
Undefined Behavior: What Happened to My Code?∗

Xi Wang Haogang Chen Alvin Cheung Zhihao Jia†

Nickolai Zeldovich M. Frans Kaashoek
MIT CSAIL †Tsinghua University

Abstract
System programming languages such as C grant compiler writ-
ers freedom to generate efficient code for a specific instruction
set by defining certain language constructs as undefined be-
havior. Unfortunately, the rules for what is undefined behavior
are subtle and programmers make mistakes that sometimes
lead to security vulnerabilities. This position paper argues
that the research community should help address the problems
that arise from undefined behavior, and not dismiss them as
esoteric C implementation issues. We show that these errors
do happen in real-world systems, that the issues are tricky, and
that current practices to address the issues are insufficient.

1 Introduction
A difficult trade-off in the design of a systems programming
language is how much freedom to grant the compiler to gen-
erate efficient code for a target instruction set. On one hand,
programmers prefer that a program behaves identically on all
hardware platforms. On the other hand, programmers want
to get high performance by allowing the compiler to exploit
specific properties of the instruction set of their hardware plat-
form. A technique that languages use to make this trade-off
is labeling certain program constructs as undefined behavior,
for which the language imposes no requirements on compiler
writers.

As an example of undefined behavior in the C programming
language, consider integer division with zero as the divisor.
The corresponding machine instruction causes a hardware ex-
ception on x86 [17, 3.2], whereas PowerPC silently ignores
it [15, 3.3.38]. Rather than enforcing uniform semantics across
instruction sets, the C language defines division by zero as
undefined behavior [19, 6.5.5], allowing the C compiler to
choose an efficient implementation for the target platform.
For this specific example, the compiler writer is not forced
to produce an exception when a C program divides by zero,

∗This is revision #2 of the paper, which corrects some mistakes found in
the original version.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSys ’12, July 23–24, 2012, Seoul, S. Korea
Copyright 2012 ACM 978-1-4503-1669-9/12/07 . . . $15.00.

which allows the C compiler for the PowerPC to use the in-
struction that does not produce an exception. If the C language
had insisted on an exception for division by zero, the C com-
piler would have to synthesize additional instructions to detect
division by zero on PowerPC.

Some languages such as C/C++ define many constructs as
undefined behavior, while other languages, for example Java,
have less undefined behavior [7]. But the existence of unde-
fined behavior in higher-level languages such as Java shows
this trade-off is not limited to low-level system languages
alone.

C compilers trust the programmer not to submit code that
has undefined behavior, and they optimize code under that
assumption. For programmers who accidentally use constructs
that have undefined behavior, this can result in unexpected
program behavior, since the compiler may remove code (e.g.,
removing an access control check) or rewrite the code in a
way that the programmer did not anticipate. As one sum-
marized [28], “permissible undefined behavior ranges from
ignoring the situation completely with unpredictable results,
to having demons fly out of your nose.”

This paper investigates whether bugs due to programmers
using constructs with undefined behavior happen in practice.
Our results show that programmers do use undefined behav-
ior in real-world systems, including the Linux kernel and the
PostgreSQL database, and that some cases result in serious
bugs. We also find that these bugs are tricky to identify, and
as a result they are hard to detect and understand, leading to
programmers brushing them off incorrectly as “GCC bugs.”
Finally, we find that there are surprisingly few tools that aid
C programmers to find and fix undefined behavior in their
code, and to understand performance implications of unde-
fined behavior. Through this position paper, we call for more
research to investigate this issue seriously, and hope to shed
some light on how to treat the undefined behavior problem
more systematically.

