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Abstract

A meso-scale model, shear transformation zone dynamics (STZ dynamics), is employed to
investigate the connections between structure and deformation of metallic glasses. The present
STZ dynamics model is adapted to incorporate a structure-related state variable, and evolves via
two competing processes: STZ activation that creates free volume vs. diffusive rearrangement
that annihilates it. The dynamical competition between these two processes gives rise to an
equilibrium excess free volume that can be connected to flow viscosity via the
phenomenological Vogel-Fulcher-Tammann relation in relaxed structures near the glass
transformation temperature. On the other hand, the excess free volume allows glasses to
deform at low temperatures via shear localization into shear bands, even in presence of internal
stress distributions that arise upon cooling after processing.
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1. Introduction

Metallic glasses exhibit a great variety of deformation behaviors depending upon conditions [1].
At low temperature and high stress, the deformation is highly inhomogeneous and the plastic
strain is localized into shear bands. On the other hand, at high temperature and low stress,
deformation is homogenous, exhibiting Newtonian flow rheology that gives way to exponential
rheology as the stress rises. Homogeneous flow is also associated with significant transients
that follow any change in conditions (i.e., stress). The details of how all these diverse behaviors
are connected in metallic glasses pertain to the underlying deformation mechanism of local
shear shuffling in the amorphous structure. In particular, the shear transformation zone (STZ)
originally proposed by Argon [2] and further observed and studied widely in computational
simulations [3 - 7], has been accepted as a “unit process” that underlies the deformation of
metallic (and other) glasses. STZs are essentially local clusters of a few atoms that can rearrange
collectively in response to a shear stress. This local rearrangement not only involves the
displacement of atoms, but also an anelastic reconfiguration of atomic neighbors and a
redistribution of free volume within the atomic cluster. This free volume redistribution is not
only a transient process, but is also believed to involve local, permanent changes to the excess
free volume. The local accumulation of excess free volume is believed to facilitate shear
localization through local softening in the vicinity of previously deformed regions [2].

The concept of free volume as an important internal state variable for glasses predates the STZ
description of glass deformation, beginning with developments by Cohen and Turnbull [8, 9].
They laid the groundwork for scalar free volume evolution equations that have been widely and
successfully applied by experimentalists to explain relaxation behavior during glass formation
from the super-cooled liquid regime [10 - 12]. In addition, Spaepen [13] extended this approach
to glass deformation on the basis of two competing processes mediated by free volume: free
volume creation due to atomic motions driven by a shear stress vs. free volume annihilation via
diffusive rearrangement. This extended phenomenological model is capable of capturing the
homogenous and heterogeneous deformation modes in metallic glass, and is especially useful
for describing deformation transients.

Both the STZ (as a fundamental unit process for glass deformation), and free volume (as an
internal state variable that evolves with time, temperature, stress and position), are simplified
pictures of what actually happens in a glass. There is a vast spectrum of STZs and STZ-like atomic
rearrangements that occur in deforming glasses, and this spectrum is only poorly understood at
present [14 - 16]. And “free volume” is often used as a catch-all internal variable that subsumes
a far greater complexity of internal states, including chemical and topological short- and
medium-range order, atomic stresses and strains, etc. [17 - 19]. Neither picture (STZs or internal
state variable) is yet fully worked out, and it is for this reason that simulation work on metallic
glasses is essential to progress on understanding glass deformation [20]. There is an inherent
lack of direct experimental approaches to these events in atomic glasses, and as such atomistic
simulations provide many details of plasticity in metallic glasses that would otherwise be
unavailable [21]. Yet, even though these simulations provide significant detail, they suffer from a



limitation in both length and time scales (typically a few tens of nanometers during a few tens of
nanoseconds). Atomistic methods are therefore less useful to investigate large-scale events
that occur over a long time scale, e.g. glass formation by cooling from the melt at realistic rates.

In this context, meso-scale modeling methods are needed to bridge the gap between atomistic
simulations and experiments by averaging out atomistic effects and accounting only for an
ensemble of characteristic events. Such approaches, on one hand, enable simulations to access
larger scales, and on the other hand retain a description of elementary deformation physics. For
example, Vandembroucq [22] proposed a depinning model to investigate long-range spatial and
temporal correlations in ‘depinned’ local shear transition events. The critical stresses that lead
to depinning can involve a stochastic distribution in order to account for the structural disorder
of metallic glass. By introducing an age parameter that can vary yield stress distribution, the
authors were able to show an age-dependent shear banding behavior. A fluidity model
developed by Picard [23, 24] associated the characteristic transition times with deformation and
relaxation and produced complex spatio-temporal patterns of transformation events.

“STZ dynamics” is another mesoscale model proposed by Homer and Schuh [25 - 27]. In this
model a simulated metallic glass is partitioned into an ensemble of potential STZs that are
mapped onto a finite element mesh. The activation of individual STZs is selected via the Kinetic
Monte Carlo (KMC) algorithm originally introduced by Bulatov and Argon [28 - 30], which uses
an energy-based yield criterion according to a Boltzmann probability, with local biasing from the
stress state. As a consequence, the model incorporates a time scale and at the same time
thermal effects, which are missing from other mesoscale models. The activation of STZs leads to
stress and strain redistribution, which is solved accurately via the Finite Element Method (FEM).
The updated elastic field resulting from STZ activations in turn affects the rate of subsequent
activation events and thus the dynamical evolution of the system. With this framework, the
model is able to capture the basic behaviors of metallic glasses, including high-temperature
homogeneous flow, and low-temperature strain localization into shear bands.

