
THE PICARD SCHEME

STEVEN L. KLEIMAN

Abstract. This article introduces, informally, the substance and the spirit of

Grothendieck’s theory of the Picard scheme, highlighting its elegant simplicity,
natural generality, and ingenious originality against the larger historical record.

1. Introduction

A scientific biography should be written
in which we indicate the “flow” of mathematics . . .

discussing a certain aspect of Grothendieck’s work, indicating possible roots,
then describing the leap Grothendieck made from those roots to general ideas,

and finally setting forth the impact of those ideas.
Frans Oort [60, p. 2]

Alexander Grothendieck sketched his proof of the existence of the Picard scheme
in his February 1962 Bourbaki talk. Then, in his May 1962 Bourbaki talk, he
sketched his proofs of various general properties of the scheme. Shortly afterwards,
these two talks were reprinted in [31], commonly known as FGA, along with his
commentaries, which included statements of nine finiteness theorems that refine the
single finiteness theorem in his May talk and answer several related questions.

However, Grothendieck had already defined the Picard scheme, via the functor
it represents, on pp. 195-15, 16 of his February 1960 Bourbaki talk. Furthermore,
on p. 212-01 of his February 1961 Bourbaki talk, he had announced that the scheme
can be constructed by combining results on quotients sketched in that talk along
with results on the Hilbert scheme to be sketched in his forthcoming May 1961
Bourbaki talk. Those three talks plus three earlier talks, which prepare the way,
were also reprinted in [31].

Moreover, Grothendieck noted in [31, p. C-01] that, during the fall of 1961, he
had discussed his theory of the Picard scheme in some detail at Harvard in his
term-long seminar, which David Mumford and John Tate continued in the spring.
In November 2003, Mumford kindly lent me his own folder of notes from talks given
by each of the three, and notes written by each of them. Virtually all the content
was published long ago.

Those notes contain a rudimentary form of the tool now known as Castelnuovo–
Mumford regularity. Grothendieck mentions this tool in his commentaries [31, p. C-
10], praising it as the basis for an “extremely simple” proof of a bit weaker version of
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his third finiteness theorem. Mumford sharpened the tool in his book [46, Lect. 14],
so that it yields the finiteness of the open subscheme of the Hilbert scheme that
parameterizes all closed subschemes with given Hilbert polynomial.

Grothendieck [31, p. 221-1] correctly foresaw that the Hilbert scheme is “destined
to replace” Chow coordinates. As he [31, p. 195-14] put it, they are “irremediably
insufficient,” because they “destroy the nilpotent elements in parameter varieties.”
Nevertheless, he [31, p. 221-7] had to appeal to the theory of Chow coordinates to
prove the finiteness of the Hilbert scheme. So after he received a prepublication
edition of [46], he wrote a letter on 31 August 1964 to Mumford in which he [48,
p. 692] praised the theory in Lecture 14 as “a significant amelioration” of his own.

Mumford made use of the finiteness of the Hilbert scheme in his construction
of the Picard scheme over an algebraically closed field in [46, Lect. 19], whereas
Grothendieck took care to separate existence from finiteness, giving an example
in [31, Rem. 3.3, p. 232-07] over a base curve of a Picard scheme with connected
components that are not of finite type.

Mumford’s book [46] was based closely on the lovely course he gave at Harvard
in the spring of 1964. It was by far the most important course I ever took, due to
the knowledge it gave me and the doors it opened for me. During the academic year
of 1966–67, I was a Postdoc under Grothendieck at the IHES (Institut des Hautes

Études Scientifiques). When he learned from me that I had taken that course and
had advanced some of the finiteness theory in my thesis [35, Ch. II], he asked me
to write up proofs of his nine finiteness theorems for SGA6 [8, Exps. XII, XIII].

Grothendieck, perhaps, figured that I had learned how to prove his nine theorems
at Harvard, but in fact I had not even heard of them. At any rate, he told me
very little about his original proofs, and left me to devise my own, which I was
happy to do. There is one exception: the first theorem, which concerns generic
relative representability of the Picard scheme. Its proof has a very different flavor,
as it involves nonflat descent, Oort dévissage, and representability of unramified
functors. Grothendieck asked Michel Raynaud to lecture on this theorem and to
send me his lecture notes, which I wrote up in [8, Exp. XII].

My experience led me to study Grothendieck’s construction of the Picard scheme,
and to teach the whole theory a number of times. Further, in collaboration with
Allen Altman, Mathieu Gagné, Eduardo Esteves, Tony Iarrabino, and Hans Kleppe,
I extended some of Grothendieck’s theory to the compactified Picard scheme. The
underlying variety had been introduced via Geometric Invariant Theory in 1964 by
Alan Mayer and Mumford in [44, § 4]. The scheme has been studied and used by
many others ever since then.

Thus my experience is like the experiences of Nicholas Katz and Barry Mazur,
which were described by Allyn Jackson in [33, p. 1054]. Katz said that Grothendieck
assigned him the topic of Lefschetz pencils, which was new to him, but “he learned
a tremendous amount from it, and it had a big effect on my future.” Mazur said
that Grothendieck asked him this question posed earlier by Gerard Washnitzer:
“Can the topology of algebraic variety vary with the complex embedding of its field
of definition?” Mazur, then a differential topologist, added, “But for me, it was
precisely the right kind of motivation to get me to begin to think about algebra.”

Both Katz and Mazur then confirmed my impression that our experiences were
typical. Jackson quotes Katz as saying that Grothendieck got visitors interested in
something, but with “a kind of amazing insight into what was a good problem to



THE PICARD SCHEME 3

give to that particular person to think about. And he was somehow mathematically
incredibly charismatic, so that it seemed like people felt it was almost a privilege
to be asked to do something that was part of Grothendieck’s long range vision of
the future.” Similarly, Mazur said that Grothendieck had an instinct for “matching
people with open problems. He would size you up and pose a problem that would
be just the thing to illuminate the world for you. It’s a mode of perceptiveness
that’s quite wonderful and rare.”

I spent the summer of 1968 at the IHES. Grothendieck invited me to his home in
Massy-Verrières to discuss my drafts for my contributions to SGA6. His comments
ranged from providing insight into the theory of bounded families of sheaves to
criticizing my starting sentences with symbols.1 Again, my experience was typical:2

Jackson [33, p. 1054] quotes Luc Illusie as saying, that Grothendieck often worked
at home with colleagues and students, making a wide range of apposite comments
on their manuscripts.

One time, Grothendieck found that I didn’t know some result treated in EGA
([29] and sequels). So he gently advised me, for my own good, to read a little EGA
every day, in order to familiarize myself with its content. After all, he pointed
out, he had been writing EGA as a service to people like me; now it was up
to us to take advantage of this resource. That experience supports a statement
Leila Schneps made in [64, p. 16]: “The foundational work that Grothendieck and
[Jean] Dieudonné were undertaking [was] in the service of all mathematicians, of
mathematics itself. The strong sense of duty and public service was felt by everyone
around Grothendieck.”

As Grothendieck stated on p. 6 of [29], he planned to develop in EGA the ideas he
sketched in [31]. He did not succeed. Nevertheless, those ideas have become a basic
part of Algebraic Geometry. So they were chosen as the subject of a summer school
held 7–18 July 2003 at the ITCP (International Center for Theoretical Physics) in
Trieste, Italy. The first Bourbaki talk reprinted in [25] was not covered; it treats
Grothendieck’s generalization of Serre duality for coherent sheaves, so is somewhat
apart and was already amply developed in the literature.

The lectures were written up, and published in [25]. As stated on p. viii, “this
book fills in Grothendieck’s outline. Furthermore, it introduces newer ideas when-
ever they promote understanding, and it draws connections to subsequent develop-
ments.” In particular, I wrote about the Picard scheme, beginning with a 14-page
historical introduction, which served as a first draft for the present article.

1Many years later, Jean-Pierre Serre told me that he had taught Grothendieck not to start

sentences with symbols.
2Grothendieck gave me another project during my Postdoc. On April 18 and 25 that year, he

talked in his seminar at the IHES on his Standard Conjectures and Theory of Motives. He asked
me to write up his talks, gave me copies of his notes on related matters, and invited me to his

home a year later, in the summer of 1968, to discuss my draft. That work too led me to learn
some good mathematics and to write several articles, although they are more expository. Also, it
led to my co-chairing an organizing committee for an AMS summer research conference in 1991.

However, my experience was the exception that proved the rule: Grothendieck had already

asked others to write up his talks; they tried, and gave up! Also, curiously he never told me about
his talk on the Standard Conjectures at a conference in Bombay, India, in January 1968, let alone
offer me his notes. Moreover, in the conference proceedings, his writeup cites a talk of mine at

the IHES, which I never gave, crediting me for an observation; but it is due to Saul Lubkin, and
credited to him in my writeup [36, p. 361], which Grothendieck critiqued in his home that summer.
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Mumford stated the goal of his book [46] on pp. vii–viii: “a complete clarifica-
tion of . . . the so-called3 Completeness of the Characteristic Linear System of a good
complete algebraic system of curves on a surface. . . . Until about 1960, no algebraic
proof of this purely algebraic theorem was known. . . . [Then] a truly amazing devel-
opment occurred:” by combining his results on the Hilbert scheme and the Picard
scheme with Cartier’s result, “that group schemes in characteristic 0 are reduced,”
Grothendieck [31, pp. 221-23,24] obtained in February 1961 an enlightening, purely
algebraic proof. “The key. . . is the systematic use of nilpotent elements.”

Grothendieck had, moreover, reversed history: he proved Completeness via the
Picard scheme. By contrast, in December 1904 Federigo Enriques and sometime in
1905 Francesco Severi gave algebraic proofs of Completeness from scratch. In the
first half of 1905, on the basis of Enriques’s work, Guido Castelnuovo introduced
the Picard variety in order to prove the Fundamental Theorem of Irregular Surfaces.
It asserts the surprising equality of the four basic invariants: the dimension of the
Picard variety, the irregularity, the number of independent Picard integrals of the
first kind, and half the first Betti number. Grothendieck’s theory, without reference
to Completeness, also yields the first part of the Fundamental Theorem, that the
dimension of the Picard variety is equal to the irregularity in characteristic 0.

Both Enriques’s and Severi’s proofs have serious gaps, as Severi himself noted
in 1921.4 Severi then proved a more restricted version of Completeness, but one
sufficient for Castelnuovo’s work. Severi’s proof was based on Henri Poincaré’s
construction of a key system of curves. That construction appeared in 1910, 1911;
it is rigorous, but analytic. After 1921, finding a fully rigorous, purely algebraic
proof of a suitable version of Completeness became a major endeavor—undertaken
by Enriques, Severi, and others—until Grothendieck finally settled the matter.
Section 2 explains more fully the history and meaning of Completeness and of the
Fundamental Theorem; Section 5 elaborates on Grothendieck’s proof.

When Grothendieck worked on his theory of the Picard scheme, the general
algebro-geometric theory of the Picard variety had been under active development
for nearly fifteen years. More than twenty mathematicians had worked on var-
ious aspects. Grothendieck clarified and settled a number of issues. Section 3
explains those issues in chronological order. Sections 4 and 5 give more detail
about Grothendieck’s advances, which involve many great innovations.

One issue was a topic of conversation between Grothendieck and Jacob Murre
sometime in the academic year 1960/61. Murre told Schneps about it, and she [64,
pp. 1–2] quoted him as saying, “A very important unsolved question . . . [was] the
behavior of the Picard variety if the original variety . . . moved in a system and more-
over—and worse— in[to] characteristic p > 0. . . . I asked Grothendieck whether he
could explain this behavior. . . . He said he would certainly [do so]. . . . Then, in 1962,
Grothendieck completely solved the question. . . . I attended his Bourbaki lectures,
and needless to say, I was very impressed!”

As it happens, much earlier, in his 1958 talk [28, p. 118] at the ICM (International
Congress of Mathematicians, Grothendieck said, “We shall not give here the precise

3On p. 8, the theorem is formulated as “problem (B),” and two analytic solutions are outlined.
On p. 157, a more precise version is formulated as the “Fundamental Theorem,” and given its first
algebraic proof. On p. 169, an important special case is proved, following Grothendieck’s somewhat
different algebraic treatment. However, none of those is called the “Theorem of Completeness.”