2 Case Studies
In this section, we show a number of undefined behavior cases
in real-world systems written in C. For each case, we describe
what C programmers usually expect, how representative in-
struction sets behave (if the operation is non-portable across in-
struction sets), and what assumptions a standard-conforming C
compiler would make. We demonstrate unexpected optimiza-
tions using two popular compilers, GCC 4.7 and Clang 3.1, on

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78052297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

if (!msize)
msize = 1 / msize; /* provoke a signal */

Figure 1: A division-by-zero misuse, in lib/mpi/mpi-pow.c of the Linux
kernel, where the entire code will be optimized away.

if (arg2 == 0)
ereport(ERROR, (errcode(ERRCODE_DIVISION_BY_ZERO),

errmsg("division by zero")));
/* No overflow is possible */
PG_RETURN_INT32((int32) arg1 / arg2);

Figure 2: An unexpected optimization voids the division-by-zero
check, in src/backend/utils/adt/int8.c of PostgreSQL. The call to
ereport(ERROR, . . .) will raise an exception.

Linux/x86-64 with the default optimization option -O2 only,
unless noted otherwise.

2.1 Division by Zero
As mentioned earlier, at the instruction set level, x86 raises
an exception for a division by zero [17, 3.2], while MIPS [22,
A.6] and PowerPC [15, 3.3.38] silently ignore it. A division
by zero in C is undefined behavior [19, 6.5.5], and a compiler
can thus simply assume that the divisor is always non-zero.

Figure 1 shows a division-by-zero misuse in the Linux ker-
nel. From the programmer’s comment it is clear that the
intention is to signal an error in case msize is zero. When
compiling with GCC, this code behaves as intended on an
x86, but not on a PowerPC, because it will not generate an
exception. When compiling with Clang, the result is even
more surprising. Clang assumes that the divisor msize must
be non-zero—on any system—since otherwise the division is
undefined. Combined with this assumption, the zero check
!msize becomes always false, since msize cannot be both zero
and non-zero. The compiler determines that the whole block
of code is unreachable and removes it, which has the unex-
pected effect of removing the programmer’s original intention
of guarding against the case when msize is zero.

Division by zero may cause trickier problems when the
compiler reorders a division [23]. Figure 2 shows a failed
attempt to defend against a division by zero in PostgreSQL.
When arg2 is zero, the code invokes an error handling rou-
tine ereport(ERROR, . . .) that internally signals an error and
does not return to the call site. Therefore, the PostgreSQL
programmer believed that the division by zero would never be
triggered.

However, the programmer failed to inform the compiler
that the call to ereport(ERROR, . . .) does not return. This
implies that the division will always execute. Combined with
the assumption that the divisor must be non-zero, on some
platforms (e.g., Alpha, S/390, and SPARC) GCC moves the
division before the zero check arg2 == 0, causing division by
zero [5]. We found seven similar issues in PostgreSQL, which
were noted as “GCC bugs” in source code comments.

2.2 Oversized Shift
Intuitively, a logical left or right shift of an n-bit integer by n
or more bits should produce 0, since all bits from the original
value are shifted out. Surprisingly, this is false at both the

groups_per_flex = 1 << sbi->s_log_groups_per_flex;
/* There are some situations, after shift the
value of ’groups_per_flex’ can become zero
and division with 0 will result in fixpoint
divide exception */

if (groups_per_flex == 0)
return 1;

flex_group_count = ... / groups_per_flex;

Figure 3: A failed attempt to fix a division-by-zero due to oversized shift [4],
in fs/ext4/super.c of the Linux kernel.

instruction set and the C language level. For instance, on
x86, 32- and 64-bit shift instructions truncate the shift amount
to 5 and 6 bits, respectively [17, 4.2], while for PowerPC,
the corresponding numbers of truncation bits are 6 and 7 [15,
3.3.13.2]. As a result, shifting a 32-bit value 1 by 32 bits
produces 1 on x86, since 32 is truncated to 0, while the result
is 0 on PowerPC.

In C, shifting an n-bit integer by n or more bits is undefined
behavior [19, 6.5.7]. A compiler can thus assume that the shift
amount is at most n− 1. Under this assumption, the result
of left-shifting 1 is always non-zero, no matter what the shift
amount is, and this can lead to unexpected program behavior.

As an illustration, consider the code fragment from the ext4
file system in Linux, shown in Figure 3. The code originally
contained a security vulnerability where a division by zero
could be triggered when mounting the file system [1, CVE-
2009-4307].

