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Abstract Continuous-state POMDPs provide a natural representation for a variety
of tasks, including many in robotics. However, most existing parametric continuous-
state POMDP approaches are limited by their reliance on a single linear model
to represent the world dynamics. We introduce a new switching-state dynamics
model that can represent multi-modal state-dependent dynamics. We present the
Switching Mode POMDP (SM-POMDP) planning algorithm for solving continuous-
state POMDPs using this dynamics model. We also consider several procedures to
approximate the value function as a mixture of a bounded number of Gaussians.
Unlike the majority of prior work on approximate continuous-state POMDP plan-
ners, we provide a formal analysis of our SM-POMDP algorithm, providing bounds,
where possible, on the quality of the resulting solution. We also analyze the compu-
tational complexity of SM-POMDP. Empirical results on an unmanned aerial vehicle
collisions avoidance simulation, and a robot navigation simulation where the robot
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has faulty actuators, demonstrate the benefit of SM-POMDP over a prior parametric
approach.

Keywords Partially observable Markov decision process · Planning ·
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1 Introduction

Partially observable Markov decision processes (POMDPs) [9] provide a rich frame-
work for describing a number of planning problems that arise in situations with
hidden state and stochastic actions. In many applications, such as autonomous
navigation across varying terrain or robotic grasping, the world is most naturally rep-
resented using continuous states. Planning in continuous environments is challenging
because a continuous domain with even a single dimension offers an infinite number
of different world states. For example, an autonomous car driving on a straight road
could take on an infinite range of values, and the planner must determine an action
for each value. If the world state is unknown, the decision-making algorithm must
consider a distribution over an infinite number of possible states, known as the belief,
and then compute the expected benefit of different actions given different beliefs,
known as the value function. In this work we are interested in planning algorithms
for operating in such partially-observable, continuous-valued domains with complex
dynamics.

Outside of the famous linear quadratic Gaussian controller (see Burl [3]), there
has been relatively little work on continuous-state planning in partially observable
environments. Brooks et al. [2] restrict the belief state to be a unimodal Gaussian,1

and then plan by discretizing the Gaussian parameters and using Fitted Value Itera-
tion over that representation. However, this approach will be limited in any domain
that requires multi-modal beliefs to achieve good performance. In addition, the
resulting plan quality depends on the resolution of the discretization of the parameter
space, which is hard to know in advance and has a direct impact on computational
cost. Thrun’s Monte Carlo POMDP [21] approach can handle arbitrary dynamics
models but requires often-expensive sampling to perform the belief updates and to
compute the value function estimate. Recent work by Zhou et al. [24] generalizes the
work of Brooks et al. to a more generic class of parametric families. While the authors
present nice theoretical bounds on their approach, the cost scales as a function of the
discretized parameter space, which may be expensive in domains that require a large
number of parameters, or a fine discretization of the parameter space in order to
achieve good empirical results.

This prior work demonstrates the interest in using parametric functions to encode
the world models in continuous-domains; such functions provide a compact mecha-
nism to represent distributions and values over infinite sets. Indeed, Porta et al. [15]

1A special exception is included to encode boundary conditions such as obstacles in a robotic task.
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have demonstrated that using linear Gaussian models allows the main operators
of POMDP planning, value function backups and belief updating, to be done in
closed form. By optimizing and adjusting both the parameters and the value function,
Porta et al.’s planner can automatically adapt the value function representation at
each backup, introducing new components to the representation as the structure of
the value function changes. In this sense it can be considered a variable resolution
approach to planning (see for example Munos and Moore [11]), but one that dynam-
ically determines the resolution as part of the standard value function computation.
This can be a significant advantage over standard uniform resolution discrete-state
POMDP planners, as Porta et al. demonstrated by showing their approach was faster
than the discrete-state POMDP planner Perseus [20] in a simulation experiment.

However, if parametric functions are used to represent the world models and
value function, it is also critical to ensure that the chosen functions are sufficiently
expressive to adequately represent the problems of interest. The work by Brooks [2],
Porta [15] and their colleagues presented results on problems that used the simple
linear Gaussian to describe the effects of an action. However, the dynamics of robotic
grasping, autonomous navigation over varying terrain, and many other problems
of interest are highly complex and nonlinear. For example, an autonomous car
crossing varied terrain will exhibit different dynamics depending on whether the
ground underneath is sand or rocks. Though such dynamics are easily represented
in discrete-state environments using standard transition matrices, a single linear
Gaussian continuous-state model will be insufficient to adequately model these
multi-modal state-dependent dynamics.

In this paper we present the Switching Modes POMDP (SM-POMDP) algorithm
which uses a switching state space representation of the world dynamics to perform
approximate closed form planning in continuous-valued environments. SM-POMDP
extends Porta et al.’s [15] prior work on continuous-state POMDPs by using a model
that can both represent actions that result in multimodal stochastic distributions
over the state space, and succinctly represent any shared dynamics among states.
SM-POMDP is suitable for a much larger class of POMDP problems than past
related approaches, but still maintains the strengths of parametric representations
in continuous-state POMDP planning.

In contrast to most2 prior approximate continuous-state POMDP work [2, 15, 21],
we also provide a theoretical analysis of several variants of our SM-POMDP planner,
bounding where possible the error between the resulting SM-POMDP value func-
tion, and the optimal value function. We also analyze the computational complexity
of planning using SM-POMDP. As is often the case, we show there is a tradeoff
between computational tractability and guarantees on the resulting optimality of
the produced plan. Our analysis could aid users in selecting the right variant of
SM-POMDP appropriate for the tractability and optimality constraints of their own
application.

Our paper proceeds as follows. In Section 2 we briefly provide an introduction to
POMDPs, and then discuss switching state dynamics models in Section 3. We next
present how to plan with these models in Section 4. To keep planning tractable,
this section also presents several methods for ensuring that the value function

2A notable exception is the work of Zhou et al. [24] who provide an elegant formal analysis of their
approach.
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representation uses a bounded number of parameters. In Section 5 we analyze
SM-POMDP in terms of its computational complexity, and, where possible, provide
bounds on the quality of its solutions. Experimental results are given in Section 6
that demonstrate the advantage of SM-POMDP over prior parametric approaches on
an unmanned aerial vehicle collisions avoidance simulation, and a robot navigation
simulation where the robot has faulty actuators. Section 7 concludes.

2 POMDPs

Partially observable Markov decision processes (POMDPs) have become a popular
model for decision making under uncertainty in artificial intelligence [9]. A POMDP
consists of: a set of states S; a set of actions A; a set of observations Z ; a dynamics
model that represents the probability of making a transition to state s′ after taking
action a in state s, p(s′|s, a); an observation model describing the probability of
receiving an observation z in state s, p(z|s); a reward model that specifies the reward
received from being in state s and taking action a, R(s, a); the discount factor to trade
off the value of immediate and future rewards, γ ; and an initial belief distribution, b o.

A belief state b t = p(s|a1:t, z1:t) is used to summarize the probability of the world
being in each state given the past history up to the current time t of observations
and actions (z1:t, a1:t). A policy π : b → a maps belief states to actions. The goal of
POMDP planning is to construct a policy that maximizes the (possibly discounted)
expected sum of rewards E[∑T

t=1 γ t R(st, at)] over an action sequence of length T.
The policy is often found by computing a value function over the space of beliefs
that gives the expected sum of rewards for each state. As the space of possible beliefs
is infinite, the value function cannot be represented by a table mapping states to
values as is often done for Markov decision processes.