One limitation of STZ dynamics as it has been implemented to date, however, involves the use
of a single, fixed energy barrier for STZ activation, which cannot capture the mechanical effects
of structural evolution (e.g. local structural hardening or softening) as the system evolves. One
consequence of this limitation is that autocatalytic accumulation of structural change (as in the
dynamic softening that leads to shear localization) is difficult to trigger. In fact, when disorder
pre-exists in the internal stress fields of the system (e.g., due to cooling from the liquid state),
the dynamical correlations between STZ activations are not large enough to overcome the
internal stress fields (structural disorder) to allow STZ activations to correlate and form shear
bands [26, 31, 32]. In prior STZ dynamics simulations shear bands are only seen when the initial
configuration is uniform and free of structural noise [26], which is neither realistic for a glassy
material nor in line with the perception that local structural softening is responsible for shear
banding in glasses in the first place.



In this paper, our purpose is to continue the development of the STZ dynamics modeling
framework by incorporating a structural state variable into it. In line with the above discussion,
we introduce excess free volume into the STZ dynamics model of Homer [26] as a simple internal
parameter that can track local structural change and allow for dynamical softening and
hardening. We allow system evolution via two competing processes: free volume creations via
STZ activation vs. free volume annihilation via diffusive rearrangement; the treatment is in the
spirit of the original works by Argon and Spaepen [2, 13]. In what follows, we first present our
basic modeling framework followed by a two-dimensional FEM implementation. Then we
explore the interplay between evolution of excess free volume and metallic glass deformation
over a range of thermal and mechanical loads. In particular, we show that excess free volume-
assisted shear banding occurs at low temperature even in the presence of structural disorder in

‘processed’ samples.

2. Modeling framework

Our STZ dynamics model is built upon that of Homer and Schuh [25 - 27], and uses the same
general apparatus comprising a finite element mesh and a KMC algorithm. Following Homer’s
2D implementation, we define STZs on a 2D irregular triangular mesh, with each element and its
immediate surrounding neighbors representing a potential STZ, as illustrated by A and B in Fig.1.
At any given time step, one STZ is selected according to the KMC algorithm to participate in an
activation event based on its local conditions (e.g., stress and temperature). Our main
adaptation of the Homer model is to add an internal state variable, excess free volume. It is
represented as a normalized volume fraction, f,, and can vary from 0 to 1, i.e. f, = 0 corresponds
to no excess free volume above the average polyhedral volume V" in a dense random hard
sphere glass, while f, = 1 is an upper bound corresponding to a state where an STZ can be
activated without accumulating extra free volume [2]. The upper bound free volume, £ Q,, is
only a fraction of V. The factor { can vary from 0.1 to 0.6 for liquid metals based on Cohen’s

calculation [8].

In our implementation free volume is a local parameter, and has a single value for each element
in the FEM mesh. In the most general sense it should be regarded simply as an internal state
variable that characterizes “damage” in the structure, or the structural distance from
equilibrium; it need not be interpreted in a literal sense as a volume. In fact, unlike true free
volume, our f, does not flow through the system from one material point to another; it is locally
created or annihilated at each point with no regard for volume balance. Consequently, one can
envision more complex models or state variables, but the present choice is viewed as presenting
a good compromise between simplicity and capturing essential physical features of glass
structural evolution.

In the following subsections we explain our models for accumulation and loss of free volume,
followed by how these are implemented in the KMC algorithm.



2.1 Free Volume and STZ Activation
Free volume and STZ activation are inherently linked in our proposed model, and in fact the link
is bidirectional: STZ activation causes free volume accumulation, while free volume in turn

affects the activation of STZs. We treat these two aspects of the relationship in turn.

Following the view of Spaepen [13], we envision that the dilatation required during STZ
activation is not totally transient in that it need not be eliminated immediately after the
transition; rather it remains in a post-activation state until it may be reduced by diffusive
rearrangement. Consequently, each STZ activation results in excess free volume creation given
as

A =e,(1-1,) (1)

This expression is derived from one of Argon [2], where g, is the local transformation dilatation,
and (1 - f,) corresponds to a first order correction dictating that more dilated regions
accumulate less free volume upon STZ activation; a very rarefied volume of material with f, =1
can shear without any additional volume dilatation. When an STZ is activated, the increase in
free volume in each of its elements is calculated according to Eq. (1).

The process of STZ activation is also affected by the presence of free volume, although it
otherwise follows the framework developed by Homer [26]. STZ activation is treated as an
Eshelby inclusion problem [33]; that is, following activation, the STZ transformation strain is
accommodated elastically by both the STZ and its surrounding matrix. The activation barrier for
shearing an STZ is taken from the model proposed by Argon [2, 34]:

AF'STZ (f;) = Athear + AE/O ) gstz (ﬂ/)

7-5v ) 2(1+U) ) 1 7 , (2)
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where v, u(T), and Q, represent Poisson’s ratio, temperature-dependent shear modulus, and
activation volume of STZ respectively. The activation energy AFsr; in turn can be decomposed
into two parts: a f,independent part, AF,eq,, Which is the strain energy associated with an STZ
shearing by the characteristic shear strain y,; and a f, dependent part, AF,p gsrz(f,), in which we
factor out the excess free volume dependence into a function gst(f,). AF,c incorporates the
contributions from two parts: (1) a strain energy for a temporary dilatation to allow the atoms
to rearrange into the sheared position; and (2) an energy required to freely shear an STZ, where
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T is the interatomic shear resistance. Both the dilatation energy and shear resistance can be
reduced by f, through gsrz(f,) [2], defined as:

2 () =+ dle, (1= £ )F i+ e, e

where «a is a proportionality factor (~ 0.8 [2]). The quadratic (1 - f,)* dependence comes from
the fact that the activation free enthalpy increment due to a net activation dilatation &,(1 - f,) is
proportional to the square of this dilatational strain term. Therefore gsr/(f,) varies between 1
and 1/(1 + a&,) as f, goes from 0 to 1. The activation barrier AFs;; = AFgpeqr + AF,o used in the

previous implementation of the STZ Dynamics model by Homer et al. [25-27], is retrieved when
fv=0.

