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Abstract— Federated satellite systems (FSS) are a new class
of space-based systems which emphasize a distributed archi-
tecture. New information exchanging functions among FSS
members enable data transportation, storage, and processing as
on-orbit services. As a system-of-systems, however there are sig-
nificant technical and social barriers to designing a FSS. To mit-
igate these challenges, this paper develops a multi-stakeholder
interactive simulation for use in future design activities. An FSS
simulation interface is defined using the High Level Architecture
to include orbital and surface assets and associated transmitters,
receivers, and signals for communication. Sample simulators
(federates) using World Wind and Orekit open source libraries
are applied in a prototype simulation (federation). The applica-
tion case studies a conceptual FSS using the International Space
Station (ISS) as a service platform to serve Earth-observing
customers in sun-synchronous orbits (SSO). Results identify
emergent effects between FSS members including favorable ISS
power conditions and potential service bottlenecks to serving
SSO customers.
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1. INTRODUCTION
Federated satellite systems (FSS) are a new class of space-
based systems emphasizing a distributed architecture [1].
They contrast with most existing space-based systems which
are monolithic (single spacecraft) or distributed but centrally-
managed (constellations). Resource exchanging behaviors
during operations enable FSS to leverage latent capabilities
and comparative advantages of member satellites. Initially,
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information and currency exchange establish a business case
for FSS participation and future extensions may include
wireless power exchange. Information exchange provides
new services such as inter-satellite links to transport, store, or
process information, potentially reducing on-board commu-
nications, memory, or processing requirements for customers.

Architectural complexity is dominant in FSS and the coupling
of social and technical dimensions creates a challenge for
planning activities. On the technical dimension, constituent
systems operate independently as complex systems interact-
ing with other complex systems. On the social dimension,
independent stakeholders control constituent systems and
decisions are driven by local, potentially-conflicting objec-
tives. Both dimensions are interlinked where focusing on
only one dimension can limit validity for the other. For
example, economic models may adequately capture profit-
seeking behavior but miss implications of design feasibility.
Similarly, a purely technical model may establish a feasible
system design but fail to attain market viability by misjudging
differing stakeholder values or requirements. This paper
presents preliminary work to define a prototype simulator for
interactive stakeholder evaluation of FSS concepts to gain
insights early in the architecture and design process. Future
extensions may apply these tools in collaborative design ses-
sions where independent stakeholders coordinate objectives
and interactions for a future FSS.

This paper is organized as follows. First, a functional classifi-
cation of FSS identifies new functions compared to traditional
satellite systems and the dual challenges of FSS integration
and collaboration are described in the context of sources of
complexity and system-of-systems engineering. Next, a FSS
simulation architecture is defined using the High Level Archi-
tecture (HLA). Two sample federates are presented using the
simulation architecture to control space- and ground-based
assets and provide 3D visualization. Finally, a prototype
application uses the International Space Station (ISS) as a
host platform for FSS supplier hardware for customers in sun-
synchronous orbit. The paper concludes with a summary of
results and future work.

FSS Functional Classification

A functional classification helps to understand the architec-
tural implications of FSS. Table 1 uses a 5 × 5 framework
from [2] which includes five functions (transforming, trans-
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Table 1. Functional Classification of Satellite Systems

Matter Energy Information Currency Organisms
Transforming Propulsion unit Photovoltaic panel, Electronics,

Flywheel, Gyroscope
Processor, Sensor — —

Transporting — † Radio antenna, Laser diode — —
Storing Propellant tank Battery, Flywheel, Gyroscope Memory — —

Exchanging — † ? ? —
Controlling Command and Command and control Command and control — —

control
? Immediate new functions for FSS members † Future new functions for FSS members

porting, storing, exchanging2, and controlling) operating on
five types of operands (matter, energy, information, currency,
and organisms). This framework is believed to be complete
for classifying engineering systems.

Existing satellite functions operate on propellant (matter),
electrical energy, angular kinetic energy, and information.
Tanks store propellant which is transformed for orbital ma-
neuvers. Batteries store electrical energy which is trans-
formed by photovoltaic panels (generation) and on board
electronics (consumption). Flywheels and gyroscopes store
angular kinetic energy which is transformed for attitude con-
trol. Information is stored in memory, transformed using
sensors (generation) and processors, and transported with
communications equipment such as radio antennas and laser
diodes. Control of matter, energy, and information functions
is exerted by command and control components. While cus-
tomers of some satellites exchange currency as payment for
services rendered, this can be considered a derived function
rather than the satellite independently generating revenue.

Resource exchanging functions are the primary addition of
FSS. An initial FSS concept adds information exchange
which allows data links to transport information across sys-
tem boundaries. Once exchanged, the FSS members can
transform, transport, or store the data using existing compo-
nents. As a second example, future innovations may allow
wireless exchange of energy across system boundaries using
novel transport technologies. Once received, the energy
can be transformed or stored for future use. In both cases,
there is strong incentive for market conditions to establish
competitive prices for currency exchange in compensation
for the exchanged resources or services rendered by a FSS
member.

FSS Integration and Collaboration

The distributed architecture of FSS allowing exchanging
functions contributes additional design complexity, here un-
derstood as a “measure of uncertainty in achieving the spec-
ified [functional requirements]” [3]. This uncertainty arises
from technical and social dimensions of integration and col-
laboration respectively.

Three types of technical complexity arise in FSS. First, each
FSS member is a complex system in itself. Second, resource
exchanging functions introduce interactions between each
pair of FSS members. Third, emergent effects of compo-
sitions of pairwise interactions impact the FSS as a whole.
Similar issues arise in satellite constellations, however FSS
differ in their structure as a system-of-systems (SoS) which

2The exchanging function is distinguished from transporting as a transfer of
resources across system boundaries defined by independent control.

introduces additional social complexity.

A SoS exhibits independent operational and managerial con-
trol over its components [4]. A satellite constellation, for
example, is not considered a SoS because a central authority
controls the member spacecraft. Constituent systems in a SoS
may join or leave depending on localized value judgments
and there is no centralized authority to force actions or design
decisions.