Particularly, since sbi->s_log_groups_per_flex is read
from disk, an adversary can craft an ext4 file system with
that value set to 32. In that case, groups_per_flex, which
is 1 << 32, becomes 0 on PowerPC. A programmer dis-
covered that it would be used as a divisor later; to avoid
the division by zero, the programmer added the zero check
groups_per_flex == 0 [4].

As discussed earlier, Clang assumes that the left shift for
calculating groups_per_flex is always non-zero. As a result,
it concludes that the check is redundant and thus removes it.
This essentially undoes the intent of the patch and leaves the
code as vulnerable as the original.

2.3 Signed Integer Overflow
A common misbelief is that signed integer operations always
silently wrap around on overflow using two’s complement,
just like unsigned operations. This is false at the instruction
set level, including older mainframes that use one’s comple-
ment, embedded processors that use saturation arithmetic [18],
and even architectures that use two’s complement. While
most x86 signed integer instructions do silently wrap around,
there are exceptions, such as signed division that traps for
INT_MIN/−1 [17, 3.2]. On MIPS, signed addition and subtrac-
tion trap on overflow, while signed multiplication and division
do not [22, A.6].

In C, signed integer overflow is undefined behavior [19,
6.5]. A compiler can assume that signed operations do not
overflow. For example, both GCC and Clang conclude that the
“overflow check” x+100 < x with a signed integer x is always

2

int do_fallocate(..., loff_t offset, loff_t len)
{

struct inode *inode = ...;
if (offset < 0 || len <= 0)

return -EINVAL;
/* Check for wrap through zero too */
if ((offset + len > inode->i_sb->s_maxbytes)

|| (offset + len < 0))
return -EFBIG;

...
}

Figure 4: A signed integer overflow check, in fs/open.c of the Linux kernel,
which uses GCC’s -fno-strict-overflow to prevent the check from being
removed.

false, since they assume signed overflow is impossible. Some
programmers were shocked that GCC turned the check into a
no-op, leading to a harsh debate between the C programmers
and the GCC developers [2].

Figure 4 shows another example from the fallocate sys-
tem call implementation in the Linux kernel. Both offset
and len are from user space, which is untrusted, and thus
need validation. Note that they are of the signed integer type
loff_t.

The code first rejects negative values of offset and len, and
checks whether offset + len exceeds some limit. Accord-
ing to the comment “Check for wrap through zero too,” the
programmer clearly realized that the addition may overflow
and bypass the limit check. The programmer then added the
overflow check offset + len < 0 to prevent the bypass.

However, GCC is able to infer that both offset and len are
non-negative at the point of the overflow check. Along with
the assumption that the signed addition cannot overflow, GCC
concludes that the sum of two non-negative integers must be
non-negative. This means that the check offset + len < 0 is
always false and GCC removes it. Consequently, the generated
code is vulnerable: an adversary can pass in two large positive
integers from user space, the sum of which overflows, and
bypass all the sanity checks. The Linux kernel uses GCC’s
-fno-strict-overflow to disable such optimizations.

2.4 Out-of-Bounds Pointer
A pointer holds a memory address. Contrary to some expec-
tations, an n-bit pointer arithmetic operation does not always
yield an address wrapped around modulo 2n. Consider the
x86 family [17]. The limit at which pointer arithmetic wraps
around depends on the memory model, for example, 216 for a
near pointer, 220 for a huge pointer on 8086, and 264 for a flat
64-bit pointer on x86-64.

The C standard states that when an integer is added to or
subtracted from a pointer, the result should be a pointer to the
same object, or just one past the end of the object; otherwise
the behavior is undefined [19, 6.5.6]. By this assumption,
pointer arithmetic never wraps, and the compiler can perform
algebraic simplification on pointer comparisons.