The POMDP formulation described above is agnostic about whether the un-
derlying world states, actions, and observations are discrete or continuous. In the
case where S, A, and Z are discrete, Sondik [19] showed that the optimal finite
horizon value function is piecewise linear and convex (PWLC) in the belief space
and can therefore be represented by a finite set of |S|-dimensional α-vectors. Each
α-vector corresponds to a “policy tree” specifying conditional sequences of actions,
which depend on the observations received: α(s) is the value of executing this tree
in state s. Therefore the expected value of starting at belief b and following policy
tree j is computed by calculating the expected value of α j under the distribution b ,
denoted by 〈b , α j〉, which is equal to

∑
s∈S α j(s)b(s) for discrete S. Given an optimal

value function represented by a set of α-vectors, for a given belief b the optimal
action is chosen by selecting the action associated with the α-vector that maximizes
the expected value. One common way to compute the α-vectors is to perform value
iteration, which involves using a set of t-step conditional policy trees, each with
an associated α-vector, to create new (t + 1)-step policy trees and α-vectors by
considering all possible actions, and all possible observations, and then all possible
next t-step policy trees that could follow a particular action, observation tuple. In
infinite-horizon settings, the base α-vector can represent a lower bound value on
a particular policy, such as executing the same action always. In such scenarios, the
α-vector after T rounds of value iteration can be interpreted as following a particular
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conditional policy tree for T steps, followed by the base policy of executing the same
action from then onwards.

The number of different conditional policy trees, and hence the number of
α-vectors required to express a POMDP value function exactly, can grow expo-
nentially with the length of the horizon, and this intractable growth often occurs in
practice. Therefore the majority of prior work has focused on approximate solution
techniques. Point-based value iteration [14, 20, 23] is one class of approximation
techniques that exploits the piecewise linear and convex nature of the optimal
discrete state value function. Point-based techniques estimate the value function at
only a small set of N chosen belief points B̃, resulting in a value function represented
by at most N α-vectors. This representation is constructed by iteratively computing
an approximately optimal t-step value function Vt from the previously-computed
(t − 1)-step value function Vt−1 by backing up the value function at beliefs b ∈ B̃
using the Bellman equation:

Vt(b) = max
a∈A

∑

s∈S

R(s, a)b(s) + γ
∑

z∈Z

max
αt−1∈Vt−1

∑

s∈S

∑

s′∈S

p(s′|s, a)p(z|s′)αt−1(s′)b(s)

= max
a∈A

[
∑

s∈S

R(s, a)b(s) + γ
∑

z∈Z

max
αazj

〈αazj, b〉
]

(1)

where αazj is the vector associated with taking action a, receiving observation z and
then following the (t − 1)-step policy associated with α j. We have used the notation
〈x, y〉 to denote the inner product between vectors x and y. It is efficient to compute
the dominant α-vector at each b , and those vectors taken together provide an
approximation of Vt over entire belief space. Due to the PWLC property of discrete
state POMDPs, this approximate representation is guaranteed to be a lower bound
on the optimal value function. Different point-based techniques include carefully
adding new elements to B̃ to improve this lower bound [14] or updating a subset of
B̃ at each iteration [20].

3 Switching state–space dynamics models

Our interest lies in using the rich framework of POMDPs to handle continuous-
state problems with complicated dynamics directly without converting to a discrete
representation.

Switching state–space models (SSM) (also known as hybrid models and jump-
linear systems) are a popular model in the control community for approximating
systems with complex dynamics [6]. Typically the state space of a SSM is the product
of some continuous state variables, and a discrete mode variable. The corresponding
dynamics are given by a set of linear state transition models. At each time step the
discrete mode variable indexes a particular transition model which is used to update
the continuous-state variables. Frequently, the transition dynamics of the mode
states are modeled as a Markov process [6] (see Fig. 1a for an illustration). SSMs
have been used to approximate the dynamics of a diverse set of complex systems,
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Fig. 1 Switching state–space
models

a Typical SSM b SM-POMDP Dynamics Model

including planetary rover operation [1], honeybee dances [12] and the IBOVESPA
stock index [5]. The bulk of prior work on SSMs has focused on inference in SSMs
with hidden state or mode variables, or model parameter learning. We are not aware
of any prior work on using these models for POMDP planning tasks.

Despite this lack of prior work, there exist a number of planning domains where
the environment can be well modeled by a SSM. For example, consider a quadruped
robot that must navigate over rocks to cross a stream during a search and rescue
mission. This task requires computing a sequence of actions which could include
jumping or walking. However, the result of each action will depend on the current
surface under the robot: jumping from any rock is likely to have the same relative
effect, but trying to jump from within the stream is likely to fail. Here the dynamics of
the world can be characterized as a switching state model, where the dynamics switch
depending on the type of surface the robot is currently standing on. Depending on
the sensors a robot is equipped with, the robot may not be able to perfectly resolve
which surface it is presently on, and may instead need to select actions conditioned
on a probability distribution over the two possible surfaces.

Another example from robotics is a sensorless robot attempting to navigate to find
a power outlet along a long hallway. As the robot attempts to navigate to the left or
right, its movements will typically succeed, unless it is at one of the two hallway ends,
in which case the robot will stay in the same place. Here the robots dynamics depend
on its (unknown) location along the hallway. The robot can use this knowledge to
localize itself, by effectively trying to go consistently left until it is highly confident
it has reached the left hallway end, at which point it can then navigate to the power
outlet. These two examples are representative of the types of planning problems we
seek to address in this paper, and we will describe some simulation results with these
domains later on in the experimental section.

In order to model such systems which involve multi-modal, state-dependent dy-
namics we create a particular variant of an SSM that conditions the mode transitions
on the previous continuous-state, similar to [1]. Figure 1b displays a graphical model
of the dynamics model used in this paper, which can be expressed as

p
(
s′|s, a

)
=

∑

h

p
(
s′|s, m′ = h

)
p
(
m′ = h|s, a

)
(2)

where s, s′ are the continuous states at time t and t + 1 respectively, a is the discrete
action taken at time t, and m′ is the discrete mode at time t + 1. In this paper we will
assume that for each action a the hidden mode m can take on one of H values. Each
mode value h and action a is associated with a transition model for the continuous
state variable, specifically a linear Gaussian model N

(
s′; ζhas + βha, σ

2
ha

)
.
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For mathematical convenience we model the conditional probability of a mode
taking on a particular value h given the previous continuous state s and action a
using a weighted sum of F Gaussians

p
(
m′ = h|s, a

)
=

F∑

f=1

w f haN
(
s;µ f ha, σ

2
f ha

)
. (3)

This representation is slightly unusual; we are expressing the probability of a discrete
variable m conditioned on a continuous variable s. See Fig. 2 for an example
mode model p(m|s). Note that for finite F it is impossible to select the parameters
w f ha, µ f ha, σ

2
f ha such that the sum of probabilities of the next mode state m′ taking

on any value for a given state s,
∑

h p(m′ = h|s, a), equals 1 for all states s. Therefore
in practice we will choose models that approximately sum to one over all the states
of interest in a particular experimental domain. We choose to make this alternate
representational choice rather than using a softmax function over the state space
because the mixture of Gaussians representation will allow closed form updates
of the belief state and value function, as will be shown in the following sections.
However, this choice comes with two notable shortcomings: it is typically non-trivial
to specify the parameters to ensure the model approximately sums to one over the
state space of interest, and the number of components required can be large.

Substituting (3) into (2), the full dynamics model is a sum of Gaussian products:

p
(
s′|s, a

)
=

H∑

h=1

N
(
s′; ζhas + βha, σ

2
ha

) F∑

f=1

w f haN
(

s; µ f ha, σ
2
f ha

)
.

An added benefit of this model is that it can flexibly represent relative transitions
(transitions that are an offset from the current state), by setting ζ '= 0, and absolute
transitions (transitions that go to some arbitrary global state), by setting ζ = 0 and
β '= 0. The model can therefore compactly represent state dynamics in which many
states share the same relative or absolute transition dynamics. Discrete approaches
must enumerate over all discrete states the probability of each state transitioning to

Fig. 2 Example of a mode
model p(m|s)
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each other state, even if many states share the same dynamics (such as “move 2 grid
cells to the left”). In contrast, our model can represent such dynamics by a single
linear Gaussian N

(
s′; s − 2, σ 2

)
.

4 SM-POMDP

We now describe a new planning algorithm for POMDPs with switching-mode
dynamics models. Recently Porta et al. [15] showed that for a continuous-state
space S and discrete actions A and observations Z , the optimal finite horizon value
function is piecewise linear and convex and may be represented by a finite set of
α-functions.3 Therefore point-based approaches to continuous state POMDPs that
represent α-functions at a finite set of beliefs will also provide a lower bound on the
value function. Porta et al.’s algorithm provides an approximation of a lower bound
on the value function: our algorithm is inspired by theirs and handles multi-modal
state-dependent dynamics.