With a free volume dependent activation energy AFsr;(f,), the activation rate of a single
potential STZ is given as

AFSTZ(fv)_WoQO /2
kT

(4)

Ssrz =Vsrz XP| —

where 7, T are the local shear stress and temperature respectively; vs7; represents the attempt
frequency along the reaction pathway and is on the order of the Debye frequency; and k is
Boltzmann’s constant.

2.2 Free Volume Annihilation via Diffusive Rearrangement
Existing excess free volume can also be annihilated through diffusive rearrangement. For the
purposes of our STZ dynamics model, a diffusive rearrangement is viewed as a local event that

involves annihilation of excess free volume as

Af; =¢.f, (5)

This form is also suggested by Argon [2], and again contains a correction that acknowledges the
fact that free volume can only be annihilated in proportion to how much of it is present in the



first place; if f, = 0 then no free volume reduction is possible. In our implementation, the local
diffusional rearrangement associated with Eq. (5) occurs over small regions of exactly the same
size and shape as potential STZs, and when such an event is triggered Eq. (5) is applied to every
element in the selected zone (without applying any shape change).

The activation energy required to trigger a single event of excess free volume annihilation can
be written as

AG,(f,)=AG,8,(f,) (6)

where AG, is the activation free energy for a net diffusive rearrangement in a region with f, = 0.
golf,) is a factor that lowers the energy barrier in a region containing excess free volume, which,

again following Argon [2] is taken as gp(f,) = (1 - f,).

Therefore the activation rate of a single diffusive rearrangement event can be written as

(7)

$p=(=£, exp(—w)

kT

Here the prefactor (1 - f,). represents another correction for reducing annihilation rate in
proportion to the amount of free volume available to annihilate, while v, is the frequency factor

for diffusive rearrangement.

2.3 Kinetic Monte Carlo
1. A KMC algorithm is employed to control the evolution of the system through a series of
individual events selected according to their corresponding activation rates. The
algorithm essentially follows the form originally proposed by Bulatov and Argon [28-30]
and modified by Homer [26], but here we introduce two types of events (STZ activation
vs. diffusive rearrangement) that are all enumerated and compete with each other
through their activation rates. In each KMC step:

1. The activation rates for both processes, s, . and s, ., at each potential site i are

determined by Eq. (4) and Eq. (7) respectively.



2. These individual rates are then accumulated into a list and summed over the list such
that the cumulative activation rate Sm, gives the rates for both processes over all i. For

each site i, there are two normalized rates, which are given by

Nerzi = SS]Z,;’ /S 100 Mpi = ‘S.'D,i /S 101 (8)
such that
2(77572,1' + 771),1‘): 1 (9)

1

3. Two random numbers & and & are generated within a uniform distribution on the
interval (0, 1).

4. £ is employed to determine the elapsed time of the system by
At=-In& /s, (10)

5. & isto select the particular process and location for the next event. This is done by
comparing the random number &, to the list of activation rates. If the random number
falls in the range

k-1 k-1

Z(nsrz.i +77/:>,i)< 5= 2(’%72,[ + 77D,i)+77572,k (11)

Then shear distortion vy, is applied to the selected region i in a particular direction that is
determined by the location of the random number & on the subinterval associated with
the stress state [26]. Additionally f, increases in the region by an amount determined by
Eqg. (1). Otherwise, if the random number falls in the range

k-1 k

2(’7572,5 +77D,i)+ Nsrzx <& < 2(77372,1‘ + nD,l) (12)

then the diffusive rearrangement process for a particular activation region k is selected.
In this case f, decreases in the activation region k by the amount determined by Eq. (5).

6. After a transition occurs, either STZ activation or diffusive rearrangement, new stress
and strain fields are solved by FEM.

These KMC steps can be repeated as many times as desired to simulate a given process, and the
stochastic nature of the algorithm will produce a realistic outcome as long as the rates



governing the individual events are correct. The two possible events described in Step 5 are
exclusive; in each KMC increment, only one of them will be selected.

2.4 2D FEM Implementation

We implement the STZ-dynamics model in the commercial finite element package ABAQUS via
its user subroutines, and employ its FEM solver to determine the stress and strain fields as well
as the evolution of the state variable (i.e. excess free volume) for each KMC increment.