4In 1949, Severi [72, p. 40] lamented the fact that “this annoying episode was taken as an
article of indictment for the [crime of] lack of rigor in Italian algebraic geometry!”
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definition of a ‘relative Picard schema’, but . . . if this schema exists then it behaves
in the simplest conceivable way with respect to change of base-space.” In his
February 1960 Bourbaki talk [31, pp. 195-15, 16], he added that “in particular, the
Picard schemes of the fibers” of a system are the fibers of the relative Picard scheme,
once existence is proved. In his February 1961 talk [31, pp. 212-01], as noted above,
he announced his proof of existence.

Thus when Grothendieck had succeeded in settling a major issue, such as the
Behavior of the Picard Variety in a Family or the Completeness of the Characteristic
System, he noted the advance, but did not tout it. Cartier [12, p. 17] describes
Grothendieck’s philosophy as follows: “Grothendieck was convinced that if one has
a sufficiently unifying vision of mathematics, if one can sufficiently penetrate the
essence of mathematics and the strategies of its concepts, then particular problems
are nothing but a test; they do not need to be solved for their own sake.”

One beautiful illustration of Grothendieck’s “unifying vision” is provided by his
theory of the Picard functor. It is the functor of points of the Picard scheme—
that is, the functor whose values are the sets of maps from a variable source into
the scheme. Often, a functor of points is said to provide nothing more than another
way of expressing the universal property of a fine moduli scheme. That statement
is true for the Hilbert scheme, but a half-truth for the Picard scheme.

What is the universal property of the Picard scheme? The naive answer falls
short! However, Grothendieck saw the hidden common thread in descent of the base
field, Galois cohomology, and sheaf theory; he concluded that any functor of points
must be a sheaf for the fpqc Grothendieck topology. Thus the right Picard functor
has to be the sheaf associated to the naive Picard functor, regarded as a presheaf.
More work with the functor leads to the construction of the Picard scheme. It
is automatically compatible with base change, because the Picard functor is so.
Sections 4 and 5 explain all that theory.

In short, Section 2 gives a historical introduction to two venerable theorems:
the Theorem of Completeness of the Characteristic System, and the Fundamental
Theorem of Irregular Surfaces. Section 3 gives a historical introduction to the in-
adequate algebro-geometric theory of the Picard variety. Please note: these two
introductions are not meant to be either serious historical studies or rigorous math-
ematical surveys, but simply fascinating informal accounts, providing background
material for comprehending the nature and extent of Grothendieck’s advances.

Section 4 explains Grothendieck’s innovative theory of the Picard functor, cul-
minating in his main construction of the Picard scheme. Finally, Section 5 explains
how the theory of the Picard scheme enabled Grothendieck and others to provide
enlightening treatments of the issues discussed in Sections 2 and 3. The discussions
in Section 4 and 5 are mathematically rigorous, but just introductory. Sources for
more information are given at the beginning of each of Sections 2–5.

There are three minor mathematical novelties below: (1) the proof on p. 10 of
the equivalence of the 19th century definition of the arithmetic genus of a surface
and the modern definition, (2) the algebro-geometric treatment on p. 24 of Severi’s
1921 version of Completeness, and (3) the “nearly formal” treatment on p. 26 of
the Albanese variety, including duality, intriguingly announced by Grothendieck on
p. 232-14 of his February 1962 Bourbaki talk [31].
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2. Irregular Surfaces

But to demonstrate the power of modern abstract ideas
to solve older very concrete problems,

I think that this example is unmatched.
David Mumford [50, p. 7]

In the quotation above, this example refers to Grothendieck’s treatment of the
Theorem of Completeness of the Characteristic System. In fact, the example is the
centerpiece of Mumford’s article [50] in this volume. Moreover, Mumford notes that
Completeness yields the Fundamental Theorem of Irregular Surfaces. Thus if we
are to appreciate the full significance of Grothendieck’s contribution, then we must
review the history of those two main theorems. We do so in this section. First
we pursue, intuitively, the spirit of the original work. Then we treat that work
rigorously, beginning at the end of this section and continuing in Section 5.

A number of historical reviews are already available, and served as a basis for
the account here. Notably, in 1906, Castelnuovo and Enriques wrote5 one [14] at
the request of Emile Picard to be an appendix to Tome II of his book [62] with
Georges Simart. In 1934, Oscar Zariski reviewed various aspects of the development
in different places in his celebrated book [78]. Those reviews are fairly technical. In
1994, Fabio Bardelli [7] wrote a more informal review of the developments through
1934. In 1974, Dieudonné published a masterful history of algebraic geometry,
which touches on these theorems in particular. The book was translated as [21] by
Judith Sally, and supplemented with an extensive annotated bibliography.

In 2011, Mumford [49] carefully analyzed the mathematics in a 1936 paper by
Enriques on Completeness. Mumford, in his introduction, stated his conclusion:
“Enriques must be credited with a nearly complete [algebro-]geometric proof using,
as did Grothendieck, higher order infinitesimal deformations. . . . Let’s be careful: he
certainly had the correct ideas about infinitesimal geometry, though he had no idea
at all about how to make precise definitions.”6 Mumford’s article is preceded by
a lovely article by Donald Babbitt and Judith Goodstein [6], which focuses on the
times, lives, and personalities of Enriques and his colleagues; please also see their
related articles [5] and [26]. All the articles mentioned above give many precise
references, which are not repeated here.

Around 1865, Alfred Clebsch caused a sea change in algebraic geometry, turning
it away from the concrete study of particular curves and surfaces, and toward the
abstract study of their birational invariants—the numbers that depend only on
their field of rational (or global meromorphic) functions.

In 1868, Clebsch considered a connected smooth7 complex projective algebraic

surface X̃ of large degree n. He studied it via its general projection in 3-space,
which is a surface

X : f(x, y, z) = 0 and n := deg f

with “ordinary” singularities, none at infinity, and no point at infinity on the z-axis.

5Please also see their encyclopedia article [15] and Castelnuovo’s historical note [23, pp. 339–
353].

6Mumford elaborated in his resumeé at the end: “Although [Enriques] gave [infinitesimal
deformations] names, they remained in limbo, without substance, because he did not think of

what it meant to have a function on them. Grothendieck realized that functions on such objects
should be rings with nilpotent elements, and this gave life to these infinitesimal deformations.”

7Also called nonsingular, X̃ is defined by polynomials with Jacobian matrix of maximal rank.
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Clebsch found the algebraic double integrals on X̃ of the first kind—that is,
those finite on any bounded analytic domain of integration—to be of the form∫ ∫

h(x, y, z)

∂f/∂z
dx dy

where h is a polynomial of degree at most n− 4 vanishing on the singular locus,

Γ : f, ∂f/∂x, ∂f/∂z, ∂f/∂z = 0,

a curve of double points. The number of linearly independent such integrals became
known as the geometric genus and denoted by pg.

Clebsch asserted without proof that pg is a birational invariant. In 1870, his
student, Max Noether, gave an algebraic proof. In 1869, Arthur Cayley worked
out a formula for the number of independent h; essentially, he found an explicit
expression for F (n−4) where F is the Hilbert polynomial of the homogeneous ideal
of Γ. The value F (n− 4) was later called the arithmetic genus and denoted by pa.

8

In 1871, Hieronymous Zeuthen used Cayley’s formula to prove algebraically that
pa too is a birational invariant. Also in 1871, Cayley observed that, if X is a ruled
surface with plane section of genus g, then pa = −g ≤ 0, although pg = 0.

The disagreement between pg and pa came as a surprise. In 1875, Noether
explained it: F (n − 4) is the number of independent h only if n is suitably large.
In any case, pg ≥ pa. Moreover, if X is smooth or rational, then pg = pa. It was
thought that, as a rule, pg = pa, and when so, X was dubbed regular. The failure
of X to be regular is quantified by the difference pg − pa; so it became known as
the irregularity. Zariski [78, p. 75] denoted it by q; following suit, set

q := pg − pa.

In 1884, Picard initiated the study of algebraic simple integrals∫
P (x, y, z) dx+Q(x, y, z) dy

that are closed, or ∂P/∂y = ∂Q/∂x; they became known as Picard integrals. He
proved that there are only finitely many independent such integrals of the first
kind, those finite on any bounded analytic path of integration; use9 s to denote
their number. Picard noted that, if X is smooth, then s = 0.

In 1894, Georges Humbert considered an algebraic system, or algebraic family,
of curves. Its members are the zeros on X of a polynomial

φ(x, y, z;λ0, . . . , λt)

where the λi satisfy polynomial equations, which define the parameter variety Λ.
The curves can all contain common subcurves; some of them are included as fixed
components of the system, and the others, omitted. The system is said to be linear
if there are homogeneous polynomials φi(x, y, z) of the same degree with

φ = λ0φ0 + · · ·+ λtφt.

Humbert proved a remarkable result: if s = 0, then every algebraic system is a
subsystem of a linear system. That result inspired Castelnuovo to prove in 1896
that, if q = 0, then again every algebraic system is a subsystem of a linear system

8Cayley [16] denoted it by D, and called it the deficiency. Picard and Simart [62, p. 88] denoted

it by pn, and called it the numerical genus. Those definitions soon fell into disuse.
9Castelnuovo and Enriques [14, p. 495] used q, whereas Zariski [78, p. 162] used r0.
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under a certain restriction, which Enriques removed in 1899.
In 1897, Castelnuovo fixed a linear system of curves onX. Let r be its dimension,

the number of linearly independent restrictions φi|X diminished by 1. Castelnuovo
studied its characteristic linear system, the system cut out by the φi on a general
member curve Dη, assuming Dη is irreducible, that is, not the union of two smaller
curves. The characteristic system has dimension has r − 1.

Castelnuovo formed the complete, or largest, linear system on Dη containing the
characteristic system. Let δ be the amount, termed the deficiency, by which the
dimension of the characteristic system falls short of the dimension of its complete
linear system. Castelnuovo proved that

(1) δ ≤ q,

with equality if the linear system consists of all hypersurface sections of high degree,
namely if the φi(x, y, z) generate all homogeneous polynomials of that degree.

In February 1904, Severi extended Castelnuovo’s work. Severi fixed an algebraic
system of curves onX, and a general memberDη. He assumed thatDη is irreducible
and that Dλ ̸= Dµ for all distinct λ, µ ∈ Λ. As λ approaches η along a path in Λ,
the intersectionsDλ∩Dη approach a limit, which depends only the tangent vector at
η to the path. The various limits form a linear system on Dη, parameterized by the
projectivized tangent space to Λ at η. Thus Severi constructed the characteristic
linear system of the algebraic system. Set R := dimΛ. Then this characteristic
system is of dimension R− 1.

In the algebraic system, form the largest linear subsystem containingDη. Denote
its dimension by r. Form its characteristic linear system. Let δ be its deficiency.
Then its complete linear system has dimension r − 1 + δ, and it also contains the
characteristic system of the algebraic system. Thus Severi proved that

(2) R ≤ r + δ,

with equality if and only if the latter characteristic system is complete.
In December 1904 Enriques and sometime in 1905 Severi each constructed an

algebraic system with R = r + q. Both constructions are short and delicate. Both
rely on the completeness of the characteristic system of certain10 algebraic systems.
Both are flawed, as Severi himself pointed out in 1921. In 1934, Zariski [78, pp. 99–
102] reviewed those constructions, “in order to analyze the assumption on which
they are based and for which as yet an algebro-geometric proof is not available.”

In 1910 and 1911 using a new method of “normal functions,” Poincaré gave a
rigorous analytic construction of an algebraic system with r = 0 and R = q. His
construction was simplified and developed by Severi in 1921 and Solomon Lefschetz
in 1921 and 1924. In 1934, Zariski [78, pp. 169–173] reviewed that work too.11 He
[78, p. 102] noted that “the value of the construction of such a system is greater
than that of mere example; indeed it is an essential step in the theory.”

Zariski then derived Severi’s May 1905 theorem12 that, if there is one system with
R = r + q, then R = r + q holds for every complete system whose general member

10Severi [72, p. 41] noted that both he and Enriques believed at the time that they had proved
every complete algebraic system with irreducible general member has a complete characteristic
system!

