3% 

141 Steamboat Springs-Craig, CO 36,534 1 25.10 26.11 25.16 25.17 22.35 21.64 -13.8% 

142 Rapid City-Spearfish, SD 163,135 1 14.23 13.93 13.63 18.15 18.09 21.05 47.9% 

143 Binghamton, NY 248,538 1 28.98 22.26 22.25 21.69 21.73 20.39 -29.6% 

144 Bakersfield, CA 856,158 1 22.69 15.95 14.57 14.52 13.65 20.19 -11.0% 

145 Jacksonville, NC 183,263 1 18.73 19.56 19.69 18.90 18.81 20.13 7.5% 

146 Columbus-Auburn-Opelika, GA-AL 491,852 1 17.34 18.78 18.16 18.94 20.44 19.46 12.2% 

147 College Station-Bryan, TX 234,501 1 22.19 21.40 20.10 20.38 20.44 19.20 -13.5% 

148 Fargo-Wahpeton, ND-MN 239,114 1 16.58 16.56 16.46 19.42 19.00 19.12 15.4% 

149 Tyler-Jacksonville, TX 266,027 1 20.73 20.86 19.83 19.65 19.53 19.07 -8.0% 

150 Fort Smith, AR-OK 280,521 1 21.35 22.88 20.90 13.25 12.90 19.04 -10.8% 

151 Lansing-East Lansing-Owosso, MI 534,964 1 28.29 20.60 19.69 20.30 19.54 18.50 -34.6% 

152 Laredo, TX 259,172 1 19.20 18.80 18.19 18.63 18.74 18.28 -4.8% 
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153 Fairbanks, AK 100,272 1 20.70 23.59 18.09 17.99 18.48 18.17 -12.2% 

