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Abstract
While brain-machine interfaces (BMIs) have largely focused on performing single-targeted
movements, many natural tasks involve planning a complete sequence of such movements before
execution. For these tasks, a BMI that can concurrently decode the full planned sequence prior to
its execution may also consider the higher-level goal of the task to reformulate and perform it
more effectively. Here, we show that concurrent BMI decoding is possible. Using population-wide
modeling, we discover two distinct subpopulations of neurons in the rhesus monkey premotor
cortex that allow two planned targets of a sequential movement to be simultaneously held in
working memory without degradation. Such surprising stability occurred because each
subpopulation encoded either only currently held or only newly added target information
irrespective of the exact sequence. Based on these findings, we develop a BMI that concurrently
decodes a full motor sequence in advance of movement and then can accurately execute it as
desired.

An important motivation for the design of brain-machine interfaces (BMIs) to date has been
their potential ability to restore lost motor function in individuals with neurological injury or
disease (e.g., due to motor paralysis or stroke). In such cases, the envisioned role of the BMI
is to decode the intended movement from neural activity in the relevant areas of the brain,
and use this information to control an affected limb, prosthetic, or other device.

The design of such BMIs has received considerable attention in recent years1-18. Work to
date has principally focused on achieving the motor goal in tasks that involve single-targeted
movements, such as the task of moving a cursor on a display to an individual target location.
These BMIs can decode the continuous trajectory of one- to three-dimensional movement
(including a grasp in some studies)1-14, the intended target location15, 16, or both the target
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and trajectory jointly using approaches such as optimal feedback control17, 18. However, in
many natural tasks—such as playing a succession of notes on a piano—the goal is more
complex, and the motor plan for achieving it can be viewed as a complete sequence of such
simpler plan elements to be executed in order.

Our focus is on the design of BMIs that can achieve the goal of these sequential motor plans.
Planned sequential behavior is a fundamental motor process in which all targets of a
movement sequence are planned ahead of its initiation. Hence a BMI for performing such
behavior would allow a person to plan a full motor sequence ahead of execution. For
example, when picking up a cup and bringing it to one’s lips, a person normally formulates
the complete motor plan prior to its execution as opposed to planning and performing each
of its elements individually and separately. Therefore, the objective of such a BMI would be
to perform the sequential behavior by decoding all elements of the sequence concurrently
and in advance of movement – thus requiring the consideration of a concurrent architecture.
This BMI functionality is distinct from that in prior BMIs that decode and execute
individual single-targeted movements one by one, and hence have a sequential BMI
architecture1-18.

In addition to simultaneously decoding a motor sequence in advance, a concurrent
architecture could also allow the BMI to consider the overall motor goal of the task at a
higher-level. This is a result of the BMI having information about all the motor plan
elements at once and in advance of execution. Hence one prospective BMI capability would
be to consider all elements of the sequence concurrently, prior to action, in order to
determine ways to perform the task more effectively. For example, the BMI might determine
a way to accomplish the task more quickly, or more efficiently (to within any physical
constraints that might exist). Alternatively, based on additional sensor inputs, the BMI might
determine that the planned sequence of movements would result in an accident with an
obstacle, and thus modify the execution of the task to avoid such an accident.

The realization of BMIs that can perform and potentially execute sequential motor function
more effectively in this way will obviously require significant technological innovations.
But as a key initial step, it requires considering a concurrent BMI architecture in which the
elements of a planned motor task are decoded in parallel (i.e., at once), in contrast to the
serial process of a sequential BMI. Hence, the feasibility of such BMIs hinges on the degree
to which the elements of a motor plan sequence can, in fact, be decoded concurrently. This
is the starting point for our research.

Prior work has demonstrated that individual neurons in the premotor cortex of primates
display selective responses to planned single-targeted movements before their initiation, and
that such responses often remain sustained during working memory until movement
execution19-26. Such responses have been successfully exploited in the design of BMIs for
single-target tasks15, 16. In comparison, the neural encoding of tasks requiring a full
sequence of planned targeted movements to be formulated prior to execution is less well
understood, and the design of real-time BMIs that can concurrently decode and then execute
such sequential motor plans remains unexplored. Prior work has shown that an individual
neuron can display a response that is selective to one or more elements of a sequential motor
plan27-41 (see also Discussion). However, little is known regarding how information about
multiple elements of a sequential motor plan (e.g., the planned targets of a sequential
movement) is simultaneously distributed across the whole premotor population during
working memory, and whether these plan elements can be accurately decoded from the
neural population in a concurrent manner. More importantly, it is necessary to determine
whether adding information about the elements of the motor plan, in sequence, to working
memory affects the integrity of information about the plan elements that are already held,

Shanechi et al. Page 2

Nat Neurosci. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and how it affects their neural encoding. Finally, it is necessary to assess robustness—
whether a BMI limited to recording from relatively small numbers of neurons is able to
achieve sufficient and consistent decoding accuracy.