11Please also see the reviews of Mumford [46, pp. 9–10] and Dieudonné [21, p. 53].
12In December 1904, Enriques proved the theorem under the more stringent, but still sufficient,

hypothesis that Dη is “regular,” later renamed “regular and nonspecial.” Please see Fn.43 on p. 23.
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Dη is arithmetically effective; namely, a certain lower semi-continuous combination
of its numerical characters is nonnegative, a common condition (please see p. 24).
Hence, by (1) and (2), if Dη is irreducible too, then its characteristic system is
complete and δ = q. By Bertini’s Theorem, usually Dη is irreducible.

The Theorem of Completeness came13 to mean the following assertion:

(3)
Every complete algebraic system whose general member is arithmetically
effective and irreducible has a complete characteristic system.

Moreover, (3) is equivalent to the existence of at least one system with R = r + q,
and in turn to the existence of suitably many such systems.

On 16 January 1905 in the C. R. Paris, Enriques [22, pp. 134–135] announced that
Severi had just proved q ≥ s and q = b− s, where b is the number of independent
Picard integrals of the second kind, those with polar singularities. It was known
before 1897 that b is equal to the first Betti number; please see [78, p. 157]. In the
same issue of the C. R., Picard [61] proved q = b− s independently.14

In the next issue on 23 January, Castelnuovo [13] outlined the last step in this
direction. He gave the details in three notes in the Rend. Accad. Lincei of 21 May
and 4 and 8 June 1905. Specifically, he took a complete algebraic system with arith-
metically effective (in fact, regular) general member, fibered it into linear systems,
and formed the quotient, P say. Then P is projective, and P is of dimension q as
R = r + q, an equation he considered proved. Morover, P is, up to isomorphism,
independent of the choice of algebraic system, and sum (union) of curves induces
an addition of points of P , turning P into a commutative group variety.

Hence, by a general 1895 theorem of Picard, completed in 1901 by Painlevé, P
is an Abelian variety: P is parameterized by q Abelian functions, or 2q-ply periodic
functions of q variables, with a common lattice of periods. Castelnuovo proved that
these functions induce independent Picard integrals on X. Therefore, q ≤ s. Thus
Castelnuovo obtained the Fundamental Theorem of Irregular Surfaces:

dimP = q = s = b/2.

In 1905, the term “Abelian variety” was not yet in use. So naturally enough,
Castelnuovo termed P the Picard variety of X.15

In 1903, Severi [69, § 26] discovered a remarkable expression for pa in terms of

a different Hilbert polynomial. Say the smooth surface X̃ is a subvariety of some

higher dimensional projective space PN . Form the Hilbert polynomial F̃ (ν) of the

homogeneous ideal of X̃. Then F̃ (0)− 1 = pa.
Serre, in his 1954 ICM talk [66, pp. 286–291], announced a theory of coherent

algebraic sheaves, inspired by the analytic work of Friedrich Hirzebruch, Kunihiko
Kodaira, and Donald Spencer. In particular, Serre proved the Euler characteristic

13According to Severi [72, p. 42], in 1921 he derived the theorem essentially in this form from

Poincaré’s construction.
14Picard presented Enriques’s note to the Academy, but explained in Fn. (1) on p. 122 of [61]

that he had completed his own note before receiving Enriques’s.
15Castelnuovo [13, p. 221] explained that “out of respect for Picard’s profound research on

surfaces [sic] admitting a group of birational automorphisms, [he] proposes calling the variety P

(and [a certain] group Gd) the Picard variety (and Picard group) associated to the surface X.”
Andre Weil [76, I, p. 572] discussed his own use of the term “Picard variety” in his commentary

on his 1950 paper on Abelian varieties. Weil said, “Historically speaking, it would have been

justified to give it Castelnuovo’s name, but it was a matter of tampering as little as possible with
common usage rather than rendering due homage unto this master.”
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of the twisted structure sheaf χ(OX̃(ν)) is equal to F̃ (ν). Thus pa = χ(OX̃)− 1;16

so pa is independent of the embedding of X̃ ⊂ PN and of the projection X̃ → P3.

Further, Serre Duality yields this equality of dimensions of cohomology groups:
hi(OX̃) = h2−i(Ω2

X̃
) for all i where Ω2

X̃
is the sheaf of algebraic 2-forms. However,

pg = h0(Ω2
X̃
), essentially by definition, and h0(OX̃) = 1 as X̃ is connected. Thus

pa = χ(Ω2
X̃
)− 1, pg = h2(OX̃), q = h1(OX̃).

Above, the first equation is a form of Severi’s discovery. Here is a proof of it
using Grothendieck’s generalization of Serre Duality. Let ωX be the dualizing sheaf.
Since X ⊂ P3 and Ω3

P3 = OP3(−4), duality theory and simple computation yield

ωX = Ext1(OX , Ω3
P3) = OX(n− 4).

Hence, duality for the finite map π : X̃ → X and elementary manipulation yield

π∗Ω
2
X̃

= Hom(π∗OX̃ , ωX) = C(n− 4) where C := Hom(π∗OX̃ , OX).

Thus χ(Ω2
X̃
) = χ(C(n− 4)).

Here, C is the conductor; it is the ideal sheaf on X of the curve Γ of double
points. Let C0 be the ideal sheaf on P3 of Γ. Then pa = χ(C0(n − 4)), essentially
by definition. Form the standard exact sequence

0→ OP3(−4) ×f−−→ C0(n− 4)→ C(n− 4)→ 0.

By Serre’s Computation, χ(OP3(−4)) = −1. Thus pa = χ(C(n−4))−1, as desired.

Recall q = h1(OX̃). Also, s = h0(Ω1
X̃
) essentially by definition. So Hodge Theory

yields q = s and q = b/2, but Hodge Theory is not algebraic. However, a p-adic
algebraic proof that q = s was given by Kirti Joshi [34]. Further, if by b is meant
the dimension of the first Grothendieck étale cohomology group, then a standard
algebraic argument yields dimP = b/2; see [36, Lem. 2A7, p. 375] for example. The
latter argument also works in positive characteristic, but the equations dimP = q
and q = s may fail. In 1955, Jun-ichi Igusa gave an example with dimP = 1 but
q = s = 2; in 1958, Serre [66, p. 529] gave one with dimP = s = 0 but q = 1.

Finally, H1(OX̃) is always the Zariski tangent space at 0 to the Picard scheme
by Grothendieck’s theory, and over C the Picard scheme is smooth by Cartier’s
theorem; so dimP = q. Thus the Fundamental Theorem of Irregular Surfaces
can be proved algebraically over C , and the proof does not involve the Theorem
of Completeness of the Characteristic System. Yet, the latter theorem has taken
on a life of its own, and Grothendieck’s work is heavily involved in proving both
theorems algebraically. All that work is discussed further in Section 5.

3. The Picard Variety

Ever since 1949, I considered the construction
of an algebraic theory of the Picard variety

as the task of greatest urgency in abstract algebraic geometry.
André Weil [76, II, p. 537]

16Afterwards, it became common to define pa by this formula.
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Up to 1949, Weil worked primarily in Number Theory and Algebraic Geometry.17

That work culminated in proofs of the Riemann hypothesis for curves in 1948 and
in the formulation of his celebrated conjectures for arbitrary dimension in 1949.
Next, he led “the construction of an algebraic theory of the Picard variety.” In
turn, that theory led Grothendieck to develop his theory of the Picard scheme.
However, the Weil Conjectures themselves motivated much of Grothendieck’s work.
In particular, they led to the notion of a Grothendieck topology, which, as noted in
the introduction, is fundamental for the very definition of the Picard functor; that
functor is the subject of Section 4.

In the present section, so that we may better appreciate Grothendieck’s advances,
let us consider in chronological order up to 1962, what was sought and what was
proved about the Weil conjectures and the Picard variety. Good secondary sources
include Dieudonné’s history [21] for all of it, Mazur’s 1974 expository article [43] for
the Weil conjectures, and the explanatory comments and historical notes in Serge
Lang’s 1959 book [40] for the Picard variety. Again, as those sources contain many
primary references, those references are not always repeated here.

In his 1921 thesis, which was published in 1924, Emil Artin developed an ana-
logue of the classical Riemann hypothesis, in effect, for a hyperelliptic curve over
a prime field of odd characteristic. In 1929, Friedrich (F-K) Schmidt generalized
Artin’s work to all curves over all finite fields, recasting it in the algebro-geometric
style of Richard Dedekind and Heinrich Weber. In 1882, they had viewed a curve
as the set of discrete valuation rings in a finitely generated field of transcendence
degree 1 over C, but their approach works in any characteristic. In particular,
Schmidt ported their proof of the Riemann–Roch theorem, and used it to prove
that Artin’s Zeta Function satisfies a natural functional equation.

In 1936, Helmut Hasse proved Artin’s Riemann hypothesis in genus 1 via an
analogue over finite fields for the theory of elliptic functions. Then he and Max
Deuring noted that to extend the proof to higher genus would require developing
a similar analogue for the nineteenth century theory of correspondences between
complex curves.

Their work inspired Weil.18 In each of two notes, [76, I, pp. 257–259] of 1940 and
[76, I, pp. 277–279] of 1941, he sketched a different proof of the Riemann hypothesis
in any genus. In both, the key is a certain positivity theorem for correspondences.
It was found over C by Castelnuovo19 in 1906, and proved over a field of any
characteristic by Weil in two ways: in 1940 by algebraizing Adolf Hurwitz’s tran-
scendental theory of 1886, and in 1941 by porting to positive characteristic the
algebro-geometric theory in Severi’s textbook [70] of 1926.

To provide the details, Weil had to redo the foundations of Algebraic Geometry
over a field of arbitrary characteristic. The first instalment [73] appeared in 1946.
Building on ideas of Emmy Noether, Bartel van der Waerden, and Schmidt from the

17“Weil was far from confining himself to” those subjects, as Serre [67, pp. 523–526] noted,
citing Weil’s work in real and complex analysis, representation theory, and differential geometry.

18The interaction among the three and others has attracted a lot of study. One delightful and

well-documented report was published by Michèle Audin in 2012 as [4]. It describes the political,
social, and personal circumstances at the time, while focusing on three reviews of Weil’s first note.

19In both notes, Weil cites only Severi. In his commentary on the second note [76, I,
p. 553], Weil wrote, “it’s one of Castelnuovo’s most beautiful discoveries (see his Memorie Scelete,

no.XXVIII, pp. 509–517). But I didn’t read Castelnuovo until 1945 in Brazil; then I realized that
Severi in the Trattato ([70, pp. 286–287]) had not given his elder due credit.”
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1920s, Weil fixed a universal domain Ω, a field of infinite transcendence degree over
the prime field. Then a projective variety X is the locus of zeros with coordinates
in Ω of homogeneous polynomials with coefficients in a variable coefficient field or
field of definition k, a subfield of Ω over which Ω has infinite transcendence degree.
Also X is absolutely irreducible, not the union of two smaller such loci. Then Weil
formed abstract varieties by patching pieces of projective varieties.

Finally, Weil treated cycles. They are the formal Z-linear combinations of sub-
varieties. Those of codimension 1 are called (Weil) divisors, and play a major role
in the theory of the Picard variety. Weil developed a calculus of cycles, including
intersection products, inverse images, and direct images.

In 1948, Weil published two books. In the first [74], he completed his note
of 1941. He reproved the Riemann–Roch theorem, and developed an elementary
theory of correspondences for curves. To prove Castelnuovo’s theorem, he used his
full calculus of cycles on products of numerous copies of the curve. The proof is
“the most complicated part of the” book, as Otto Schilling observed in his Math
Review [MR0027151]. Then Weil proved the Riemann hypothesis.20

Weil’s proof inspired three others. First, in his 1953 thesis under Hasse, Peter
Roquette translated it into the more arithmetic language of Schmidt, and simplified
it to involve the product of just two different curves. Second, in 1958, Arthur
Mattuck and John Tate applied the Riemann–Roch theorem for surfaces, which
had been proved in any characteristic by Zariski in 1952 and by Serre in 1956.
Mattuck and Tate proved the version of Castelnuovo’s theorem for the product
of two curves that Severi [70] gave on p. 265. They dubbed it the inequality of
Castelnuovo–Severi. Then they rederived the Riemann hypothesis, thus showing
that it is a fairly simple consequence of the general theory of algebraic surfaces.