154 Kalamazoo-Battle Creek-Portage, MI 525,929 1 31.57 24.42 19.28 20.33 19.56 18.00 -43.0% 

155 Saginaw-Midland-Bay City, MI 389,110 1 20.48 20.16 24.72 19.97 18.64 17.99 -12.1% 

156 San Luis Obispo-Paso Robles-Arroyo Grande, CA 274,804 1 25.26 22.34 16.97 18.51 18.39 17.97 -28.8% 

157 Lake Charles, LA 201,195 1 16.24 16.76 18.08 18.91 19.55 17.97 10.7% 

158 Grand Junction, CO 147,848 1 8.79 13.68 14.05 13.82 18.45 17.95 104.3% 

159 Aguadilla-Isabela, PR #N/A 1 21.42 19.29 19.31 19.31 18.21 17.83 -16.7% 

160 Waco, TX 256,317 1 21.02 20.33 18.47 18.53 18.47 17.56 -16.5% 

161 Wausau-Stevens Point-Wisconsin Rapids, WI 307,984 1 19.27 21.30 21.52 21.23 18.14 17.39 -9.8% 

162 Springfield-Jacksonville-Lincoln, IL 317,206 1 16.28 16.10 15.15 15.49 17.29 16.80 3.2% 

163 Palm Bay-Melbourne-Titusville, FL 547,307 1 22.53 22.91 19.31 19.13 17.72 16.66 -26.0% 

164 Kalispell, MT 91,633 1 18.74 20.20 18.84 18.52 17.17 16.40 -12.5% 

165 Medford-Grants Pass, OR 289,342 1 21.75 20.45 17.14 17.14 16.20 16.32 -25.0% 

166 New Bern-Morehead City, NC 195,751 1 17.10 18.81 18.00 17.53 16.78 16.30 -4.7% 

167 Eugene, OR 354,542 1 20.85 19.48 16.10 16.14 15.84 16.17 -22.5% 

168 Champaign-Urbana, IL 233,788 1 19.49 19.50 17.87 17.08 15.99 15.83 -18.8% 

169 Dothan-Enterprise-Ozark, AL 249,316 1 18.00 18.56 17.77 17.12 16.51 15.63 -13.1% 

170 Erie-Meadville, PA 368,244 1 24.56 17.77 17.45 16.50 16.11 15.61 -36.5% 

171 Duluth, MN-WI 279,452 2 11.52 11.42 13.94 15.82 15.18 14.90 29.4% 

172 Abilene, TX 166,963 1 21.15 20.09 14.03 14.43 15.02 14.88 -29.6% 

173 Valdosta, GA 144,343 1 16.41 17.30 16.84 16.16 15.78 14.76 -10.1% 

174 Columbus, MS 59,670 1 16.28 17.38 16.35 15.63 15.27 14.69 -9.8% 

175 Albany, GA 157,399 1 17.11 17.73 16.71 16.12 15.68 14.66 -14.3% 

176 Brunswick, GA 113,448 1 16.24 17.27 16.60 16.05 15.62 14.54 -10.4% 

177 Manhattan-Junction City, KS 135,823 1 1.43 1.48 8.53 11.72 13.69 14.42 911.4% 

178 Meridian, MS 107,111 1 15.38 16.58 15.81 15.16 14.82 13.84 -10.0% 

179 Lincoln-Beatrice, NE 332,148 1 17.26 16.97 22.44 14.78 13.68 13.69 -20.7% 

180 La Crosse-Onalaska, WI-MN 135,298 1 13.06 13.37 14.71 15.45 14.88 13.64 4.4% 

181 Lawton, OK 132,545 1 13.61 23.08 20.34 13.37 12.98 13.34 -2.0% 

182 Missoula, MT 110,977 1 13.86 14.51 13.17 14.11 12.73 13.32 -4.0% 

183 Billings, MT 162,848 1 15.21 14.81 20.91 14.23 12.93 13.26 -12.8% 

184 Columbia-Moberly-Mexico, MO 219,486 1 1.62 3.89 3.82 3.60 3.40 13.13 709.6% 

185 Salisbury, MD-DE 381,868 1 14.20 15.83 15.87 12.99 13.07 12.83 -9.7% 

186 Florence-Muscle Shoals, AL 146,988 1 3.32 3.50 15.05 15.30 14.40 12.77 285.0% 

187 Del Rio, TX 48,705 1 13.31 13.50 12.53 12.65 12.79 12.72 -4.4% 

188 Beaumont-Port Arthur, TX 404,180 1 15.26 15.60 15.05 15.03 15.14 12.66 -17.0% 

189 Rochester-Austin, MN 248,979 1 17.65 17.93 16.61 16.25 15.16 12.52 -29.1% 

190 Durango, CO 52,401 1 7.49 8.34 8.27 8.30 11.93 12.32 64.4% 
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191 Kennewick-Richland, WA 268,243 1 8.37 8.71 12.20 13.22 12.34 12.24 46.1% 