Here, we find that sequential motor plans can be decoded simultaneously, accurately,
robustly, and in advance of movement from the neural activity in the premotor cortex of
monkeys. Additionally our study reveals a surprisingly structured encoding mechanism that
is used by the premotor populations for these sequential plans and that, in turn, allows for
their accurate and concurrent decoding. Based on these findings, we develop and implement
a real-time BMI that can concurrently decode a dual sequence of motor targets and then
execute them as desired.

RESULTS
In the study, two adult male rhesus monkeys were trained to perform a task in which two
targets were presented, in sequence, on a computer display. Each of the targets could
randomly take on one of four possible spatial locations (“up”, “down”, “left”, or “right”).
Repeated locations were precluded, so there were a total of 12 possible combinations
(sequences) of two consecutive distinct target locations. After a blank-screen variable delay,
a “go” cue appeared directing the monkeys to sequentially move a cursor from the center of
the screen to each of the two remembered targets, in order (Dual-target task; Fig. 1a, b). We
define the working memory period as the 500 ms blank-screen interval following
presentation of the second target and before the earliest possible “go” cue. Therefore, the
task here was a working-memory task in which the monkeys were required to serially add to
working memory two randomly selected target locations in each trial and then
simultaneously retain them in working memory prior to execution.

Multiple-unit responses were recorded from the premotor cortex as the primates performed
this task. We recorded 281 well-isolated single neurons from the supplementary motor area
(SMA) and dorsal premotor cortex (PMd) over 11 sessions, for an average of 26 ± 6 cells
(mean ± s.d.) per recording session (note that some of these cells may not be distinct across
the different sessions). Inhomogeneous Poisson models were fitted to each neuron’s spiking
activity using an expectation-maximization algorithm42 (see Methods and Supplementary
Modeling). Using these models, we employed a maximum-likelihood decoder to quantify
the probabilities that groups of neurons could correctly identify the first and second targets
on a trial-by-trial basis during the working memory period (leave-one-out cross-validation;
see Methods). We used decoding accuracy as our measure of the amount of information
encoded by a population of neurons about each target. Specifically, for an individual (first or
second) target, we measured the percentage of trials in which the maximum-likelihood
decoder correctly predicted the respective target from that population’s activity. Likewise,
we measured the amount of information encoded about the full sequence as the percentage
of trials in which both targets were correctly decoded.

Accurate and concurrent encoding of the motor sequence
We find that neural population activity within the premotor cortex accurately encoded the
location of both targets during the working memory period. During this period, the
population correctly encoded the first and second targets on 85% and 82% of the trials in the
best session, respectively. When considering all 12 possible target combinations, the
population encoded both targets correctly on 72% of the trials in this session (Fig. 2a; 285
dual-target trials were performed in this session). Across all tested sessions, the population
correctly encoded the first and second targets on average on 76 ± 11% and 56 ± 17% of
trials, respectively, both of which were significantly above chance (one-sided Z-test, P <
10−15; Supplementary Fig. 1a). Also, the population encoded both targets correctly on
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average on 45 ± 12% of the trials across all sessions, which was also far higher than chance
at 1/12≈8% (one-sided Z-test, P < 10−15). These results were consistent across the two
monkeys (P < 10−15 for both; Supplementary Fig. 2).

Robustness of the encoding
Only a small number of cells were needed to decode the target sequence with high accuracy.
When performing the decoding analysis over all trials, which employed all 12 possible
target combinations, only 29% of the population (7.5 cells) was needed, on average, to
achieve higher than 90% of the population sequence accuracy (Fig. 2b; see Methods). When
performing the decoding analysis over subsets of all trials that employed only 4 or 8 target
combinations, population sequence accuracies in the best session were as high as 93% and
80%, respectively. In these cases, decoding from only 2 and 4 cells, respectively, was
sufficient to achieve higher than 90% of these sequence accuracies.

Real-time concurrent BMI for sequential movement execution
Motivated by the observation that both targets can be concurrently and accurately decoded
from the responses of relatively few neurons in the premotor cortex, we developed a real-
time BMI capable of predicting both targets simultaneously prior to monkey’s motor
response and then executing the targeted movements. In the associated experiments, we
recorded a mean of 20 ± 2 cells per session from the premotor cortex of the same monkeys.
Here Poisson models were first fitted to the neural population activity during the working
memory period prior to the “go” cue (see Methods and Supplementary Fig. 1b) as the
primates rehearsed a subset of target combinations that included either 4 or 8 possible
sequences over an average of 26 ± 2 training trials per sequence (Fig. 1b). We chose to use
either four or eight sequences in the BMI experiments to obtain sufficient training and real-
time trials per session.

Using the Poisson models, sequence decoding accuracies for the set of 4 and 8 sequences in
these training sessions (found using leave-one-out cross-validation) were 79 ± 2% and 80 ±
3% (mean ± s.e.m.; one-sided Z-test, P < 10−15), respectively. Following training, the
primates performed the same task as before, but with the cursor now being sequentially
positioned by the BMI on the targets decoded from the recorded neuronal activity during the
single preceding working memory period (Fig. 1c; see Methods). Here, BMI-generated
cursor movements were set to occur immediately following the presentation of the “go” cue
and the added delays were selected to match the reaction times that the monkeys normally
experienced when moving the cursor themselves following the “go” cue (obviously, cursor
movements could be generated without the added delays if desired).