Viewing FSS as a SoS contributes two key challenges. First,
each FSS member is controlled by an independent entity,
likely introducing barriers to collaboration. During the
planning phase, systems may be evaluated with different,
potentially competing objectives and institutional policies or
communication delays may prevent closely-coupled design.
During the operations phase, competition in both supplier and
customer markets creates competitive relationships between
members and effective and affordable (from a power and
processing perspective) cryptography will be crucial to serve
customers with strict privacy requirements. Second, estab-
lished design processes such as systems engineering cannot
be directly applied to FSS as there is no central authority.
Design activities at the SoS level are limited to establishing
interfaces between constituent systems and creating mecha-
nisms to achieve desired collaborative behaviors [4].

To better understand barriers to collaboration and progress
towards interface definition and mechanism design, our ap-
proach draws from interactive simulation (gaming) methods
applied in other domains to combine explicit technical mod-
els with implicit social models in participating human “play-
ers.” This approach was first developed as military wargam-
ing whereby real stakeholders wage a simulated conflict in
an interactive, experiential simulator. Applied to FSS, stake-
holders are partially-competitive and partially-cooperative,
seeking to establish a feasible and viable federation for
mutual benefit. A simulator communicates technical model
implications and the simulation execution supports collabora-
tion and sharing of mental models between participants. The
objective of this paper is to establish an initial FSS simulator
architecture suitable for multi-stakeholder interactive simula-
tion and implement a prototype in sufficient detail to allow
others to contribute and interoperate FSS member simulators.

2. FSS SIMULATION ARCHITECTURE
The simulation architecture should parallel the FSS structure
to identify and address integration and collaboration chal-
lenges early in the FSS conceptualization period. In other
words, whereas the FSS is a SoS of member spacecraft,
the FSS simulation should be a SoS of member spacecraft
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simulations. Therefore, the simulation architecture must sup-
port distributed control of member simulators while enabling
information exchanges in a time-synchronized simulation.

The High Level Architecture (HLA) [5] is a software archi-
tecture for simulation interoperability meeting these objec-
tives. It was originally created to support military simula-
tions (federation executions) with heterogeneous simulators
(federates) developed by different equipment suppliers and
controlled by multiple service branches. It includes support
for synchronization algorithms required to maintain consis-
tent state across the distributed applications and can operate
in multiple time advancing modes including real-time, scaled
time, and as-fast-as-possible. See [6] for more information
on the history, details, and applications of the HLA.

As the HLA is a general-purpose simulation architecture suit-
able for any application, it must be tailored to the FSS case.
This section specifies the federation interfaces to orbital and
surface elements and radio transmitters, receivers, and signals
as the primary entities in a FSS simulation. These concepts,
illustrated in Figure 1, are formalized in a federation object
model (FOM) to specify data structures and a federation
agreement to define the expected behavior of each component
simulation.

Element Interface

The main entities in a FSS simulation include space-based
satellites and ground-based stations. They are represented
as distinct objects classes inheriting common properties from
an abstract FSSelement superclass. The “FSS” prefix used
here distinguishes federation objects and data types from
those within federates which implement a localized version
adhering to the federation interface. By controlling the
federation interface, the federate-specific versions can intro-
duce additional attributes, modify the internal state storage
mechanism, compose objects in new ways, and use any
implementation language and platform supported by the HLA
runtime infrastructure.

The FSSelement abstract class includes properties required
of any element. These include a text-based element name,
position and velocity vectors in Cartesian coordinates, and the
reference frame to allow conversion to and from other frames.
For example, surface elements usually use an Earth-fixed
reference frame while space-based elements use an Earth
inertial frame to simplify orbital propagation computations.
Predefined values include EME2000 (J2000) as an Earth-
fixed frame, ITRF2008 (with and without tidal effects) as an
Earth inertial frame conforming to IERS 2000 conventions,
and TEME as an alternative Earth inertial frame for propaga-
tion using the SGP4 model.

The FSSorbitalElement class adds Keplerian orbital elements
to the base FSSelement class. While redundant with the
Cartesian position and velocity in the associated reference
frame, the additional attributes ease debugging and simplify
interpretation of orbital motion. The selected orbital elements
include eccentricity, semimajor axis, inclination, longitude of
ascending node, argument of periapsis, and mean anomaly.

The FSSsurfaceElement class adds geodetic position prop-
erties to the base FSSelement class. While also redundant
with the inherited position, the additional attributes ease
debugging and the altitude value provides some robustness to
differing globe and/or terrain models. The selected geodetic
properties include latitude, longitude, and altitude.

Table 2. Extended Transmitter and Receiver Attributes

Encoded in type Encoded in state
Transmitter frequency (GHz) power (W)

diameter (m)
antenna gain (dBic)
passive loss (dB)

Receiver diameter (m) line loss (dB)
antenna gain (dBic) system noise (dBk)

received power (dBm)

Communication Interface

The simulation architecture includes a logical communication
model to support the information exchanging functions in a
FSS. It is based on the Radio Communication Protocol (RCP)
in IEEE Std. 1278 Distributed Interactive Simulation (DIS)
[7]. While DIS is a predecessor to HLA, no application-
specific models are carried over as the HLA, thus we adopt
portions of the RCP to this particular HLA application.

The logical radio model has three interdependent compo-
nents. A transmitter is associated with a controlling element
and is responsible for providing transmission state attributes.
The RCP recommends attributes including transmitter type,
operational state, source of radio input, antenna location
and pattern parameters, center frequency and bandwidth,
average power, modulation type and specific parameters,
and cryptographic equipment. As an initial definition, the
FSSradioTransmitter only includes text-based type and state
attributes for static and dynamic properties, respectively.

A receiver is associated with a controlling element and a
linked transmitter. The RCP recommends attributes including
receiver type, operational state, and average power received.
As an initial definition, the FSSradioReceiver also only in-
cludes text-based type and state attributes.

A signal is the RCP abstraction of a transaction between
one transmitter and all receivers capable of receiving its
transmission. Once issued, a signal is initially visible to all
receivers. Each receiver then determines if the signal contents
can physically be received based on associated properties
of the source transmitter and sending element and applies
any required changes such as noise or error. The RCP
recommends signal parameters such as encoding scheme,
sampling rate, and bit-level data. As an initial definition, the
FSSradioSignal only specifies the complete signal contents
encoded as a text-based string. Unlike other objects which are
persistent during a simulation execution, the FSSradioSignal
is transient and is represented as an HLA interaction class
rather than an object class.