192 San Angelo, TX 114,854 1 18.26 17.29 11.84 12.54 11.86 12.10 -33.7% 

193 Eureka-Arcata-Fortuna, CA 134,827 1 14.73 15.03 13.26 12.98 12.22 12.02 -18.4% 

194 Victoria-Port Lavaca, TX 118,229 1 12.62 12.99 12.47 12.53 12.67 12.00 -4.9% 

195 Bismarck, ND 120,060 1 8.39 8.59 12.38 13.14 11.97 11.85 41.2% 

196 Wichita Falls, TX 150,829 1 13.56 13.27 11.09 12.18 11.62 11.75 -13.3% 

197 Bend-Redmond-Prineville, OR 183,006 1 15.30 14.97 13.12 12.66 11.68 11.57 -24.4% 

198 Hilton Head Island-Bluffton-Beaufort, SC 193,882 1 17.92 18.48 18.56 18.64 11.44 11.29 -37.0% 

199 Yuma, AZ 200,022 1 12.50 12.93 11.63 12.49 12.39 11.27 -9.9% 

200 Texarkana, TX-AR 149,701 1 16.29 16.23 10.91 11.54 11.19 11.10 -31.8% 

201 Roswell, NM 65,784 1 8.18 10.13 11.13 11.55 11.69 11.07 35.2% 

202 Harrisonburg-Staunton-Waynesboro, VA 247,058 1 9.36 9.64 9.71 10.04 10.24 10.51 12.3% 

203 Houghton, MI 38,735 1 6.46 6.72 6.50 11.39 10.07 10.34 60.1% 

204 Paducah-Mayfield, KY-IL 136,083 1 3.77 3.96 3.76 10.85 10.07 10.33 173.8% 

205 Eau Claire-Menomonie, WI 207,671 1 6.80 6.92 6.51 11.39 10.07 10.33 51.8% 

206 Grand Island, NE 83,472 1 1.15 1.03 0.89 1.16 9.67 10.24 787.6% 

207 Joplin-Miami, MO-OK 206,563 1 2.07 1.42 0.60 0.58 10.05 10.21 392.9% 

208 Longview-Marshall, TX 284,129 1 10.21 10.17 9.18 9.59 10.15 10.07 -1.4% 

209 Garden City, KS 41,168 1 1.65 0.78 0.68 0.83 0.96 9.94 503.8% 

210 Marquette, MI 67,906 1 14.51 14.22 13.68 11.91 11.66 9.80 -32.5% 

211 Williamsport-Lock Haven, PA 156,685 1 11.78 11.34 10.22 9.53 9.64 9.69 -17.7% 

212 Johnstown-Somerset, PA 218,541 1 2.73 7.98 8.11 9.10 9.50 9.68 254.2% 

213 Toledo-Port Clinton, OH 650,050 1 26.55 25.18 14.91 14.71 10.40 9.57 -63.9% 

214 Cheyenne, WY 94,483 1 1.46 1.28 0.97 9.39 10.30 9.49 549.5% 

215 Clarksburg, WV 94,310 1 3.54 7.83 7.99 8.47 8.85 9.34 163.6% 

216 Morgantown-Fairmont, WV 190,842 1 3.69 8.71 8.80 9.05 9.08 9.08 145.9% 

217 Plattsburgh, NY 81,654 1 5.32 4.78 3.98 7.35 9.58 9.02 69.4% 

218 Redding-Red Bluff, CA 241,992 1 11.65 11.61 10.86 11.24 10.19 8.90 -23.6% 

219 Idaho Falls-Rexburg-Blackfoot, ID 231,995 1 8.76 9.31 8.76 6.70 8.52 8.85 1.0% 

220 Modesto-Merced, CA 784,031 2 16.98 14.52 10.56 10.33 8.99 8.82 -48.1% 

221 Alpena, MI 29,234 1 8.12 8.26 8.26 8.29 8.49 8.81 8.4% 

222 Altoona, PA 127,121 1 9.22 9.15 8.67 8.41 8.42 8.75 -5.0% 

223 Sioux City-Vermillion, IA-SD-NE 183,052 1 7.17 7.58 6.79 6.40 6.08 8.64 20.4% 

224 Waterloo-Cedar Falls, IA 168,747 1 6.61 6.88 6.55 6.39 6.07 8.64 30.7% 

225 Beckley, WV 124,890 1 8.50 8.00 7.27 8.18 8.38 8.46 -0.5% 

226 Dubuque, IA 95,097 1 9.74 11.80 10.45 8.44 9.00 8.36 -14.3% 

227 Minot, ND 73,146 1 6.46 6.72 6.58 7.68 7.47 8.34 29.1% 

228 Chico, CA 221,539 1 8.79 9.10 8.67 8.84 8.51 8.23 -6.4% 
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229 Great Falls, MT 81,723 1 8.66 12.37 8.56 8.33 7.87 8.16 -5.8% 