However, some programs rely on this undefined behavior to
do bounds checking. Figure 5 is a code snippet from the Linux
kernel. The check end < buf assumes that when size is large,

int vsnprintf(char *buf, size_t size, ...)
{

char *end;
/* Reject out-of-range values early.
Large positive sizes are used for
unknown buffer sizes. */

if (WARN_ON_ONCE((int) size < 0))
return 0;

end = buf + size;
/* Make sure end is always >= buf */
if (end < buf) { ... }
...

}

Figure 5: A pointer wraparound check, in lib/vsprintf.c of the Linux
kernel, which uses GCC’s -fno-strict-overflow to prevent the check from
being removed.

unsigned int
tun_chr_poll(struct file *file, poll_table * wait)
{

struct tun_file *tfile = file->private_data;
struct tun_struct *tun = __tun_get(tfile);
struct sock *sk = tun->sk;
if (!tun)

return POLLERR;
...

}

Figure 6: An invalid null pointer check due to null pointer derefer-
ence, in drivers/net/tun.c of the Linux kernel, which uses GCC’s
-fno-delete-null-pointer-checks to prevent such checks from being re-
moved.

end (i.e., buf + size) will wrap around and become smaller
than buf. Unfortunately, both GCC and Clang will simplify
the overflow check buf + size < buf to size < 0 by elimi-
nating the common term buf, which deviates from what the
programmer intended. Specifically, on 32-bit systems Clang
concludes that size < 0 cannot happen because the preceding
check already rejects any negative size, and eliminates the
entire branch.

An almost identical bug was found in Plan 9’s sprint
function [10]. CERT later issued a vulnerability note
against GCC [3]. The Linux kernel uses GCC’s
-fno-strict-overflow to disable such optimizations.

2.5 Null Pointer Dereference
GCC, like most other C compilers, chooses memory address 0
to represent a null pointer. On x86, accessing address 0 usually
causes a runtime exception, but it can also be made legitimate
by memory-mapping address 0 to a valid page. On ARM,
address 0 is by default mapped to hold exception handlers [20].

In C, dereferencing a null pointer is undefined behavior [19,
6.5.3]. Compilers can thus assume that all dereferenced point-
ers are non-null. This assumption sometimes leads to undesir-
able behavior.

Figure 6 shows an example from the Linux kernel. The
code dereferences tun via tun->sk, and only afterward does it
validate that tun is non-null. Given a null tun, it was expected
that this null-check-after-dereference bug would either cause a
kernel oops as a result of the tun->sk dereference, or return an

3

struct iw_event {
uint16_t len; /* Real length of this stuff */
...

};
static inline char * iwe_stream_add_event(

char * stream, /* Stream of events */
char * ends, /* End of stream */
struct iw_event *iwe, /* Payload */
int event_len) /* Size of payload */

{
/* Check if it’s possible */
if (likely((stream + event_len) < ends)) {

iwe->len = event_len;
memcpy(stream, (char *) iwe, event_len);
stream += event_len;

}
return stream;

}

Figure 7: A strict aliasing violation, in include/net/iw_handler.h of the
Linux kernel, which uses GCC’s -fno-strict-aliasing to prevent possible
reordering.

error code due to the null pointer check (e.g., when address 0
is mapped). Neither was considered a serious vulnerability.

However, an unexpected optimization makes this bug ex-
ploitable. When GCC sees the dereference, it assumes that
tun is non-null, and removes the “redundant” null pointer
check. An attacker can then continue to run the rest of the
function with tun pointing to address 0, leading to privi-
lege escalation [9]. The Linux kernel started using GCC’s
-fno-delete-null-pointer-checks to disable such optimiza-
tions.

2.6 Type-Punned Pointer Dereference
C gives programmers the freedom to cast pointers of one type
to another. Pointer casts are often abused to reinterpret a given
object with a different type, a trick known as type-punning. By
doing so, the programmer expects that two pointers of different
types point to the same memory location (i.e., aliasing).

However, the C standard has strict rules for aliasing. In
particular, with only a few exceptions, two pointers of different
types do not alias [19, 6.5]. Violating strict aliasing leads to
undefined behavior.