Third, right as Mattuck and Tate finished their paper, Grothendieck [27, p. 208],
“attempting to understand the full import of their method,” found that it produces
an index theorem on any surface, which yields the Castelnuovo–Severi inequality.
According to Grothendieck however, Serre pointed out to him that he had proved
an algebraic version of William Hodge’s 1937 analytic index theorem, and moreover
that the same version had already been proved the same way by Beniamino Segre
in 1937 and independently by Jacob Bronowski in 1938.

In Weil’s second book [75] of 1948, he completed his note of 1940. He developed
the abstract theory of Abelian varieties, which he defined as the group varieties
that are complete, the abstract equivalent of “compact.” He proved that they are
commutative, and that a map between two is a homomorphism plus a translation.

Weil constructed the Jacobian J of a smooth curve C of genus g by patching
together copies of an open subset of the symmetric product C(g). Given a prime l
different from the characteristic, he constructed, out of the points on J of order ln

for all n ≥ 1, an l-adic representation of the ring of correspondences, which, over
C, is equivalent to the representation on the first cohomology group. He proved
that the trace of this representation is positive definite, and recovered Castelnuovo’s
theorem. Finally, he reproved the Riemann hypothesis for curves.

Weil left open, as Lang [40, p. 17] noted, two important questions: (i) Is J defined
over the given coefficient field of C? (ii) Is every Abelian variety projective? Both

20It is extraordinarily important. Dieudonné [21, p. 83] gave one reason why: it “allows proofs,

in analytic [sic] number theory, of ‘the best possible’ upper bounds, inaccessible” otherwise, such

as this bound on a Kloosterman sum:
∣∣∑p−1

x=1 exp
(
2πi
p

(x+ x−1)
)∣∣ ≤ p1/2 for any prime p.
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questions were soon answered affirmatively: (i) by Wei-Liang Chow, who announced
his answer in 1949 but published it in 1954, and (ii) by Teruhisa Matsusaka in 1953.
In 1954, Weil gave a much simpler and more direct answer to (ii).

In 1956, in order to handle (i), Weil addressed the general question of finding
a smaller coefficient field, but only in the case where the resulting field extension
is finitely generated and separable. In turn, Weil’s work inspired Grothendieck to
develop his general Descent Theory, which he then sketched in his December 1959
Bourbaki talk [31, 190]. Grothendieck said on p. 190-1 that he was also inspired by
Cartier’s subsequent treatment [10, §4] of purely inseparable extensions, but that
“due to the lack of the language of schemes, and especially the lack of nilpotents,
Cartier could not express the basic commonality of the two cases.”

In 1949, Weil published his celebrated conjectures about the zeta function of
a variety of arbitrary dimension. He did not involve a hypothetical cohomology
theory outright, but one is implicit. Moreover, one was credited to him explicitly
in Serre’s 1956 “Mexico paper” [66, p. 502] and in Grothendieck’s 1958 ICM talk
[28, p. 103], where the term “Weil cohomology” appears, likely for the first time.

Grothendieck then announced “an approach [to Weil cohomology]. . . suggested
to [him] by the connections between sheaf-theoretic cohomology and cohomology of
Galois groups on the one hand, and the classification of unramified coverings of a
variety on the other. . . , and by Serre’s idea that a ‘reasonable’ algebraic principal
fiber space . . . should become locally trivial on some covering unramified over a
given point.” Thus, on p. 104, he announced the birth of Grothendieck topology.

In 1950, Weil published a remarkably prescient note [76, I, pp. 437–440] on
Abelian varieties. For each normal21 projective variety X of any dimension in
any characteristic, he said that there ought to be two associated Abelian varieties,
the Picard variety P and the Albanese22 variety A, with the following properties:

Universality: The Picard variety P parameterizes the linear equivalence classes
of all divisors on X algebraically equivalent23 to 0. There is a rational map24

from X into A, defined wherever X is smooth, such that every rational map
from X into an Abelian variety factors uniquely, up to translation, through it.

Duality: If X is an Abelian variety, so that X = A, then A is the Picard variety
of P ; such a pair, A and P , are called dual Abelian varieties.

Also, A and P are isogenous, or finite coverings of each other, and of dimension
equal to the irregularity [sic]. If X is arbitrary, then A and P are dual; in fact, the
universal map X → A induces the canonical isomorphism from the Picard variety
of A to P . If X is a curve, then both A and P coincide with the Jacobian.

In the note, Weil said that he had complete treatments of P and A for a smooth

21Normal means the singular locus has codimension at least 2, and (Zariski’s Main Theorem)

a rational map is defined everywhere if its graph projects finite-to-one onto X (so isomorphically).
22In 1913, Severi introduced and studied A over the complex numbers. Nevertheless, much to

Severi’s dismay, Weil [76, I, p. 571] named A after Severi’s student, Giacomo Albanese, ostensibly
because, in 1934, Albanese viewed A as a quotient of a symmetric power of X. However, Weil
[76, I, p. 562] left the impression that rather it is because he owed a debt of gratitude to Albanese

for enriching the library of the University of Saõ Paulo, Brazil, with works of Castelnuovo, Torelli
and others, which were new to Weil and from which he “profited amply.”

23Algebraic equivalence and linear equivalence are just the equivalence relations generated by
the algebraic systems and the linear systems.

24A rational map is given by the ratio of two polynomials, and is defined at a point if, for
some choice of the two, the denominator does not vanishes there.
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complex X, and sketches in general. The sketches rest on two criteria for linear
equivalence of divisors in terms of linear-space sections. The criteria were found in
1906 by Severi, and reformulated in the note by Weil, who referred to pp. 104–105,
164–165 in Zariski’s book [78]; please see Mumford’s comments [78, p. 120] as well.
Weil announced proofs of the criteria in 1952, and gave the details in 1954.

In 1951, Matsusaka gave the first algebraic construction of P . He extend the
coefficient field k in order to apply two of Weil’s results: one of the equivalence
criteria and the construction of the Jacobian. Both applications involve the generic
curve, the section of X by a linear space of appropriate dimension defined over a
transcendental extension of k. In 1952, Matsusaka gave a second construction; it
does not require extending k, but does require X to be smooth.

Both of Matsusaka’s constructions are like Castelnuovo’s: first Matsusaka con-
structed a complete algebraic system of sufficiently positive divisors, and then he
formed the quotient modulo linear equivalence. To parameterize the divisors, he
used the theory of “Chow coordinates,” which was developed in 1938 by Chow and
van der Waerden and was under refinement by Chow. In 1952, Matsusaka also used
Chow coordinates to form the quotient. Further, he made the first construction of
A, again using the Jacobian of the generic curve, but he did not relate A and P .

Also in 1952, in § II of his paper On Picard Varieties [76, II, pp. 73–102], Weil
refined the sense in which P parameterizes classes of divisors. Working complex
analytically, he constructed “an algebraic family of divisors on X, parameterized
by P , containing one and only one representative of each class.”

Weil did not name that family of divisors. However, the same year, André Néron
and Pierre Samuel [56] constructed,25 in any characteristic, a similar family, which
they named a Poincaré family citing [76, II, pp. 73–102] in a way suggesting the
name26 is due to Weil. The family is defined by a divisor D on X × P , which is
called a Poincaré divisor by Lang [40, p. 114]. Moreover, Lang showed that the pair
(P,D) is unique, P up to isomorphism and D up to addition of a “trivial” divisor.

In 1955, Chow constructed A and P in a new way, as what he called respectively
the “image” and the “trace” of the Jacobian of a generic curve on X. Also, he
proved that, indeed, the universal map X → A induces an isomorphism of the
Picard variety of A onto P .

In a course at the University of Chicago, 1954–55, Weil gave a more complete
and elegant treatment, based on the “see-saw principle,” which he adapted from
Severi, and on his own Theorem of the Square and Theorem of the cube. This
treatment became the core of Lang’s 1959 book [40]. The idea is to construct A
first using the generic curve, and then to construct P as a quotient of A modulo a
finite subgroup. Thus there is no need for Chow coordinates.

In 1958, Serre [66, p. 555] worked over a fixed algebraically closed coefficient
field k of any characteristic. He reproved Igusa’s 1955 bound dimA ≤ h0(Ω1

X), and
obtained a simple direct construction of A over k, not using the generic curve.

In 1958 Cartier [10] and in 1959 Nishi [57] independently proved Weil’s conjec-
tured duality of A and P : in any characteristic, each is the others Picard variety.

Between 1952 and 1957, Maxwell Rosenlicht published a remarkable series of

25Unfortunately, Lang [40, p. 175] felt that he had to write: “It can not be said that the
Picard variety is constructed in [56] because this paper begins by a false statement concerning the

birational invariance. This is a delicate point, when the varieties involved have singularities.”
26Of course, here and below, Poincaré’s name is used to honor his work mentioned above.
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papers, inspired by Severi’s 1947 monograph [71], which treated curves with double
points. Treating a curve with arbitrary singularities, Rosenlicht generalized the
notions of linear equivalence and differentials of the first kind. Then he constructed
a generalized Jacobian J over C by integrating and in arbitrary characteristic by
patching. It is not an Abelian variety, but an extension of the Jacobian J0 of the
desingularized curve by an affine algebraic group. In 1962, Frans Oort [59] gave
another construction, which gives J as a successive extension of J0 by additive and
multiplicative groups.

For arithmetic applications, Tate suggested, according to Lang [40, p. 176], doing
this. Given finitely many simple points on X, consider the divisors avoiding them.
Form linear equivalence classes via functions congruent to 1 to given multiplicities at
the points. Finally, seek a generalized Picard variety to parameterize these classes.

In 1959, Serre published a textbook [65] on the case dimX = 1 and its application
to Lang’s class field theory over function fields. In particular, Serre recovered
Rosenlicht’s generalized Jacobian of an X with one singular point27, constructed
by identifying given points with given multiplicities on a given smooth curve.

In 1962, Murre [52] constructed Tate’s generalized Picard variety P by adapting
Matsusaka’s two constructions. Thus Murre obtained P for any (normal) X via
patching and for any smooth X directly over the same ground field.

In 1956, Igusa established the compatibility of specializing a curve with special-
izing its generalized Jacobian, possibly under reduction mod p, provided the general
curve is smooth and the special curve has at most one node. Igusa explained that,
in 1952, Néron had studied the total space of such a family of Jacobians, but had
not explicitly analyzed the special fiber.28 Igusa’s approach is, in spirit, like Castel-
nuovo’s, Chow’s, and Matsusaka’s before him.

In 1960, Claude Chevalley [19] constructed a Picard variety using Weil divisors
locally defined by one equation; they are called Cartier divisors in honor of Cartier’s
1958 Paris thesis [11]. First, Chevalley constructed a strict Albanese variety; it is
universal for regular maps, ones defined everywhere, into Abelian varieties. Then
he took its Picard variety to be that of X. He noted his Picard and Albanese
varieties need not be equal to those of a desingularization of X. By contrast, Weil’s
P and A are birational invariants, and his universal map X → A is a rational map.
In 1962, Conjeerveram Seshadri [68] generalized Chevalley’s construction to an X
with arbitrary singularities, recovering Rosenlicht’s generalized Jacobian.

In 1961, Mattuck [42] took, on a smooth X over an algebraically closed field,
a complete algebraic system Σ of suitably positive divisors C. He parameterized
Σ by the Chow variety H, the locus of points given by the Chow coordinates of
the C ∈ Σ. He fixed a D ∈ Σ, and took the class of the difference C − D for
C ∈ Σ, to get a rational map α : H → P . In order that α be defined everywhere,
he reembedded X in another projective space, because Murre [51] had just proved
that then H is smooth, so normal.

Mattuck proved that α is a projective bundle29 and has a section. The section
corresponds to a refined Poincaré divisor: not only does it define a Poincaré family,
but it contains no fiber of α, so cuts each fiber in a divisor. Finally, Mattuck

27The singularity cannot be arbitrary; for example, it cannot be a planar triple point.
28For a comprehensive discussion of the “Néron model” and its connection to the Picard

scheme (and Picard algebraic space) along with historical notes and references to the original

sources, please see the textbook [9] of Siegfried Bosch, Werner Lütkebohmert, and Raynaud.
29Earlier, in 1956, Kodaira [38] obtained a similar result analytically.
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studied the case that X is a curve of genus g > 1, so that H is the n-th symmetric
power of X where n is the degree of the divisors. He proved that α is a bundle30 if
n > 2g − 2, and that α has a section31 if n > 4g, but no section if n = 2g − 1 and
the divisor classes modulo algebraic equivalence on P form a group of Q-rank 1. So
it seems unlikely that α has a section if n = 2g − 1 and X has general moduli.