While the transmitter and receiver models only include type
and state attributes, additional data can be encoded in the
text-based representation. For example, the type string
may specify static attributes using a JSON format such as
{frequency:27.5, diameter:0.5} where frequency is
measured in gigahertz and diameter in meters. Similarly,
the state string may specify dynamic attributes using a JSON
format such as {power:1.0} where power is measured in
watts and a value of 0.0 is equivalent to a disabled state. Table
2 lists several such attributes which may be considered in each
application to support calculation of link budgets.

Finally, it should be emphasized that the RCP model only

3



<<abstract>>
FSSelement

name : HLAunicodeString
frame : FSSreferenceFrame
position : FSScartesianVector
velocity : FSScartesianVector

FSSsurfaceElement
latitude : HLAfloat64BE
longitude : HLAfloat64BE
altitude : HLAfloat64BE

FSSorbitalElement
eccentricity : HLAfloat64BE
semimajorAxis : HLAfloat64BE
inclination : HLAfloat64BE
longitudeOfAscendingNode : HLAfloat64BE
argumentOfPeriapsis : HLAfloat64BE
meanAnomaly : HLAfloat64BE

FSSradioTransmitter
name : HLAunicodeString
type : HLAunicodeString
state : HLAunicodeString

controller

FSSradioReceiver
name : HLAunicodeString
type : HLAunicodeString
state : HLAunicodeString

transmitter

controller

FSSradioSignal
content: HLAunicodeString

source

sender

Figure 1 – Object class diagram of the FSS simulation architecture

captures point-to-point messages between transmitters and
receivers. Higher level constructs of network protocols such
as packet routing would require multiple signals in succession
between source-destination pairs. Such an application would
also require additional data to be encoded in the contents of
the signal, such as that used in terrestrial TCP/IP networks.
Implementation of advanced network routing would also
require small simulation time steps to capture the behavior
on such short time-scales.

Federation Object Model

The element and communication interfaces are composed in
a federation object model (FOM) with the following points:

1. FSSelement, FSSorbitalElement, and FSSsurfaceElement
are defined as object classes.
(a) The position and velocity attributes are encoded as fixed

array data types with three floating point components.
(b) The reference frame attribute is encoded as an enumer-

ated data type.
2. FSSradioTransmitter is defined as an object class with a
name-based link to the associated controlling element.
3. FSSradioReceiver is an object class with a name-based
string for the associated controlling element and transmitter.
4. FSSradioSignal is an interaction class with name-based
string for the associated sending element and source trans-
mitter.
5. All text string values use the HLA-default Unicode data
type (HLAunicodeString).
6. All floating point values use the HLA-default 64-bit big-
endian floating point data type (HLAfloat64BE).
7. Simulation time uses the HLA-default 64-bit floating point
data type (HLAfloat64Time).3

Detailed FOM tables are provided in Appendix A.

Federation Agreement

While not formally a component of the HLA, the federation
agreement follows best practices in distributed simulation in
[8] to define behaviors expected of each federate. The FSS
federation requires member federates to be responsible for:

1. Maintaining orbital state using propagators,

3Floating point time is selected for compatibility with the open source
Portico HLA library which does not implement all standard features.

Initializing

Advancing

Terminating

Continue? Yes

No

Figure 2 – Activity diagram of a FSS simulation federate

2. Maintaining surface state using globe and terrain models,
3. Determining whether signals are received based on the
state of the sending element and source transmitter, and
4. Transforming state between compatible reference frames.

The federates must also interact with the HLA services in a
particular procedure to participate in the federation. Figure
2 outlines three activities during a federate life-cycle. The
initializing activity sets up a federation execution, the advanc-
ing activity sends and receives data between federates, and
the terminating activity destroys a federation execution. Each
activity is discussed in terms of the specific HLA services
used below.

The initializing activity detailed in Figure 3 configures the
connection to a federation execution. Orange boxes are RTI-
ambassador functions, gray boxes are FederateAmbassador
callbacks, and the yellow box interacts with local objects.
Federates must connect to the HLA RTI and create and/or join
an existing federation execution. Additional options set time
constrained behavior (the federate cannot advance beyond
simulation time) and time regulating behavior (i.e. no other
time constrained federates can advance beyond a specified
lookahead period). Initialization also sets publish/subscribe
parameters for any desired object and interaction classes. If
the federation time is earlier than the federate’s initial time, it
advances to the initial time. Finally, the federation initializes
all local objects to the initial time.
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Initializing

Advancing

Publish Object
Class Attributes

Subscribe Object
Class Attributes

Publish
Interaction Class

Subscribe
Interaction Class

Create Federation
Execution

Join Federation
Execution

Enable Async.
Delivery

Enable Time
Constrained

Enable Time
Regulation

Time <

No

Yes
Time Constrained

Enabled

Time Regulation
Enabled

Connect

Initial?

Initialize Objects

Figure 3 – Activity diagram of the initializing process

The advancing activity detailed in Figure 4 sends and receives
updates with the federation while advancing time. First, any
local objects are advanced to the next time in preparation to
send updates. Next, methods to register new objects, update
or delete existing objects, or send interactions take place
before a time advance is requested. Once the time advance is
requested, callbacks notify of new remote objects (which may
require update requests), updates to or removal of existing
objects, requests to provide updates of local objects, and new
interactions to be received. A time advance is granted once
all necessary notifications are received.

Finally, the terminating activity in Figure 5 resets configura-
tions set during initialization. It disables time constrained and
regulating behaviors, resigns from the federation execution
and requests its destruction if no other federates are still
joined. Lastly, the federate disconnects from the HLA RTI.

In addition to the above activities, federates should also agree
on an approximate initial time and expected time step dura-
tions in simulated and wallclock time. A common initial time
allows federates to join a federation in any order and avoid
waiting for a prior-joining federate with an earlier initial time
to advance to a later time. Setting an initial time may also
have implications for gathering ephemeris data for existing
satellites. Each time step involves two measurements of
time: the duration of simulated time and wallclock (real) time
elapsed. As all federates are time constrained and regulating,
the federation progresses at the rate of the slowest federate.
Alignment of simulated time step and expected wallclock
duration (e.g. 100 wallclock milliseconds for 1 minute of
simulated time) ensures similar performance of each federate.