230 Sault Ste. Marie, MI 38,917 1 6.80 7.27 7.27 8.02 8.51 7.90 16.2% 

231 Escanaba, MI 36,884 1 2.35 6.91 7.28 7.68 8.54 7.85 234.3% 

232 Lynchburg, VA 255,342 1 16.86 17.23 17.28 16.92 14.24 7.81 -53.7% 

233 Florence, SC 206,087 1 16.37 17.40 17.28 17.18 14.32 7.81 -52.3% 

234 St. George, UT 144,809 1 11.63 11.18 9.58 4.99 7.64 7.80 -32.9% 

235 Bellingham, WA 205,262 1 6.38 6.62 5.44 5.93 6.21 7.70 20.8% 

236 Greenville-Washington, NC 220,061 1 6.63 6.83 6.95 7.46 7.70 7.62 15.0% 

237 Helena, MT 76,277 1 7.85 8.77 8.39 8.08 7.50 7.53 -4.0% 

238 Grand Forks, ND-MN 98,888 1 6.80 7.11 7.01 7.18 7.18 7.49 10.1% 

239 El Centro, CA 176,948 1 8.69 8.53 7.53 6.72 7.21 7.35 -15.4% 

240 Coos Bay, OR 62,534 1 1.80 6.89 7.19 7.59 7.18 7.30 305.4% 

241 Watertown-Fort Drum, NY 120,262 1 5.87 2.65 0.63 0.63 6.49 7.29 24.2% 

242 Crescent City, CA 28,290 1 6.94 7.22 6.76 6.94 6.58 6.62 -4.5% 

243 Claremont-Lebanon, NH-VT 217,390 1 17.43 17.49 5.83 6.16 6.12 6.29 -63.9% 

244 Mason City, IA 51,307 1 6.40 6.66 6.44 6.35 6.02 6.21 -3.0% 

245 Klamath Falls, OR 65,912 1 1.68 6.80 7.23 7.34 6.86 6.14 266.5% 

246 Flagstaff, AZ 136,011 3 6.53 6.93 6.77 6.11 6.31 6.10 -6.5% 

247 Watertown, SD 27,606 1 6.27 6.53 6.32 6.22 5.98 6.09 -3.0% 

248 Pierre, SD 21,846 1 0.48 6.50 6.17 6.34 6.25 6.08 1161.8% 

249 Aberdeen, SD 41,357 1 6.69 6.94 6.61 6.32 6.09 5.95 -11.1% 

250 Bemidji, MN 45,375 1 6.64 6.88 6.63 6.50 6.02 5.94 -10.5% 

251 Brainerd, MN 91,239 1 6.55 6.74 6.48 6.30 6.01 5.92 -9.7% 

252 Casper, WY 78,621 1 8.81 12.08 8.01 6.30 5.87 5.85 -33.6% 

253 Hailey, ID 27,500 1 7.37 7.37 6.23 6.25 6.04 5.67 -23.1% 

254 Iron Mountain, MI-WI 30,702 1 2.39 6.34 6.11 6.03 5.79 5.61 134.8% 

255 Rock Springs, WY 45,267 1 0.99 6.12 6.13 6.03 5.64 5.55 460.3% 

256 Gillette, WY 47,874 1 1.02 6.30 6.35 6.24 5.81 5.47 438.5% 

257 Ponce-Coamo-Santa Isabel, PR #N/A 1 20.49 17.13 4.65 4.84 5.34 5.30 -74.1% 

258 Laramie, WY 37,276 1 0.65 0.64 0.61 0.61 0.62 4.85 649.0% 

259 Lancaster, PA 526,823 1 2.41 0.00 3.88 5.01 5.00 4.51 86.7% 

260 Lewiston, ID-WA 61,419 1 5.34 5.25 4.76 4.73 4.47 4.35 -18.5% 

261 Twin Falls, ID 101,094 1 5.10 4.86 4.57 4.62 4.17 3.87 -24.1% 

262 Juneau, AK 32,556 1 3.78 3.98 3.78 3.78 3.67 3.85 1.9% 

263 Ketchikan, AK 13,779 1 3.54 3.77 3.82 3.80 3.69 3.83 8.2% 

264 Rockford-Freeport-Rochelle, IL 445,816 1 4.94 5.01 1.11 1.26 3.81 3.80 -22.9% 

265 Yakima, WA 246,977 1 5.68 5.52 3.55 3.44 3.25 3.75 -34.0% 

266 Macon-Warner Robins, GA 418,201 1 16.24 18.69 5.03 3.74 3.74 3.71 -77.1% 
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Appendix B (continued) – Air Service Accessibility Scores for U.S. Metropolitan Regions 

