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Chromatin state annotation using combinations of chromatin modification patterns has
emerged as a powerful approach for discovering regulatory regions and their cell type
specific activity patterns, and for interpreting disease-association studies!->. However, the
computational challenge of learning chromatin state models from large numbers of
chromatin modification datasets in multiple cell types till requires extensive bioinformatics
expertise making it inaccessible to the wider scientific community. To address this
challenge, we have developed ChromHMM, an automated computational system for
learning chromatin states, characterizing their biological functions and correlations with
large-scale functional datasets, and visualizing the resulting genome-wide maps of
chromatin state annotations.

ChromHMM is based on a multivariate Hidden Markov Model that model s the observed
combination of chromatin marks using a product of independent Bernoulli random
variables?, which enables robust learning of complex patterns of many chromatin
modifications. Asinput, it receives alist of aligned reads for each chromatin mark, which
are automatically converted into presence or absence calls for each mark across the genome,
based on a Poisson background distribution. An optional additional input of aligned reads
for acontrol dataset can be used to either adjust the presence or absence threshold, or as an
independent input feature (Supplementary Note). Alternatively, the user can input files that
contain calls from an independent peak caller. By default, chromatin states are analyzed at
200-base pair intervals that roughly approximate nucleosome sizes, but smaller or larger
windows can be specified. We have also devel oped a new parameter initialization procedure
that enables relatively efficient inference of comparable models across different numbers of
states (Supplementary Note).

ChromHMM then outputs both the learned chromatin state model parameters and the state
assignments for each genomic position. The learned emission and transition parameters are
returned in both text and image format (Fig. 1), automatically grouping states with similar
emission parameters or proximal genomic locations, although a user-specified reordering
can also be used (Supplementary Fig. 1-2, Supplementary Note). ChromHMM enables the
study of the likely biological roles of each chromatin state based on enrichment in diverse
external annotations and experimental data, shown as heat maps and tables (Fig. 1), both for
direct genomic overlap and at various distances from a state (Supplementary Fig. 3).
ChromHMM also generates custom UCSC genome browser tracks® showing the resulting

gorresponding Author: Manolis Kellis (manoli @mit.edu).
Current address: Department of Biological Chemistry, University of CaliforniaLos Angeles, Los Angeles, California, USA

The software iswritten in Java enabling it to be run on virtualy any computer, and is freely available with further documentation at
http://compbio.mit.eduw/ChromHMM.
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chromatin state segmentation in dense view (single color-coded track), or expanded view
(each state shown separately) (Fig. 1). All the files ChromHMM produces by default are
summarized on a webpage that it also creates (Supplementary Data).

ChromHMM also enables the analysis of chromatin states across multiple cell types. When
the chromatin marks are common across the cell types, acommon model can be learned by a
virtual ‘concatenation’ of the chromosomes of all cell types. Alternatively amodel can be
learned by avirtual ‘stacking’ of all marks across cell types, or independent models can be
learned in each cell type. Lastly, ChromHMM supports the comparison of models with
different number of states based on correlations in their emission parameters
(Supplementary Fig. 4).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Sample Outputs of ChromHMM

(a) Example of state annotation tracks produced from ChromHMM and visualized in the
UCSC genome browserS, including a dense view of the segmentation as a single track (top),
and an expanded view of the segmentation showing each state as a separate track (bottom).
(b) Heat maps automatically produced by ChromHMM show emission (left) and transition
(right) parameters. (¢) Example heat map for state functional enrichments automatically
generated by ChromHMM. The columns indicate the relative percentage of the genome
represented by each state (first column) and relative fold enrichment for: RefSeq
transcription start sites (TSS); CpG Idlands; 2000 base pair intervals around the TSS; exons;
genes; transcript end sites (TES); evolutionary conservation; and nuclear lamina associated
regions (Supplementary Note). a-c. Example shown corresponds to a previous model
learned across nine cell types3.
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