Advancing

Time Advance
Request

Time Advance
Grant

Register Object
Instance

Update Attribute
Values

Send InteractionDelete Object
Instance

Discover Object
Instance

Reflect Attribute
Values

Receive Interaction

Provide Attribute
Value Update

Remove Object
Instance

Advance Objects

Request Attribute
Value Update

Update Attribute
Values

Figure 4 – Activity diagram of the advancing process

Terminating

Disable Time
Constrained

Disable Time
Regulation

Resign Federation
Execution

Destroy Federation
Execution

Disconnect

Figure 5 – Activity diagram of the terminating process

3. SAMPLE FSS FEDERATES
This section presents two sample federates implemented in
the Java language to demonstrate use of the FSS simulation
architecture. The first federate focuses on data visualization
and does not control any federation objects. The second
federate controls both surface and orbital elements and their
associated radio components for application to various FSS
use cases.

Both federates use a common structure illustrated in Figure
6 to interact with and simplify HLA interfaces. Here, the
HLA interface defines orange boxes, the FSS federation
interface defines gray boxes, and yellow boxes are specific
to each federate. In particular, the DefaultAmbassador class
implements the (HLA) FederateAmbassador interface to send
and receive messages from the (HLA) RTIambassador as
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<<interface>>
SimObject

<<interface>>
RTIambassador

<<interface>>
FederateAmbassador

<<abstract>>
FSSobject

<<interface>>
UpdateListener

DefaultAmbassador

<<abstract>>
DefaultFederate

<<interface>>
Element

<<interface>>
OrbitalElement

<<abstract>>
FSSelement

FSSorbitalElement CustomSatellite

<<interface>>
SimInteraction

<<abstract>>
FSSinteraction

<<interface>>
Signal

FSSsignalCustomSignal

Figure 6 – Simplified object class diagram for a common implementation of both example federates

the logical link to the federation. The DefaultAmbassador
composes object classes such as FSSobject, FSSelement,
and FSSorbitalElement which represent remotely-controlled
objects. These classes use HLA-compatible data types for
member variables to simplify updates with the RTIambas-
sador. A similar relationship exists for the FSSinteraction
and FSSsignal objects which also use HLA-compatible data
types.

Locally-controlled objects within each federate are specified
in separate object classes (e.g. CustomSignal and Custom-
Satellite) conforming to a common interface specification
(e.g. Signal and OrbitalElement) with the remote object
classes based on the simulation architecture. The top-level
class DefaultFederate aggregates all of the simulation objects
to coordinate updates with the DefaultAmbassador. Finally,
the DefaultAmbassador sends updates using an observer pat-
tern [12] implemented as an UpdateListener interface

Visualization Federate

The visualization federate uses the NASA World Wind open
source project [9] to create a 3D display of the Earth and
its immediate vicinity. Although not originally designed
for space-based visualization, the World Wind software de-
velopment kit (SDK) adds rendered objects and modifies
the view to simulate an inertial frame. In addition to the
graphical output, World Wind also incorporates globe and
terrain models which can be used to more accurately display
surface elements.

The visualization federate adds a few components to a simple
example World Wind application. First, a black surface
circle with 50% opacity represents the terminator. Its center
is located at the “solar midnight” geodetic position with
radius approximated as a quarter the Earth’s circumference
(the chord length of a 90-degree surface arc). Second, an
animation timer rotates the background stars with respect to
Earth’s rotation. Optionally, the animation can also move the
view camera to approximate display from an inertial frame.
Finally, the visualization federate registers and displays el-
ements. Spherical ellipsoids mark orbital vehicles with an
exaggerated size scale and surface circles optionally highlight
regions within a specified field-of-view angle. Cylindrical
markers illustrate ground stations.

Figure 7 illustrates a screen capture of the visualization feder-
ate showing one orbital element and one surface element. The
interface is controlled with mouse drags and key strokes, al-

Figure 7 – Screen capture of the World Wind
visualization federate

lowing full rotation, zoom, pan, and tilt functions. Additional
user interface options (not shown) allow for color and shape
customization and federation controls including initializing,
advancing, and terminating processes.

The World Wind SDK has a few limitations for space vi-
sualization. First, intended for surface locations, markers
are only visible if the corresponding geodetic point is also
visible, causing spacecraft at high altitudes to disappear when
orbiting on the far side. Second, there is an inherent max-
imum render distance which limits display of interplanetary
spacecraft and other celestial bodies. Other projects such as
JSatTrak [10] successfully modified the World Wind source
code to add a sun object with custom OpenGL shading rather
than relying on a surface circle. Future work may also add a
2D ground track visualization to support a complete view of
all spacecraft operations.

The Orekit space flight dynamics library [11] manages ref-
erence frames and provides celestial body positions in the
visualization federate. The orientation of default World Wind
model (WW) is related to the Earth-centric fixed (ECF)
ITRF2008 frame by a transformation with z-x-z Euler angles
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<<interface>>
UpdateListener

<<abstract>>
DefaultFederate

VisualizationFederate

DefaultAmbassador

<<abstract>>
FSSobject

FSSsurfaceElement FSSorbitalElement

VisualizationGUI

CelestialBody

Frame

WorldWindowGLCanvas

StarsLayer

RenderableLayer

Ellipsoid

SurfaceCircle

MarkerLayer

BasicMarker

Figure 8 – Simplified object class diagram of the visualization federate

α = π, β = π/2, γ = π/2 such that

RECF→WW = Z(α)X(β)Z(γ) =

[
0 1 0
0 0 1
1 0 0

]
. (1)

All transformation between Earth-centric fixed, World Wind
model, and geodetic positions are managed by Orekit classes.