Figure 1 shows the 2D FEM mesh used for the present simulations. Plane-strain quadratic
triangular elements (CPE6MT) are employed, and the average potential STZ or diffusive
rearrangement region contains 13-elements (refer to STZ A in Fig.1), with each potential STZ
centered on an element and including all the neighbors that share its nodes. The number of
potential STZs is thus equal to the number of elements, so there are total of 14846 potential
STZs defined over 14846 elements in Fig. 1. The validation of this geometrical STZ mapping onto
the FEM mesh is discussed by Homer [26], who showed that the 13-element STZ gives a
reasonable compromise between solution accuracy (in terms of convergence) and
computational speed. It is also worth noting that any element can participate in multiple STZs,
which is physically reasonable since atoms may participate in multiple STZ events. Under this
mapping rule, there are a few STZs that may contain more or less than 13 elements (ref. to STZ B

in Fig. 1) depending on the local mesh.

For thermal excursions, the boundary conditions as shown in Fig. 1 are applied with no tractions
on the sample surfaces. For mechanical loading, a case of pure shear is applied, and a corner
node is fixed to remove the rigid body motion (refer to Fig.1). During the simulations,
temperatures are kept uniform throughout the system.

2.5 Discussion of the modeling approach

At present, the newly introduced excess free volume represents a relatively simple way to
incorporate a structural state variable into the STZ dynamics model. As will be shown in this
work, this simple addition provides significant insight into the flow of excess free volume and its
effects on glass deformation. However, the present implementation does have certain
limitations that need to be addressed as knowledge of atomic scale deformation in glasses
improves. For example, the present model creates and annihilates excess free volume locally;
future work must focus on the diffusion of this free volume rather than the creation and
annihilation thereof. Additionally, the excess free volume is a phenomenological variable like
those used in most of the mesocale models [23, 31 — 32, 41]; one could develop similar
approaches that connect to alternative state variables such as local elastic properties [42], local
bonding such as icosahedral or non-icosahedral effects [14]; or dynamical state variables such as
an effective disorder temperature [43 — 45]. Each of these state variables provide something
unique to describe structural disorder of glasses, and the complex structural evolution in



metallic glasses provides freedom in the selection and description of variables to describe
similar behaviors.

2.6 Simulation Parameters

Table 1 summarizes parameters used in the STZ dynamics simulations. For the sake of simplicity,
we assume the STZ attempt frequency is equal to that for diffusive arrangement (vsrz = vp). The
activation barrier for diffusive rearrangement is taken to be equal to the excess free volume-
dependent part of STZ activation energy, i.e. AG,y = AF,,, considering that it is a volume related
process. Additionally, the mechanical properties of Vitreloy 1 derived from experiments [35] are
used.

3. Model output

We now exercise the model to briefly examine the role of excess free volume in metallic glass
deformation, with the intent of evaluating its reasonableness. In this section, we first
investigate the local evolution of excess free volume at the STZ level via the creation and
annihilation processes. Samples are then processed via simulated heat treatment to obtain
relaxed structures at various temperatures. Finally, samples with various internal structures are
deformed through creep tests at high and low temperatures and the effect of excess free
volume on the deformation processes is analyzed.

3.1 Local Free Volume Evolution

We start the simulations by tracking the performance of the two competing processes, i.e. free
volume creation vs. annihilation. For a simple demonstration, a sample initially at a state of zero
internal stress and zero excess free volume is loaded with a shear stress of 1 GPa at 300 K. Fig.
2a displays the resultant evolution of the macroscopic shear strain and the volume-average
excess free volume, f,: following a transient period, both shear strain and f, rapidly increase as a
consequence of strain localization into a shear band, which is illustrated in the insets (i.e., the
spatial distribution of STZ strain and excess free volume at point A).

For further details, we zoom in and explore the local free volume evolution of a randomly

selected element in the shear band (marked as a star in the insets of Fig. 2a), fg'e , the behavior

v
of which is displayed in Fig. 2b. Over the course of the simulation, this particular element only

occasionally participates in an STZ or diffusive event, so there are many fallow periods in which
other activity is occurring. For example, this STZ is the third to be activated at the outset of the

simulation, and at a time of about 40 Gs after loading ff’e dramatically increases from 0 to 0.5
upon this first activation. However, immediately after, ff’e drops by half to 0.25, and then after

a short period drops by half again to 0.125 as a result of annihilation processes. This is a pattern
that is common in the present model, where a single deformation event causes large rises in
excess free volume, in turn leading to a significantly reduced activation barrier for relaxation
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some short time later. The history of local free volumes is replete with such peak-and-decay
patterns.

Even once deformation accelerates during a localization event, the same local pattern is
revealed; near the time marked by A, the evolution of the excess free volume accelerates and
numerous creation and annihilation events are selected within very short time intervals; the
inset to Fig. 2b shows that this selected STZ is activated four times with numerous relaxations in

between over the course of this acceleration period. This acceleration in local evolution of ff'e
is directly associated with the macroscopic strain evolution as shown in Fig. 2a, where we
observe that this is the time where strain begins to rapidly localize into a shear band.

This exercise illustrates that £

v

is determined by dynamic balancing between creation and
annihilation. Annihilation occurs more frequently because its activation energy barrier is lower

and is more significantly reduced by the existing fe'e

, (ref. to Eq.(6)). Usually one creation event
is followed by 2 ~ 4 annihilation events, which is consistent with Spaepen’s assessment that the

number of diffusive jumps necessary to annihilate excess free volume is between 1 and 10 [13].