Thus, in 1962, the algebraic theory of the Picard variety was indirect, involved,
and incomplete. There were competing definitions and constructions, each with
advantages and disadvantages. There was a lot of fussing with fields of definition.
There were loose ends. Notably, there was no fully satisfactory way to parameterize
divisors or to construct quotients. So there was not enough machinery to prove the
Completeness of the Characteristic System or to treat, in general, the behavior of
the (generalized) Picard variety in a family. Grothendieck brilliantly handled those
issues in the way explained in the next two sections.

4. The Picard Functor

Grothendieck certainly did not feel
that he was attempting to use powerful techniques
in order to obtain stronger results by generalizing.

What he perceived himself as doing was simplifying situations and objects,
by extracting the fundamental essence of their structure.

Leila Schneps [64, p. 3]

Many times, Grothendieck proceeded “by extracting the fundamental essence”
of existing theories, and then developing his own versions, for example his theories
of schemes, representable functors, the Hilbert scheme, and the Picard scheme.
Parts of those theories belong to the theory of the Picard functor. Those parts are
treated in depth in [32] and [25], and they are introduced in this section.

To begin, here is a bit more informal history. Starting in 1937, Zariski made
deep use of the local ring of all rational functions that are finite at a given point
of a variety with a fixed field of definition. Inspired by Zariski’s work, Chevalley
developed an intrinsic theory of abstract varieties V in his paper [17], submitted
on 2 July 1954. On p. 2, he called the set of all the local rings of the points of V its
model, and then developed a theory of models. Earlier, in January 1954, he lectured
on his theory at Kyoto University, according to Masayoshi Nagata [55, p. 78], who
then generalized it by replacing the field of definition by a Dedekind domain.

In 1944, Zariski topologized the set of all valuation rings of the field of rational
functions of a variety in order to use the finite-covering property to pass from
local uniformization to global desingularization. In 1949, Weil [76, I, pp. 411–413]
observed that his abstract varieties support what he called the Zariski Topology,
whose closed sets are the subvarieties and their finite unions.

Weil used the Zariski topology to define locally trivial fiber spaces. He discussed
the natural bijective correspondence between the line bundles on a smooth variety
and its linear equivalence classes of divisors. Then, in his 1950 paper on Abelian
varieties [76, I, pp. 438–439], he suggested that those line bundles might be used to
develop, for any abstract variety, a version of Severi’s generalized Jacobian.

As already noted in Section 2, Serre, in his 1954 ICM talk, announced a theory

30Atiyah [3, p. 451] wrote in 1957 that this case is “well known.”
31In fact, n > 2g − 1 suffices; please see p. 26 below.
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of coherent algebraic sheaves. In fact, he worked over an arbitrary algebraically
closed field k, of any transcendence degree over the prime field, and used k both as
the field of definition and as the field of coordinates.32 Moreover, he worked only
with projective space and its subvarieties, which he allowed to be reducible, and he
viewed as the closed sets of a topology, which he too called the “Zariski topology.”

In 1955, Serre presented the details in his celebrated paper Faisceaux algébriques
cohérents [66, pp. 310–391]. He also generalized the notion of abstract variety via
Henri Cartan’s notion33 of ringed space. It is a topological space X endowed with
a sheaf of rings OX , called the structure sheaf : over each open set, its sections
form a ring; for each smaller open set, the restriction map is a ring homomorphism.
To be a variety, X must be covered by finitely many open subsets, each of which,
when endowed with the restriction of OX , is isomorphic to an affine variety ; the
latter’s space is a closed subspace of an affine space, and its structure sheaf has, as
its sections over an open set U , the rational functions defined everywhere on U .

Both Serre and Chevalley downgraded rational maps, preferring maps34 that are
defined everywhere. For Serre, a map of varieties φ : X → Y is a map of ringed
spaces: φ is a continuous map equipped with a map φ∗ relating the two structure
sheaves, so that a section f of OY over an open set V yields a section φ∗f of OX

over f−1V in a way respecting addition, multiplication, and restriction.
Grothendieck “extracted the fundamental essence of” those ideas, and developed

a theory of schemes.35 By February 1956 (see [20, p. 32]), he was working with
ringed spaces that have an open covering by affine schemes, or ring spectra.36 The
spectrum of a ring R is the set of all its prime ideals p. Its topology is generated by
its principal open subsets D(f) for all f ∈ R, where D(f) := {p ∋ f}. Over D(f),
the sections of the structure sheaf are the fractions a/fn for all a ∈ R and n ≥ 0.
In 1956, Grothendieck took R to be Noetherian, but in EGA I [29], which appeared
in 1961, R is an arbitrary commutative ring. In any case, R may have nilpotents.

Moreover, Grothendieck worked with Cartier’s generalization in [11, p. 206] of
coherent sheaves, the quasi-coherent sheaves. He [20, p. 32] told Serre why: they are
“technically very convenient because they have the relevant properties of coherent
sheaves without requiring the finiteness (on an affine, they correspond to all the
modules over the coordinate ring, and not just the finitely generated modules).”

The generality is vast, but not idle. Murre put it as follows, according to Schneps
[64, p. 2]: “Undoubtedly, people did see in the mid 50’s that one could generalize a
lot of things to schemes, but Grothendieck saw that such a generalization was not
only possible and natural, but necessary to explain what was going on, even if one
started with varieties.”

The spectrum S of a field k is a single point, but S has k as structure sheaf.

32Cartier [11] generalized Serre’s theory to an arbitrary field of definition, and studied the

effect of extending it. He took the field of coordinates to be a universal domain.
33Cartan had used the notion to define C∞-manifolds. He and Serre had used it to define

complex analytic manifolds.
34Serre called them regular maps, a traditional term; Chevalley [18, p. 219] used morphisms.
35Cartier [12, Fn. 8] noted, “This word results from a typical epistemological shift from one

thing to another: for Chevalley, who invented the name in 1955, it indicated the ‘scheme’ or
‘skeleton’ of an algebraic variety, which itself remained the central object. For Grothendieck, the
‘scheme’ is the focal point, the source of all the projections and all the incarnations.”

36Cartier [12, Fn. 29] explained, “It was [Israel] Gelfand’s fundamental idea [of 1938] to as-

sociate a normed commutative algebra to a space. . . . The term ‘spectrum’ comes directly from
Gelfand.”
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Call k the field of definition of a scheme X if there is a distinguished map X → S.
On the other hand, given a universal domain Ω extending k, let T be its spectrum.
Then a point of X with “coordinates” in Ω, or an Ω-point of X, is just a map
T → X that respects the distinguished maps X → S and T → S. Cartier [12,
p. 20] described this new situation as being “admirable simplicity—and a very
fruitful point of view—but a complete change of paradigm!”

For example, say X is the spectrum of the residue ring R of the polynomial ring
k[u1, . . . , un] modulo the ideal generated by polynomials fλ. Then the inclusion
k → R defines the map X → S. Further, since Ω is a universal domain, a zero
(c1, . . . , cn) of the fλ in Ωn amounts exactly to a k-algebra map γ : R → Ω that
carries the residue of ui to ci. In turn, γ amounts exactly to an S-map T → X.

However, there’s no need to restrict S and T to be the spectra of fields, and good
reason not to. Moreover, the right setting for this theory, as for any theory whose
principals are objects and maps, is Category Theory. It is not simply a convenient
language for expressing abstract ideas, but more importantly, an effective tool,
which eases the work at hand and affords new possibilities. Grothendieck recognized
as much, and promoted Category Theory.

Thus, given a base scheme S, an S-scheme is a scheme equipped with a map to
S, its structure map. An S-map is a map between S-schemes that commutes with
the two structure maps. The category of S-schemes has products:37 the product
of X and Y is an S-scheme X ×S Y with a distinguished pair of S-maps to X and
Y , the projections, such that composition with them sets up a bijection from the
S-maps T → X ×S Y to the pairs of S-maps T → X and T → Y .

The product X ×S Y is determined, formally, up to unique isomorphism. It is
constructed by patching together the spectra of the tensor products of the rings of
affines that cover S, X, and Y . It can also be viewed as the result of base change
of X when Y is viewed as a new base. By contrast, Cartier [12, p. 20] noted that,
“in both [Serre’s and Chevalley’s] cases, the two fundamental problems of products
and base change could only be approached indirectly.”

Another way to view a map X → S is as a family X/S with S as parameter space
and X as total space. Its members are the fibers, the preimages Xs of the points
s ∈ S. More precisely, Xs := X ×S Y where Y is the spectrum of the residue field
ks of the stalk OS,s, which is the local ring of all functions that are each defined
on some neighborhood of s. Grothendieck discovered that, many properties of the
Xs vary continuously when X is S-flat; that is, OX,x is OS,s-flat for all s ∈ S and
x ∈ Xs. Often, he considered what he called a geometric fiber, which is the product
X ×S Y ′ where Y ′ is the spectrum of an algebraically closed field containing ks.

An S-map T → X is called a T -point of X, and the set of all of them is denoted
by X(T ) or hX(T ). An S-map T ′ → T induces a set map hX(T )→ hX(T ′). Thus
hX is a contravariant functor from the category of S-schemes to the category of
sets; it is called the functor of points of X.

The contravariant functorsH from S-schemes to sets themselves form a category.
The assignment X 7→ hX is a functor from S-schemes into the latter category. This
functor is an embedding by Yoneda’s Lemma. Given an H, if an X is found with
hX = H, then H is said to be representable by X. If so, then H(X) contains a
universal element W , which corresponds to the identity map of X; namely, each

37Mac Lane [41, p. 76] said that he himself, in 1948 and 1950, formulated “the idea that . . .
products could be described by universal properties of their projections.”



THE PICARD SCHEME 19

element Y ∈ H(T ) defines a unique S-map φ : T → X with H(φ)W = Y . In other
words, the T -points of X represent the elements of H(T ). Conversely, if an X is
found with a universal W ∈ H(X), then there’s a canonical isomorphism hX = H.

The first important example is the functor P (E), where E is an arbitrary quasi-
coherent sheaf on S. For each S-scheme T , the set P (E)(T ) is the set of invertible
quotients L of the pullback ET ; invertible means that L is the sheaf of sections
of a line bundle. The functor P (E) is representable by an S-scheme P(E). Auto-
matically, P(E) carries a universal invertible quotient of EP(E), denoted OP(E)(1);
namely, each invertible quotient L of ET defines a unique S-map φ : T → P(E) with
φ∗OP(E)(1) = L. Moreover, P(E)×SY = P(EY ) for any S-scheme Y . In particular,
the fiber P(E)s over s ∈ S is the projective space of 1-dimensional quotients of the
vector space Es ⊗ ks where Es is the stalk of E at s.

For convenience, assume from now on that all schemes are locally Noetherian,
or covered by affine schemes on Noetherian rings, and that S is Noetherian, or
covered by finitely many such. Assume also that X is projective over S; that is, X
can be embedded as a closed subscheme of P(E) for some coherent sheaf E on S.

Consider the Hilbert functor HilbX/S , treated by Grothendieck in his May 1961
Bourbaki talk [31, Exp. 221]. For each S-scheme T , the set HilbX/S(T ) is the set of
T -flat closed subschemes Y of X ×S T . Moreover, for each polynomial F (ν) with

rational coefficients, HilbX/S has a subfunctor HilbFX/S ; namely, for all T , the set
HilbFX/S(T ) is the set of Y such that Yt has Hilbert polynomial F for all t ∈ T ,
that is, F (ν) = χ(OYt(ν)) where OYt(ν) is the pullback to Yt of the νth tensor
power of OP(E)(1). Grothendieck proved that HilbX/S is representable by a locally
Noetherian S-scheme HilbX/S , the Hilbert scheme. In fact, HilbX/S is the disjoint
union of projective S-schemes HilbF

X/S , which represent the functors HilbFX/S .
Automatically, X ×S HilbX/S has a universal subscheme W ; namely, each T -

flat closed subscheme Y of X ×S T defines a unique S-map T → HilbX/S with
W ×HilbX/S

T = Y . Note that the HilbF
X/S depend on the choice of embedding

of X in some P (E), but HilbX/S does not. Thus the Hilbert scheme is a noble
replacement for Chow coordinates; the latter only parameterize the cycles on a
variety V , and depend on the choice of embedding of V in projective space.