Figure 8 illustrates a simplified object class diagram of the vi-
sualization federate. World Wind provides blue boxes, Orekit
provides red boxes, the FSS federation interface defines gray
boxes, and the remaining yellow boxes are federate-specific
implementations. The VisualizationGUI class aggregates
the VisualizationFederate and receives updates via the Up-
dateListener interface. The GUI composes Orekit classes
CelestialBody (for sun position tracking) and Frame (for
reference frame transformation) and a WorldWindowGLCan-
vas. Customized layers include a StarsLayer which rotates in
the Earth fixed frame, a RenderableLayer to display orbital
elements and the terminator, and a MarkerLayer to display
surface elements.

FSS Member Federate

The FSS member federate controls space- and surface-based
systems participating in the FSS. It uses the Orekit open
source space flight dynamics library [11] to calculate geomet-
ric properties and perform orbital propagation. Systems com-
pose orbital or surface elements and associated transmitters
and receivers as communication subsystems. A more detailed
subsystem model illustrated in Figure 9 could add computer
and power subsystems for information exchange, transport,
processing, and storage as FSS services.

Figure 10 illustrates an object class diagram of the FSS
member federate. Orekit provides red boxes, the FSS federa-
tion interface specifies gray boxes, and the remaining yellow
boxes are federate-specific implementations. Here, the Mem-
berFederate class aggregates all local objects to coordinate
updates with the DefaultAmbassador. The OrekitOrbitalEle-
ment class relies on several Orekit classes. A Propagator
updates its spatial state based on one of several propagation
model implementations while an EclipseDetector determines
partial or total eclipse. Orekit position transformations cal-
culate slant range to other elements in compatible reference
frames. The OrekitSurfaceElement class also relies on the
Orekit TopocentricFrame class to calculate azimuth and ele-
vation angles and slant range to other elements in compatible
frames.

Power
Retrieving

Receiving
Information

Sending
Information

Sending and
Information

Receiving

and Storing

Power
Generating

Exit Eclipse

RX On

TX On

TX Off

RX Off

TX On

TX Off

RX On

RX Off

Enter Eclipse

Start Job

End Job

Processing
Information

Communications Subsystem

Power Subsystem

Computer Subsystem
Start Job

End Job

Storing and
Information

Retrieving

In
fo

rm
at

io
n

Po
w

er

Note: all states include power consuming

Note: all states include power consuming

Figure 9 – State diagram of computer, power, and
communications subsystems

Owing to differences in reception between satellites and
ground stations, both OrbitalReceiver and SurfaceReceiver
extend a base DefaultReceiver class but have different de-
tailed implementations. These subclasses can access the slant
range and elevation/azimuth calculations in the associated
element implementations to override methods to determine if
signals can be received from a source element or transmitter.
For example, whereas satellite reception is governed by slant
range and direct line-of-sight, station reception is governed
by slant range and elevation angle.

System classes compose multiple related objects in a single
entity. The SurfaceSystem class inherits from OrekitSur-
faceElement and composes a SurfaceReceiver and Default-
Transmitter. Similarly, a SpaceSystem class inherits from
OrekitOrbitalElement and composes a OrbitalReceiver and
DefaultTransmitter. Of particular interest to space systems,
this class adds methods to calculate power consumption and
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Figure 10 – Partial object class diagram of the FSS member federate
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generation based on radio receiver/transmitter state and other
subsystem models.

Finally, the FSS member federate also provides opportunities
for stakeholder interaction, limited in the current implemen-
tation to enabling/disabling the transmitter and receiver state
and sending signals. During a simulation, graphical user
interface components (not shown in Figure 10) receive user
input and communicate actions to the DefaultAmbassador by
way of the MemberFederate. Future extensions may allow
additional on-orbit operations such as orbital maneuvers and
more detail to control information storage and processing.

4. PROTOTYPE FSS SIMULATION
A prototype FSS application applies the simulation architec-
ture and sample federate designs to model a notional case
study described in [13]. This concept uses the International
Space Station (ISS) as a potential supplier of resources in-
cluding data storage, on-board processing, and data relay.
In particular, large power generation infrastructure aboard
ISS—eight solar arrays totaling 84 kilowatts [14]—gives it
a sizable advantage over other supplier platforms for power-
intensive activities such as processing and transmission.

The objective of the prototype is to validate the applicability
of the simulation architecture presented in this paper, demon-
strate applications of the sample federates, and provide initial
assessment of the ISS-supplier FSS use case based on data
link accessibility. It includes four federates: one supplier and
two consumers based on the FSS member federate and one
optional visualization federate. While this prototype empha-
sizes the simulation architecture rather than its components,
future extensions could add detail. In particular, analysis of
link budgets and data rates requires many of the extended
transmitter and receiver attributes described in Table 2.

FSS Supplier Federate

The FSS supplier federate models hardware hosted on the ISS
capable of exchanging data with customers. FSS services
derived from data exchange include information transporta-
tion, storage, and processing. The supplier federate defines a
SpaceSystem object instance to model on-orbit assets and two
SurfaceSystem object instances to model notional ground-
based assets under the assumption that official ISS data
communication via the Tracking and Data Relay Satellite
System (TDRSS) may be limited for third parties such as a
FSS supplier.

The SpaceSystem object instance is initialized with an ISS
ephemeris from [15] shown in Table 3. It uses an Orekit
TLEPropagator propagator to properly leverage the SGP4
propagation model and TEME reference frame for two-line
elements.4 The power subsystem model indicates generation
while in sunlight and no generation while in partial or total
eclipse. The communication subsystem model measures
connectivity with other elements via direct line-of-sight and
can receive signals if the slant range to the source transmitter
is less than 5123 kilometers, as suggested in [13]. This
simplification assumes all transmitters are identical such that
signals can be received up to the maximum slant range.

The SurfaceSystem object instances are located at geodetic

4Two-line elements are defined specifically for SGP4 and do not exactly co-
incide with Keplerian elements. Fortunately, Orekit calculates approximate
Keplerian elements as a product of propagation.

coordinates 35.551929◦ N, 139.647119◦ E, nominal altitude
and 55.698679◦ N, 37.571994◦ E, nominal altitude. While
neither correspond to active ground stations, they serve as
notional locations of third party data links. Both commu-
nication subsystem models also consider 5123 kilometers as
a maximum slant range and also require at least a 5 degree
elevation angle to receive signals.