3.2 Thermal Treatment (Structural Relaxation)

Due to their disordered structure, metallic glasses contain a distribution of internal stresses [14],
and in STZ dynamics such distributions arise entropically upon thermal processing. The
development of such a distribution from an initially stress-free state is illustrated in Fig. 3a
where the instantaneous elastic strain energy density in the system is plotted as a function of
time for various annealing temperatures, under zero applied stress. Fig. 3a provides a
comparison of the timescales required to anneal at different temperatures as well as the
equilibrium strain energy density that is achieved at each temperature. Note that the
logarithmic scale on the time axis obscures the achievement of a steady state for each annealing
temperature, which can be better illustrated by plotting the strain energy density as a function
of the KMC steps, as illustrated by the inset for the 650 K simulation. A plot of the equilibrium
elastic strain energy density values for each of the simulations shows a linear relationship with
the temperature as displayed in Fig. 3b. This linear trend is well established from 500 to 1000 K
and has an extrapolated intercept of 0 + 200 kJ-m™ at 0 K.

During annealing the excess free volume evolves as well, as shown for various annealing
temperatures in Fig. 4a. Upon annealing, f, increases dramatically, and saturates earlier than the
corresponding elastic strain energy density. Thereafter f, oscillates around an equilibrium value
fueq, and the amplitude of oscillation increases with annealing temperature as a consequence of
thermal fluctuations. An example of f, vs. KMC steps at 650 K is displayed as an inset to better
illustrate the achievement of a steady state.
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The annealing process produces an asymmetric distribution of (' at steady state, as shown

more explicitly in Fig. 4b. This asymmetric distribution is somewhat like the exponential
distribution proposed in the free volume theory [8] with a large fraction of small £** balanced

by a small fraction of large f*'“. Furthermore, the (' distribution in turn leads to a distribution

of activation energy barriers for the two competing processes, as shown in Fig. 4c. Both
activation energy barrier distributions take on a similar shape, yet the diffusive process AGj is
situated at smaller energy values and has a broader distribution in comparison to the STZ

activation barrier AFsyz.

The distributions in Fig. 4c reflect the disordered nature of glass structure in our model. They
are not explicitly input to the model, but are emergent distributions that can evolve with
deformation and processing. While this is an interesting contrast to other mesoscale models
[32] that include a distribution of events a priori, it also reveals a significant point of departure
between the present simple model and the true internal structure of a metallic glass. In
comparison to the STZ activation energy distributions measured by Argon via mechanical
spectroscopy [36], our AFsr; distributions have a similar shape, but they are very much narrower
(~ 0.1 eV) than the experiments (~ 1 eV). Similarly, the activation energy distribution calculated
by the atomistic simulations [16] again exhibits an energy spectrum that is much broader (~ 1
eV). This result points to a greater need for an improved state description, which may ultimately
be provided by multiscale modeling.

The equilibrium volume-average excess free volume f, ., at various annealing temperatures is
plotted in Fig. 5. The simulated f, ., vs. temperature is strikingly linear, and can be well described
by a fitted relationship:

fv,eq =afv(T_TE))' (13)

This form is the one familiar from free volume theory [37, 38], although it is important to note
that no input to the present model specifically built in the linear form of Eq. (13). The slope oy,
=7.4x 10” K is a measurement of increase in fueq With respect to temperature, and T = 280 K
is the temperature at which f, .o reaches 0. These values can be compared to those
experimentally reported for Vitreloy 1 [11]. T, =426.3 K is the Vogel-Fulcher-Tammann (VFT)
reference temperature of Vitreloy 1, which is somewhat higher with the present simulated value
of 280 K. To make a comparison with regard to oy, we recall that the experimentally measurable
quantity is o, = ay, with £ in the range 0.1 ~ 0.6. Correspondingly, the range for a, from our
simulations is 7.4 x 10° to 4.5 x 10° K™. For Vitreloy 1, a, = Qg — Olglass = 1.93 x 10° K'Y (i.e., the
difference in thermal expansion coefficients between the liquid and the glass [37]), which falls in
the middle of the simulation range.
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Considering that no assumption is made on the temperature dependence of f, .4 in the
simulations or their inputs, the value of oy, is an emergent property of the model with important
implications for glass structure and deformation. It is encouraging that the model can reproduce
the form of Eq. (13) with a reasonable match to experimental data, especially since the
temperature dependencies that went into the model as input are not linear, but exponential.

To appreciate how a linear form can emerge, it is instructive to examine the equilibrium
condition of the present model, by setting equal the rates of free volume increase and decrease:

AF,., —1y,Q AG
gv(l_fv)VSTZ exp(_mk—Tm)=5vﬁ)(l_ﬂ)‘/Dexp(_ kTD) (14)

In the true equilibrated glass, there is a wide distribution of local stress states and free volumes,
but as the simplest approximation we may replace the local state variables with global average

values (7= 0 during annealing). Given our prior assumption that vsr; = vp, we then have

AFSTZ (fv)_ AGD(fV)
kT

f, =exp| - (15)

where both AFs;z and AGp depend on f,. Eq. (15) provides an implicit relationship between f, ¢,
and temperature, is plotted in Fig. 5 using the simulation input parameters as a red solid line.
This simple equilibrium model agrees reasonably with the full simulation output, and most
importantly, exhibits a broad apparently linear regime at higher temperatures, much as the
simulation results do. While this expression is not linear, it is instructive to see that on the
relevant scales of the present problem, it can appear so; this provides some support for the use
of Eg. (13) in describing the free volume state of an equilibrated glass.