Figure 7 shows an example from the Linux kernel. The
function first updates iwe->len, and then copies the content of
iwe, which contains the updated iwe->len, to a buffer stream
using memcpy. Note that the Linux kernel provides its own op-
timized memcpy implementation. In this case, when event_len
is a constant 8 on 32-bit systems, the code expands as follows.

iwe->len = 8;
*(int *)stream = *(int *)((char *)iwe);
*((int *)stream + 1) = *((int *)((char *)iwe) + 1);

The expanded code first writes 8 to iwe->len, which is of
type uint16_t, and then reads iwe, which points to the same
memory location of iwe->len, using a different type int. Ac-
cording to the strict aliasing rule, GCC concludes that the read
and the write do not happen at the same memory location,
because they use different pointer types, and reorders the two
operations. The generated code thus copies a stale iwe->len

struct timeval tv;
unsigned long junk; /* XXX left uninitialized

on purpose */
gettimeofday(&tv, NULL);
srandom((getpid() << 16)

^ tv.tv_sec ^ tv.tv_usec ^ junk);

Figure 8: An uninitialized variable misuse for random number generation, in
lib/libc/stdlib/rand.c of the FreeBSD libc, where the seed computation
will be optimized away.

value [27]. The Linux kernel uses -fno-strict-aliasing to
disable optimizations based on strict aliasing.

2.7 Uninitialized Read
A local variable in C is not initialized to zero by default. A
misconception is that such an uninitialized variable lives on the
stack, holding a “random” value. This is not true. A compiler
may assign the variable to a register (e.g., if its address is never
taken), where its value is from the last instruction that modified
the register, rather than from the stack. Moreover, on Itanium
if the register happens to hold a special not-a-thing value,
reading the register traps except for a few instructions [16,
3.4.3].

Reading an uninitialized variable is undefined behavior in
C [19, 6.3.2.1]. A compiler can assign any value not only to
the variable, but also to expressions derived from the variable.

Figure 8 shows such a misuse in the srandomdev function
of FreeBSD’s libc, which also appears in DragonFly BSD and
Mac OS X. The corresponding commit message says that
the programmer’s intention of introducing junk was to “use
stack junk value,” which is left uninitialized intentionally, as a
source of entropy for random number generation. Along with
current time from gettimeofday and the process identification
from getpid, the code computes a seed value for srandom.

Unfortunately, the use of junk does not introduce more ran-
domness from the stack. GCC assigns junk to a register. Clang
further eliminates computation derived from junk completely,
and generates code that does not use either gettimeofday or
getpid.

3 Disabling Offending Optimizations
Experienced C programmers know well that code with un-
defined behavior can result in surprising results, and many
compilers support flags to selectively disable certain optimiza-
tions that exploit undefined behavior. One reason for these
optimizations, however, is to achieve good performance. This
section briefly describes some of these flags, their portability
across compilers, and the impact of optimizations that exploit
undefined behavior on performance.

3.1 Flags
One way to avoid unwanted optimizations is to lower the opti-
mization level, and see if the bugs like the ones in the previous
section disappear. Unfortunately, this workaround is incom-
plete; for example, GCC still enables some optimizations, such
as removing redundant null pointer checks, even at -O0.

4

Both GCC and Clang provide a set of fine-grained
workaround options to explicitly disable certain optimizations,
with which security checks that involve undefined behavior are
not optimized away. Figure 9 summarizes these options and
how they are adopted by four open-source projects to disable
optimizations that caused bugs. The Linux kernel uses all
these workarounds to disable optimizations, the FreeBSD ker-
nel and PostgreSQL keep some of the optimizations, and the
Apache HTTP server chooses to enable all these optimizations
and fix its code instead. Currently neither GCC nor Clang has
options to turn off optimizations that involve division by zero,
oversized shift, and uninitialized read.

3.2 Portability
A standard-conforming C compiler is not obligated to provide
the flags described in the previous subsection. For example,
one cannot turn off optimizations based on signed integer over-
flow when using IBM’s XL and Intel’s C compilers (even with
-O0). Even for the same option, each compiler may implement
it in a different way. For example, -fno-strict-overflow
in GCC does not fully enforce two’s complement on signed
integers as -fwrapv does, usually allowing more optimiza-
tions [26], while in Clang it is merely a synonym for -fwrapv.
Furthermore, the same workaround may appear as different
options in two compilers.