FSS Consumer Federates

Satellites in a low-Earth or sun-synchronous orbit (SSO) are
identified by [13] as favorable for FSS applications due to
small slant ranges compared to those in MEO or GEO, a driv-
ing requirement for transmitter sizing. High data rate Earth
observation satellites in a SSO are targeted as initial FSS cus-
tomers. This type of satellite has a high data requirement and
relatively long revisit time to specific ground stations and the
information transportation, storage, and processing services
provided by a FSS would be desirable to accommodate new
missions. As a placeholder for future systems, two existing
satellites are used to approximate orbital characteristics.

Both customers define a SpaceSystem to model the consumer
hardware. The first customer uses orbital parameters based on
COSMO-SkyMed 1, an Earth observation satellite operated
by the Italian Space Agency. The second customer uses
orbital parameters based on TerraSAR-X, an Earth obser-
vation satellite operated by the German Aerospace Center
(DLR) and EADS Astrium. Two-line elements are shown in
Table 3 from [15]. Both customers propagate state using the
Orekit TLEPropagator and, as they operate in a SSO along
the terminator, never enter eclipse. Similar to the supplier
federate, the communication subsystem includes a maximum
slant range of 5123 kilometers and a direct line-of-sight to
receive signals.

Visualization Federate

The visualization federate is unchanged for application to this
case study. Figure 11 shows a sample screen capture during
simulation execution with the supplier assets including hard-
ware on the ISS and two ground stations and two customers.

Sample Analysis

Analysis of the FSS simulation focuses on the access periods
between elements controlled by independent federates. In
lieu of a detailed operational analysis of the space-based
communication network, only possible access periods are
considered based on maximum slant range and line-of-sight
conditions. No detailed power, computer, or communications
subsystem operation is considered aside from identifying
periods of possible power generation for the ISS. The analysis
is automated such that there are no user inputs during the
execution and no actual signals are issued. The simulation
period is initialized at the latest member epoch (i.e. October
14 2013, 4:51 UTC) and runs for 14 days. All access periods
are accurate within the simulation time step of one minute.
Figure 12 illustrates the main outputs from the simulation
including:

1. Possible access periods between the supplier spacecraft
(ISS) and customers
2. Power generation periods for the supplier spacecraft (ISS)
3. Possible access periods between the supplier ground sta-
tions and spacecraft (ISS)

Table 4 characterizes access periods between the supplier
spacecraft and satellites as bi-modal over the simulation time
frame. Mode 1 is the short timescale behavior and Mode 2
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Figure 11 – Screen capture of the visualization federate during the simulation execution at October 20 2013, 12:06 UTC

Oct 15 Oct 16 Oct 17 Oct 18 Oct 19 Oct 20 Oct 21

Station−Supplier

Supplier Generating

Supplier−Customer A

Supplier−Customer B

Oct 22 Oct 23 Oct 24 Oct 25 Oct 26 Oct 27 Oct 28

Station−Supplier

Supplier Generating

Supplier−Customer A

Supplier−Customer B

Figure 12 – Access periods greater than one minute in duration in a 14-day period from October 14–28, 2013
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Table 3. Prototype FSS Member Two-line Elements

Spacecraft Supplier Customer A Customer B
TLE Entity ISS (Zarya) COSMO-SkyMed 1 TerraSAR-X

Epoch (UTC) 2013-10-11 13:08:54.131 2013-10-14 04:51:44.205 2013-10-13 23:15:50.534
Eccentricity (-) .00011176 .00000313 .00001779
Inclination (◦) 51.6510 97.8752 97.4461

Perigee Argument (◦) 19.0996 87.3024 93.9122
R.A. Ascending Node (◦) 251.7423 110.5203 292.8164

Mean Anomaly (◦) 89.0709 272.8359 266.2311

is the long timescale behavior. For example, communication
is possible between the supplier spacecraft and Customer A
during a span of 12–20 hours, followed by a span of 18–24
hours without access. The mean access window duration is
10.7 minutes with a mean of 32.2 minutes between windows.

These results indicate interactions between a LEO supplier
and a SSO customer provide regular communication with
maximum wait times of about 30 minutes for about 50%
of the orbital period. It also indicates that a single ground
station is not likely feasible for a FSS supplier to down-link
data, limited to infrequent (4-6 per day) and short-duration
(around 5 minutes) access periods. The combination of two
spatially-separated ground stations provides superior down-
link capabilities with only a few hours each day without
regular access. Indeed, direct communication from ground
station to a customer produces similar system-level perfor-
mance without relaying to the supplier spacecraft.

To further investigate the architectural implications of FSS,
Figure 13 inspects a 36-hour period between October 20-21,
2013 in detail. Two key features are apparent. First, access
periods between the supplier spacecraft and the customers
generally coincides with periods of power generation. This
positive emergent behavior may allow higher supplier-side
power consumption during communication periods. Its ef-
fect emerges from pairwise interactions between customers,
which never enter eclipse to maintain power generation, and
the supplier which has must have a close proximity for
communication. Second, the access periods for the two SSO
customers tend to coincide with each other. This negative
emergent behavior may cause service bottlenecks. Its effect
emerges from the composition of interactions between cus-
tomers sharing similar orbits and the supplier.

The potential for a supply-constrained service introduces
interesting operational dynamics in a FSS. If based on a
business case for information transportation, storage, and pro-
cessing, market-based auction mechanisms may be possible
to optimize services where FSS customers bid on upcoming
opportunities for service. Future analysis may introduce
agent-based modeling methods to evaluate such mechanisms
in more detail. Implementation within the FSS simula-
tion architecture would introduce new interactions between
federates to allow FSS suppliers to identify future service
opportunities and solicit bids from customers, each having
independent control over the bidding method.

While only an initial prototype demonstration of a FSS simu-
lation, this application case highlights the impacts of the FSS
architecture. Namely, even though the two customers do not
have direct contact with each other, interactions arise through
shared use of a supplier service. Initial results indicate a
supplier hosted on the ISS could provide regular access for
half of an orbital period for a SSO customer. Finally, a FSS

supplier may require multiple ground stations to reduce max-
imum wait times for space-to-ground signal communication.