We may linearize Eq. (15) by assuming (as we have done in the simulations) that AF,p = AG ,,
and performing a Taylor expansion about a characteristic temperature (T,) and free volume (f,).
This leads directly to Eq. (13) with the following values of the parameters:

2
afv - : kln (f;o) 5 (163)
1-ae, Qe,

S(=In(f,))+ foo ——— (1-2In(f,)
1+ ae

v v

AF;hear /va + AFVO
1+ ae
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l-ae’ ae’
= AF,, (L+In(f,) = AF | 5 fi+ 5 (1=In(f,0)) ;0
I+ ae, I+ ae,
T, = 5 (16b)
kIn“(f,,)

By choosing a reference free-volume content f,, =5% that would be generally characteristic of
the super-cooled liquid region, Eq.(16) gives o = 9.3 x 10° K and T, = 405 K. This linearization
is the one shown in the broken black line in Fig. 5; the slope matches reasonably with the
simulations, while the characteristic temperature is somewhat higher than that given by
extrapolation of the simulation data (T, = 280 K) but in better agreement with the experimental
value (Tp = 426.3 K). The fact that our equilibrium free volume follows the expected empirical
linear relationship with respect to temperature, to some extent, validates our dynamical rules
for the free volume evolution. It also provides some insight into the possible origins of these
empirical relationships, which in turn provides some support for many continuum models that
assume their validity a priori.

3.3 High-Temperature Rheology

The high-temperature deformation behavior of the relaxed structures is studied over a range of
stresses at different constant temperatures near and above T, = 623 K (the glass transition
temperature of Vitreloy 1 [35]). In all the simulations, pure shear traction is applied and held at
a constant value. Fig. 6a-c show the shear strain vs. time data over a range of stresses at 650 K,
and the corresponding evolutions of f, are displayed Fig. 6e-g. At lower stresses (Fig.6a & 6e) a
steady state flow is established almost instantaneously with a constant strain rate and minor
change in f, of the same scale as its thermal fluctuation range. As stress increases to 500 MPa
(Fig. 6b & 6f), the transients become more significant, especially in f,, which shows a dramatic
increase followed by a relatively quick saturation at a steady-state value. Since f, saturates so
quickly, the transient in structural adjustment does not give rise to a noticeable transient in the
strain response. As the applied stress continues to increase to 1 GPa (Fig. 6¢ & 6g), a longer-lived
transient in both variables is observed. The spatial distributions of STZ strain as well as f, at the
time marked t; (in the transient) and t, (nearing the steady-state) are provided in Fig. 6d & Fig.
6h respectively. At t; in Fig. 6h, f, is distributed heterogeneously, with only fraction of the
sample having increased values. On the other hand, at t, the higher level of accumulated free
volume f, is distributed homogenously throughout the sample, as is the strain (ref. to Fig. 6d)

For each of the different simulations in Fig 6 and many others like them, the steady-state strain
rate is assessed and compiled in Fig. 7a as a function of the applied stress. The datasets show
typical homogeneous glass flow for metallic glasses at high temperatures, that is, weakly rate-
dependent Newtonian behavior at low stresses vs. non-Newtonian flow with gradually
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enhanced rate sensitivity at high stresses. This high-temperature flow generally conforms to the
classical one-dimensional model of independent forward-and-backward STZ activation [13]. A
simple combination of the forward and backward rates of Eq. (4) results in a hyperbolic-sine
stress-dependence to the steady state strain rate

. AF (F)N . o (17,9
Y=27 Vs exp(—SkLT)smh(#) (17)

In principle, this one-dimensional model contains the same inputs that our 2D simulations do, so
it can be compared to the simulation output without the use of any adjustable parameters. This
is presented in Fig. 7a, where the agreement between the data and Eq. (17) is good, especially

as regards the general locations of the Newtonian regime at low stresses and its divergence into

exponential flow at higher stresses.

Figure 7b shows a plot of the equilibrium value of the volume average excess free volume f, .4 as
a function of applied stress at various temperatures. In the Newtonian flow region, f, ., barely
changes with applied stress, but there is a dramatic increase with applied stresses after entering
the non-Newtonian flow region. The temperature effect on f, ., is not at all significant on the
scale here, and the small difference that does exist diminishes with increasing stress.
Examination of the creation and annihilation processes of excess free volume f,, one can write

the time rate of change

1 b -5 o PR )2 e - AA1)

Note that the stress dependence of df,/dt is hyperbolic-cosine rather than sine in Eq. (17). This is
due to the fact that both forward and backward STZ operations can create excess free volume.
Steady state is achieved when df,/dt = 0.

The equilibrium f,, ., can be numerically solved from Eq (18), and is plotted in Fig.7d as solid
lines. The match to the simulation data is good, although the predicted values are consistently
higher, and this is accentuated at high stress. These discrepancies are most likely related to the
free volume distribution in the simulations; when there is a distribution of options, STZs prefer
operating more frequently at the locations with large f,. These preferred operations, on one
hand, will give rise to a fast flow rate; and, on the other hand, result in a small amount of f,
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increment (ref. to Eq. (4)), and thus relatively small f,. The one-dimensional equilibrium model
of Eqg. (18) replaces the distribution with an average free volume and thus misses this detail.