A subscheme R of X ×S X defines a flat and projective equivalence relation if
each projection R→ X is flat and projective and if, for each S-scheme T , the subset
hR(T ) of hX(T )×hX(T ) defines a set-theoretic equivalence relation. Grothendieck
found two constructions of a quotient X/R in the strongest sense of the term.
Namely, first, an S-map X → Z factors through X/R if and only if the two com-
positions R ⇒ X → Z are equal; if so, then X/R → Z is unique. So by “abstract
nonsense,” X/R is determined up to unique isomorphism. Second, the quotient
map X → X/R is flat and projective, and the canonical map R→ X ×X/R X is an

isomorphism.38

Grothendieck’s first construction [31, p. 212-15] uses quasi-sections to reduce
to the case where X is affine and each R → X has finite fibers. However, his
second construction [31, p. 232-13] is easier and more elegant. It proceeds as follows:
R lies in HilbX/S(X), so defines a map φ : X → HilbX/S ; the graph Γφ is a
closed subscheme of the universal subscheme W ; finally, by Grothendieck’s Descent
Theory, Γφ descends to a closed subscheme of HilbX/S , which is the desired X/R.

Assume from now on that X is also S-flat. Then HilbX/S has an important

38It follows that hX/R is the fpqc sheaf associated to hX/hR in the sense discussed below.
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subfunctor DivX/S ; namely, for each S-scheme T , let DivX/S(T ) consist of the
effective Cartier divisors D in HilbX/S(T ), that is, the flat subschemes D whose
ideal ID is locally generated by one nonzerodivisor; equivalently, ID is invertible as
an abstract sheaf. Grothendieck [31, p. 232-10] proved that DivX/S is representable
by an open subscheme DivX/S of HilbX/S .

Given an invertible sheaf L on X, define39 a subfunctor LinSysL/X/S of DivX/S :

for each S-scheme T , let LinSysL/X/S(T ) consist of the D in DivX/S(T ) for which

there is an invertible sheafM on T such that the inverse I−1
D is isomorphic to the

tensor product on X ×S T of the pullbacks of L andM.
Assume in addition from now on the geometric fibers of X/S are integral;

that is, each affine ring of each geometric fiber is an integral domain. Grothendieck
[31, p. 232-11] proved that then there is a coherent sheaf Q on S, determined up
to unique isomorphism, such that LinSysL/X/S is representable by P(Q). Hence,

P(Q) is equal to a closed subscheme of DivX/S . Also, if H1(L|Xs) = 0 at s ∈ S,
then s has a neighborhood on which Q is free, or isomorphic to Or

S for some r.
In general, what makes a functor H representable? Say H = hX . Then given

any S-scheme T and any open covering {Tλ} of T , two maps T → X are equal if
their restrictions to each Tλ are equal. Furthermore, maps φλ : Tλ → X are the
restrictions of a single map T → X if, for all λ and µ, the restrictions of φλ and
φµ to Tλ ∩ Tµ are equal. In other words, as U ranges over the open sets of T , the
H(U) form a sheaf. The latter condition does not explicitly involve X. So it makes
sense for any H, representable or not. If it is satisfied, H is called a Zariski sheaf.

Here’s another formulation. Let T ′ be the disjoint union of the Tλ, and consider
the induced map T ′ → T . Then T ′ ×T T ′ is the disjoint union of the Tλ ∩ Tµ. So
the condition to be a Zariski sheaf just means that the induced sequence of sets

(4) H(T )→ H(T ′) ⇒ H(T ′ ×T T ′)

is exact ; that is, the first map is injective, and its image consists of the elements of
H(T ′) whose two images are equal in H(T ′ ×T T ′).

Grothendieck’s Descent Theory yields more. Let T ′ → T be an fpqc map; namely,
it is flat and surjective, and the preimage of any affine open subscheme is a finite
union of affine open subschemes. If H is representable, remarkably (4) is still exact;
in other words, H is an fpqc sheaf. Indeed, the fpqc Grothendieck topology may be
defined as the refinement of the Zariski topology with the fpqc maps as additional
generalized open coverings. In particular, H is an étale sheaf, the notion obtained
by requiring the maps to be étale, that is, flat, unramified and locally of finite type.

The Picard group Pic(X) is the group, under tensor product, of isomorphism
classes of invertible sheaves on X. The absolute Picard functor PicX is defined by
PicX(T ) := Pic(X ×S T ). It is never a Zariski sheaf, so never representable.

There is a sequence of ever more promising “Picard functors.” First comes the
relative Picard functor PicX/S defined by

PicX/S(T ) := Pic(X ×S T )/Pic(T )

where Pic(T ) acts via pullback. Following it are its associated sheaves in the
Zariski, étale and fpqc topologies: Pic(X/S)(Zar), Pic(X/S)(ét), and Pic(X/S)(fpqc).
Grothendieck [31, p. 232-03, (1.6)] formed them as direct limits. For example,

Pic(X/S)(Zar)(T ) := lim−→T ′ PicX/S(T
′)

39This subfunctor appears in [31, p. 232-10], but the notation for it comes from [46, p. 93].
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where T ′ ranges over the small category of all open coverings of T .
Recall that S is Noetherian and that X is a flat and projective S-scheme with

integral geometric fibers. Grothendieck [31, pp. 232-4–6] proved40 that then the
three canonical comparison maps are, respectively, injective, injective, and bijective:

PicX/S ↪→ Pic(X/S)(Zar) ↪→ Pic(X/S)(ét)
∼−→ Pic(X/S)(fpqc) .

Moreover, the first two maps are bijective if X → S has a section; the middle map
is bijective if it just has a section on a Zariski neighborhood of each point of S.

A simple example shows that, in general, we must pass to the étale sheaf. Namely,
in the real projective plane, consider the conic X : u2+v2+w2 = 0. Let S and T be
the spectra of R and C. Then T → S is an étale covering. Moreover, X×S T is the
complex conic with the same equation; so X is isomorphic to the complex projective
line. The latter’s universal sheaf O(1) defines an element τ ∈ Pic(X/S)(ét)(S), as
the two pullbacks of O(1) to X ×S T ×S T are isomorphic. And τ is not in the
image of Pic(X/S)(Zar)(S), as X has no S-points.

Grothendieck’s main existence theorem [31, p. 232-06] says that Pic(X/S)(ét) is
representable by a scheme PicX/S. It is called the Picard scheme. Of course, if
Pic(X/S)(Zar) is representable, then it is an étale sheaf, so equal to Pic(X/S)(ét), and
representable by PicX/S . Similarly, if PicX/S is representable, then all four functors
are equal, and representable by PicX/S .

Grothendieck’s proof is fairly simple at this point. Here is the idea. Fix an
embedding of X in a P(E). Given any S-scheme T and any quasi-coherent sheaf F
on P(E)×S T , let F(n) denote the tensor product of F and the pullback of the nth
tensor power of the universal sheaf OP(E)(1). Let I be the ideal of the universal

divisor on X ×S DivX/S , and I−1 its inverse. Form the open subscheme D+ of

DivX/S on which all the higher direct images of I−1(n) vanish for all n ≥ 0.

Set L := I−1|(X ×S D+). Then LinSysL/X×SD+/D+ is representable by P(Q)
where Q is a coherent sheaf on D+. Moreover, Q is locally free; that is, each point
of D+ has neighborhood on which Q is free. Thus P(Q) is flat over D+.

Set R := P(Q). Then R is a closed subscheme of D+ ×S D+. Moreover, for
each S-scheme T , the subset hR(T ) of hD+(T ) × hD+(T ) consists of the pairs of
D, D′ ∈ D+(T ) for which there is an invertible sheafM on T such that the ideal
ID is isomorphic to the tensor product of ID′ and the pullback ofM. Thus hR(T )
is a set-theoretic equivalence relation.

Although D+ isn’t Noetherian, nevertheless it is the disjoint union of Noetherian
subschemes, as HilbX/S is the disjoint union of the projective S-schemes HilbF

X/S ,

and R decomposes compatibly. Consequently, the quotient D+/R exists.
For each m ≥ 0, let Pm be the fpqc subsheaf of Pic(X/S)(fpqc) associated to the

subfunctor of PicX/S whose value at T consists of the classes of invertible sheaves
L on X ×S T for which all the higher direct images of L(n) vanish on T for all
n ≥ m, but the direct image doesn’t vanish. Then P0 is representable by D+/R.

Tensor product with the pullback ofOX(1) defines an isomorphism Pm+1
∼−→ Pm

for all m ≥ 0. So the Pm are representable by (isomorphic) schemes Um. Each
inclusion Pm ↪→ Pm+1 is representable by an open embedding Um ↪→ Um+1. Finally,
Pic(X/S)(fpqc) is the “union” of the Pm; so is representable by the union, or rather

40In [31], Grothendieck did not consider Pic(X/S)(ét). However, his methods apply to it, and

show that it is equal to Pic(X/S)(fpqc), because in the case at hand, there exists an étale quasi-
section, an S-map S′ → X for which the structure map S′ → S is étale.



22 STEVEN L. KLEIMAN

direct limit, of the Um. Thus Grothendieck proved his main existence theorem.
Commenting on his proof, Grothendieck [31, p. 232-13] noted that “the approach

is basically the one followed by Matsusaka” (so by Igusa, Chow and Castelnuovo).
Further, he [31, p. 232-14] noted that “the proof appeals neither to the preliminary
construction of the Jacobians of curves . . . nor to the theory of Abelian varieties,
and thus differs in an essential way from the ‘traditional’ treatments in Lang’s book
[40] and Chevalley’s paper [19]. . . . That the construction of the Picard scheme ought
to precede and not follow the theory of Abelian varieties is clear a priori from the
fact that . . . Rosenlicht’s ‘generalized Jacobians’ are not Abelian varieties.” More
of Grothendieck’s advances are highlighted in the next section.

5. The Picard Scheme

His [Grothendieck’s] feeling was that “those people”
made too strict assumptions and tried to prove too little.

Jacob Murre, quoted in [64, p. 2]

Above, Murre describes Grothendieck’s feeling about the theory of the Picard
variety: it was hampered by its developers’ narrow vision. This section explains
how Grothendieck’s broader vision led to clarifying and settling a number of issues.
Primarily, we focus on the two major issues: Behavior in a Family and Completeness
of the Characteristic System. In addition, we consider some other issues mentioned
earlier, especially Poincaré divisors and the Albanese variety. And we consider some
other ways that other mathematicians enhanced Grothendieck’s theory between
1962 and 1973, especially ways of generalizing his main existence theorem. For
more discussion of those issues and some discussion of a lot of other issues of the
same sort, please see [31], [25], [9], and [8].

As noted in the Introduction, Grothendieck explained the behavior of the Picard
schemes of the members of a family as compatibility with base change. More
precisely, if the functor Pic(X/S)(fpqc) is representable by an S-scheme PicX/S ,
then for any S-scheme S′, the functor Pic(X×S′/S′)(fpqc) is representable by the
S′-scheme PicX/S ×SS

′. In particular, if S′ is the spectrum of the residue field ks
of s ∈ S, then the Picard scheme of the fiber Xs of X/S is just the fiber of PicX/S .

Compatibility holds for this reason. For any S′-scheme T , the equation

PicX×S′/S′(T ) = PicX/S(T )

results from the definitions, because (X ×S S′)×S′ T = X ×S T . So the equation

Pic(X×S′/S′)(fpqc)(T ) = Pic(X/S)(fpqc)(T )

follows, because a map of S′-schemes T ′ → T is a covering if and only if it is a
covering when viewed as a map of S-schemes. However, the equation(

PicX/S ×SS
′)(T ) = PicX/S(T )

holds, because the structure map T → S′ is fixed. Since the right sides of the last
two equations are equal, so are their left sides, as desired.

Until otherwise said near the end of the section, assume that S is the spectrum
of an algebraically closed field k and that X is an integral and projective S-scheme.
As is common, write “k-scheme,” DivX/k, etc. for “S-scheme,” DivX/S , etc.