Both monkeys performed a total of 459 trials on the four-sequence set, and one monkey
performed 110 trials on the eight-sequence set using the real-time BMI. Sequence accuracies
for the set of four and eight sequences were 72 ± 2% and 71 ± 4%, respectively, both of
which were significantly above chance (mean ± s.e.m., one-sided Z-test, P < 10−15). Both
training and real-time BMI accuracies were similar and significantly above chance across
the two monkeys (one-sided Z-test, P < 10−15 for both; For the four sequence sets, the first
monkey had a BMI accuracy of 69 ± 3% and a training session accuracy of 77 ± 2% and the
second monkey had a BMI accuracy of 75 ± 3% and a training session accuracy of 82 ±
2%). Sequence accuracies using the BMI were also close to the cross-validated sequence
accuracies during the training sessions when taking into account the primates’ natural error
rates during the standard task (Fig. 3). In fact the 95% confidence bounds for the two
accuracies were overlapping (72 ± 4% vs. 73 ± 3% and 71 ± 8% vs. 66 ± 6%, for the sets of
four and eight sequences, respectively; see Methods). These results established that two
planned elements, i.e., the two intended sequential targets of movement, could be
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simultaneously predicted in advance of movement and then executed by a real-time BMI
with high accuracy.

We also examined the time required by the concurrent decoder to decode the sequence. We
find that the sequence decoding accuracy for the set of four, eight, and twelve sequences
reached 90% of the maximum asymptotic accuracy possible, on average, after 488 ± 135 ms,
561 ± 119 ms, and 641 ± 121 ms from the initial presentation of the second target,
respectively (Fig. 4). When performing the motor sequence, the minimum total time it took
for the monkeys to both react to the two “go” cues and reach the two targets was on average
791 ± 93 ms (this is the sum of the two reaction times plus the two center-to-target
movement times; Fig. 4).

Population encoding reveals a novel partitioning mechanism
Observing that both target locations could be accurately and concurrently predicted from the
neural population responses, we further examined the spatial and temporal structure of their
encoding. In particular, we investigated how neurons within the premotor cortex were able
to add new information about the second target to working memory without compromising
the integrity of information about the first target that was already being held. To do so, we
used the decoding approach that measures the amount of information held about the identity
of each planned target in the sequence by considering all sequence combinations
collectively.

We find that most cells encoded significant information about only the first (currently held)
or only the second (newly added) target during the working memory period. Moreover, this
partitioning was present across all target locations/sequences (i.e., responses were not
sequence specific) and remained stable throughout recordings per day. Of the 281 neurons
recorded in all sessions, 46% had a target accuracy significantly higher than chance for at
least one of the two targets during the working memory period (one-sided Z-test, P < 0.01).
Of these, 68% encoded significant information about only the first currently held target
(Supplementary Fig. 3), and 23% encoded significant information about only the second
added target (one-sided Z-test; P < 0.01; Fig. 5). The percentage of cells that encoded
significant information about both targets was only 9% (one-sided Z-test; P < 0.01; note that
a Bonferroni correction for multiple comparisons was done for all comparisons;
Supplementary Fig. 4) and, even among these, most had target accuracies much closer to
one of the two subpopulations of cells that significantly encoded only one target (Fig. 6;
Supplementary Fig. 5). These results revealed a highly significant divergence in the amount
of information encoded by the two subpopulations of neurons about the two targets (random
permutation test, P < 10−15; see Supplementary Modeling; Supplementary Fig. 6).
Moreover, we examined the relation between the activity of each of the two subpopulations
to upcoming motor behavior and found that each subpopulation was only predictive of
whether the respective first or second upcoming movement would be performed correctly or
incorrectly (i.e., resulting in a behavioral error) by the primates following the “go” cue (one-
sided Z-test, P < 10−15).

These results demonstrate that during the working memory period, most neurons were not
selective to a specific sequence or simply to a spatial location. Rather, they were partitioned
into two disjoint subpopulation, one encoding only the identity of the currently held (first)
target and one encoding only the identity of the newly added (second) target within the
sequence, regardless of the specific sequence (see Supplementary Fig. 7 for comparison to
sequence specific selectivity found in prior work28-31, 41, 43).

The observed partitioning during working memory was not related to limb movement or
simple visual related responses. No visual cues were presented during the working memory
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period and any movement before the “go” cue terminated the trial. This was also suggested
by the partitioning mechanism itself since if the activity was due to targeted limb movement,
then all cells would only reflect the direction of this single target. Finally the
electromyography (EMG) activity during the working memory period was not predictive of
the first movement direction (one-sided Z-test, P = 0.14), but was predictive of it during the
first movement period after the “go” cue (one-sided Z-test, P = 0.01). In an additional set of
analyses, we also found that encoding of the second target was not conditioned on the
location of the first target, and vice versa (Supplementary Fig. 8).