We may further appreciate the structure-property connection of a deforming glass by
considering the viscosity of glass flow in the super-cooled liquid region. Fig. 8 shows the viscosity
in the Newtonian flow region at various temperatures vs. the corresponding steady-state excess
free volume f,. The viscosity is calculated as 7 =7/ y from the simulation data at 50 MPa in Fig.
7a. The apparently exponential form of the data in Fig. 8 is reminiscent of the classical Doolittle
equation [38]:

b
n=1, CXP(7) (19)

v

which is proposed to describe the flow of a glass in the homogeneous regime. Fitting our data
into the form of Eq. (19) gives 1, = 1.58 and b = 0.64. Further, by taking into account the linear
relationship between f, and temperature that emerged earlier in our analysis in the form of
Eq.(13), we obtain the Vogel-Fulcher-Tamman (VFT) equation:

o exp(——2 ) 20)
n=mn, pafv(T_To)

As was noted earlier with reference to Eq (13), it is a nontrivial result that our simulations should
conform to VFT kinetics, as the inputs to the model do not explicitly contain the VFT parameters
oy, and Ty or the linear form of Eq (13). The VFT scaling is only apparently obeyed in our
simulations as the consequence of two competing processes; this behavior is emergent.

3.4 Low-Temperature Deformation

Low-temperature deformation is examined in a structure that has been cooled at experimental
rates to quench in a certain degree of disorder. This structure is achieved by starting with one
equilibrated at 650 K (above T, = 623 K of Vitreloy 1) and allowing the sample to evolve while it
is cooled in the absence of external stress to 300 K at a rate of 10 K/s. The cooled structure is
out of equilibrium because of the finite cooling rate, with an average excess free volume f, =
0.026 that is significantly above that expected in equilibrium (f, ~ 0, cf. Fig.5). The specimen is
then tested in pure shear at 2 GPa at 300 K.
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The resultant shear strain and volume average excess free volume f, are plotted as a function of
time in Fig. 9a. A significant transient period is clearly observed in both the shear strain and f,
responses. Early in this period (Fig. 9b), the internal stress distribution resulting from the
thermal treatments inhibits STZs from activating in a correlated fashion, which is reflected in the
randomly distributed spots with large f,. These uncorrelated STZ activations are not associated
with the development of significant plastic shear strain along the loading direction. Shortly
thereafter, though, f, responds and develops into a localized band of accumulation (Fig. 9c), well
before strain begins to accumulate in a significant sense. This localized f, band facilitates shear
localization, and ultimately leads to a nascent shear band at the same location (Fig. 9d). Once
the shear band forms, the localized shearing promotes rapid accumulation of plastic
deformation (from Fig. 9d to Fig. 9e); meanwhile f, increases at a roughly constant rate as the
shear band widens. Over the entire process, the f, band propagates ahead of the shear band,
which is further illustrated by the 1D STZ and f, distribution plots in Fig. 9b - e. We conclude that
excess free volume catalyzes shear localization. The softening that often precedes localization
into a shear band has been observed previously when structural relaxation and local softening
are accounted for [32, 39-40].

The ability to observe shear localization in samples with pre-existing structure is an important
improvement to the STZ dynamics model [26]. Fig. 10 shows the shear strain evolution of the
same cooled structure under the same loading conditions (i.e., at 300 K and 2 GPa) as Fig. 9, but
now after having turned off the free volume evolution. As reported by Homer et al. [26], rather
than forming shear band, the sample undergoes homogenous deformation without the
assistance of free volume. The addition of the structural state variable allows the system to
localize due to structural memory that is retained even after the redistribution of stress, and
allows the system to facilitate correlated events to overcome the noise induced by the internal
stresses and dictate individual STZ operation into shear band. In future work we hope the
model can be exploited to study shear band formation and propagation kinetics.

4, Conclusions

We further developed the STZ dynamics simulation method for glasses [25-27] by incorporating
a structural state variable that can allow for dynamical hardening and softening of a disordered
solid upon heating or deformation. We specifically develop a model on the basis of excess free
volume as the internal variable, and new features added to the framework include:

* Excess free volume evolves via two competing processes: the STZ activation that
creates free volume vs. the diffusive rearrangement that annihilates it. The activation
unit of the two processes is taken to be a coarse-grained collection of atoms.

* At the same time, the excess free volume can in turn affect the two competing
processes by modifying their activation energy barriers.
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We implement the model in two dimensions, and perform a series of thermal and mechanical

simulations that illustrate the interplay between the excess free volume evolution and the

metallic glass deformation. The key results include:

Over the course of structural relaxation at high temperatures, the excess free volume
saturates faster than the corresponding elastic strain energy density. After reaching
equilibrium, the excess free volume fluctuates around an equilibrium value with a
magnitude that increases with annealing temperature.

In equilibrium, the excess free volume takes an asymmetric distribution, in which a large
fraction of small values is balanced by a small fraction of large values. In addition, a
linear relationship can be established between the volume-average excess free volumes
and the annealing temperatures, which is in line with classical free volume theory. The
distribution of the excess free volume results in the distributions of the activation
energy barriers of both STZ transformation and diffusive arrangement. The activation
energy distributions take on a similar shape as experimentally measured ones [36], but
are much narrower (~0.1 eV) than the measured ones (~ 1 eV).

In shear loading at high temperature, the excess free volume first increases and then
reaches a shear-enhanced equilibrium value in steady-state homogenous flow. At high
stresses the excess free volume gradually increases to a steady state value an order of
magnitude larger than the starting one. Both the shear rate and excess free volume in
the steady-state follow expectations based on simple one-dimensional analytical models
used widely to analyze glass rheology.