For clarity we will explain the algorithm for a one-dimensional state space, but
it is easily extended to higher dimensions. We will assume that the reward model
r(s, a) and observation model p(z|s) are represented by a weighted sum of Gaussians.
To be precise, we assume the reward function r(s, a) is expressed as a sum of
G Gaussian components for each action a, r(s, a) = ∑G

g=1 wagN
(
s; µag, σ

2
ag

)
, and

each discrete observation z ∈ Z is expressed as a sum of L Gaussian components
p(z|s) = ∑L

l=1 wzlN
(
s;µzl, σ

2
zl

)
such that ∀s

∑
z p(z|s) ≈ 1. Here we have assumed

an observation model very similar to the mode representation (3) and the same
comments made for that choice apply here to the observation model.

We also choose to represent the belief states b and α-functions using weighted
sums of Gaussians. Each belief state b is a sum of D Gaussians b(s) =∑D

d=1 wdN
(
s;µd, σ

2
d

)
, and each α j, the value function of policy tree j, is represented

by a set of K Gaussians α j(s) = ∑
k wkN

(
s;µk, σ

2
k

)
. Recall that for each action a,

there are H modes and F Gaussian components per mode. Figure 3 lists the models
and symbols used to describe a SM-POMDP.

We do not lose expressive power by choosing this representation because a
weighted sum of a sufficient number of Gaussians can approximate any continuous
function on a compact interval (and our domains of interest are closed and bounded
and therefore fulfill the criteria of being compact) (see for example Park and
Sandberg [13]). But, of course, we will be effectively limited in the number of
components we can employ, and so in practice our models and solutions will both
be approximations.

4.1 Belief updates and values function backups

Point-based POMDP planners must include a method for backing up the value func-
tion at a particular belief b (as in (1)) and for updating the belief state b after a new
action a is taken and a new observation z is received. Representing all parameters

3The expectation operator 〈 f, b〉 is a linear function in the belief space and the value function can be
expressed as the maximum of a set of these expectations: for details see [15].
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Fig. 3 SM-POMDP models and symbols

of the value function as a weighted sum of Gaussians allows both computations
to be performed in closed form.

The belief state is updated using a Bayesian filter:

b a,z=i(s) = p
(
s′|z = i, a, b

)

∝ p
(
z = i|s′, a, b

)
p
(
s′|a, b

)

= p
(
z = i|s′)p

(
s′|a, b

)

where the last equality holds due to the Markov assumption. We compute the update
by substituting in the dynamics and observation models:

b a,z=i(s) ∝
L∑

l=1

wlN
(
s′; µl, σ

2
l

) ∫

s

H∑

h=1

N
(
s′; ζhas + βha, σ

2
ha

)

×
F∑

f=1

w f haN
(

s; µ f ha, σ
2
f ha

) D∑

d=1

wdN
(
s; µd, σ

2
d

)
ds.

After pulling the sums outside the integral, it is necessary to integrate the product of
three Gaussians within the integral:

b a,z=i(s) ∝
∑

d, f,h,l

wdw f hawdN
(
s′; µl, σ

2
l

) ∫

s
N

(
s′; ζhas + βha, σ

2
ha

)

×N
(

s; µ f ha, σ
2
f ha

)
N

(
s;µd, σ

2
d

)
ds.

This integration can be analytically computed by repeatedly applying the closed
formula for the product of two Gaussians which is included for completeness as (6)
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in the Appendix. To apply this operator we also re-express the N
(
s′; ζhas + βha, σ

2
ha

)

as a function of s by manipulating the exponent. Performing these operations, then
integrating, yields the final expression for the new belief:

b a,z=i(s) =
∑

df hl

cdf hl N
(

s|µdf hl, σ
2
df hl

)

where

C1 =
σ 2

f sσ
2
d(

σ 2
f a + σ 2

)
d

c1 =
µdσ

2
f a + µ f aσ

2
d

σ 2
f a + σ 2

d

C2 = C1 + σ 2
zl

ζha

c2 = βha + ζhac1

σ 2
df hl =

((
σ 2

zl

)−1 + C−1
2

)−1

µdf hl = σ 2
df hl

(
µzl

(
σ 2

zl

)−1 + c2C−1
2

)

cdf hl ∝ wdw f hawdN
(
µzl|c2, σ

2
zl + C2

)
.

The weights are scaled so the belief is normalized such that
∫

s b a,z(s)ds = 1. Hence
the representation of the belief as a mixture of Gaussians is closed under belief
updating.

The other key computation is to be able to back up the value function for a particu-
lar belief. Since we also use discrete actions and observations, the Bellman equations
can be expressed as a slight modification to (1), replacing sums with integrals and
writing out the expectation:

Vt(b) = max
a∈A

∫

s∈S
R(s, a)b(s)ds + γ

∑

z∈Z

max
αazj

∫

s
αazjb(s)ds

=
〈

max
a∈A

R(s, a) + γ
∑

z∈Z

arg max
αazj

αazj, b

〉

where we have used the inner-product operator 〈 f, b〉 as shorthand for expectation
to obtain the second equality. As stated previously, αazj is the α-function for the
conditional policy corresponding to taking action a, receiving observation z and then
following the previous (t − 1)-step policy tree α j, and can be expressed as

αazj(s) =
∫

s′
α j,t−1(s′)p(z|s′)p(s′|s, a)ds′.
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Substituting in all the parametric models yields

αazj(s) =
∫

s′

K∑

k=1

wkN
(
s′; µk, σ

2
k

) L∑

l=1

wlN
(
s′; µl, σ

2
l

) H∑

h=1

N
(
s′; ζhas + βha, σ

2
ha

)

×
F∑

f=1

w f haN
(
s; µ f ha, σ

2
f ha

)
ds′

=
∑

f,h,k,l

w f hawkwlN
(
s;µ f ha, σ

2
f ha

)

×
∫

s′
N

(
s′; µk, σ

2
k

)
N

(
s′; µl, σ

2
l

)
N

(
s′; ζhas + βha, σ

2
ha

)
ds′.

We combine the three Gaussians inside the integrand into a single Gaussian by
repeatedly using the formula for the product of two Gaussians (6). This creates a
function of s′ and other terms that are independent of s′. Integrating over s′ yields

αazj =
F∑

f=1

H∑

h=1

K∑

k=1

L∑

l=1

w f hklN
(

s;µ f hkl, σ
2
f hkl

)
(4)

where

w f hkl = w f hawkwlN
(
sl; sk, σ

2
k + σ 2

l

)
N

(
µ f ha;

c − βha

γha
, σ 2

f ha + C + σ 2
ha

γ 2
ha

)
,

C = σ 2
l σ 2

k

σ 2
l σ 2

k

,

µ f hkl =
(
C + σ 2

ha

)
µ f ha + σ 2

f haγha (c − βha)

σ 2
f ha

(
C + σ 2

ha

) ,

σ 2
f hkl =

σ 2
f ha

(
C + σ 2

ha

)

C + σ 2
h + σ 2

f haγ
2
ha

,

c = µkσ
2
l + σ 2

k µl

σ 2
l σ 2

k

.

The new αazj now has F × H × K × L components, compared to the α j for the
(t − 1)-step policy tree, which only had K components. To finish the value function
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Fig. 4 A sample α-function,
showing both its total value at
each state, as well as the
individual Gaussian
components that are summed
to create its final value

Individual 
components

Sum of 
components

s

V(s)

backup, we substitute αazj back into (4) and choose the α-function that maximizes
the future expected reward 〈α, b〉 of belief b

α(s) = max
a

R(s, a) + γ

|Z |∑

z=1

max
αazj

αazj

= max
a




G∑

g=1

N(s|µg, σ
2
g ) + γ

|Z |∑

z=1

max
αazj

αazj





Since all elements in this result are weighted sums of Gaussians, the α-function stays
in closed form. Note that had we utilized a softmax distribution for the observation
model or mode probabilities that it would not be possible to perform the integrals in
closed form. Figure 4 displays an example value function, showing both its Gaussian
components and its final (summed) representation.