3.3 Performance
To understand how disabling these optimizations may impact
performance, we ran SPECint 2006 with GCC and Clang,
respectively, and measured the slowdown when compiling the
programs with all the three -fno-* options shown in Figure 9.
The experiments were conducted on a 64-bit Ubuntu Linux
machine with an Intel Core i7-980 3.3 GHz CPU and 24 GB of
memory. We noticed slowdown for 2 out of the 12 programs,
as detailed next.

456.hmmer slows down 7.2% with GCC and 9.0% with
Clang. The first reason is that the code uses an int array
index, which is 32 bits on x86-64, as shown below.

int k;
int *ic, *is;
...
for (k = 1; k <= M; k++) {

...
ic[k] += is[k];
...

}

As allowed by the C standard, the compiler assumes that the
signed addition k++ cannot overflow, and rewrites the loop us-
ing a 64-bit loop variable. Without the optimization, however,
the compiler has to keep k as 32 bits and generate extra in-
structions to sign-extend the index k to 64 bits for array access.
This is also observed by LLVM developers [14].

Surprisingly, by running OProfile we found that the most
time-consuming instruction was not the sign extension but
loading the array base address is[] from the stack in each
iteration. We suspect that the reason is that the generated code
consumes one more register for loop variables (i.e., both 32

and 64 bits) due to sign extension, and thus spills is[] on the
stack.

If we change the type of k to size_t, then we no longer
observe any slowdown with the workaround options.

462.libquantum slows down 6.3% with GCC and 11.8%
with Clang. The core loop is shown below.

quantum_reg *reg;
...
// reg->size: int
// reg->node[i].state: unsigned long long
for (i = 0; i < reg->size; i++)

reg->node[i].state = ...;

With strict aliasing, the compiler is able to conclude that
updating reg->node[i].state does not change reg->size,
since they have different types, and thus moves the load of
reg->size out of the loop. Without the optimization, however,
the compiler has to generate code that reloads reg->size in
each iteration.

If we add a variable to hold reg->size before entering
the loop, then we no longer observe any slowdown with the
workaround options.

While we observed only moderate performance degradation
on two SPECint programs with these workaround options,
some previous reports suggest that using them would lead to a
nearly 50% drop [6], and that re-enabling strict aliasing would
bring a noticeable speed-up [24].

4 Research Opportunities
Compiler improvements. One approach to eliminate bugs due
to undefined behavior is to require compilers to detect un-
defined behavior and emit good warnings. For example, in
Figure 1, a good warning would read “removing a zero check
!msize at line x, due to the assumption that msize, used as a di-
visor at line y, cannot be zero.” However, current C compilers
lack such support, and adding such support is difficult [21].

Flagging all unexpected behavior statically is undecid-
able [13]. Therefore, C compilers provide options to
insert runtime checks on undefined behavior, such as
GCC’s -ftrapv (for signed integer overflow) and Clang’s
-fcatch-undefined-behavior. Similar tools include the IOC
integer overflow checker [11]. They help programmers catch
undefined behavior at run time. However, these checks cover
only a subset of undefined behavior that occurs on particular
execution paths with given input, and are thus incomplete.

Another way to catch bugs due to undefined behavior is
to define “expected” semantics for the constructs that have
undefined behavior, and subsequently check if the compiled
code after optimizations has the same program semantics as
the non-optimized one. Unfortunately, determining program
equivalence is undecidable in general [25], but it might be
possible to devise heuristics for this problem.

