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Abstract 

Knowledge on the phonon transmittance as a function of phonon frequency and incidence 

angle at interfaces is vital for multiscale modeling of heat transport in nanostructured 

materials.  Although thermal conductivity reduction in nanostructured materials can 

usually be described by phonon scattering due to interface roughness, we show how a 

Green’s function method in conjunction with the Laudauer formalism suggests that 

interface roughness induced by atomic mixing can increase phonon transmission and 

interfacial thermal conductance.  This is the first attempt to incorporate first-principles 

force constants derived from ab initio density functional theory (DFT) into Green’s 

function calculation for infinitely large 3D crystal structure.  We also demonstrate the 

importance of accurate force constants by comparing the phonon transmission and 

thermal conductance using force constants obtained from semi-empirical Stillinger and 

Weber (SW) potential, and first-principles DFT calculations.  
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I. INTRODUCTION 

 

The reduced lattice thermal conductivity observed in many nanostructured materials has 

significant implications for applications from thermoelectric energy conversion to 

microelectronics thermal management.  The Boltzmann transport equation (BTE) can be 

used to accurately model the phonon transport in nanostructures if the input parameters, 

such as phonon mean free paths and interfacial transmission, can be properly represented.  

In recent years, excellent progress has been made in computing the mode-dependent 

phonon mean free paths in bulk materials using first-principles approaches
1-4

.  In contrast, 

research on phonon transmission across interfaces is still limited and first-principles 

studies of phonon interfacial transport are rather scarce.  First-principles based 

approaches have been recently applied to nanotubes
5, 6

; however, their applications to 

interfaces between bulk 3D materials are significantly more demanding due to the large 

number of transverse wavevectors required.   

Interface roughness due to atomic disorder and defects commonly occurs at interfaces 

during material synthesis.  A thorough understanding of the influence of interface 

roughness on phonon transport is crucial for surface engineering and improved device 

design.  It is generally accepted that interface roughness is a very important driving 

mechanism for thermal conductivity reduction in different nanostructures such as 

nanowires and superlattices.  However, it is not clear how interface roughness affects 

interfacial phonon transmission.  Using a lattice Green's function formalism, Fagas et al.
7
 

found that the phonon transmittance is strongly dependent on phonon frequency and the 

disorder correlation length by varying the atomic masses in a two-dimensional disordered 

atomic layer.  Following the same approach, Zhao and Freund
8
 studied the phonon 

scattering at a rough interface induced by atomic mixing between two FCC lattices, and 

found that the transmittance is insensitive to the roughness parameters.  Using molecular 

dynamics (MD) simulations, Sun and Murthy
9
 focused on the transmittance change as the 

roughness thickness was increased.  For long wavelength phonons, they concluded that 

the transmittance is independent of roughness thickness.  For mid-range wavelength 

phonons, the transmittance is reduced as roughness thickness increases but eventually 

saturates to become independent of the roughness.  Nevertheless, the above studies have 

not drawn a comparison between the ideal and rough interface, furthermore, the 

conclusions were derived from empirical potentials.  Using a simplified lattice dynamics 

model, Kechrakos
10

 found that the interface conductance can be enhanced by as much as 

a factor of three for highly mismatched materials.  The calculation only included one 

monolayer roughness and one branch mode.  Stevens et al.
11

 observed that interface 

mixing improved thermal transport by nearly a factor of 2 through non-equilibrium 

molecular dynamics (NEMD) simulations.  Most recently, using NEMD, English et al.
12

 

found that by sandwiching an intermediate layer between two dissimilar materials, the 
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interfacial thermal conductance can be enhanced compared to that of the two dissimilar 

materials.  NEMD, however, is unable to unveil any information about the mode-

dependent transmission.  Additionally, an empirical potential was used in their 

simulations.  The behavior of different phonon modes at a rough interface using reliably 

accurate force constants would be preferable, and as we will show in this paper, results 

can differ by up to 50% depending on the choice of the force field. 

Phonon interface transmittance is critical in determining the interfacial thermal resistance. 