Observe that the number of Gaussian components in a single α-function has
increased: from K to G + |Z |F HKL components.

4.2 Computational complexity of exact value function backups

Before proceeding, it is important to consider the computational complexity of an
exact value function backup for a particular belief state. As just described, the
first step is to create the set of new αazj functions which consist of considering
each possible action, then receiving each possible observation, and then following
one of the initial α-functions, α j. From (4) we know that creating each new αazj
components, involves F × H × K × L matrix operations (including a matrix inverse
from combining two Gaussians, an O(D3) computation where D is the number of
state dimensions D). This procedure is repeated for each of the Nα|A||Z | new αazj
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functions, yielding a cost of O(F HKLNα|A||Z |D3). It is then necessary to compute
the expected value of the current belief state under each of these new functions in
order to select the αazj which maximizes the expected future reward of the current
belief state under each possible action and observation. This operation involves
the integral of the product of two weighted sums of Gaussians, an operation that
can be done analytically and whose computational complexity is O(D3) for each
of the combined Gaussians (to perform the necessary matrix inverse) multiplied
by the number of components in each original expression. This operation will take
O(F HKLNα|A||Z |O(D3)NB) time.

Completing the backup requires summing over all observations for each action
which is a simple summation over all the previously computed 〈αazj, b〉 values. Finally
the immediate reward is added in which simply adds in G more Gaussian compo-
nents. To select the best action requires also estimating the expected immediate
reward, an O(GD3 NB) calculation for each action. In total the computational
complexity for a single backup is O((F HKLNα|Z | + G)|A|D3 NB).

However, as multiple backups are performed, K, which represents the number of
components used to represent each α-function, will increase by a factor of F HL|Z |
after each backup.4 Therefore, when performing backups at horizon T, the α-
functions will have about K(F HL|Z |)T components, and the computational cost of
a single further backup will be O(((F HL|Z |)T KNα|Z | + G)|A|D3 NB). This means
that the computational cost of performing a single backup will grow exponentially
with the time step of the backup performed.

4.3 Approximating the α-functions

It is not computationally feasible to maintain all components over multiple backups.
Instead, by carefully combining the components generated after each backup, we
maintain a bounded set of α-functions. Since α-functions represent the value of exe-
cuting a particular policy tree over the entire belief space, it is important to make the
approximation as close as possible throughout the belief space.5 In Porta et al. [15]’s
work they faced a similar (though smaller) expansion in the number of components.
In order to reduce the number of components used to represent the belief states and
α-functions, they used a slight variant of Goldberger and Roweis’s method [7] that
minimizes the Kullback-Leibler (KL) distance between an original model f (x) and
the approximation f̃ (x)

DKL

(
f || f̃

)
=

∫

x
f (x) log

f (x)

f̃ (x)
dx (5)

where f and f̃ are weighted mixtures of Gaussians. However, the KL distance is
not particularly appropriate as a distance measure for the α-functions since they are

4To be precise, it will the new number of components is F HL|Z |K + G but the main factor is due
to the multiplication with F HL|Z |.
5Ideally we could restrict this approximation to the reachable belief space; however analyzing the
reachable belief space in continuous-state POMDPs will be an area of future work.
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not probability distributions. In addition, the KL divergence can result in poor ap-
proximations in parts of the space where the original function has small values since
if f (x) is zero then regardless of the value of f̃ (x) the distance for that x is always
zero.

We consider three alternate projection operators for computing an approximation
of the α-function: highest peaks, minimizing the L2 norm, and minimizing the
empirical max norm.

4.4 Highest peaks projection

A simple projection operator is to keep the NC components with the highest peaks
and discard all other components. The peak value of the i-th Gaussian component is
simply

wi

(2π)D/2|'i|1/2|

where D is the state–space dimension, 'i is the variance of the i-th Gaussian, and
wi is its weight. It is simple and fast to compute all these values, and select the NC
largest components. Figure 5 shows an example of an original α-function, and the
approximations obtained by keeping different numbers of components.

Original

Remainder from N=100

NC=100

s

V(s)

Fig. 5 Highest peak projection. Here the Gaussian components composing the original function are
sorted by their maximum value and the highest NC of these are kept. This figure displays the resulting
approximations as more and more components are kept, along with the resulting residual for when
NC = 100. Though this is a simple approximation to compute, it is clear from the figure that the
resulting approximation can be quite poor when NC is small
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4.5 L2 minimization

Another alternate distance measure without the shortcomings of the KL-divergence
is the L2 norm: a small value means a good approximation α̃ of the value function
over the entire belief space.

The L2 norm, or sum squared error, between two weighted sums of Gaussians is

∫

s

[∑NC

i
wiN

(
s;µi, σ

2
i

)
−

∑N

j
w jN

(
s;µ j, σ

2
j

)]2

ds

=
∑NC

i

∑NC

i′
wiw

′
iN

(
µi′ ; µi, σ

2
i + σ 2

i′
)
+

∑N

j

∑′N
j

w jw
′
jN

(
µ j′ ; µ j, σ

2
j + σ 2

j′

)

− 2
∑N

j

∑NC

i
w jwiN

(
µi;µ j, σ

2
j + σ 2

i

)
.

While there is no analytic solution for the parameters wi, µi, σ
2
i that minimizes this

expression, we can find an approximation to the optimal solution using Zhang and
Kwok’s recent work on reducing the number components in kernel function mixture
models [22]. This work minimizes an upper bound on the L2 norm by clustering the
original components into small groups, and fitting a single weighted Gaussian to each
group. More precisely, the L2 norm can be upper bounded by a function of the L2
error of each cluster:

L2 ≤ NC

NC∑

i=1

∫ 

wiN
(
s; µi, σ

2
i

)
−

∑

j∈Si

w jN
(

s;µ j, σ
2
j

)



2

ds

where Si is the i-th cluster and NC is the total number of components in the approxi-
mation α̃. The parameter fitting procedure is simplified by the clustering procedure.
The complete procedure can be performed iteratively, by creating clusters through
assigning all components in the original function to their closest (in the L2 norm
sense) component in the approximation, refitting a single component for each cluster,
and repeating (see Fig. 6).

Though we can use this procedure to optimize an upper bound to the L2 norm,
we would also like to constrain the exact L2 norm error to be within some threshold.
To do this, we can formulate the approximation step as a constrained optimization
problem, using the objective function from Zhang and Kwok, but requiring that the
final approximation α̃ both lies below a maximal L2 norm threshold, and contains
no more than a fixed maximum number of components, NCmax. This can be stated
mathematically as follows:

arg min
wi,µi,σ

2
i ,NC

NC

NC∑
i=1

∫
[

wiN
(
s;µi, σ

2
i

)
− ∑

j∈Si

w jN
(

s;µ j, σ
2
j

)]2

ds

s.t.||α̃ − α||2 ≤ t & NC ≤ NCmax

where t is L2 norm threshold.
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s
(a) Assign clusters

s
(b) Fit cluster

-16 -14 -12 -10 -8 -6

Fig. 6 L2 clustering for approximating the α-functions. We iteratively cluster components and
assign them to one of the components in the approximate α-function (see (a)). Then given all the
components assigned to the same cluster, we fit a single Gaussian that approximates the sum of all
components in the same cluster: this second stage is depicted in (b) for a particular set of components.
Note that in (b) the line representing the sum of all components is visually identical to the single
Gaussian (shown by the dotted line) used to approximate the sum of components. This process is
then iterated until a convergence criteria is met

We initialize the components of the approximation with a random subset of
the original components. The remaining original components are then clustered to
their closest (in the L2 norm) component in the approximation, and then a single
component is refit for each cluster. In order to ensure the parameter initialization
lies within the feasible region spanned by the constraints, we compute the L2 norm
of this initialization, and discard solutions that do not satisfy the L2 norm constraint.
Note that this also provides a principled mechanism for selecting the number of
components constituting the approximation: the number of components NC in the
approximation is increased until either an initialization is found that lies within the
feasible region of the constraints, or NC no longer satisfies the second constraint. If
both constraints cannot be satisfied, NC is set to NCmax.