Rank 
(2012) 

Region 
Population 

(2012) 
# of 

Airports 
ASAI 

(2007) 
ASAI 

(2008) 
ASAI 

(2009) 
ASAI 

(2010) 
ASAI 

(2011) 
ASAI 

(2012) 
% Change 

(07-12) 
267 Elko, NV 53,217 1 5.00 4.85 4.55 4.45 3.98 3.67 -26.7% 

268 Malone, NY 51,795 1 5.38 4.35 2.92 3.16 3.30 3.56 -34.0% 

269 Butte-Silver Bow, MT 34,403 1 4.68 4.36 4.13 4.11 3.59 3.50 -25.2% 

270 Cedar City, UT 46,750 1 5.71 5.52 4.09 4.00 3.58 3.47 -39.3% 

271 Tupelo, MS 138,976 1 15.79 15.38 14.88 14.32 3.28 3.44 -78.2% 

272 Wenatchee, WA 113,037 1 3.50 3.59 3.43 3.37 3.24 3.43 -1.9% 

273 Parkersburg-Marietta-Vienna, WV-OH 154,023 1 3.85 9.17 8.81 9.00 3.71 3.41 -11.5% 

274 Pullman-Moscow, WA-ID 84,790 1 2.94 3.12 3.11 3.14 3.12 3.37 14.6% 

275 Rutland, VT 60,869 1 4.73 2.94 2.92 3.01 3.30 3.32 -30.0% 

276 Walla Walla, WA 63,399 1 3.17 3.34 3.18 3.16 3.04 3.20 1.0% 

277 Laurel, MS 85,164 1 3.57 3.76 3.64 3.42 3.25 3.14 -11.9% 

278 Decatur, IL 110,122 1 3.65 0.55 0.55 2.87 3.22 3.11 -14.7% 

279 Jamestown-Dunkirk-Fredonia, NY 133,539 1 2.22 8.15 3.50 3.37 3.40 3.09 39.0% 

280 Oil City, PA 54,272 1 2.38 3.91 3.46 3.34 3.37 3.06 28.8% 

281 Augusta-Waterville, ME 121,853 1 5.78 4.67 5.65 5.77 3.44 2.92 -49.5% 

282 Greenville, MS 49,750 1 3.57 3.75 3.64 3.42 3.25 2.90 -18.7% 

283 Bradford, PA 43,127 1 2.42 8.83 3.26 3.13 3.16 2.87 18.2% 

284 Burlington, IA-IL 47,383 1 2.33 0.54 0.51 1.89 2.14 2.17 -7.0% 

285 Visalia-Porterville-Hanford, CA 603,341 1 4.33 4.12 2.62 1.84 1.97 2.10 -51.4% 

286 Prescott, AZ 212,637 1 6.14 6.24 4.67 3.44 1.71 1.95 -68.2% 

287 El Dorado, AR 40,867 1 1.73 0.86 0.10 0.53 0.91 1.91 10.3% 

288 Owensboro, KY 116,030 1 4.60 3.97 0.84 1.23 1.57 1.54 -66.5% 

289 Farmington, NM 128,529 1 5.74 5.22 0.94 1.25 1.39 1.15 -80.0% 

290 Quincy-Hannibal, IL-MO 116,393 1 3.54 0.58 0.65 1.09 1.09 1.09 -69.0% 

291 Carbondale-Marion, IL 126,745 1 2.32 0.58 0.67 1.09 1.09 1.08 -53.2% 

292 Hot Springs-Malvern, AR 130,297 1 1.84 0.88 0.10 0.53 1.14 1.08 -41.4% 

293 Pueblo-Cañon City, CO 207,640 1 0.42 0.44 0.54 1.08 1.26 1.07 156.0% 

294 Dickinson, ND 26,771 1 0.61 0.64 0.66 0.66 0.76 0.93 52.0% 

295 Fort Leonard Wood, MO 53,259 1 2.28 0.69 0.81 0.57 0.85 0.87 -61.6% 