In order to complete the discussion in Section 2 of the algebraic proofs of the
Theorem of Completeness of the Characteristic System and of the Fundamental
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Theorem of Irregular Surfaces, we must discuss what’s called41 the Zariski tangent
space Tz(Z) to a k-scheme Z at a rational point z, a point whose residue field kz is
k. Let m be the maximal ideal, and set Tz(Z) := Homk(m/m2, k).

Then Tz(Z) can be viewed as the vector space of k-derivations δ : OZ,z → k;
indeed, δ(m2) = 0, and so δ corresponds to a linear map m/m2 → k. Let kε be the
ring of dual numbers, the ring obtained by adjoining an element ε with ε2 = 0. Then
δ corresponds to the map of k-algebras u : OZ,z → kε given by u(a) := a + δ(a)ε
where a ∈ k is the residue of a. Finally, let Sε be the spectrum of kε; it is the
free tangent vector. Then u corresponds to a k-map Sε → Z, whose image is
supported at z. Denote the set of such k-maps by hZ(Sε)z. Then in summary
Tz(Z) = hZ(Sε)z.

Often, if Z represents a given functor H, that is hZ = H, then we can work out
a useful description of hZ(Sε)z by viewing it as the subset of H(Sε) of elements
whose image in H(S) is z. For example, say Z = HilbX/k and z ∈ Z represents
Y ⊂ X. Then hZ(Sε)z is the set of Sε-flat closed subschemes of X ×k Sε whose
fiber over S is Y . Say the ideal of Y is IY . Working it out, Grothendieck [31,
pp. 221-21–23] found hZ(Sε)z = H0(NY ) where NY := Hom(IY /I2Y , OY ). If Y is
a Cartier divisor D, then ND is invertible on D, and

(5) Tz(DivX/k) = H0(ND).

Let Λ parameterize a system of divisors on X including D, and say λ ∈ Λ
represents D; in other words, there is a map Λ → DivX/k carrying λ to z. It
induces a map of vector spaces θ : Tλ(Λ) → Tz(DivX/k). If D is integral, then,
owing to (5), the image of θ defines a linear system on D, the storied characteristic
linear system. When is it complete? More generally, for anyD, when is θ surjective?

Each version of the Theorem of Completeness provides conditions guaranteeing
the existence of a Λ that is smooth at λ and for which θ is surjective. But then
DivX/k is smooth at z, owing to a simple general observation [37, p. 305]. Thus
the conditions in question just guarantee that Λ := DivX/k is smooth at z.

Some conditions are necessary. Indeed, in 1943 Severi’s student, Guido Zappa,
found a smooth complex surface X such that DivX/k has an isolated point z with
dimTz(DivX/k) = 1; so DivX/k has nilpotents; for details, please see [46, pp. 155–
156] or [25, p. 285]. Commenting, Grothendieck [31, pp. 221-24] wrote that this
example “shows in a particularly striking way how varieties with nilpotents are
needed to understand the phenomena of the most classical theory of surfaces.”

Grothendieck then gave an enlightening proof of Kodaira’s 1956 version [38] of
Completeness. As to Kodaira’s own proof, Kodaira and Spencer [39, p. 477] said
that it’s “based essentially on the theory of harmonic differential forms” [so not
algebraic]; it’s “indirect and does not reveal the real nature of the theorem.”

Kodaira proved that, if X and D are smooth and complex, and42 if h1(I−1
D ) = 0,

then DivX/k is smooth at z, where ID is the ideal of D. For example, h1(I−1
D ) = 0

by Serre’s computation if D is a hypersurface section of large degree. In 1904,
Enriques studied the case that X is a surface and D is regular and nonspecial,
meaning43 h1(I−1

D ) = h2(I−1
D ) and h2(I−1

D ) = 0. Thus then Completeness holds.

41In 1947, Zariski [77] introduced and studied m/m2 for a variety in any characteristic, and
called it the “local vector space.” In Weil’s math review of Zarisk’s paper, Weil wrote: “the dual

vector-space . . . seems to deserve to be called the ‘tangent vector-space’.”
42It is now common to let OX(D) stand for I−1

D , but that practice is not followed here.
43At first, “regular” alone was used to mean h1(I−1

D ) = 0 and h2(I−1
D ) = 0.
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Grothendieck proved Kodaira’s theorem for any X and D as follows. Let I
denote the ideal of the universal divisor on X ×k DivX/k. Then I−1 is invert-
ible. So it defines a map αX/k : DivX/k → PicX/k, called the Abel map. Assume

H1(I−1
D ) = 0. Then αX/k is smooth at z; see below. Hence DivX/k is smooth

at z if and only if PicX/k is smooth at αX/k(z), or equivalently by translation,
everywhere. In characteristic zero, PicX/k is smooth by Cartier’s Theorem [46,
p. 167]. Thus DivX/k is smooth at z in characteristic zero.

In positive characteristic, PicX/k can be nonreduced everywhere even if X is a
smooth surface; see below. If so and h1(I−1

D ) = 0, then DivX/k is nonreduced at z.
Thus Completeness fails, even if D is a general hypersurface section of large degree.

Since k is algebraically closed, X has a rational point, so that X → S has
a section. Set P := PicX/k. Then PicX/k is representable by P . So X ×k P
carries an invertible sheaf P, called a Poincaré sheaf, whose class modulo Pic(P )
is universal. In particular, there is an invertible sheaf M on P such that I−1 is
isomorphic to the tensor product on X ×k DivX/k of the pullbacks of P and M.
Then LinSysP/X×P/P is representable, on the one hand, by DivX/k regarded as a

P -scheme via αX/k, and on the other, by P(Q) for some coherent sheaf Q on P .
So DivX/k and P(Q) are canonically isomorphic P -schemes. If H1(I−1

D ) = 0, then
Q is free at αX/k(z), and so αX/k is smooth at z, as desired.

Grothendieck [31, pp. 236-16] asserted T0(PicX/k) = H1(OX); for proofs, please

see [46, pp. 163–164] and [25, pp. 281–282]. So dimPicX/k ≤ h1(OX), with equality
if and only if PicX/k is smooth. That result is part of Grothendieck’s contribution
to the proof of the Fundamental Theorem of Irregular Surfaces. In the examples
of Igusa and Serre recalled in Section 2, we have dimPicX/k < h1(OX); hence,
PicX/k is not smooth at 0, so nonreduced everywhere.

Grothendieck noted smoothness holds if H2(OX) = 0, owing to the Infinitesimal
Criterion for Smoothness and a well-known computation; for details, please see [25,
pp. 285–286]. For example, if X is a curve, then PicX/k is smooth, so of dimension

g where g := h1(OX). In positive characteristic, Mumford [46, pp. 193–198] proved
PicX/k is smooth if and only if Serre’s Bockstein operations [66, p. 505] all vanish.

Grothendieck did not consider the other versions of Completeness, but his work
does provide a basis for proving them algebraically. First consider Severi’s 1921
version (3) on p. 9. Given an invertible sheaf L on X, set e(L) := χ(L)−1−h2(L).
Call L arithmetically effective if e(L) ≥ 0. Vary L. Then χ(L) is locally constant,
and h2(L) is upper semi-continuous. So e(L) is lower semi-continuous.

Hence there is an open subscheme of PicX/k, say Pae, that parameterizes the

arithmetically effective L on X. Set Dae := α−1
X/kPae. Assume dimX = 2. Then

Dae surjects onto Pae, since over a point representing an L, the fiber has dimension
e(L)+h1(L), which is nonnegative. In these terms, a refined Version (3) says that,
if PicX/k is smooth too, then Dae is smooth on a dense open subset U .

Since h0(L) is upper semi-continuous in L, there is an open subscheme V ⊂ Pae

that parameterizes the L where h0(L) has a local minimum. Set U := α−1
X/kV .

Recall that PicX/k carries a coherent sheaf Q such that P(Q) = DivX/k. Then V
is precisely the set of points of Pae at which the rank of Q has a local minimum.
Suppose PicX/k is smooth. Then the restriction Q|V is locally free. Hence U → V
is smooth. So U is smooth. Thus we have refined and proved Severi’s version (3).

In 1944, Severi discovered another condition on D for Completeness to hold if
PicX/k is smooth. The condition requires D to be semi-regular ; namely, in the
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standard long exact sequence of cohomology

0 −→ H0(OX) −→ H0(I−1
D ) −→ H0(ND)

∂0

−−→ H1(OX) −→ H1(I−1
D )

u−−→ H1(ND)
∂1

−−→ H2(OX),
(6)

the map u is 0, or equivalently ∂1 is injective. In particular, D is semi-regular if
either H1(I−1

D ) = 0 or H1(ND) = 0.
Severi worked with an integral D on a smooth surface X, and he formulated the

condition in its dual form: the restriction H0(Ω2
X) → H0(Ω2

X |D) is surjective; in
other words, the canonical system on X cuts out a complete system on D. In 1959,
Kodaira and Spencer [39, p. 481] reformulated Severi’s condition as u = 0 in any
dimension. Then they proved that, in the complex analytic case, if X and D are
smooth and if u = 0, then DivX/k is smooth at z.

Grothendieck did not consider semi-regularity per se, but he [31, pp. 221-23]
did observe that H1(ND) houses the obstruction to deforming D in X. Thus44

if H1(ND) = 0, then DivX/k is smooth at z in any characteristic whether X
and D are smooth or not. For example, if X is a curve, then DivX/k is smooth

everywhere; however, αX/k is not smooth at z if degD < g where g := h1(OX),
since dimDivX/k = degD by (5) and dimPicX/k = g as noted above.

Mumford [46, pp. 157–159] explicitly computed the obstruction to deforming D,
as well as its image under ∂1. He proved that this image vanishes in characteristic
0 using an exponential. Therefore, if ∂1 is injective, then DivX/k is smooth at z.
Cartier’s Theorem is not involved, but recovered. Thus in 1966 Mumford gave the
first algebraic proof that semi-regularity yields Completeness in characteristic 0.

In 1973, I [37] gave another algebraic proof, yielding a more refined statement:
assume PicX/k is smooth; then DivX/k is smooth at z of dimension ρ where

ρ := h1(OX)− 1 + h0(I−1
D )− h1(I−1

D )

if and only if D is semi-regular. My proof 45 does not use obstruction theory, but a
short formal analysis, essentially due to George Kempf, of the scheme P(Q) above.

In passing, set R := dimz DivX/k and note that (5) yields R ≤ h0(ND), with

equality if and only if DivX/k is smooth at z. Also, (6) yields ρ ≤ h0(ND), with
equality if and only if D is semi-regular. Thus if DivX/k is smooth at z, then D is
semi-regular if and only if R = ρ.

Generalizing more of Section 2, set δ := dimCoker(∂0) and q := h1(OX). Then
(6) yields δ ≤ q, with equality if H1(I−1

D ) = 0. As H1(I−1
D ) = 0 if D is a hypersur-

face section of large degree, we have generalized Castelnuovo’s result (1). Next, set
r := h0(I−1

D )− 1. Then (6) yields h0(ND) = r+ δ. Hence R ≤ r+ δ, with equality
if and only if DivX/k is smooth at z. Thus we have generalized Severi’s result (2).
Finally, if X is a surface, PicX/k is smooth and z lies in the open subset U ⊂ Dae,
then DivX/k is smooth at z, and so R = r + δ, just as Severi discovered.

Grothendieck [31, pp. 2-12] proved the following basic properties of the connected
component of 0 in PicX/k, denoted Pic0X/k. It is open and closed. It is irreducible.

44Perhaps not surprisingly, the conditionH1(ND) = 0 is related to the flaw in the constructions
of a good algebraic system made in 1904 by Enriques and in 1905 by Severi. In 1934, Zariski [78,

p. 100] noted that both constructions rely on a certain assumption and that Severi’s 1921 “criticism
is to the effect that the available algebro-geometric proof of this assumption fails if” H1(ND) ̸= 0.

45The proof works over any Noetherian S, and yields this more general result: let D be a
divisor on an (integral) geometric fiber of X/S, and assume PicX/S is smooth; then DivX/S is
smooth of relative dimension ρ at the point representing D if and only if D is semi-regular.
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Forming it commutes with base change. It is quasi-projective; that is, it is an open
subscheme of a projective k-scheme. Moreover, it is projective if X is normal. Of
course, the Picard variety of X is the set of points of Pic0X/k with coordinates in a
given universal domain. If X is a curve, then Pic0X/k is its generalized Jacobian.