Once the parameters are initialized and M is fixed, we follow Zhang and Kwok’s
procedure for optimizing. Experimentally this approach was found to produce decent
results. Fig. 7 displays an example fit where though the L2 norm is still fairly large,
the original and approximate α-functions are indistinguishable to the naked eye.

4.6 Point-based minimization

One of the limitations of the L2-based approximation method presented is that it
may be computationally too slow in practice. An alternate choice is a faster heuristic
method which greedily minimizes the max norm at a subset of points along the value
function.

In this method, the α-function is first sampled at regular intervals along the state
space. These sampled values are considered potential residuals r. First the largest
magnitude residual (either positive or negative) is found and a Gaussian is placed
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Fig. 7 The original (in green)
and approximated α-function
(in blue). The original
α-function was composed of
2,389 components. The
approximate α only uses 110
components, yet in the plotted
function is indistinguishable
from the original α

s

at this point, with a height equal to the residual and variance approximated by
estimating the nearby slope of the function. This Gaussian is added to the set of new
components. Then a new set of residuals is computed by estimating this Gaussian
along the same intervals of the state space, and subtracting its value from the original
residuals: r = r − wiN (s|µi, 'i). This creates a new set of residuals. We now find the
maximum magnitude sample of this set of residuals and fit a second Gaussian in the
same manner as before. This process is repeated until the number of new Gaussians
reaches the fixed size of our representation for the α-functions. See Fig. 8 for an
illustration of this process. Note that at each round during this process we are adding
a Gaussian component at the location which currently has the max norm error at the
sampled points. Therefore this algorithm takes a greedy approach to minimizing the
max norm between the approximate α̃-function and the original α-function along
the set of sampled points.

4.7 Planning

We now have the major components necessary to apply a point-based approach to
POMDP planning: specifically, a belief update operator, a value function backup
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(c) 15 components

Fig. 8 Approximating the α-functions. We use a simple residual fitting technique. First the function
is sampled. Then a Gaussian component is added to reduce the highest component. This process is
repeated until the maximum number of Gaussians is reached
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procedure, and a projection operator to keep the number of parameters used
to represent the value function bounded. Algorithm 1 outlines the SM-POMDP
algorithm. Inspired by results in discrete-state planners [16, 17] we create a belief set
B by sampling belief states in a set of short trajectories, though in our case we simply
perform random actions from an initial starting belief state b 0. We initialize the value
function as a single α-function in a domain-dependent manner. Starting with this
initial α-function, we iteratively perform value function backups for the chosen belief
set B. At each round, we select a trajectory from our belief set and back up the beliefs
in it in reverse order. In problems where a number of steps must be executed in order
to reach a high reward state this approach was found to be superior to randomly
backing up belief points.

Algorithm 1 SM-POMDP
1: Input: Ntraj (number of trajectories), NT (number of beliefs per trajectory),

POMDP
2: for i=1:Ntraj do {Generate belief set B}
3: b = b 0

4: Draw an initial state s from b 0

5: for j=1:NT do
6: Select an action a
7: Sample s′ ∼ p(s′|s, a)

8: Sample an observation z ∼ p(z|s′)
9: b a,z = BeliefUpdate(b , a, z)

10: Add belief to set: B[ j, i].b = b a,z

11: b = b a,z, s = s′

12: end for
13: end for
14: Initialize value function
15: loop {Perform planning until termination condition}
16: Select a trajectory r ∈ 1 : Ntraj at random
17: for t=T:-1:1 do
18: Set Vold to current value of t-th belief B[r, t].b
19: αnew = ValueFunctionBackup(B[r,t].b)
20: Project to smaller rep: α′

new = ProjectDownToNCComponents(αnew)

21: if Projected value still improved (〈a′
new, B[r, t].b〉 > Vold) then

22: Add αnew to value function
23: end if
24: end for
25: end loop

5 Analysis

We next provide bounds on a subset of the SM-POMDP variants’ performance,
and also analyze the computational complexity of all the prior SM-POMDP variants
discussed.
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In terms of performance quality, our objective lies in bounding the potential
difference between the optimal value function, denoted by V∗ and the value function
computed by the SM-POMDP algorithm, denoted by VSM. Let H represent an
exact value function backup operation, HPB a point-based backup operation, and
A the projection operator which maps the value function to a value function with
a smaller number of components. Our goal is a bound on the error between the
n-step optimal value function V∗

n and the SM-POMDP value function VSM
n . The total

error ||V∗ − VSM
n ||∞ is bounded by the n-step error plus the error between the

optimal n-step and infinite horizon value functions, ||V∗ − V∗
n ||∞ which is bounded

by γ n||V∗ − V∗
0 ||∞. We will show the n-step error can be decomposed into a term

due to the error from point-based planning and a term due to the error from the
projection to a fixed number of components.6

Theorem 1 Let the error introduced by performing a point-based backup instead of
an exact value backup be εPB = ||HV − HPBV||∞ and let the error introduced by
projecting the value function down to a smaller number of components be εproj =
||V − AV||∞. Then the error between the optimal n-step value function V∗

n and the
value function computed by the SM-POMDP algorithm is bounded by

∥∥V∗
n − VSM

n

∥∥
∞ ≤ εPB + εproj

1 − γ
.

Proof We proceed by first re-expressing the error in terms of the backup operators,
and then add and subtract a new term in order to separate out the error due
to performing backups on different value functions, versus the different backup
operators themselves:

∥∥V∗
n − VSM

n

∥∥
∞ =

∥∥HV∗
n−1 − AHPBVSM

n−1

∥∥

≤
∥∥HV∗

n−1 − HVSM
n−1

∥∥
∞ +

∥∥HVSM
n−1 − AHPBVSM

n−1

∥∥
∞

≤ γ
∥∥V∗

n−1 − VSM
n−1

∥∥
∞ +

∥∥HVSM
n−1 − AHPBVSM

n−1

∥∥
∞

where the result follows by the use of the triangle inequality.
We then add and subtract HPBVSM

n−1 in order to separate the error introduced
by performing a point-based backup, from the error introduced from the projection
operator, and again use the triangle inequality:

∥∥V∗
n − VSM

n

∥∥
∞ ≤ γ

∥∥V∗
n−1 − VSM

n−1

∥∥
∞ +

∥∥HVSM
n−1 − HPBVSM

n−1

∥∥
∞ + . . .

+
∥∥HPBVSM

n−1 − AHPBVSM
n−1

∥∥
∞

≤ γ
∥∥V∗

n−1 − VSM
n−1

∥∥
∞ + εPB + εproj.

6In this analysis we ignore possible error due to the approximate normalization of the observation
and mode models, assuming that enough Gaussians are used to represent these functions that they
can be made to sum arbitrarily close to 1 and therefore contribute negligible error.
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This is a geometric series, therefore

∥∥V∗
n − VSM

n

∥∥
∞ ≤

(
1 − γ n+1

) (
εPB + εproj

)

1 − γ

≤ εPB + εproj

1 − γ
.

01

In the following sections we will discuss bounds on εproj, but the remainder of this
section will focus on εPB.

Pineau et al. [14] previously provided a proof for bounding the error induced by
performing a point-based backup, εPB for discrete-state POMDPs. We now provide
a similar proof for continuous-state POMDPs. dKL(p, q) will denote the Kullback-
Leibler divergence between two probability distributions p and q. B is the set of
points in the belief set used to perform point-based backups and ) is the full belief
space.

Lemma 1 Let wmin be the lowest weight and wmax be the highest weight of the weights
used to specify the original weighted sum of Gaussians reward function. Let |'min|
be the smallest determinant of the variance of the Gaussians, and let NC be the
maximum number of components used to represent the weighted sum of Gaussians.
Then the error introduced by performing a point-based backup is at most εPB =
NC(wmax−wmin) maxb ′∈) minb∈B 2

√
2dKL(b ,b ′)

(1−γ )(2π)D/2|'min|1/2 .