Effect of adding information to working memory
In order to further examine how adding a new target to working memory affected the
integrity of the currently held target, we disambiguated the process of holding information in
working memory from that of adding information to it. The results were obtained from
sessions in which the monkeys performed the standard dual-target trials (as before), but also
performed single-target trials in randomly interleaved fashion (see Methods). Unlike dual-
target trials, on single-target trials only the first target was presented and the second target
presentation period was replaced with a blank-screen period of the same duration. The task
timing was otherwise unchanged compared to the dual-target task.

We find that adding information about the second target location to working memory did not
incur loss of information about the first target location. Of the cells that encoded significant
information about the first target during working memory in single-target trials (one-sided
Z-test, P < 0.01), most (74%) provided the same level of accuracy in decoding the first target
during working memory in dual-target trials, despite the addition of a second target (χ2 test,
P > 0.05). Moreover, for the whole population, there was also no significant difference in
the first target accuracy during the working memory period when comparing dual-target and
single-target trials across sessions (Wilcoxon’s signed-rank test, P = 0.69; Fig. 7). These
results demonstrate that the subpopulation encoding the first target and their responses
remained largely unchanged when the second target was added to working memory and,
therefore, the addition of information about the second target did not comprise the integrity
of information already held about the first target. It is important to emphasize here that the
task involved serially adding to working memory two randomly selected target locations in
each trial and then simultaneously holding them in working memory prior to execution.
Such a task is distinct from memory-guided tasks in which the same motor sequence is
repeatedly performed from memory after learning, or visually-guided tasks in which
movements are serially cued and executed one-by-one29-31, 41, 43.

In a control analysis, we also examined whether neuronal encoding of the first target was
affected by the number of targets presented per trial in a single session (i.e., one target
versus two sequentially presented targets) by having one monkey perform only single-target
trials. Comparing these single-target only sessions with sessions in which single-target trials
were interleaved with dual-target trials on the same day, we found no significant difference
between the population decoding accuracies of the first target on single-target trials between
the two session types (χ2 test; P > 0.15; Supplementary Fig. 9).

Stability of the neural encoding structure
While implicit in the preceding results, it should be emphasized that as the pair of presented
target locations varied over the hundreds of trials typical of a given day’s session, most
neurons remained dedicated to encoding only the first (currently held) or only the second
(added) target. For the two subpopulations of cells that encoded significant information
about the respective first and second targets alone, most (89%) provided substantially the
same level of accuracy in decoding their respective targets in the first and second halves of
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the recording session (χ2 test, P > 0.05; sessions included 263 ± 36 dual-target trials on
average). Also, the sequence decoding accuracy (across all 12 sequences) of the entire
population did not change over time between the first and second halves of the sessions
(Wilcoxon’s signed-rank test, P = 0.37). Therefore, the partitioned premotor subpopulations
appeared to be physiologically dedicated to encoding either the first or the second target
added to working memory. Inherently, the neural decoding in our BMI exploited this
stability of the two constituent subpopulations to achieve sustainable performance.

DISCUSSION
The purpose of the present study was to examine how multiple planned targets of sequential
movement are concurrently encoded as a population by premotor neurons during working
memory, and to determine whether the activity recorded simultaneously from multiple
single-neurons can be used to concurrently and accurately decode the complete motor plan
sequence in advance of movement and in real-time. Three methodological approaches were
used to investigate these questions. First, we simultaneously recorded the activity of
multiple cells across the whole premotor population. Second, we used an interleaved dual-
target/single-target task in order to dissociate the dynamic process of maintaining target-
related information in working memory from that of adding new information to it. Finally,
we employed a maximum-likelihood decoding approach that allowed us to (i) define an
accuracy measure for the amount of information that is concurrently encoded about planned
motor sequences and, (ii) examine the spatiotemporal distribution of information across the
whole population.

A neural partitioning mechanism
Our results reveal a novel functional structure within the premotor cortex that allowed for
accurate and concurrent decoding of two planned motor targets across multiple spatial
locations. We find that during working memory, premotor populations are largely
partitioned into two fundamentally disjoint subpopulations of cells – one dedicated to
encoding only the currently held (first) target and one dedicated to encoding only the newly
added (second) target, irrespective of the specific sequence. Moreover, while the two target
locations changed from trial to trial, the two encoding subpopulations did not. Notably, the
subpopulation dedicated to encoding the first target and their responses remained largely
unchanged when the second target was added to working memory, so that the process of
adding information did not compromise the integrity of existing information (across all
target locations). Also, only a small number of neurons were sufficient to accurately predict
the location of both targets, making the decoding of such information highly robust.