Phonon interface transmittance models have yet to reliably predict experimental 

observations.  There are two widely used models for the phonon transmittance at an 

interface: the acoustic mismatch model (AMM)
13

 and the diffuse mismatch model 

(DMM)
14

.  As a continuum model, the AMM assumes that phonons undergo specular 

reflection or transmission at the interface.  This model  is valid in the long-wavelength 

limit, where due to their small details compared to the incident phonon wavelength, 

interfaces are seen as sharp.  The DMM, on the other hand, assumes not only purely 

diffuse scattering at the interface, but also an equivalence between phonon reflectance 

from one side to the transmittance from the other.  This model, as opposed to AMM is 

valid for very rough or dirty interfaces and short wavelength phonons.  Neither AMM nor 

DMM consistently predict interface thermal boundary resistance.  Using molecular 

dynamics (MD)
9, 15-19

, wave-packets can be created and the phonon transmittance can be 

obtained by tracking the energy transmitted and reflected after encountering an interface.  

Although easy to implement, it is computationally expensive since one separate MD 

simulation is needed for every incoming phonon mode, although using the multiple 

phonon wave packets reduces computational intensity
16

.  Additionally, MD simulations 

cannot capture wide angle of incidence because it requires a large lateral size that is 

difficult to achieve.  Linear lattice dynamics (LD) calculations
20-23

 have been performed 

to extract the mode-dependent phonon transmittance by solving the reflected and 

transmitted wave functions subject to boundary conditions. However, this method can be 

difficult to implement for complex atomic structures.  As an alternative and more 

straighforward approach, Green’s function methods dedicated to solve for the response 

from point source perturbation are employed to compute the phonon transmission 

function that can be easily related to transmittance as described in Sec. II.  The Green’s 

function approach has been described thoroughly for transmission function calculation in 

electron transport by Datta
24

.  Mingo et al.
25, 26

 applied the approach to deal with phonon 

transport within an elastic scattering domain in nanowires and referred to this method as 

the atomistic Green’s function (AGF).  Later, Zhang et al.
27

 extended the method to 

phonon transport in 3D structures. They calculated the phonon transmission across the Si-

Ge interface using an empirical interatomic potential and investigated the strain effect on 

interfacial transport.  A general formulation and full derivation have been detailed by 

Zhang et al.
 26

 and Mingo
28, 29

.  Several other studies utilize the same framework
5, 6, 30-32

, 

including the only first-principles based calculations with AGF method in 1D structures
5, 
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6
.  Here we incorporate the first-principles force constants into AGF and demonstrate the 

importance of using accurate force constants.  Without any fitting to experimental data, 

the force constants from first-principles calculations demonstrated the ability to 

accurately reproduce the lattice thermal conductivity of bulk materials
1-4, 33

.  These force 

constants can also improve the quantitative prediction for interfacial phonon transport.  In 

this study, we employ the AGF method to study the interface roughness stemming from 

atomic mixing between Si and Ge interfaces. 

 

 

II. METHODOLOGY 

 

The detailed methodology of AGF has been presented elsewhere
25-30

.  In short, the 

system is partitioned into three regions: the left lead, the central region (also known as 

scattering region) and the right lead, as shown in Fig. 1.  The advantage of Green’s 

function lies in its ability to replace the infinite leads by finite leads with self-energies
24

.  

The self-energy   describes the effect of the lead α on the central block and is defined 

as 

                                                                            
   CC g

                                                              
(1) 

where α stands for left (L) or right (R), C stands for center;   's are the harmonic force 

constant matrices divided by corresponding atomic masses:   
means the onsite force 

constants of a block in lead α,  means the hopping matrices between two neighboring 

blocks within lead α and 
 is the complex conjugate of  ; g  is the surface Green’s 

function defined by: 

                                                               
12 ][    gIg                                      (2)                                                                                                   

The surface Green’s function corresponds to the uncoupled semi-infinite system and is 

solved iteratively using a fast algorithm
34

.  The coupled Green’s function for the central 

region is expressed as: 

                                                                 
12 ][  RLC

R IG 
                                                  

(3) 

where the superscript R  stands for retarded,   is phonon frequency, and C  
represents 

the onsite force constants of  the central region.   
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Fig. 1 The system is divided into three parts: left (L), center (C) and right (R). Left and 

right leads are semi-infinite crystal lattices. In the transverse direction, all the three 

regions have periodic boundary conditions imposed to represent the infinitely large 

lateral dimension. 