Proof Following Pineau et al. [14] let b ′ ∈ ) be the belief at which the point-based
value function has its largest error compared to the full backed up value function,
and let b ∈ B be the closest sampled point in the belief set B to b ′ where distance
is defined in terms of the KL-divergence. Let α′ and α be the two functions which
respectively maximize the expected value of b ′ and b . By not including α′ the point-
based operation makes an error of at most

∫
s α′(s)b ′(s) − α(s)b ′(s)ds.

To bound this error, we first add and subtract the same term:

εPB ≤
∫

s
α′(s)b(s) − α(s)b ′(s)ds

=
∫

s
α′(s)b(s) − α(s)b(s) + α(s)b(s) − α(s)b ′(s)ds.

The value of α′ at b must be lower than α since α is defined to give the maximal
value. Therefore

εPB ≤
∫

s
α′(s)b(s) − α′(s)b(s) + α(s)b(s) − α(s)b ′(s)ds

=
∫

s

(
α′(s) − α(s))(b(s) − b ′(s)

)
ds

≤
∫

s

∣∣(α′(s) − α(s))(b(s) − b ′(s))
∣∣ds.



Planning in partially-observable switching-mode continuous domains

Hölder’s inequality can be used to bound this expression as follows

εPB ≤
(∫

s
|α′(s) − α(s)|∞ds

)1/∞ (∫

s
|b(s) − b ′(s)|ds

)

where the first term is the max norm of α′ − α and the second term is the 1-norm
between b and b ′. Since there is not an easy way to estimate the 1-norm between
two Gaussians or weighted sums of Gaussians, we now relate this 1-norm to the
KL-divergence using the results from Kullback [10] (included for completeness as
Lemma 2 in the Appendix):

εPB ≤ ‖α′(s) − α(s)‖∞2
√

2dKL(b , b ′).

The worst error in immediate reward between two value functions occurs when all
NC components have the same mean and the smallest possible variance 'min, and
where one value function has all weights set at wmax and the other value function
has all weights set at wmin. This yields an error of NC(wmax−wmin)

(2π)D/2|'min|1/2 . The infinite horizon
values in this worst case would magnify these errors by at most 1/(1 − γ ). Therefore
the max norm error between two value functions is bounded by

||α′ − α||∞ ≤ NC(wmax − wmin)

(1 − γ )(2π)D/2|'min|1/2

and so the full point-based error is bounded as follows:

εPB ≤ NC
(
wmax − wmin

)
2
√

2dKL(b , b ′)

(1 − γ )(2π)D/2|'min|1/2
.

01

Belief points can be chosen to reduce this error, such as in Pineau’s PBVI [14]
algorithm which adds belief points that have the largest error (which in their proof
is measured in by the 1-norm) along some trajectory relative to the existing beliefs
in B. One slight complication is how to estimate the KL-divergence between the
belief points. If the belief points are represented as single Gaussians then there
exists a closed form expression for the KL-divergence between two beliefs. There
exists no general closed form representation between the KL-divergence between
two weighted sums of Gaussians. However, a recent paper by Hershey and Olsen [8]
investigates a number of approximations to this quantity, including an upper bound
that is fast to compute, which can be utilized to ensure that the error estimated is an
upper bound to the true error.

The second cause of error in the final value function is due to the projection step,
εproj, and will depend on the particular projection operator used. We next consider
four different operator choices and discuss where possible their associated εproj. We
also consider the computational complexity of the resulting SM-POMDP algorithm
under each of these choices, considering the cost of the projection operator and the
backup operator. The results of this section are summarized in Table 1.
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5.1 Exact value function backups

If the value function backups are performed exactly then εproj will equal zero. There-
fore exact value backups offer some appealing performance guarantees. Unfortu-
nately, as discussed in Section 4.2, there is a significant computational cost to these
guarantees. This cost will often become infeasible when the backup is iteratively
performed several times and F, H, L, or |Z | are large.

We next consider the three projection operators.

5.2 Highest peak projection analysis

Take the projection method described in Section 4.4 and assume that prior to the
backup each α-function consists of NC Gaussians. Then the backup procedure cre-
ates a new α with F HL|Z |NC + G components. Therefore, assuming the Gaussians
are sorted in descending order of peak value, the error introduced by projecting to
NC components is the value of the discarded F HL|Z |NC + G − NC Gaussians,

εproj =
F HL|Z |NC+G∑

j=NC+1

w jN
(
s|µ j, ' j

)
.

In the worst case all of these Gaussians would be centered at the same location,
yielding an error of

εproj ≤
(
F HL|Z |NC + G − NC

)
max j w j

(2π)D/2 min j |' j|1/2
.

This provides an upper bound on the projection error which, in turn, yields a
bound on the overall error between the SM-POMDP value function and the optimal
value function. In addition, the computational cost of this procedure is fairly cheap.
It requires calculating the determinant of each component, which is an O(D3)

operation where D is the number of state dimensions, and then a sorting algorithm to
identify the NC components with the largest peak. Quicksort or a similar algorithm
can be used which has a worst case complexity of the number of items squared.
Therefore the computational complexity of a highest peak projection is

O
(
(F HL|Z |NC + G)D3 + (F HL|Z |NC + G)2) .

However, despite the appeal of formal theoretical guarantees, unless a large number
of components is used, the empirical quality of the approximation may not be as good
as the other two projection methods (as is illustrated by comparing Fig. 5 to Figs. 7
and 8).

5.3 L2 minimization analysis

Section 4.5 outlined a projection method where the objective is to minimize the L2
norm between the original and projected value function. A strength of this approach
is that it is possible to analytically evaluate the final L2 norm. However, in continuous
spaces L2 is not necessarily an upper bound to the max norm. This can be seen by
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considering the case of a delta function: the L2 norm of this function is zero, but
the max norm is infinity. Though this approach does not provide a direct estimate of
εproj, it does try to closely approximate the value function over the entire state space,
rather than focusing on the worst error.

The algorithm presented in Section 4.5 is an iterative procedure. It requires
repeatedly computing the L2 norm between two weighted sets of Gaussians, one
with F HL|Z |NC + G components, and one with NC components. This involves
computing the determinant of D-dimensional matrices, and so the full computational
complexity of this projection operator is O((F HL|Z |NC + G)MD3). This calcula-
tion is repeated many times during the procedure.

5.4 Point-based minimization analysis

In Section 4.6 we discussed an approach that greedily minimizes the empirical max
norm of a set of Q points sampled along the value function. Let ε̃proj represent the
empirical max norm computed. As the number of points sampled goes to infinity,
this error will converge to the true projection error εproj:

lim
Q→∞

ε̃proj = εproj.

Unfortunately we do not know of any finite Q guarantees on the relationship
between the empirical max norm and the true max norm error. However, in practice,
a small max norm error on the sampled points often indicates that there is a small
max norm between α and α̃.

This method requires computing the value function at a set of Q points which is
an O(Q(F HL|Z |NC + G)D3) operation due to the need to compute the inverse and
determinant of the Gaussian variances. However, the number of points Q necessary
to compute a good estimate of the value function will increase exponentially with the
state dimension: essentially this procedure requires computing a discretized estimate
of the value function, and then refits this estimate with a new function. If Q1 is the
number of points used to estimate a one-dimensional value function, then QD

1 will
be the number of points needed to estimate a D-dimensional function. Therefore we
can re-express the computational complexity as

O
(
QD

1 (F HL|Z |NC + G)D3).

Generally this projection operator will work best in low dimensional domains.
Before summarizing these approaches in Table 1, we need to also briefly provide

an analysis of the computational complexity of performing backups when the value
function is projected to a smaller number of components.

