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ORTHOGONALITY RELATIONS AND CHEREDNIK

IDENTITIES FOR MULTIVARIABLE BAKER–AKHIEZER

FUNCTIONS

OLEG CHALYKH AND PAVEL ETINGOF

Abstract. We establish orthogonality relations for the Baker–Akhiezer
(BA) eigenfunctions of the Macdonald difference operators. We also ob-
tain a version of Cherednik–Macdonald–Mehta integral for these func-
tions. As a corollary, we give a simple derivation of the norm identity and
Cherednik–Macdonald–Mehta integral for Macdonald polynomials. In
the appendix written by the first author, we prove a summation formula
for BA functions. We also consider more general identities of Cherednik
type, which we use to introduce and construct more general, twisted
BA functions. This leads to a construction of new quantum integrable
models of Macdonald–Ruijsenaars type.

1. Introduction

Around 1988, Macdonald introduced a remarkable family of multivariate
orthogonal polynomials related to root systems [M1]. Apart from a root
system R, these polynomials depend on two additional (sets of) parameters
q, t and specialize to various families of symmetric functions, among which
are the characters of simple complex Lie groups, Hall–Littlewood functions,
zonal spherical functions, Jack polynomials, and multivariate Jacobi poly-
nomials of Heckman and Opdam [HO]. The Macdonald polynomials have
since become a subject of numerous works revealing their links to many
different areas of mathematics and mathematical physics.

The Macdonald polynomials are customarily defined as symmetric polyno-
mial eigenfunctions of some rather remarkable partial difference operators,
called Macdonald operators. These operators can be viewed as commut-
ing quantum Hamiltonians, and the corresponding quantum model in case
R = An is equivalent to the trigonometric limit of the Ruijsenaars model
[R1], a relativistic version of the Calogero–Moser model. The Macdonald
polynomials play the role of eigenstates for these Macdonald–Ruijsenaars
models and only exist on certain discrete energy levels. Their orthogonal-
ity follows from the fact that the Macdonald operators are self-adjoint with
respect to a certain scalar product (Macdonald’s product) defined as an
integral over n-dimensional torus, with an explicit analytic measure.

For other values of the energy, the solutions to the eigenvalue prob-
lem are non-elementary functions which can be expressed in terms of q-
Harish–Chandra series [LS]. Rather remarkably, in the case t ∈ qZ these
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series reduce to elementary (but still highly nontrivial) functions. These
non-polynomial eigenfunctions ψ(λ, x) depend on continuous (rather than
discrete) spectral parameter λ and can be viewed as the Bloch–Floquet
(i.e.quasi-periodic) solutions to the eigenvalue problem. Such solutions were
constructed and studied in [Ch2]; in the case R = An they were known
from the earlier work [FVa, ES]. As shown in [Ch2], the functions ψ(λ, x)
are uniquely characterized by certain analytic properties, which makes them
similar to the Baker–Akhiezer functions from the finite-gap theory [N, DMN,
Kr1, Kr2] (see Sections 3.1 and 3.4 below). For that reason we will refer
to ψ(λ, x) as multivariable Baker–Akhiezer (BA) functions. The idea that
eigenfunctions of the quantum Calogero–Moser model for integral coupling
parameters should be given by certain multivariable Baker–Akhiezer func-
tions goes back to the work of the first author and Veselov [CV], see [Ch3]
for the survey of known results in that direction.

According to [Ch2], the BA functions ψ(λ, x) are related to Macdon-
ald polynomials by a formula that generalizes the Weyl character formula.
Using this, some important properties of Macdonald polynomials were de-
rived in [Ch2] from analogous properties of ψ. In particular, the duality
and evaluation identities for Macdonald polynomials are simple corollaries
of the bispectral duality for ψ. The approach of [Ch2] led to an elementary
proof of Macdonald’s conjectures, different from Cherednik’s proof that uses
double affine Hecke algebras [C1, C2].

Our first main result concerns a question which was not addressed in
[Ch2], namely, the orthogonality properties of ψ(λ, x). Since these are eigen-
functions for the Macdonald operators (which are self-adjoint with respect
to Macdonald’s scalar product), one would expect ψ to form an orthogonal
family. However, there is a subtlety here due to the fact that the definition
of the Macdonald’s product requires that t = qm with positive m, so it does
not work for m ∈ Z−. In the latter case the Macdonald’s product becomes
degenerate and the action of Macdonald operators on symmetric polyno-
mials becomes non-semisimple. (There is no such problem for m ∈ Z+,
however in that case the functions ψ(λ, x) have poles on the contour of in-
tegration, so the Macdonald’s product again is not well-defined.) The way
around that problem is suggested by the work of the second author and
Varchenko [EV2]. Namely, as we show in Theorem 4.1 below, the correct
scalar product can be defined by shifting the contour of integration suitably,
after which the integral can be easily evaluated by moving the contour to in-
finity. Morally, this is the same argument as the one used by Grinevich and
Novikov in [GN], where they derive orthogonality relations for BA functions
on Riemann surfaces. Similarly to [GN], our scalar product is indefinite.
However, to compare with their situation, our ψ(λ, x) represents a section
of a line bundle not on a curve, but on a certain n-dimensional algebraic
variety, so even the existence of ψ is a non-trivial fact. Also, our situation is
rather special because our BA functions are self-dual unlike those in [GN].
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As an application of our result, we present a simple derivation of the norm
formula for Macdonald polynomials.