 

To tackle the infinitely large size of transverse direction, a Fourier transform is performed 

parallel to the interface to decouple the infinite degrees of freedom into independent 

transverse wavevectors, tk


, assuming ideal translational invariance. We can then treat 

them as independent one dimensional chains with different transverse wavectors.  As the 

phonon frequency and transverse momentum are conserved across the interface, the 

transmission function, ),( tk


 , as a function of these parameters is given as a trace over 

Green’s function of the center and coupling terms between the leads and the center: 

                                            
)],(),(),(),([),( t

A

tRt

R

tLt kGkkGkTrk


 
                          

(4) 

where ][ ARi    describes the rate at which phonons enter and exit the leads.  

Retarded Green’s function,
RG , and retarded self-energy, R , are the Hermitian conjugate 

of advanced Green’s function,
AG , and advanced self-energy, A , respectively.  The total 

transmission at a given frequency is simply the sum of the transmission function of 

different transverse wavevectors normalized by the total number of transverse k points: 


t

t

k

tk
kN





),(/1)(  . While the phonon frequency and transverse wavevector are 

conserved, mode conversion is allowed and the longitudinal wavevector can change. In 

other words, the phonons can elastically scatter into different directions at rough 

interfaces.  

The thermal conductance per unit area, , based on the total transmission function, )( , 

is calculated using Landauer’s formula
35
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where f is the Bose-Einstein distribution and s is the cross-sectional area of the 

simulation cell perpendicular to the direction of heat flow direction.  Note that this 

definition yields a finite thermal conductance in the limit of an identical material because 

the temperature drop, T , used to derive equation (5a) are between the reservoir 

temperatures,    and   , instead of the temperature drop across the interface.  In other 

words, equation (5a) is the formula corresponding to a two-probe setup where the 

thermometer probes the bulk phonons incident on the interface
13

.  If a thermometer 

probes the temperature drop right across the interface (this corresponds to a four-probe 

setup), equation (5a) needs to be modified
36, 37

.  Despite highly nonequilibrium 

distribution near the interface, we can define equivalent equilibrium temperatures,     

and    , as proposed by Chen
37

.  The equivalent equilibrium temperature corresponds to 

the final equilibrium temperature of these phonons if we assume they adiabatically 

approach equilibrium.  Then we could use Bose-Einstein distribution as a function of the 

equivalent equilibrium temperature to represent the local energy density. On the other 

hand, we can express the local energy density as a summation of the phonons emitted 

from both ends with the reservoir temperatures.  By equating the two approaches, we 

obtain the relation between the equivalent equilibrium temperature and the heat reservoir 

temperature as                       and                      .  Finally, 

we reach a modified expression for the thermal conductance as 

                                     )
)(

)(

)(

)(
(
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1
1

1
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21
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                                       (5b)

 

where 
1  and 2  are the "thermal conductance" of pure material 1 and pure material 2 

using equation (5a) respectively with )(  equaling the number of phonon bands at the 

frequency  . For a pure material, equation (5b) gives infinite thermal conductance as 

there is no temperature drop across the virtual interface. In the limit of low conductance 

( 21,   ), equation 5(a) and 5(b) reach the same value as the denominator 

approaches 1. In the following discussion (Sec. III), equation (5b) is applied.  

Transmittance can be related to transmission function as  

                                              
)(
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                                        (6) 

where )(12  is the transmittance from material 1 to material 2 while )(21  is the 

transmittance from material 2 to material 1.  Transmittance describes the fraction of the 

incident phonons of frequency ω that is transmitted.  Consequently, its value lies between 

zero and unity.  The transmission function, on the other hand, can exceed unity because it 

describes the number of modes transmitted at a specific frequency.  The maximum value 
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of the transmission function at a certain frequency would be the total number of phonon 

modes available at that frequency.  Although the transmission function from either side is 

identical, a requirement of detailed balance, the transmittance has directional dependence.  

In this study, we first construct an ideal Si/Ge interface as shown in Fig. 1 with Si on the 

left of the interface and Ge on the right of the interface, using the lattice constant of Si.  

Lattice constants for the SW potential and DFT potential for Si are 43.5a  Å and 

 5.3976a Å, respectively.  The transverse direction of all the three regions is set to be 

aa 33  , which has converged by comparing to the results of the aa 66  simulation size.  