Free volume catalyzes shear localization. For a quenched glass structure deformed at
low temperature, strain localization into a shear band directly follows excess free
volume accumulation in that band. This highlights a key improvement over previous STZ
dynamics models, where localization could be suppressed by internal stress
distributions.
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Table 1: List of simulation parameters used in free volume-assisted STZ
dynamics simulations

Simulation Parameters Value

Diffusive arrangement frequency Up = 1.0193x10" s (ref. to Eq. 7)

AF,0=8.1x10% J/Pa=w(T) (ref. to Eq. 2)

Free volume-dependent STZ activation energy

STZ dilatational strain £,=0.5 (ref. to Egs. 1,3 & 5)

Temperature-dependent shear modulus u(T) =37 GPa -0.004 GPa/KxT (ref. to Eq. 2)
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Figure Captions

Fig. 1: 2D FEM representation of a simulated sample. Region A is an example of a 13-element
STZ that is prevalent in this 2D meshing. Region B is an exception that has 14 elements. Pure
shear is applied when the sample is under mechanical loading. This image also shows the
redistribution of von Mises equivalent stresses (shaded) when STZs A and B are activated.

Fig. 2: (a) The macroscopic shear strain and volume-average f, evolution with respect to time.
The insets show the contour plot of the spatial distribution of plastic STZ strain and f, at the
time marked A. The position of the selected element is marked as a star in the contour plots.
(b) The local f, evolution of the selected element over a series of activation events (marked by
the points). The inset is a magnified view at marker A. This test is conducted at constant shear
=1 GPa and 300 K upon a stress-free sample with zero initial excess free volume.

Fig. 3: (a) The elastic strain energy vs. time for annealing at various temperatures. The inset
shows an example at 650 K to confirm the convergence of this process to a steady state. (b)
The elastic energy density in the equilibrated state vs. temperature.

Fig. 4: (a) The evolution of volume-average excess free volume f, vs. time during annealing at
various temperatures. The inset shows an example at 650 K plotting against KMC steps. (b)
The distribution of f, of each STZ when reaching steady state at various temperatures. The
inset shows an example of the spatial distribution of f, at 650 K. (c) The activation energy
distribution in steady state for STZ activation, AF;r;, and diffusive arrangement, AGp.

Fig. 5: The equilibrium free volume at various temperatures from annealing simulations,
plotted along with a linear relationship (ref. to blue dashed line) fmq = afv(T -T,), where ajy,

=7.44 x 10° K and T, = 280 K. The numerical solution of Eq. (15) is shown in red; and its
linearization is in black with a;, = 9.43 x 10° K™ and T, = 405 K obtained from Eq. 16 with a
reference f,0 = 5%

Fig. 6: (a) - (c) The strain vs. time data for the creep response of a relaxed structure at various
shear stresses at constant temperature 650 K. (e) - (g) The corresponding f, evolution over the
course of the creep tests. (d) The snapshots of STZ strains at marked time t; and t; in (c) for
the case of shear stress = 1 GPa. (h) Two snapshots at the same time as (d) of the spatial
distributions of f,.
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Fig. 7: (a) Steady-state homogenous flow data for several high temperature simulations,
plotted along with the predicted strain rates from Eq.(17). (b) The equilibrium f, at steady-
state as a function of applied load for several high temperature simulations, plotted along
with the predicted values from Eq.(18).

Fig. 8: The simulated viscosity in the Newtonian flow region at various temperatures vs. the
corresponding excess equilibrium free volume f,, plotted along with the fitted Doolittle

equation, 5 = 7 exP(le)' where 1, =1.58 and b = 0.64.

v

Fig. 9: (a) The shear strain and excess free volume f,vs. time data of a cooled structure
deformed at 300 K and 2 GPa shear load. (b) - (e) correspond to the snapshots at different
times during the creep test. For each time, the physical deformation along with the magnitude
of STZ strain and f, are displayed; additionally a plot with 1D profile of STZ strain and f,
distributions along the vertical direction of the deformed sample is provided.

Fig. 10: The shear strain vs. time data of the same cooled structure under the same
deformation conditions as in Fig. 9 (i.e., at 300 K and 2 GPa shear load) but after turning off
the free volume evolution. The insets show the spatial distribution of STZ strain and the
corresponding 1D profile of STZ strain along the sample vertical direction at the marked time,
both of which illustrate the homogenous nature of deformation.

23



%O ORO . ﬁ

%: 000 &

Fig.1: 2D FEM representation of simulation sample.
Region A is an example of 13-element STZ that is
prevalent in this 2D meshing. Region B is an exception
that has 14 elements. Simple shear is applied when the
sample is upon mechanical loading.
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annealing simulations, plotted along with a linear fitting fv = afv(T-T0) ,
where afv =7.44 x 10-5 K-1 and TO = 280 K. The numerical solution of
Eq. (15) is shown in red; and its linearization is in black with afv =9.43 x
10-5 K-1 and TO = 405 K calculated from Eq. (16) with fv0=5%
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Fig. 6: (a)-(c) The strain vs. time data for the creep response of equilibrated structure
upon various shear stresses at constant temperature 650K. (d) A snapshot is provided in
(c) for the case of high shear stress = 1GPa at marked time, where the inset shows the
physical deformation along with the magnitude of plastic STZ strains which are shaded.
(e)-(g) The volume average excess free volume vs. time for the corresponding creep tests
on the relaxed structure at 650K at various shear stresses. (h) Snapshots are provided at
marked time in (g), where the inset shows the physical deformation along with the
magnitude of excess free volume which are shaded.
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Fig. 9: (a) Volume average shear strain and excess free volume evolution vs. time of a cooled structure deformed at 300K and at
2GPa shear load. (b)- (e) correspond to the snapshots of the cooled structure at different time during the creep test. For each
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