Prior work has shown that individual premotor neurons display selective responses to single-
targeted movements before their initiation19-26. It has also been shown that PMd neurons
can be selective to the location of multiple target choices for a single-targeted movement
before a final selection is made44, or can represent combined information about the target
and the body-part to be used for a single-targeted movement45-47. When performing a
planned sequential movement, prior studies have demonstrated that individual neurons
within areas such as the parietal, premotor and prefrontal cortex can display selective
responses to a sequential motor plan27-40, 43, 48. Some neurons (often a relatively small
fraction) display increased activity for a specific combination of movements (for example a
push followed by a pull of a manipulandum) during a preceding delay, suggesting that they
encode information about more than one motor plan element at a time28-31, 37, 41, 43. Other
cells have also been found to display selective responses during movement itself with
increased activity prior to performing a particular movement (e.g., a push) only when it
follows another specific movement (e.g., a pull) in sequence29, 31, 43, or prior to a movement
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only if it has a particular order in the sequence31, 43. What has remained unclear, however, is
how information about individual elements of such sequential plans is simultaneously
distributed across the whole population during working memory, and whether and how the
process of adding new information about an element to working memory affects the integrity
of information already held and its neural encoding.

While a major focus of this study was to investigate the encoding structure of premotor
populations during the working memory period, we find that, consistent with prior
studies29, 31, 43, neurons often altered the degree to which they encoded information about
the two targets across different time-points during the task. Some cells, for example,
encoded no information about the second target during the working memory period, but then
encoded significant information about the second target during the second movement itself
(Supplementary Fig. 5a). Such shifts in activity may reflect the dynamic role premotor
neurons play in processing, maintaining, and then executing motor plans in combination
with other motor cortical areas.

Another question arising from the study is how information encoded by premotor neurons is
related to the later execution of the sequential task. Here, we find that the subpopulation of
cells that predominantly encoded information about the first target was only predictive of
whether the primates would perform the first upcoming movement correctly or incorrectly,
and this was similarly true for the second subpopulation. This thus suggests that the
‘partitioning strategy’ revealed here was ultimately used to direct upcoming sequential
motor behavior. In terms of the small number of cells that encoded information about both
targets, it is interesting to speculate whether they may provide an important ‘bridge’
between distinct motor plan elements or a higher conceptual representation of specific motor
combinations not provided by the other subpopulations of neurons.

A concurrent BMI for planned sequential motor behavior
We exploited the simultaneous encoding and the neural partitioning mechanism observed in
these experiments to develop a novel BMI functionality for performance of planned
sequential motor behavior. This is a fundamental behavior in which all targets of a
movement sequence are planned ahead of its initiation, and is largely distinct from behaviors
involving the performance of independent single-targeted movements. The BMI
functionality takes advantage of the concurrent encoding of a sequential motor plan in the
premotor cortex, allowing it to determine all elements of the sequence simultaneously,
upfront, and in advance of movement.

In addition, because the full motor plan is simultaneously decoded upfront and in advance of
movement, the higher-level goal of the task can, in principle, also be analyzed before
execution, and the motor plan reformulated accordingly. This could allow the prospective
design of BMIs that can improve the performance of a sequential motor task, for example
perform the task more quickly, more flexibly, or more efficiently than originally conceived.
Such a BMI may, for example, alter the order in which the elements of the motor sequence
are executed depending on rapid or unpredictable changes in the environment (e.g., to avoid
unanticipated obstacles), or correct the original sequence based on the performance metrics
of the task (e.g., proactively change a sequence of letters based on spelling rules). As a
simple but illustrative example of such a prospective capability (in the context of our
experiments and using a relatively small number of recorded neurons), we demonstrate that
we could accurately decode the full sequence of two targets in a very short time period after
target presentation (Figs. 3, 4). Taken together, we demonstrate a concurrent BMI that
allows the performance of a sequential motor behavior in line with how we naturally plan
and execute it. Moreover, since information about all elements of the sequence is known
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ahead of execution, considering such concurrent decoding provides the future prospect of
designing BMIs that can perform such tasks more effectively.

ONLINE METHODS
Behavioral task

Two adult rhesus monkeys (Macaca Mulatta) were trained to perform a working memory
sequential delayed motor task. Monkeys were first sequentially presented with two distinct
target locations on a screen, which were randomly selected in each trial, and then had to
move a cursor to each in order by using a joystick (Dual-target task; Fig. 1a). After initial
presentation of a blank screen, two targets were sequentially presented each of which could
randomly take on one of four possible spatial locations: “up” (U), “down” (D), “right” (R) or
“left” (L). To ensure that the two target locations were distinct, the motor sequence was
chosen at random from a total of 12 possible sequences, i.e., all possible combinations of the
two target locations excluding the ones with repeated locations. Targets were displayed for
500 ms each and were interleaved by a 300 ms interval during which a blank screen was
shown. Following the end of second target presentation, there was an additional blank screen
variable delay of 550– 850 ms (the working memory period) following which the first “go”
cue signal appeared. After this, the monkeys were required to move a cursor from the center
of the screen to the first remembered target. After reaching the target, they were required to
return the joystick to the center and then wait for a second “go” cue to appear after an
additional 500 ms delay interval. Once the second “go” cue appeared, they were allowed to
move the cursor from the center of the screen to the second remembered target. The
monkeys received a juice reward if they correctly moved to the two instructed targets.