Periodic boundary conditions are imposed in the transverse directions.  The longitudinal 

length of the central region is a2 , which equals the largest thickness of rough region 

investigated in this study.  For simplicity, we use the force constants obtained from Si 

throughout the system as those of Ge are very similar in magnitude.  The major factor 

affecting the phonons of Si and Ge are their very different masses.  The atomic masses 

for Si and Ge are 28.0855 and 72.63 respectively.  To obtain the force constants from the 

SW potential and DFT, LAMMPS
38

 and Quantum Espresso
39

 are used to record the force 

and displacement data, respectively.  For our DFT calculation, we use the local density 

approximation of Perdew and Zunger
40

 with a cutoff energy of 40 Ryd and       k-

points for a       supercell of 64 atoms.  By fitting the general expression of the 

Taylor expansion of the interatomic potential to the set of force-displacements obtained 

from different atomic configurations
41

, we extract the harmonic force constants that are 

input into our transmission calculation.  We take exactly the same parameters as Esfarjani 

et al.
1
 used where they obtained excellent agreement with experimental data for the 

phonon dispersion and thermal conductivity of Si.  This gives us confidence on the DFT 

force constants and corresponding phonon properties. The harmonic force constants that 

determine the phonon frequencies and eigenvectors are essential for the transmission and 

thermal conductance.  To calculate the total transmission, the number of transverse k 

points within the Brillouin zone is chosen to be 1010  to ensure the convergence.  A 

similar procedure has been followed for rough interfaces except for the system setup that 

obtains the force constants. For rough interfaces, the atoms in the interface region are 

assigned one of the two atomic masses according to some probability (uniform or 

Gaussian), constrained by the thickness of rough region, and then the effective force 

constants ϕ were obtained by dividing the Si force constants by the newly assigned 

masses.  Lattice mismatch between Si and Ge, i.e. strain effects, and anharmonicity are 

not included in this study.  As observed by the NEMD simulations
42

, anharmonic effects 

were not important for temperatures lower than 500 K.   

To first validate our methodology, we compare our calculated thermal conductance of an 

ideal Si/Ge interface using SW potential and equation (5a) with available data in the 

literature.  Our result yields               at 300 K, which is close to     

          from lattice dynamics calculation by Zhao and Freund
22

, and           
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          from NEMD calculation by Landry and McGaughey
42

.  We can then focus 

on the discussion on rough interfaces using equation (5b). 

 

III. RESULTS AND DISCUSSION 

 

A. Rough interface with random distribution 

 

To create random atomic mixing, we select certain number of layers (2, 4, 6, and 8) in the 

central region and randomly shuffle the atoms within these layers. Three independent 

configurations are constructed for each roughness thickness and calculations are 

conducted for each configuration. The average value is plotted for each thickness of the 

rough region. The total transmission function, transmittance and thermal conductance are 

plotted in Fig. 2. The total transmission function, transmittance and thermal conductance 

of ideal interface are plotted in Fig. 2 as a reference.  
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Fig. 2 Total transmission function, transmittance and thermal conductance as a function 

of phonon frequency for an ideal Si/Ge interface (solid black line) and for a random 

rough Si/Ge interface (colored dashed or dotted lines): (a) Total transmission based on 

SW force constants; (b) Transmittance from Si to Ge based on SW force constants; (c) 

Thermal conductance based on SW force constants; (d) Total transmission based on DFT 

force constants; (e) Transmittance from Si to Ge based on DFT force constants; (f) 

Thermal conductance based on DFT force constants. 

One counter-intuitive finding, arguably the most important highlight, from Fig. 2 is that 

the phonon transmission across a rough Si/Ge interface can be higher than the ideal Si/Ge 

interface for certain frequencies, contributing to a larger thermal conductance at certain 

roughness thicknesses.  In the low frequency limit, the long wave-length phonons do not 

sense the interface roughness and propagate through as if they are traveling across the 

ideal sharp interface.  Due to its short length scale, atomic roughness has negligible 

influence on the long-wavelength phonons.  In the high frequency limit, the transmission 

is zero because there are no available states on the Ge side.  The most interesting 

phenomena are observed for the phonons with mid-range frequencies, where the atomic 
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roughness could play a role in enhancing the transmission.  The roughness softens the 

abrupt change of acoustic impedance at the interface and facilitates phonon propagation. 