5.5 Computational complexity of the backup operator
when using a projection operator

The computational cost analysis is similar to the exact value function case presented
in Section 4.2, with one important alteration: the number of components in the
resulting α-functions is now restricted. As before, let NC be the maximum number of
components in an estimated α-function during planning. NC can either be specified
in advance, or computed during planning if the number of components is dynamically
adjusted in order to prevent the approximation step from exceeding a maximum
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desired error. In this case the computational complexity of performing a single
backup never exceeds O(F HLNC Nα|A||Z |D3 NB), regardless of the horizon at
which the backup is performed (or in other words, regardless of the number of prior
backups). This means that the computational cost is bounded (assuming that NC does
not grow as a direct function of the horizon T). The choice of NC provides the above
mentioned parameter for tuning between the quality of the resulting solution and the
computational cost required to compute that solution. In our experiments we show it
is possible to achieve good experimental results by fixing the value of NC in advance.

5.6 Analysis summary

Table 1 summarizes the computational complexity of performing a value function
backup, and the additional error and computational overhead introduced by project-
ing the resulting α-function down to a smaller number of components. In general,
it will be computationally necessary to perform a projection if more than a couple
value function backups are required (that is, if T is greater than 2 or 3). To provide
some intuition for this, we provide a simple example. Assume the following problem
setup:

– There are 2 observations (|Z || = 2) each represented by 5 components (L = 5)
– There are 2 actions (|A| = 2) each with 3 modes (H = 3) and each mode is

represented using 5 components (F = 5)
– Each reward is represented with 3 components (G = 3)
– Nα = 1
– The original α-function is represented as a re-scaled reward function with 3

components (K = 3)
– NB = 1
– NC = 50

Then the number of components after a single point-based backup is

F HL|Z |K + G = 5 ∗ 3 ∗ 5 ∗ 2 ∗ 3 + 3 = 453.

The number of components after the second exact point-based backup can then be

F HL|Z |453 + G = 5 ∗ 3 ∗ 5 ∗ 2 ∗ 453 + 3 = 67,503

= (F HL|Z |)2 K + F HL|Z |KG + G2,

and on the third round

F HL|Z |67,503 + G = 10,125,453 ≈ (F HL|Z |)3 K.

In contrast, if the α-function is projected to NC components after each backup, the
number of new components created during a backup is fixed at

F HL|Z |NC + G = 5 ∗ 3 ∗ 5 ∗ 2 ∗ 50 + 3 = 7,503.

Therefore, as long as the projection operator is cheaper than manipulating and
updating a set of components that grows as (F HL|Z |)T where T is the number of
backups, then projecting will be significantly faster than maintaining all components.



E. Brunskill et al.

Empirically we found that the max-norm projection method was faster than the
L2 norm projection method, and that both gave significantly higher quality results
than the highest peaks method. Therefore we used the max-norm projection method
in all experiments.

6 Experiments

The key advantage of SM-POMDP over prior techniques is its ability to handle a
broader class of dynamics models. Therefore we examined its performance on three
simulated examples that involve switching and/or multi-modal dynamics. The first
example is a navigation domain where a robot must locate a hidden power supply.
This problem exhibits switching dynamics because the robot’s transitions depend on
whether it is currently in the free space of the hallway, or near one of the walls. In the
second example we consider a faulty robot trying to hop across treacherous terrain
to reach a goal destination. This problem exhibits multi-modal dynamics since the
robot’s attempts to jump only sometimes succeed. In the final example we consider
a two-dimensional unmanned aerial vehicle simulation where one agent must avoid
another agent.

Except where otherwise noted, we focus on comparing SM-POMDP to a linear-
model parametric continuous-state planner, such as the planner developed by Porta
et al. [15]. This is the most similar planner to SM-POMDP as only the dynamics
models are changed, and is therefore an important benchmark.

In all examples SM-POMDP outperformed the comparison linear-model
continuous-state planner. α-functions were projected down to at most 50 components
using the empirical max norm projection method. Beliefs were restricted to have
four components, and were projected down using the KL-divergence technique from
Goldberger and Roweis [7] which is more appropriate for beliefs than value functions
since beliefs represent a probability distribution over states.

Porta et al. had previously demonstrated that their planner was faster than a
standard discrete-state planner Perseus [20] on a simulation problem, demonstrating
the benefits of parametric planners that automatically adjust the parameterization
of the value function during planning. In the first experiment we confirm that this
advantage holds for SM-POMDP which can handle domain dynamics that are poorly
approximated by a single linear Gaussian model. In addition we show this advantage
when comparing to a state-of-the-art discrete-state planner (HSVI2 [18]) which
is known to outperform Perseus [20]. We then focus our experimental efforts on
demonstrating the additional flexibility and modeling power of SM-POMDP that
allows it to find better plans than linear Gaussian POMDP planners.

6.1 Finding power: variable resolution example

In the first experiment a robot must navigate a long corridor (s ∈ [−21, 21]) to find a
power socket which is located at −16.2. The robot can move left or right using small
or large steps that transition it 0.1 or 5.0 over from its current location plus Gaussian
noise of standard deviation 0.01. If the robot tries to move too close to the left or
right wall it will bump into the wall. This causes the dynamics to exhibit switching:
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if the robot is in the middle of the hallway it will have different dynamics than near
the walls. The robot can also try to plug itself in, which leaves the robot at the same
location. All movement actions receive a reward of 0.05. If the robot plugs itself in at
the right location it receives a reward of 12.6 (modeled by a highly peaked Gaussian);
otherwise it receives a lesser reward of 5.8. Therefore it is least preferable to move
around, and it is best to plug in at the correct location. The power supply lies beneath
the robot sensors so the robot is effectively blind. However, if the robot knows the
true world dynamics, it can localize itself by travelling to one end of the hallway,
reasoning that it will eventually reach a wall.

In addition to the switching dynamics, this problem is also interesting because
the resulting value function is smooth for large parts of the state space, intermixed
with small sections that are rapidly changing. Therefore is another demonstration of
where continuous-state parametric planners’ dynamically adjustable value function
representation may have an advantage over discrete-state planners. To illustrate
this, we compare to HSVI2 [18], a highly optimized, state-of-the-art discrete-state
POMDP planner.

We present results for the discrete-state HSVI2 planner, a linear continuous-
state planner and SM-POMDP. The two continuous-state planners were run on 100
trajectories. Each trajectory was gathered by starting in a random state s ∈ [−21, 21]
with a Gaussian approximately uniform belief and acting randomly for episodes of
10 steps. This lead to a total set of 1000 belief states. The robot can always achieve
at least the reward associated with only executing PlugIn. Therefore we used the
PlugIn action reward function, scaled to account for infinite actions and discounting
(multiplied by 1/(1 − γ )) as the initial lower bound value function.

All algorithms require a stopping threshold. We set our continuous-hybrid ap-
proach to do at least 10 rounds, and halt when

∑
b Vt(b) − ∑

b Vt−1(b)| ≤ 0.001.
HSVI2 halts when the upper and lower bounds on the value of the initial belief state
falls below a certain threshold. The default setting of the HSVI2 stopping threshold
is 0.001. We ran experiments using this value and also a higher value of 1.5 which
corresponded roughly to a ratio measure we originally used.

The value functions produced by each planner were tested by computing the
average reward received over 100 episodes of 50 steps/episode using the policy
associated with the α-functions/vectors in the computed value function. At the start
of each episode the robot was placed at a state s that was chosen randomly from the
uniform distribution spanning [−19, 19]. The robot’s belief state is initialized to be a
set of 4 high variance Gaussians spanning the state space. The results are displayed
in Table 2.

Table 2 Power supply experiment results

Models Continuous-state HSVI2: discretized number of states

Linear SM-POMDP 840 1,050 1,155 1,260 2,100

Time(s) ε = 0.001 30.6 548 577 28,906 86,828 23,262 75,165
Time(s) ε = 1.5 n/a n/a – 9,897 34,120 5,935 23,342
Reward 290 465* 290 290 290 484* 484*

There was no significant difference between the rewards received by the good policies (marked
by a *)
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Our hybrid model found a good policy that involves taking big and small actions
to first localize the belief (at the wall) and then taking three more steps to reach the
power socket. The linear model continuous-state POMDP planner runs faster but
fails to find a good policy since it cannot model the state-dependent dynamics near
the wall edges, and there are no unique observations. Therefore the linear planner
thinks localization is hopeless.