296 Harrison, AR 45,413 1 0.36 0.31 0.10 0.60 0.85 0.86 134.8% 

297 Hays, KS 29,053 1 1.49 0.76 0.82 0.82 0.82 0.85 -42.8% 

298 Jackson, TN 130,450 1 4.60 3.97 0.35 0.70 0.70 0.82 -82.2% 

299 Ogdensburg-Massena, NY 112,232 2 0.24 0.45 0.63 0.63 0.76 0.75 215.8% 

300 Youngstown-Warren, OH-PA 664,713 1 0.37 0.49 0.52 0.55 0.55 0.73 95.1% 

301 Cape Girardeau-Sikeston, MO-IL 136,219 1 4.68 4.22 0.45 0.73 0.73 0.73 -84.5% 

302 Scottsbluff, NE 39,039 1 0.65 0.67 0.65 0.69 0.66 0.70 8.7% 

303 Sheridan, WY 29,596 1 1.15 0.77 0.67 0.78 0.76 0.69 -40.2% 

304 Hermiston-Pendleton, OR 88,064 1 1.30 1.26 0.56 0.64 0.69 0.69 -47.4% 
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Appendix B (continued) – Air Service Accessibility Scores for U.S. Metropolitan Regions 

Rank 
(2012) 

Region 
Population 

(2012) 
# of 

Airports 
ASAI 

(2007) 
ASAI 

(2008) 
ASAI 

(2009) 
ASAI 

(2010) 
ASAI 

(2011) 
ASAI 

(2012) 
% Change 

(07-12) 
305 Riverton, WY 41,110 1 0.70 0.79 0.64 0.67 0.72 0.68 -3.8% 

306 Kearney, NE 53,948 1 0.63 0.63 0.61 0.60 0.60 0.64 2.3% 

307 Kirksville, MO 29,951 1 1.42 1.05 0.07 0.40 0.64 0.63 -55.3% 

308 Port Angeles, WA 71,863 1 1.96 1.86 1.46 0.79 0.96 0.63 -67.9% 

309 North Platte, NE 37,373 1 0.65 0.65 0.61 0.60 0.60 0.62 -4.3% 

310 Show Low, AZ 107,094 1 0.54 0.49 0.48 0.42 0.62 0.59 9.2% 

311 Dodge City, KS 34,752 1 1.47 0.48 0.43 0.57 0.43 0.57 -61.1% 

312 Jonesboro-Paragould, AR 167,205 1 0.14 0.13 0.10 0.53 0.54 0.55 285.6% 

313 Salina, KS 62,060 1 1.10 1.43 0.52 0.51 0.54 0.54 -50.5% 

314 Fort Collins, CO 310,487 1 0.63 0.45 0.46 0.60 0.67 0.51 -18.4% 

315 Vernal, UT 34,524 1 1.06 1.13 0.40 0.39 0.41 0.47 -56.3% 

316 Silver City, NM 29,388 1 0.39 0.39 0.36 0.36 0.36 0.44 14.5% 

317 Liberal, KS 23,547 1 0.35 0.47 0.44 0.60 0.55 0.43 23.0% 

318 Mayagüez-San Germán, PR #N/A 1 0.30 0.18 0.17 0.30 0.42 0.42 40.7% 

319 Clovis-Portales, NM 70,357 1 0.40 0.39 0.36 0.36 0.36 0.39 -2.4% 

320 Carlsbad-Artesia, NM 54,419 1 0.25 0.45 0.69 0.41 0.39 0.37 48.4% 

321 Huron, SD 17,753 1 0.38 0.04 0.05 0.05 0.05 0.31 -19.3% 

322 Great Bend, KS 27,557 1 1.11 0.44 0.29 0.07 0.07 0.05 -96.0% 

323 Topeka, KS 234,566 1 0.54 0.00 0.00 0.00 0.00 0.00 -100.0% 

 