5. CONCLUSION
This paper presents initial work towards a multi-stakeholder
interactive simulation to study FSS as a SoS. The distributed
simulation architecture, based on the HLA standard, defines
orbital and surface elements and radio transmitters, receivers,
and signals to perform information exchanging functions.
Sample federate implementations in the Java language use
the existing World Wind and Orekit open source libraries to
model space and surface assets and provide 3D visualization.
Finally, a prototype application validates the simulation ar-
chitecture in a conceptual FSS using the ISS as a service
provider. Analysis results find emergent effects between FSS
members based on common features of customer orbits.

While a similar FSS analysis could have been conducted in
a much simpler centralized simulation, the federated simu-
lation approach mirrors the structure of FSS to provide dis-
tributed authority over the simulation components. This has
several implications. First, independent control of federate
simulators allows decoupled development to a well-defined
interface (namely, that presented in this paper). Second, the
information specified in the federation interface is the only
connection between a federate and the federation. This allows
all implementation details of a spacecraft model to be kept
private for security, proprietary, or other reasons. For exam-
ple, the procedure to bid for auction-based service should be
kept private from potentially competing customers. Finally,
any level of detail can be added to federate models such as
power and communications subsystems, or even integration
of real or prototype hardware.

Future work may extend this paper in several ways. First,
federate simulators for both supplier and customers should
include more detailed models of power, computer, and com-
munications subsystems. For example, a power budget must
consider the FSS transmitter and receiver switching states
and the communications subsystem should accurately model
transmission power and other parameters including the im-
pact of encryption on performance. In the limit, prototype
hardware may be integrated in a real-time simulation loop, as
is done for other HLA applications. Second, additional FSS
functionality should be added to the base signal interaction. A
message protocol may be established to request and provide
FSS services such as computation or data relay, such as in
an auction-based mechanism. Finally, future work seeks to
apply a version of this prototype in interactive sessions with
real or role play stakeholders. These design experiments
would study the social dimension of collaborative processes
for planning FSS with competing local objectives among
participants.
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Table 4. Bi-modal Access Period Characterization

Mode 1 Times (min) Mode 2 Times (hr)
FSS Pair Mean Access Mean Revisit Approx. Access Approx. Revisit

Supplier–Customer A 10.7 32.2 12–20 18–24
Supplier–Customer B 10.6 33.9 24–36 36–48

Station 1–Supplier 5.3 88.4 6–8 14–16
Station 2–Supplier 6.5 88.5 6–8 14–16

8:00 12:00 16:00 20:00 0:00 4:00 8:00 12:00

Station−Supplier

Supplier Generating

Supplier−Customer A

Supplier−Customer B

Oct 20−21

Figure 13 – Access periods greater than 1 minute in duration in a 36-hour period between October 20–21, 2013

APPENDICES

A. FEDERATION OBJECT MODEL
The following tables provide the federation object model
(FOM) required for the HLA. Table 5 defines the object
classes including Element (and its subclasses SurfaceElement
and OrbitalElement), RadioTransmitter, and RadioReceiver.
Table 6 defines the RadioSignal interaction class. Table 7
defines the ReferenceFrame enumerated data type and Table 8
defines the CartesianVector data type. Finally, Table 9 defines
the time-related data types.

B. EXTENDING THE FSS FEDERATES
The sample FSS federates were developed to be easily-
extended to future applications. They are implemented in
Java, a platform-independent, mature language with exten-
sive third party libraries. Java is also supported by most HLA
implementations including the open source Portico RTI [16]
used by the authors. This appendix briefly discusses how to
extend the DefaultFederate to use custom simulation objects
for the FSS member federate as illustrated in Figure 10.

SimObject is the primary interface to all simulation objects
and requires four functions to be completed. The initialize
function instructs a simulation object to start at a particular
time. The tick function instructs a simulation object to
compute, but not yet save, its new state after a specified
duration. The tock function saves the new state. The tick-
tock pattern allows simulation objects to update without order
dependencies. Finally, the getNestedObjects function returns
a collection of any contained objects to be included.

The example in Box 1 describes a custom TrivialClock object
which only maintains a local time state. The initialize, tick,
and tock functions update its state variable as the simulation
progresses. Though only a simple example, additional state
variables, methods, or nested objects can be added for new
functionality. Implementing a custom FSS element requires
extending the SurfaceElement or OrbitalElement interfaces
which have additional functions to be completed (i.e. those

in Figure 10 such as getName, getPosition, getLatitude, and
getEccentricity). This ensures the federate can communicate
required information to remote HLA-compatible objects (e.g.
FSSsurfaceElement and FSSorbitalElement).

Box 1. Trivial Clock Simulation Object

import java.util.Collection;
import java.util.HashSet;

import edu.mit.fss.SimObject;

class TrivialClock implements SimObject {
// state var. to store current time (ms)
long currentTime;

// temp. var. to store next time (ms)
long nextTime;

@Override
public Collection<SimObject>

getNestedObjects() {
// there are no nested objects
return new HashSet<SimObject>();

}

@Override
public initialize(long time) {

// initialize state at time (ms)
currentTime = time;

}

@Override
public tick(long duration) {

// compute state after duration (ms)
nextTime = currentTime + duration;

}

@Override
public tock() {

// save new state
currentTime = nextTime;

}
}
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Table 5. FOM Object Class Table

Object Attribute Data Type Update Type Order P/S Semantics
FSSelement Name HLAunicodeString Receive Static PS Unique element name.

Frame FSSreferenceFrame Timestamp Conditional PS Reference frame for coordinates.
Position FSScartesianVector Timestamp Conditional PS Position in meters.
Velocity FSScartesianVector Timestamp Conditional PS Velocity in meters per second.

FSSelement. Latitude HLAfloat64BE Timestamp Conditional PS Latitude in degrees North.
FSSsurfaceElement Longitude HLAfloat64BE Timestamp Conditional PS Longitude in degrees East.

Altitude HLAfloat64BE Timestamp Conditional PS Altitude in meters above sea level.
FSSelement. Eccentricity HLAfloat64BE Timestamp Conditional PS Orbital eccentricity.
FSSorbitalElement SemimajorAxis HLAfloat64BE Timestamp Conditional PS Orbital semimajor axis in meters.