Bug-finding tools. Bug finding tools, such as Clang’s built-in
static analyzer and the KLEE symbolic execution engine [8],
are useful for finding undefined behavior. However, these tools
often implement different C semantics from the optimizer, and

5

Undefined behavior GCC workaround Linux kernel FreeBSD kernel PostgreSQL Apache

division by zero N/A
oversized shift N/A
signed integer overflow -fno-strict-overflow (or -fwrapv) X X
out-of-bounds pointer -fno-strict-overflow (or -fwrapv) X X
null pointer dereference -fno-delete-null-pointer-checks X
type-punned pointer dereference -fno-strict-aliasing X X X
uninitialized read N/A

Figure 9: GCC workarounds for undefined behavior adopted by several popular open-source projects.

miss undefined behavior the optimizer exploits. For example,
both Clang’s static analyzer and KLEE model signed integer
overflow as wrapping, and thus are unable to infer that the
check offset + len < 0 in Figure 4 will vanish.

Improved standard. Another approach is to outlaw undefined
behavior in the C standard, perhaps by having the compiler
or runtime raise an error for any use of undefined behavior,
similar to the direction taken by the KCC interpreter [12].

The main motivation to have undefined behavior is to grant
compiler writers the freedom to generate efficient code for
a wide range of instruction sets. It is unclear, however, how
important that is on today’s hardware. A research question is
to re-assess whether the performance benefits outweigh the
downsides of undefined behavior, and whether small program
changes can achieve equivalent performance, as in Section 3.3.

5 Conclusion
This paper shows that understanding the consequences of un-
defined behavior is important for both system developers and
the research community. Several case studies of undefined be-
havior in real-world systems demonstrate it can result in subtle
bugs that have serious consequences (e.g., security vulnerabili-
ties). Current approaches to catching and preventing bugs due
to undefined behavior are insufficient, and pose interesting re-
search challenges: for example, systematically identifying the
discrepancy between programmers’ understanding and com-
pilers’ realization of undefined constructs is a hard problem.

Acknowledgments
We thank John Regehr, Linchun Sun, and the anonymous
reviewers for their feedback. This research was partially
supported by the DARPA CRASH program (#N66001-10-
2-4089).

References
[1] Common vulnerabilities and exposures (CVE). http://cve.mitre.
org/.

[2] assert(int+100 > int) optimized away. Bug 30475, GCC, 2007.
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475.

[3] C compilers may silently discard some wraparound checks. Vulnerabil-
ity Note VU#162289, US-CERT, 2008. http://www.kb.cert.org/
vuls/id/162289.

[4] ext4: fixpoint divide exception at ext4_fill_super. Bug 14287,
Linux kernel, 2009. https://bugzilla.kernel.org/show_bug.
cgi?id=14287.

[5] postgresql-9.0: FTBFS on sparc64, testsuite issues with int8. Bug
616180, Debian, 2011. http://bugs.debian.org/cgi-bin/
bugreport.cgi?bug=616180.

[6] D. Berlin. Re: changing “configure” to default to “gcc -g -O2 -
fwrapv ...”. http://lists.gnu.org/archive/html/autoconf-
patches/2006-12/msg00149.html, December 2006.

[7] J. Bloch and N. Gafter. Java Puzzlers: Traps, Pitfalls, and Corner
Cases. Addison-Wesley Professional, July 2005.

[8] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proc. of the 8th OSDI, San Diego, CA, December 2008.

[9] J. Corbet. Fun with NULL pointers, part 1. http://lwn.net/
Articles/342330/, July 2009.

[10] R. Cox. Re: plan9port build failure on Linux (debian). http://9fans.
net/archive/2008/03/89, March 2008.

[11] W. Dietz, P. Li, J. Regehr, and V. Adve. Understanding integer over-
flow in C/C++. In Proc. of the 34th ICSE, pages 760–770, Zurich,
Switzerland, June 2012.

[12] C. Ellison and G. Roşu. An executable formal semantics of C with
applications. In Proc. of the 39th POPL, pages 533–544, Philadelphia,
PA, January 2012.

[13] C. Ellison and G. Roşu. Defining the undefinedness of C. Technical
report, University of Illinois, April 2012.

[14] D. Gohman. The nsw story. http://lists.cs.uiuc.edu/
pipermail/llvmdev/2011-November/045730.html, November
2011.