Dual-target vs. single-target task
To examine the effect of adding information about a new target to working memory, it was
necessary to disambiguate the process of holding information in working memory from that
of adding information to it. To do this, primates performed randomly interleaved dual-target
and single-target trials in a subset of sessions. On dual-target trials, described above, the
primates were sequentially presented with two targets and then a blank screen delay. The
time delay from the end of the first target presentation to the first “go” cue was therefore
1350–1650 ms. On single-target trials, in comparison, the primates were presented by only
the first target, and had to keep this single target in working memory for the same total
1350–1650 ms time duration as in dual-target trials. However, here, they were not presented
by a second target and were only shown a blank screen until the “go” cue.

Neurophysiologic recordings
All procedures were performed under IACUC-approved guidelines and were approved by
the Massachusetts General Hospital institutional review board. Prior to recordings, multiple
(up to six) planar silicone multi-electrode arrays (NeuroNexus Technologies Inc., MI) were
surgically implanted in each monkey. Each of the implanted arrays contained four shanks
horizontally spaced 400 μm apart. Every shank was 4 mm long and, in turn, contained 8
electrode contacts each vertically spaced 200 μm apart for a total of 32 contacts per
electrode array. Hence the electrode contacts themselves spanned the bottom 1.6 mm of the
shank. We advanced the electrodes approximately 2mm in depth. The electrode arrays were
inserted into the cortex manually using microscope magnification. A craniotomy was placed
over the premotor cortex under stereotactic guidance (David Kopf Instruments, CA). The
multi-electrode arrays were separately implanted into the dorsal premotor (PMd) and the
supplementary motor (SMA) areas (Supplementary Fig. 10). The electrode lead of each
array was secured to the skull and attached to female connectors with the aid of titanium
miniscrews and dental acrylic. Confirmation of electrode positions was done in both
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monkeys by direct visual inspection of the sulci and gyral pattern through the craniotomy.
Additional post-mortem confirmation of electrode positions was made in one monkey (the
second monkey is still performing experiments). Recordings began two weeks following
surgical recovery. A Plexon multichannel acquisition processor was used to amplify and
band-pass filter the neuronal signals (150 Hz – 8 kHz; 1 pole low-cut and 3 pole high-cut
with 1000x gain; Plexon Inc., TX).

Shielded cabling carried the signals from the electrode array to a set of six 16-channel
amplifiers. Signals were then digitized at 40 kHz and processed to extract action potentials
in real time by the Plexon workstation. Classification of the action potential waveforms was
performed using template matching and principle component analysis based on waveform
parameters. Only single, well-isolated units with identifiable waveform shapes and adequate
refractory periods (less than 1% of spikes within a 1 millisecond interval) were used for the
online experiments and offline analysis. No multiunit activity was used.

Model construction
For the analysis of standard recording sessions, we model the activity of each neuron under
any given sequence as an inhomogeneous Poisson process whose likelihood function is
given by49, 50

(1)

where Δ is the time increment taken to be small enough to contain at most one spike,  is
the binary spike event of the c ’th neuron in the time interval [(k −1)Δ, kΔ], λc (k|Si) is its
instantaneous firing rate in that interval, i S is the i ’th sequence, and K is the total number
of bins in a duration KΔ . We take Δ = 5 ms as the bin width of the spikes. By building the
neuronal models under each sequence separately in the dual-target task we avoid making
any a priori assumptions about whether the cells encode individual targets or combined
sequences. For each sequence and neuron, we need to estimate the firing rate λc (k|Si) using
the neuronal data observed. To do so, we use a state-space approach using the expectation-
maximization (EM) algorithm42, 51, 52 (see Supplementary Modeling). After fitting the
models, we validated them using the χ2 goodness-of-fit test on the data42 and confirmed that
they fitted the data well (P > 0.7 for all cells in all sessions).

Maximum-likelihood decoder
Once models are fitted, a maximum-likelihood decoder is used to decode the intended
sequence based on the neuronal activity in any period of interest. A maximum-likelihood
decoder is the optimal decoder in the sense of maximizing accuracy, i.e., the percentage of
trials in which the combined sequence is decoded correctly, when the sequences are equally
likely to be presented as is the case in our experiments. The decoder finds the likelihood of
observing the population neuronal data under each sequence and selects the sequence with
the highest likelihood as its prediction. Using the likelihood model in (1) and assuming that
neurons are conditionally independent given the sequence, the population likelihood under
any sequence is given by
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where K is the total number of bins in any period of interest during the trial, C is the total
number of neurons, and λc (k|Si) for k = 1,…,K and c = 1,…,C is the estimate of the firing
rate. The predicted sequence, , is thus given by

To find the sequence decoding accuracy of a single cell, the maximum-likelihood decoder
uses only that cell’s spiking activity to decode the sequence (Fig. 5 and Supplementary Fig.
5). The decoder also outputs the posterior probability of each sequence, which is the
probability that it is the correct one after the neuronal observations, i.e.,

To dissociate the decoding accuracy of the first and second targets, denoted by T1 and T2,
the decoder also outputs their predictions based on the neuronal activity. To do so, the

decoder finds their posterior probabilities, i.e.,  and , for all
possible spatial locations, l1 and l2, by summing over the posterior probability of the
sequences that have these spatial locations as their first or second targets. The decoder then
picks the spatial location with the highest first target (second target) posterior, or
equivalently likelihood in our design, as its first (second) target prediction.