Inclination HLAfloat64BE Timestamp Conditional PS Orbital inclination in degrees.
LongOfAscendNode HLAfloat64BE Timestamp Conditional PS Longitude of ascending node in degrees.
ArgumentOfPeriapsis HLAfloat64BE Timestamp Conditional PS Argument of periapsis in degrees.
MeanAnomaly HLAfloat64BE Timestamp Conditional PS Orbital mean anomaly in degrees.

FSSradioTransmitter Name HLAunicodeString Receive Static PS Unique transmitter name.
ElementName HLAunicodeString Timestamp Conditional PS Name of controlling element.
Type HLAunicodeString Receive Static PS Type of transmitter.
State HLAunicodeString Timestamp Conditional PS State of transmitter.

FSSradioReceiver Name HLAunicodeString Receive Static PS Unique receiver name.
ElementName HLAunicodeString Timestamp Conditional PS Name of controlling element.
TransmitterName HLAunicodeString Timestamp Conditional PS Name of associated receiver.
Type HLAunicodeString Receive Static PS Type of receiver.
State HLAunicodeString Timestamp Conditional PS State of receiver.

Table 6. FOM Interaction Class Table

Object Parameter Data Type Order Semantics
FSSradioSignal TransmitterName HLAunicodeString Timestamp Name of source transmitter.

ElementName HLAunicodeString Timestamp Name of sending element.
Content HLAunicodeString Timestamp Content of message.

Table 7. FOM Enumerated Data Type Table

Name Representation Enumerator Values Semantics
FSSreferenceFrame HLAinteger32BE Unknown 0 Unknown frame.

EME2000 1 EME2000 (J2000) Earth fixed frame.
ITRF2008 2 ITRF 2008 Earth inertial frame using IERS 2010 conventions, no tidal effects.
ITRF2008 TE 3 ITRF 2008 Earth inertial frame using IERS 2010 conventions with tidal effects.
TEME 4 TEME Earth inertial frame for two-line element propagation using SGP4 model.

Table 8. FOM Array Data Type Table

Name Element Type Cardinality Encoding Semantics
FSScartesianVector HLAfloat64BE 3 HLAfixedArray Cartesian vector with x-, y-, and z-components.

Table 9. FOM Time Representation Table

Category Data Type Semantics
Timestamp HLAfloat64Time Absolute time measured in milliseconds since January 1, 1970 0:00:00.0 using the UTC time scale.
Lookahead HLAfloat64Time Time duration measured in milliseconds.
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Regardless of how detailed custom objects are, they are all
added to a federate in the same way to initialize data transfer
with other federation members. The example in Box 2
shows how a new CustomFederate (trivially extending the
base DefaultFederate class) can be used in a main method
to add a new object, connect to a federation, initialize, and
run a simulation execution. This example omits configuration
options to specify federation connection parameters (e.g.
federation name, federate name and type) and has no ending
condition or graphical user interface. Any objects to be
notified of remote object state changes or interactions can
implement the UpdateListener interface and be added as a
listener to the federate.

Box 2. Custom Federate with Main Method

import edu.mit.fss.DefaultFederate;

class CustomFederate extends DefaultFederate
{
public static void main(String[] args) {

// the program starts here

// create a new federate object
CustomFederate fed = new

CustomFederate();

// add a new custom object
fed.addObject(new TrivialClock());

// connect to the federation
fed.connect();

// do initializing process and
// initialize SimObject objects
fed.initialize();

// tick and tock SimObject objects
// and do advancing process
fed.run();

}
}

The examples presented in this paper were implemented
using open source and freely-distributable software libraries
including Orekit [11], World Wind [9], Apache Math Com-
mons [17], JFreeChart [18], and Portico [16] with the intent
of creating an open source toolkit for FSS simulation. Please
contact the first author for more information about obtaining
the source code and supplemental materials.

ACKNOWLEDGMENTS
The authors thank the Skolkovo Institute of Science and
Technology Faculty Development Program (FDP) for fund-
ing this project. The Japanese Student Services Organi-
zation (JASSO) provided additional travel support. Many
of the ideas presented were incubated in the Simulation
Exploration Experience (formerly Simulation Smackdown)
outreach event organized by the Simulation Interoperability
Standards Organization (SISO) and Society for Modeling and
Simulation International (SCS) with organizational support
from NASA. In particular, the contributions of an environ-
mental federate by Zack Crues and a communications satel-
lite federate by Daniel O’Neil significantly and positively
influenced this work. Finally, this work would not have been
possible without the contributions of open source commu-
nities such as NASA World Wind, Portico, Orekit, Apache
Commons Math, and JFreeChart.

REFERENCES
[1] A. Golkar, “Federated satellite systems: an innovation

in space systems design,” in 9th IAA Symposium on
Small Satellites for Earth Observation. Berlin, Ger-
many: International Academy of Astronautics, April
2013.

[2] O. L. de Weck, D. Roos, and C. Magee, Engineering
Systems: Meeting Human Needs in a Complex Techno-
logical World. MIT Press, January 2012.

[3] N. P. Suh, “A theory of complexity, periodicity and
the design axioms,” Research in Engineering Design,
vol. 11, pp. 116–131, 1999.

[4] M. W. Maier, “Architecting principles for systems-of-
systems,” Systems Engineering, vol. 1, no. 4, pp. 267–
284, 1998.

[5] IEEE, “IEEE standard for modeling and simulation
(M&S) high level architecture (HLA) – framework and
rules,” 2010, IEEE Std. 1516-2010.

[6] R. M. Fujimoto, Parallel and Distributed Simulation
Systems. New York: John Wiley & Sons, 2000.

[7] IEEE, “IEEE standard for distributed interactive simula-
tion – application protocols,” 1998, IEEE Std. 1278.1a-
1998.

[8] ——, “IEEE recommended practice for distributed sim-
ulation engineering and execution process (DSEEP),”
2010, IEEE Std. 1730-2010.

[9] NASA, “World Wind Java SDK,” 2013, accessed
16-Oct 2013. [Online]. Available: http://worldwind.arc.
nasa.gov/

[10] S. Gano, “JSatTrak,” 2013, accessed 16-October
2013. [Online]. Available: http://www.gano.name/
shawn/JSatTrak/
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