It can also allow phonons with large incidence angles, which would otherwise be 

internally reflected at the interface, to be transmitted. More specifically, this can be 

understood by investigating the phonon density of states (DoS) of the two materials 

where incident and outgoing phonons are contained, and the interfacial region where 

reflection and transmission happens.  As shown in Fig. 3, the phonon DoS of pure Si and 

Ge are quite different, while the Si/Ge mixture has intermediate DoS which serve to 

bridge the gap between Si and Ge. Therefore, phonons that originally cannot propagate 

across Si/Ge interface can now transmit via new elastic scattering channels created in the 

Si/Ge mixture.  Accordingly, the phonon transmission and transmittance are boosted in 

the 200 to 300 /cm frequency range where the overlap of the two DoS is enhanced.  This 

frequency range corresponds to the top of the TA branches close to the zone boundary, 

where the typical phonon wavelength is a few lattice constants at the most.  Although one 

configuration of a Si/Ge mixture is used in Fig. 3, it can represent the trend of general 

Si/Ge mixtures at the interface since the atomic ratio of all the configurations involved in 

our calculation is 1:1 with the only difference being atomic positions.  In fact, it has been 

well-known that interface roughness can increase transmittance of photons
43-46 

and 

electrons
47-50

.  For phonons, interface roughness leads to reduction in thermal 

conductivity in nanowires
51-53

 because of back scattering and in superlattices
54-56

 due to 

loss of coherence.  But for an individual interface, interface roughness is able to increase 

transmittance. This has not received much attention before.  
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Fig. 3. Phonon Density of States (DoS) of pure Si (Black solid line), pure Ge (red dashed 

line) and Si/Ge 1:1 mixture (green dotted line) using DFT force constants. 

 

For the 2-layer rough configuration, SW predicts a ~20% increase in the thermal 

conductance at 300K, while DFT predicts a ~30% increase, compared to perfect 

interfaces.  Empirical potentials can qualitatively capture the trend, but are unable to 

quantitatively predict the difference.  As the thickness of the rough region increases, the 

transmission does not keep increasing, which is consistent with earlier observations
9, 12

.  

There are two competing factors: 1) overlapping DoS which increases transmission; 2) 

diffuse scattering at the rough interface which reduces transmission. As observed in the 

SW case (Fig. 2(a)), the 2-layer rough configuration gives the highest transmission.  

Above a thickness of two layers, diffuse scattering becomes the more significant 

mechanism that affects thermal conductance. In the DFT case (Fig. 2(d)), however, the 4-

layer rough configuration gives the highest transmission around 120 cm
-1

 and 2-layer 

roughness gives highest transmission between 230 cm
-1

 and 300 cm
-1

, which leads to 

fairly close thermal conductance between 2-layer rough configuration and 4-layer rough 

configuration as shown in Fig. 2(f).  This finding cannot be represented by the calculation 

using SW prediction partly because their phonon bandwidths are different from DFT.    

Compared to the ideal interface, the thermal conductance is larger when the rough region 

is thinner than 6 layers using SW force constants and up to 8 layers using DFT force 

constants.  This discrepancy reiterates the necessity of adopting DFT force constants to 

provide precise guidance in practical applications.  In the following discussion, only DFT 

force constants results are presented.  As thickness increases even further, the thermal 

conductance decrease below that of the ideal interface.  This can be easily understood by 

considering the limiting case.  As the thickness of rough region increases to infinity, 

diffuse scattering becomes dominant and the thermal conductance should approach the 

alloy limit.  

 

B. Rough interface with Gaussian distribution 

 

To mimic atomic diffusion at an interface, we also create the atomic profile of one type to 

obey half Gaussian distribution as shown in the Fig 4(c) inset.  The phonon transmission, 

phonon transmittance and thermal conductance are plotted in Fig. 4.  Significant increase 

in phonon transmission is observed using DFT force constants.  At 300K, there is 32.6% 

increase.  For the same roughness thickness, the Gaussian distribution shows more 

enhanced transmission compared to the uniform roughness distribution.  
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Comparison with experimental data is difficult since there is no experimental data on a 

single Si/Ge interface.  On the other hand, several experiments had reported reduced 

thermal conductivity on Si/Ge superlattices 
54, 55

.  If we assume that the measured thermal 

conductivity is due to interfacial resistances only, as one would expect in the very thin 

limit when phonon transport is completely incoherent
57

 and yet ballistic through 

individual layers of the superlattice, the extrapolated thermal conductance is   

          
54

 (period = 3 nm) and               
55

 (period = 4.4 nm) at 300 K. 