Comparison of the first target decoding accuracies in the single-target and dual-target
tasks

To find the first target decoding accuracy of the single-target task we modeled the activity of
each neuron under any given single target location as an inhomogeneous Poisson process,
which was fitted using the EM procedure. We then performed the maximum-likelihood
decoding analysis using leave-one-out cross-validation on the single-target trials. To make
the comparison, for the dual-target task we constructed two models one for the first target
and one for the second target, and then performed the decoding analysis for each target
separately.

Determining the number of cells required to achieve the population accuracy
We found the number of cells required to achieve a given percentage of the population
accuracy by first sorting them in each session based on their single neuron sequence
accuracies and then performing the decoding analysis in that session for different number of
cells in descending order.

BMI model training
In each BMI recording session, the monkeys first performed the dual-target task using a
joystick (training session) during which models were constructed for the neuronal activity
during an 800 ms time window prior to presentation of the “go” cue. This window length
was chosen because in the standard dual-target sessions, it was sufficient to achieve better
than 95% of the (maximum) sequence accuracy possible when using the entire window
starting from second target presentation until the “go” cue (Supplementary Fig. 1b). We
modeled the activity of each neuron in this window under any sequence as a homogeneous
Poisson process (point process with constant rate), instead of an inhomogeneous one, to
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make the model construction faster for the BMI experiments. Hence using (1) the likelihood
function for the spiking activity of neuron c under any of the sequences, Si, was modeled
as49, 50

where λc(Si) denotes the fitted firing rate of that neuron in the 800 ms window for sequence
Si and K = 800/ Δ is the total number of bins in this period with bin width Δ = 5ms. The
firing rates were fitted using maximum likelihood parameter estimation. Here, the task
involved either four (both monkeys) or eight (monkey P) sequences. The four-sequence task
consisted of either “U-R”, “U-L”, “D-R”, “D-L” or “L-U”, “L-D”, “R-U”, “R-D”. The
eight-sequence task consisted of the union of the sequences in the two four-sequence tasks.

The training sessions were followed by the real-time BMI sessions in which these trained
Poisson models were used to predict the sequence using the maximum-likelihood decoder.

Concurrent online predictions and movement execution in the BMI
After the training sessions, the monkeys performed the same task as before. However, this
time, cursor position was controlled by target predictions made by the maximum-likelihood
decoder rather than the joystick. During the real-time BMI experiments, individual spike
timings of all cells within the population were continuously recorded at a 40 kHz resolution
by the Plexon multi-channel acquisition processor. Each recorded spike was then transmitted
via an Ethernet port to a separate computer running a Matlab routine in real time. For each
real-time trial, the Matlab routine then used the maximum-likelihood decoder to calculate
the likelihood of the population spiking activity during the 800 ms time window prior to the

“go” cue, i.e.,  under each sequence, Si. This likelihood was calculated based on the
trained Poisson models and assuming neurons were independent conditioned on the
sequence. Hence the population likelihood for each sequence was found as

The maximum likelihood decoder then outputted the sequence under which the population
likelihood was maximized as the decoded sequence.

Based on the sequence decoded, a second Matlab routine running on the same computer then
activated an analog output channel on the NI DAQ I/O interface to go from 0V to either +5V
or −5V for 500 ms. The voltage line was, in turn, connected to a second NI DAQ I/O input
channel located on a third computer running the behavioral program. Depending on the
voltage received, the cursor displayed in the middle of the screen moved in a straight line to
one of the four possible target locations (e.g., +5V in I/O channel 1 corresponded to a cursor
location within the top target). This process then repeated for the second decoded target after
another artificially introduced time delay. Here, the time delays in the two generated
movements were selected to be similar to those that the monkeys normally experienced
when performing the standard task using a joystick. However, the NI DAQ could in
principle generate the two movements in as little as a few milliseconds apart.
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Behavior versus prediction errors
Since the primates did not perform the dual-target working-memory task with 100%
behavioral accuracy, some of the BMI errors were due to behavioral errors (i.e., the monkey
not remembering the correct sequence during working memory) as opposed to decoder
errors. Hence a more relevant accuracy number for the performance of the BMI could be the
sequence accuracy obtained during the training session using leave-one-out cross-validation.
This is because in the cross-validation analysis we calculate the accuracy by comparing the
decoded sequence with the sequence the monkeys actually select after the “go” cue. For the
BMI sessions, however, we compare the decoded sequence to the instructed sequence to find
the accuracy. We hence tested whether after taking into account the primates’ natural error
rates, the accuracy during training sessions would be close to the BMI accuracy. Denoting
the behavioral accuracy of the monkeys by Pb and the decoder accuracy found from the
training session by Pt we can calculate what the accuracy of selecting the instructed
sequence would be after taking into account the behavioral errors. Denoting the resulting
accuracy by Pf we have that