[15] Power ISA. IBM, July 2010. http://www.power.org/.
[16] Intel Itanium Architecture Software Developer’s Manual, Volume 1:

Application Architecture. Intel, May 2010.
[17] Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol-

ume 2: Instruction Set Reference. Intel, March 2012.
[18] ISO/IEC TR 18037:2006, Programming languages – C – Extensions to

support embedded processors. ISO/IEC, 2006.
[19] ISO/IEC 9899:2011, Programming languages – C. ISO/IEC, 2011.
[20] B. Jack. Vector rewrite attack: Exploitable NULL pointer vulnerabilities

on ARM and XScale architectures. In CanSecWest 2007, Vancouver,
BC, Canada, April 2007.

[21] C. Lattner. What every C programmer should know about undefined
behavior #3/3. http://blog.llvm.org/2011/05/what-every-c-
programmer-should-know_21.html, May 2011.

[22] C. Price. MIPS IV Instruction Set. MIPS Technologies, September
1995.

[23] J. Regehr. A guide to undefined behavior in C and C++, part 3. http:
//blog.regehr.org/archives/232, July 2010.

[24] B. Rosenkränzer. Compiler flags used to speed up Linaro Android
2011.10, and future optimizations. http://www.linaro.org/
linaro-blog/2011/10/25/compiler-flags-used-to-speed-
up-linaro-android-2011-10-and-future-optimizations/,
October 2011.

[25] M. Sipser. Introduction to the Theory of Computation. Cengage Learn-
ing, second edition, Feburary 2005.

[26] I. L. Taylor. Signed overflow. http://www.airs.com/blog/
archives/120, January 2008.

[27] J. Tourrilhes. Invalid compilation without -fno-strict-aliasing. http:
//lkml.org/lkml/2003/2/25/270, February 2003.

[28] J. F. Woods. Re: Why is this legal? http://groups.google.com/
group/comp.std.c/msg/dfe1ef367547684b, February 1992.

6

http://cve.mitre.org/
http://cve.mitre.org/
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475
http://www.kb.cert.org/vuls/id/162289
http://www.kb.cert.org/vuls/id/162289
https://bugzilla.kernel.org/show_bug.cgi?id=14287
https://bugzilla.kernel.org/show_bug.cgi?id=14287
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=616180
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=616180
http://lists.gnu.org/archive/html/autoconf-patches/2006-12/msg00149.html
http://lists.gnu.org/archive/html/autoconf-patches/2006-12/msg00149.html
http://lwn.net/Articles/342330/
http://lwn.net/Articles/342330/
http://9fans.net/archive/2008/03/89
http://9fans.net/archive/2008/03/89
http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-November/045730.html
http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-November/045730.html
http://www.power.org/
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_21.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_21.html
http://blog.regehr.org/archives/232
http://blog.regehr.org/archives/232
http://www.linaro.org/linaro-blog/2011/10/25/compiler-flags-used-to-speed-up-linaro-android-2011-10-and-future-optimizations/
http://www.linaro.org/linaro-blog/2011/10/25/compiler-flags-used-to-speed-up-linaro-android-2011-10-and-future-optimizations/
http://www.linaro.org/linaro-blog/2011/10/25/compiler-flags-used-to-speed-up-linaro-android-2011-10-and-future-optimizations/
http://www.airs.com/blog/archives/120
http://www.airs.com/blog/archives/120
http://lkml.org/lkml/2003/2/25/270
http://lkml.org/lkml/2003/2/25/270
http://groups.google.com/group/comp.std.c/msg/dfe1ef367547684b
http://groups.google.com/group/comp.std.c/msg/dfe1ef367547684b

	Introduction
	Case Studies
	Division by Zero
	Oversized Shift
	Signed Integer Overflow
	Out-of-Bounds Pointer
	Null Pointer Dereference
	Type-Punned Pointer Dereference
	Uninitialized Read

	Disabling Offending Optimizations
	Flags
	Portability
	Performance

	Research Opportunities
	Conclusion