Both the extrapolated values are close but about one order of magnitude larger than our 

calculated value of             for ideal interface and               for 

Gaussian rough interface based on DFT force constants. The higher than predicted value 

is actually consistent with recent experimental observation
58

 that long wavelength 

phonons maintain their coherence in thermal transport in superlattices, and hence lead to 

a higher conductance value than that of a single interface as we calculated. 

 

0 100 200 300 400 500
0

2

4

6

8

10

12

Frequency[cm-1]

T
ra

n
s
m

is
s
io

n
 F

u
n
c
ti
o
n

 

 

Ideal

6-layer Gaussian Rough

(a)



17 
 

 

 

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Frequency[cm-1]

T
ra

n
s
m

it
ta

n
c
e
 

S
i-

>
G

e

 

 

Ideal

6-layer Gaussian Rough

(b)



18 
 

Fig. 4 (a)Total transmission function, (b)transmittance, and (c) thermal conductance as a 

function of phonon frequency for an ideal Si/Ge interface (solid black line) and for a 

rough Si/Ge interface with a Gaussian distribution (dashed blue lines) based on DFT 

force constants. Inset of (c): The number of Si atom in each layer for an ideal interface 

(solid black) and for a Gaussian rough interface (dashed blue).  

 

 

Fig. 5 Thermal conductance ratio of a Gaussian rough interface to an ideal interface as a 

function of the mass ratio (lower x-axis) and the acoustic impedance ratio (upper x-axis) 

of the two materials using DFT force constants 

 

To explore the generality of the transmission enhancement between different materials, 

we keep the Gaussian rough configuration and vary the mass of the atoms on the Ge sites 

from 1.25 times that of Si to 10 times that of Si, corresponding to acoustic mismatch from 

1 to 3.16.  The thermal conductance ratio of a Gaussian interface over ideal interface is 

plotted in Fig. 5 as a function of the mass/acoustic impedance ratio of the two materials 

on both sides of the interface. Since the roughness is caused by the mass difference, when 

the mass ratio is 1, there is no atomic mixing and no roughness.  As the mass ratio 

increases, the phonon dispersions of the two materials begin to differ from each other and 

the roughness favors phonon propagation via graded acoustic impedances at the interface.  

The thermal conductance ratio reaches its maximum at 2.586, which happens to be the 
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mass ratio of Si to Ge.  As the mass ratio increases even further, the phonon dispersions 

of two materials fall further apart from each other and it becomes less effective to bridge 

the large gap through the effects of roughness.  Therefore, the thermal conductance ratio 

drops and flattens out with increasing mass ratio.  Nevertheless, the thermal conductance 

ratio is kept over unity up to mass ratio of 10 and will stay above unity in the infinite 

mass mismatch limit as it provides a smooth transition for intermediate frequency 

phonons to transmit across the interface.  Although there are variations in the extent to 

which roughness increases thermal conductance, the enhancement generally holds. 

 

IV. CONCLUSION 

 

In summary, we apply the atomistic Green's function method to calculate the phonon 

transmission across an ideal and rough Si/Ge interface.  The atomistic roughness can 

increase phonon transmission across two dissimilar materials if the roughness thickness 

and profile are properly controlled, contrary to the commonly held notion that rougheness 

reduces transmission.  This effect is more pronounced if the acoustic mismatch between 

the two materials is moderately large.  This finding elucidates new design considerations 

for surface engineering.  As our contribution to the AGF framework, we incorporate the 

first-principles force constants determined from DFT into the AGF method for phonon 

transport in infinitely large 3D structure.  The comparison between the results from SW 

force constants and those from DFT force constants demonstrates that DFT force 

constants are necessary in reliable predictions.  Since interface transmission is crucial for 

bridging the calculation of pure materials to nanocomposites, we can now integrate the 

interfacial transmission and the bulk mean free paths, both calculated from first-

principles DFT, to accurately model heat transport in complex nanostructured materials. 
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