Our second main result is a version of the Cherednik–Macdonald–Mehta
integral identity for BA functions (Theorem 5.1). It is a generalization of the

self-duality of the Gaussian e−x2
, a basic fact about the Fourier transforms.

Again, the proof is quite simple, and it easily implies the integral identity
originally proved by Cherednik [C5], in particular, it gives a new proof for
the q-analogue of the Macdonald–Mehta integral [M3, C5].

The paper finishes with an appendix written by the first author. In it we
prove a version of the summation formula for ψ that involves the Gaussian
(Theorem 6.1); this implies the result of [C5, Theorem 1.3]. In the final sec-
tion of the appendix, we introduce twisted BA functions ψℓ(λ, x), ℓ ∈ Z+, in
relation to more general integrals and sums of Cherednik–Macdonald–Mehta
type. We show that the functions ψℓ(λ, x) serve as common eigenfunctions
for quantum integrable models of Macdonald–Ruijsenaars type, which we
call twisted Macdonald–Ruijsenaars models. To the best of our knowledge,
they are new. The commuting quantum Hamiltonians for these models look
as lower order perturbations of the Macdonald operators raised to power ℓ.
Our construction of these models is implicit and is based on the construction
and properties of the twisted BA functions ψℓ. It would be interesting to
find an explicit construction for these twisted models using appropriately
modified double affine Hecke algebras.

The structure of the paper is as follows. In Section 2 we introduce no-
tations and recall the definitions of Macdonald scalar product, Macdonald
polynomials and Macdonald operators. In Section 3 we collect definitions
and main properties of the Baker–Akhiezer functions in Macdonald theory.
The material is based on [Ch2] and is not new, apart from the roots of
unity and evaluation results in Sections 3.6 and 3.8. Section 4 proves or-
thogonality relations for the BA functions (Theorem 4.1). In Section 4.2 we
explain how one can use that result to compute the norms of Macdonald
polynomials. We also prove orthogonality relations in the case when q is a
root of unity (Theorem 4.6). Section 5 establishes a version of Cherednik–
Macdonald–Mehta integral for the BA functions. Following [EV2], we also
discuss briefly the related integral transforms and use them to rewrite the
Cherednik–Macdonald–Mehta integral with the integration over a real cy-
cle. We finish the section by re-deriving Cherednik identities for Macdon-
ald polynomials (Theorem 5.7) and discuss some special cases, including
q-Macdonald–Mehta integral. The paper concludes with an Appendix con-
sisting of two sections. Section 6 is devoted to the proof of the summation
formula analogous to [C5, Theorem 1.3]. In Section 7 we introduce twisted
BA functions, prove their existence, and show that they serve as eigenfunc-
tions of a twisted version of Macdonald–Ruijsenaars models.

Part of the motivation behind this work was to find analogues of Chered-
nik’s results for the deformed root systems, discovered in [CFV1, CFV2].
Since our proofs do not require double affine Hecke algebras, they can be
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adapted for the deformed cases. This will be a subject of a separate publi-
cation [Ch4].

Let us finish by mentioning that in the case R = An the results of Theo-
rems 4.1 and 5.1 were obtained previously in [EV2] by using representation
theory of quantum groups. The strategy of [EV2] was in a sense opposite to
the one employed in the present paper. Namely, the results in [EV2] were
first derived in the symmetric setting, by representation-theoretic methods
from [EK1, EK2, ES, EV1], and then they were extended to statements
about ψ by analytic arguments. In contrast, we prove our results directly
for ψ, and then use them to derive analogous results for Macdonald polyno-
mials. In both approaches, Proposition 4.2 below plays the crucial role.

Acknowledgments. The preliminary version of these results were presented
by the first author (O. C.) at the Banff workshop ’New developments in
univariate and multivariate orthogonal polynomials’ in October 2010. O. C.
thanks the organizers for their kind invitation. The work of P. E. was
partially supported by the NSF grant DMS-1000113. We would like to
thank the referee for carefully reading the manuscript and suggesting various
improvements to the exposition.