The discrete-state solutions do poorly at coarse granularities since the PlugIn re-
ward gets washed out by averaging over the width of a too-wide discrete state. At fine
state granularities the discrete approach finds a good policy but require more time.
Our continuous-state planner finds a solution significantly faster than the coarsest
discrete-state planner that can find a good solution. This result shows that Porta
et al.’s previous demonstration of the benefits of parametric representations over
discrete-state representations [15] are also present in domains with more complex
dynamics.

6.2 Locomotion over rough terrain: bimodal dynamics

In robotic legged locomotion over rough terrain (such as DARPA’s LittleDog
project) a robot may need to traverse an uneven rocky surface to reach a goal
location (see Fig. 9a). Our example is inspired by this problem. The robot starts on an
initial flat surface and must traverse an area with 4 rocks separated by sand to reach
a goal location (see Fig. 9b). At each step the robot can attempt to step forward or
signal it is done. The robot is faulty and works best on hard surfaces: at each step
it may succeed in executing a step or stay in the same place. Figure 10 displays the
multi-modal state-dependent nature of the dynamics. The robot is receives a penalty
of −59 for stepping into the sand, and −1.1 for each step on the rocks. A Signal
action results in a reward of ≈ 19.5 if the robot has reached the final location, or
−0.1. All rewards are specified using a weighted sum of Gaussians. The observation
model provides a noisy estimate of where the robot is (sand, rock 1–4, start or finish).

We tested SM-POMDP and a linear model that averages the bimodal distribu-
tions. The models were tested in a manner similar to the prior experiment (except
using 100 beliefs). The agent can always perform at least as well as performing the
Signal action forever so the Signal action reward was used as an initial value function,

(a) Tricky navigation

Sand Rocks

Hopping
robotGoal

area

Jump
Length

(b) Observation Model

Fig. 9 (a) Displays a motivating example for this experiment: navigation over a challenging set of
poles by a quadruped robot (photo reproduced with permission from Byl and Tedrake [4]). (b) Shows
the particular experimental domain used. A robot must try to reach the other large rock by hopping
across the obstacles and then signalling it has reached the end
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Fig. 10 Multi-modal
state-dependent dynamics of
Jump. A given mode’s
probability (such as step left)
varies over the state space, and
more than one mode is
possible for a state
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scaled to account for discounting and performing the action indefinitely. The results
are displayed in the following table:

Average total reward received
SM-POMDP 302.8
Linear model −4.7

Since the hybrid model can correctly represent that a step from the initial platform
will keep the robot on the platform or move it to the first rock, it can find a good
policy of repeatedly trying to step and will eventually reach the goal platform.
In contrast, the linear model performs poorly because its dynamics model leads
it to believe that stepping from the platform will result in landing in a relatively
undesirable and hard to escape sandpit. Instead the linear model policy simply signals
immediately.

A belief compression technique that assumes a unimodal belief state, such as
Brooks et al. [2] approach, cannot perform optimally in this domain. This is because
the belief state resulting from an action is inherently bimodal due to the faulty
dynamics model, and a unimodal approach must, for example, average, or select one
peak of the belief. When we evaluated our SM-POMDP approach with only a single
component per belief, the resulting average reward was 255, significantly lower than
the average reward of 302.8 received by SM-POMDP.

6.3 UAV avoidance

In our final experiment we investigated the performance of SM-POMDP on a two-
dimensional simulated collision avoidance problem. The challenge is for the agent,
an unmanned aerial vehicle, to successfully avoid crashing with an incoming aerial
vehicle. The state is represented by the relative x and y between the two planes
(see Fig. 11a7). The agent has 6 possible actions: it can go slowly forward (x = +1,

y = +1), slowly up and forward (x = +1, y = +0), slowly down and forward (x =
+1, y = −1), fast forward (x = +5, y = +0), fast forward and up (x = +5, y = +1),
or fast forward and down (x = +5, y = −1). The incoming UAV always moves

7The airplane graphic in this figure is from http://www.germes-online.com/direct/dbimage/50200967/
Radio_Controlled_Airplane.jpg.

http://www.germes-online.com/direct/dbimage/50200967/Radio_Controlled_Airplane.jpg
http://www.germes-online.com/direct/dbimage/50200967/Radio_Controlled_Airplane.jpg
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X

Y

(a) Plane Setup (b) Observation model

Fig. 11 UAV experiment. (a) Shows the basic problem setup: an agent must avoid an incoming
UAV. (b) Shows the observation model. Different colors represent the placement of the centers of
the Gaussians associated with different observations. When the agent is close to the incoming UAV
they get a fairly high resolution estimate of the relative bearing to the incoming UAV, otherwise the
agent receives only coarse observations

forward (from its perspective, so that it comes closer to the agent) but it can also
stochastically choose between going straight, up and down. Therefore the dynamics
model has three modes which are equally likely and depend on the (unknown) action
of the incoming UAV. The agent incurs a small cost (of 3) for each forward action, a
slightly larger cost (5) for going up or down and a large cost of 200 for getting within 1
unit of the incoming UAV. However, after the agent has passed the incoming UAV,
it is rewarded by having the cost of actions drop to zero. The agent receives one
of 11 discrete observations. If the agent is close to the incoming UAV, the agent
receives a discretized bearing estimate to the incoming UAV. Otherwise the agent is
too far away and receives a broad range estimate that essentially specifies whether
the agent is in front or behind the other UAV. As with all the world models, these
observation models are represented by a weighted set of Gaussians. The centers of
those Gaussians are shown in Fig. 11b.

We compared SM-POMDP to the linear model POMDP planner. Both ap-
proaches used 1,000 belief points during planning. The resulting approaches were
evaluated on 200 episodes, each of length 30 steps. The agent is always started
between (−30,−28) in the x direction, and (−4, 4) in the y direction. The results
are displayed in Table 3. This task is fairly easy, but SM-POMDP still outperforms
the linear model. SM-POMDP yields a policy with a lower average cost per episode
of 47.2, whereas the linear model incurs the greater cost of 50.5. The difference is
statistically significant (t-test, p < 0.001). This improvement in performance is likely
to be due to the fact that SM-POMDP has a better model of the incoming UAV’s
dynamics: in order to model the UAV as having a single dynamics model, the linear
dynamics uses a dynamics model with a higher variance than is really present. This
can cause the linear model to think that the incoming UAV could transition to some

Table 3 UAV avoidance average cost results, lower is better

Algorithm Average cost/episode

SM-POMDP 47.2
Linear model 50.5

SPOMDP outperforms the linear model
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states which the true model cannot reach, and therefore the linear model is overly
conservative.

7 Conclusion

In this paper we introduced SM-POMDP, an algorithm for planning in continuous-
state domains characterized by switching-state, multi-modal dynamics. The paramet-
ric representation of the dynamics model allowed all POMDP planning operators
(belief updating and value function backups) to be performed in closed form.
SM-POMDP can handle more general dynamics models than the prior work it builds
on by Porta et al. [15] and the benefit of this was demonstrated in three simulated
experiments. We also provided a formal analysis of SM-POMDP, bounding the
resulting SM-POMDP value function relative to the optimal value function where
possible, and analyzing the computational complexity of the SM-POMDP algorithm
variants. SM-POMDP indicates the potential promise of parametric approaches
in planning in partially-observable, continuous-state environments with complex
dynamics.
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Appendix

Formula for product of 2 Gaussians, as referenced in Porta et al. [15, p. 15]

N (s|a, A)N (s|b , B) = N (a|b , A + B)N (s|c, C) (6)

where

C =
(

A−1 + B−1)−1

c = C
(

A−1a + B−1b
)

Lemma 2 (Theorem from Kullback [10]) Let p1 and p2 be two probability density
functions def ined over X . Def ine

* =
{

x ∈ X | p1(x) ≥ p2(x)
}
.

If p1 and p2 are both measurable (integrable) over *, then

dKL(p1, p2) ≥ 1
8
||p1 − p2||21

where dKL is the Kullback-Leibler divergence.
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