Define a Poincaré divisor to be a Cartier divisor ∆ on X × P , where P is some
connected component of PicX/k, such that ∆ yields a section P → DivX/k. Such
∆ abound, as is shown next, generalizing Mattuck’s work mentioned on p. 15.

Given any connected component P ′ of PicX/k, notice it’s a translate of Pic0X/k,
so quasi-projective. Hence there’s an n such that, for any invertible sheaf L on X
represented by a point of P ′, we have h0(L(n)) > dimPicX/k and h1(L(n)) = 0
where L(n) is the nth twist by OX(1). Let P be the translate of P ′ defined by
OX(n). Since P is quasi-projective, it has a universal sheaf OP (1).

Recall PicX/k carries a coherent sheaf Q such that P(Q) = DivX/k. Notice

the restriction Q|P is locally free of rank h0(L(n)), so of rank more than dimP .
Take m so that Hom(Q|P, OP )(m) is generated by its global sections, so by finitely
many. Then a general linear combination of the latter vanishes nowhere on P by a
well-known lemma, [3, p. 426] or [46, p. 148], due to Serre. So there’s a surjection
Q|P ↠ OP (m). It defines a section P → P(Q), and so a Poincaré divisor ∆.

Suppose also that X is a curve. Set g := h1(OX) and recall g = dimPicX/k.
Take P to be any connected component of PicX/k that parameterizes invertible

sheaves L on X of degL > 2g − 1. Then h0(L) > g and h1(L) = 0. So similarly
there is a section P → P(Q), and so a Poincaré divisor ∆.

Here’s an introduction46 to the scheme-theoretic theory of the Albanese variety.
Assume X is normal. Then Pic0X/k is projective. Let P denote its reduction,
namely, the subscheme defined by the nilradical of the structure sheaf of Pic0X/k.
It too is a group scheme; that is, its T -points form a group for all T . So P is smooth.
Call any such connected smooth projective group scheme an Abelian variety.

If X is an Abelian variety, then Pic0X/k is already reduced. Mumford [45] gave a
proof on pp. 117–118, which he attributed to Grothendieck on p. 115. Then Pic0X/k

is denoted by X̂ or X∗, and called the dual Abelian variety.
In general, let Y be another integral and projective k-scheme, and fix rational

points x ∈ X and y ∈ Y . Then a k-map f : Y → P with f(y) = 0 is defined by
an invertible sheaf L on X ×k Y whose restriction to X ×k y is OX . At first, L is
only determined modulo Pic(Y ), but normalize L as follows: restrict it to x×k Y ,
pull the restriction back to X ×k Y via the projection, and replace L by its tensor
product with the inverse of the pullback.

Let Q be the reduction of PicY/k. By symmetry, L corresponds to a k-map
g : X → Q with g(x) = 0. Plainly, this correspondence f ←→ g is functorial : given
a similar triple (Z, z, R) and a k-map h : Z → Y with g(z) = y, the composition
fh : Z → P corresponds to the composition h∗ ◦g : X → R where h∗ : P → R is the
k-map induced by pullback of invertible sheaves, which is a group homomorphism.

For a moment, take Y := P and y := 0 and f := 1p. Since P is an Abelian

46Doubtless, Grothendieck had something similar in mind when he [31, p. 232-14] wrote, “the
theory of Abelian varieties, and more generally of Abelian schemes, becomes much simpler once we

have a general theory of the Picard scheme at our disposal. In particular, the theory of duality for
Abelian schemes, and notably results like Cartier’s, thus become nearly formal (cf. for example
the forthcoming notes to the Mumford–Tate seminar at Harvard in the spring term of 1962).”

However, it seems that nothing like the present introduction appears in Mumford’s personal notes
to the seminar, or has already appeared in print.
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variety, Q is its dual P ∗. Set A := P ∗ = Q and a := g. Then A is called the
Albanese variety of X, and there is a canonical k-map a : X → A.

The map a : X → A is the universal example of a map g : X → Q where Q is
the reduction of PicY/k for some integral and projective k-scheme Y ; that is, any
such g factors uniquely through a. Here’s why. Say g corresponds to h : Y → P .
Then by functoriality, 1P ◦ h corresponds to h∗ ◦ a.

By definition, A∗ is the Albanese of P . Moreover, the canonical map p : P → A∗

is an isomorphism, since by “abstract nonsense,” a universal example is determined
up to unique isomorphism, and 1P : P → P is trivially another universal example.
In fact, p−1 is just the map a∗ induced by the canonical map a : X → A, because
by functoriality, 1A ◦a corresponds to a∗ ◦ p. Thus A and P are dual to each other.

Suppose X is an Abelian variety; take x := 0. Mumford [47, p. 125] constructed
X∗ as a quotient of X by a finite subgroup; so X and X∗ are isogenous. Mumford
[47, Cor., p. 43, 132] proved that a : X → X∗∗ is an isomorphism of groups and of
schemes. Hence, for any X, the map a : X → A is the universal example of a map
X → B where B is an Abelian variety, because B = Q if Y = B∗.

Suppose finally that X is a smooth curve of genus g > 0. Then X is a component
of DivX/k. So the Abel map restricts to a k-map X → PicX/k. Its image lies
in the connected component parameterizing the sheaves L of degree 1. Fix an
L. Translating by L−1 yields a map α : X → P . It is an embedding by general
principles, since its fibers are finite and X = P(Q) for some coherent sheaf Q on
P . It is proved (in a more general form) in [24, Thm. 2.1, p. 595] that α∗ : P ∗ → P
is an isomorphism, which is independent of the choice of L.

To end this article, let’s consider some important ways in which Grothendieck
and others generalized the existence theorem culminating Section 4. First, let k be
an arbitrary field. On pp. 232-15–17 in [31], Grothendieck outlined a construction
of PicX/k for any projective k-scheme X. He used that earlier theorem plus a
method of relative representability, by which PicX/k is constructed from PicX′/k

for a suitable surjective k-map X ′ ↠ X. The method employs two main tools:
nonflat descent and Oort dévissage. The former refers to descent along maps not
required to be flat; however, key objects are flat. The second tool was introduced
by Oort in [58] to construct PicX/k from PicX′/k where X ′ is the reduction of X.

On p. 232-17 in [31], Grothendieck, in effect, made two conjectures: first, PicX/k

exists for any proper k-scheme X; second, given any surjective k-map between
proper k-schemes, the induced map on Picard schemes is affine.

The first conjecture was proved in 1964 by Murre [53], who thanked Grothendieck
for help. However, instead of using relative representability, Murre identified seven
conditions that are necessary and sufficient for the representability of a functor from
schemes over a field to Abelian groups. Then he checked the seven for Pic(X/k)(fpqc).

From now on, assume S is Noetherian and X is a flat and proper S-scheme.

Murre [53, p. 5] said that Grothendieck too proved the first conjecture. In 1965,
Murre [54] sketched Grothendieck’s proof of the following key intermediate result:
let F be a coherent sheaf on X, and SF the functor of all S-schemes T such that
the pullback FT is T -flat; then SF is representable by an unramified S-scheme of
finite type. The proof involves identifying and checking eight conditions that are
necessary and sufficient for representability by a scheme of the desired sort.

In 1966, Raynaud [8, Exp. XII] gave Grothendieck’s proof of another key inter-
mediate result: assume S is integral and let X ′ ↠ X be a surjective map of proper
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S-schemes; then there’s a nonempty open subscheme V ⊂ S such that PicX′×V/V

and PicX×V/V exist, and the induced map between them is quasi-affine. The proof
does indeed involve suitably general versions of nonflat descent and Oort dévissage.
As corollaries, that result yields Grothendieck’s two conjectures.

If the geometric fibers ofX/S are not all integral, thenPicX/S need not exist. On
p. 236-01 in [31], Grothendieck described an example of Mumford’s; one geometric
fiber is integral, but another is a pair of conjugate lines. On the other hand, on
p. viii in [46], Mumford asserted this theorem: Assume X/S is projective, and its
geometric fibers are reduced and connected; assume the irreducible components of
its ordinary fibers are geometrically irreducible; then PicX/S exists. He said the
proof is like the one on pp. 133–149, involving his theory of independent 0-cycles.

On p. 236-01, Grothendieck attributed a slightly different theorem to Mumford,
and referred to the Mumford–Tate seminar. Mumford’s seminar notes contain a
precise statement of the theorem and a rough sketch of the proof. However, he
crossed out the hypothesis that the geometric fibers are connected, and made the
weaker assumption that the ordinary fibers are connected.

On p. 236-13, Grothendieck wrote that “it is not ruled out that PicX/S exists”

whenever47 the direct image of OX×T is OT for any T . “At least, this statement is
proved for analytic spaces when X/S is also projective.” Mumford’s example shows
the statement is false for schemes. Michael Artin’s work shows it holds for algebraic
spaces, which he introduced in 1968 in [1]. They are formed by gluing together
schemes along open subsets that are isomorphic locally in the étale topology. Over
C, these open sets are locally analytically isomorphic; so a separated algebraic space
is a kind of complex analytic space.

In 1969, Artin [2], inspired by Grothendieck and Murre, found five conditions
on a functor that are necessary and sufficient for it to be representable by a well-
behaved algebraic space. A key new ingredient is Artin’s Approximation Theorem;
it facilitates the passage from formal power series to polynomials. By checking that
the conditions hold if the direct image of OX×T is always OT , Artin [2, Thm. 7.3,
p. 67] proved48 PicX/S exists as an algebraic space, a magnificent achievement.
Also, he [2, Lem. 4.2, p. 43] proved that, if S is the spectrum of a field, then PicX/S

is a scheme. Thus he obtained a third proof of Grothendieck’s first conjecture.

As S and X are schemes, so are the fibers of X/S. Hence their Picard schemes
exist. Furthermore, if the direct image of OX×T is always OT , then these Picard
schemes form a family; its total space PicX/S is an algebraic space, but need not
be a scheme. Thus Artin proved the definitive statement explaining the behavior
of the Picard schemes of the members of a family.49

47This condition holds if the geometric fibers of X/S are integral by [30, Prp. (7.8.6), p. 74].
For more about its significance when S is the spectrum of a discrete valuation ring, please see [63].

48In fact, he proved a more general theorem, in which S and X are algebraic spaces. That
theorem and Grothendieck’s theorem in Section 4 are the two main representability theorems for
the Picard functor. Grothendieck used projective methods. Artin’s work has a very different

flavor. Moreover, it yields a major improvement of Murre’s representability theorem stated above,
and it yields the representability of the Hilbert functor and related functors in algebraic spaces.

49As the Picard varieties in the family are the points of the component Pic0Xs/ks
for s ∈ S,

their behavior is explained by an open subspace Pic0X/S of PicX/S whose fibers are the Pic0Xs/ks
.

Such a Pic0X/S is observed in [9, p. 233] to exist when PicX/S is S-smooth along the 0-section.
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Semesterber. 59 (2012), no. 2, 243–260. MR2970483

[5] Babbitt, Donald; Goodstein, Judith. Guido Castelnuovo and Francesco Severi: two person-

alities, two letters. Notices Amer. Math. Soc. 56 (2009), no. 7, 800–808. MR2546822

[6] Babbitt, Donald; Goodstein, Judith. Federigo Enriques’s quest to prove the “completeness
theorem.” Notices Amer. Math. Soc. 58 (2011), no. 2, 240–249. MR2768117 (2012a:14001)

[7] Bardelli, Fabio. On the origins of the concept of irregularity of an algebraic surface. in

“Algebra and geometry (1860–1940): the Italian contribution (Cortona, 1992).” Rend. Circ.
Mat. Palermo (2) Suppl. No. 36 (1994), 11–26. MR1308338

[8] Berthelot, Pierre; Grothendieck, Alexander; Illusie, Luc. Avec la collaboration de D. Ferrand,

J.-P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud, J.-P. Serre. “Théorie des intersections
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[21] Dieudonné, Jean. “History of algebraic geometry. An outline of the history and devel-

opment of algebraic geometry.” Translated from the 1974 French version by Judith D.
Sally. Wadsworth Mathematics Series. Wadsworth International Group, Belmont, CA, 1985.
MR0780183 (86h:01004)
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