In other words when the monkey and the decoder are both correct, the instructed sequence is
selected. However, if the monkey is incorrect and the decoder is also incorrect in decoding
the monkey’s intended sequence, the probability of the decoder selecting the correct
instructed sequence by random chance is 1 / (S −1) . We can find the mean and s.e.m. of Pf
from those of Pb and Pt assuming Pb and Pt are independent53 and then compare it with the
BMI accuracy.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Task design and experimental setup. (a) Schematic illustration of a standard dual-target task
over a single trial. Task periods and their timings are displayed over a single trial from left
to right. The right end of the panel in which the second movement is made is truncated to
conserve space. Decoding analyses are performed during the 500 ms blank-screen interval
following presentation of the second target. (b) Experimental setup for the standard training
sessions. (c) Experimental setup for the BMI sessions.
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Figure 2.
Population decoding accuracy for a selected session. (a) Population decoding accuracy over
time for the first target (red curve), second target (blue curve), and the full sequence (black
curve). Each point on the curves indicates the decoding accuracy for the population over the
preceding 500 ms window. Time at zero is aligned to the start of first target presentation.
The red and blue vertical bars indicate the times during which the first and second targets
were presented, respectively. The first and second dashed black lines indicate the mean
times at which the first and second “go” cues were given, respectively. The arrow indicates
the time point of decoding for the preceding working memory period (i.e., 0–500 ms from
the end of the second target presentation). The dotted lines indicate the 99% chance upper
confidence bounds for the first target, second target, and sequence (out of 12 possibilities),
with the same respective color scheme used above (see also Supplementary Modeling). (b)
Number of cells sufficient to reach decoding accuracy asymptote during the working
memory period for the same session. The first target (red curve), second target (blue curve),
and sequence (black curve) accuracies are displayed as a function of the cumulative number
of cells, in descending order of single-cell sequence accuracy. The number of cells needed to
reach over 90% of the population accuracy is indicated by the vertical dashed line.
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Figure 3.
Decoding accuracies on BMI trials. The gray bars indicate the monkeys’ average behavioral
accuracy, maximum-likelihood cross-validation accuracy on the training data, and real-time
BMI accuracy, with their corresponding s.e.m.. The black bars indicate chance level
accuracies. Performances using four sequences are displayed on the left, and using eight
sequences are displayed on the right.
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Figure 4.
Decoding and behavioral performance times. (a) Histogram of the total times it took the
monkeys to both behaviorally react to the two “go” cues and moreover reach the two targets
(excluding any task delays and the time required to move between targets). (b , c and d)
Histograms of the times required for the decoding accuracy to reach 90% asymptotic
accuracy, from the time of second target presentation, for 12, 8, and 4 sequences,
respectively. The red line indicates the mean times for each histogram.
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Figure 5.
Example of a second (added) target selective neuron. The subfigure at the upper left corner
shows the first and second target accuracies of the cell as a function of time into the trial.
The vertical bars/lines and their timings follow the same convention as Fig. 2. In all other
subfigures, each top panel corresponds to a different sequence of movements with each row
illustrating the spiking activity during a single trial and the black dots indicating the spike
times. Each bottom panel indicates the corresponding mean firing rate estimates using the
expectation-maximization procedure (black curve) and the corresponding peristimulus time
histogram (PSTH) (magenta curve). The arrow indicates the working memory period. The
subfigures in the same row correspond to sequences with the same first target location. The
subfigures in the same column correspond to sequences with the same second target
location. Note that repeated targets locations were not used in the sequences and hence there
are 3 subfigures per row/column (see also Supplementary Figs. 3, 4).
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Figure 6.
Distribution of first and second target information across the population. Scatter plot of the
first and second target accuracies for the 129 cells that encoded significant information
about at least one target during the working memory period (across 12 sequences).
Statistical significance of the target accuracies was tested here at the 0.01 level (see also
Supplementary Fig. 6). Red points indicate cells that encoded significant information about
only the first target, blue points indicate those that encoded significant information about
only the second target, and black points indicate those that encoded significant information
about both targets. The inset indicates the proportion of cells that encoded significant
information about only the first, only the second or both targets during the working memory
period with the same coloring scheme, above.
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Figure 7.
The effect of adding information to working memory. In an interleaved session, population
decoding accuracy for the first target on dual-target trials is shown in red whereas
population decoding accuracy for the first target on single-target trials is shown in magenta.
Each point on the curves indicates the decoding accuracy over the preceding 500 ms
window. Dotted lines indicate the 95% confidence bounds for accuracy of each curve (rather
than chance level). The vertical red bar indicates the time during which the first target was
presented. The vertical blue bar indicates the time during which the second target was or
was not shown depending on the trial type. The arrow indicates the time point corresponding
to the decoding accuracy of the preceding working memory period (same convention as in
Fig. 2).
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