2. Macdonald polynomials and Macdonald operators

2.1. Notations. Let VR be a finite-dimensional real Euclidean vector space
with the scalar product 〈· , ·〉. Let R = {α} ⊂ VR be a reduced irreducible
root system and W be the Weyl group of R, generated by orthogonal re-
flections sα for α ∈ R. The dual system is R∨ = {α∨ = 2α

〈α,α〉 |α ∈ R}.
We choose a basis of simple roots {α1, . . . , αn} ⊂ R and denote by R+ the
positive half with respect to that choice, i.e. R+ = R ∩ C+, where C+ is
the cone generated over R≥0 by the simple roots α1, . . . , αn. We will use the
standard notation of [B], so Q = Q(R) and P = P (R) denote the root and
weight lattices of R, with Q∨ := Q(R∨), P∨ := P (R∨). Let Q+ = Q ∩ C+

and P+ = P ∩C+ denote the positive cones of the root and weight lattices,
respectively. We reserve the notation P++ for the dominant weights:

P++ = {π ∈ P | 〈π, αi〉 ≥ 0 ∀ i} .
Let R[P ] be the group algebra of the weight lattice P . We choose 0 <

q < 1 and think of the elements in R[P ] as functions on VR of the form

f(x) =
∑

ν∈P

fνq
〈ν,x〉 with fν ∈ R .

We can view such f as an analytic function on the complexified space
VC = VR ⊕ iVR by defining q〈ν,x〉 := elog q〈ν,x〉. We can also allow com-
plex coefficients and view f ∈ C[P ] in a similar way. Clearly, such f are
periodic with the lattice of periods κQ∨, where

κ =
2πi

log q
. (2.1)
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Note that κ ∈ iR−. Later we will allow complex q 6= 0; in that case one needs
to fix a value of log q so κ might no longer be purely imaginary. Whenever
we allow q to vary, we do it by choosing a local branch of log q.

There are three types of Macdonald’s theory; they correspond to [M2],
(1.4.1)–(1.4.3). The first two types are associated to any reduced root system
R and one or two additional parameters. The third type corresponds to the
non-reduced affine root system (C∨

n , Cn); this case involves 5 parameters
and is related to Koornwinder polynomials [Ko1]. Following [LS], we will
refer to these as cases a, b and c, respectively. Each case depends on a data
(R,m) consisting of a root system R and certain labels m playing a role of
parameters.

2.1.1. Cases a, b. Given an arbitrary reduced irreducible root system R,
let us choose W -invariant multiplicity labels mα ∈ R for all α ∈ R. These
labels must be the equal for the roots of the same length, so mα take at
most two values, depending on whether R consists of one or two W -orbits.

Let us introduce quantities qα for α ∈ R as follows:

qα =

{
q in case a ,

q
〈α,α〉

2 in case b .
(2.2)

(By default, we also assume that qα = q in case c.) We will also write tα for
tα = q−mα

α .

2.1.2. Case c. Consider VR = Rn with the standard Euclidean product and
let R ⊂ VR be the root system of type Cn, that is R = 2R1 ∪R2 where

R1 = {±ei | i = 1, . . . , n} , R2 = {±ei ± ej | 1 ≤ i < j ≤ n} . (2.3)

Choose real parameters mi, i = 1, . . . , 5 and set

mα =

{
1
2 +

1
2

∑4
i=1mi for α ∈ 2R1 ,

m5 for α ∈ R2 .
(2.4)

Below we will need the dual parameters m′
i defined as follows:

m′
1 =

1

2
+

1

2
(m1 +m2 +m3 +m4) ,

m′
2 = −1

2
+

1

2
(m1 +m2 −m3 −m4) ,

m′
3 = −1

2
+

1

2
(m1 −m2 +m3 −m4) , (2.5)

m′
4 = −1

2
+

1

2
(m1 −m2 −m3 +m4) ,

m′
5 = m5 .

Write t for

(t1, t2, t3, t4, t5) := (q−m1 , q−m2 ,−q−m3 ,−q−m4 , q−m5) . (2.6)
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In all three cases m will denote the set of mα or mi, respectively, and we
will use the abbreviation t = q−m to denote the above tα or ti.

It will be convenient to use the notation α′ as follows: α′ = α∨ in case b,
while α′ = α for cases a and c. Let R′ = {α′ |α ∈ R}, that is, R′ = R∨ in
case b and R′ = R in the remaining cases. To have uniform notation, let us
also introduce m′

α = mα in cases a, b, while in case c we put, according to
(2.5), (2.4),

m′
α =

{
m1 for α ∈ R1 ,

mα for α ∈ R2 .
(2.7)

Let us now introduce the Macdonald weight function ∇. In cases a,
b it is defined as follows ([M2, (5.1.28)]):

∇ = ∇(x; q, t) =
∏

α∈R

(
q〈α,x〉; qα

)
∞(

tαq〈α,x〉; qα
)
∞

, (2.8)

where we used the standard notation

(a; q)∞ :=

∞∏

i=0

(1− aqi) .

In case c we put ([M2, (5.1.28)])

∇ = ∇(x; q, t) = ∇(1)∇(2) , (2.9)

where

∇(1) =
∏

α∈R1

(
q2〈α,x〉; q

)
∞∏4

i=1

(
tiq〈α,x〉; q

)
∞

and

∇(2) =
∏

α∈R2

(
q〈α,x〉; q

)
∞(

t5q〈α,x〉; q
)
∞

.

Finally, let ρ, ρ′ be the following vectors:

ρ =
1

2

∑

α∈R+

mαα , ρ′ =
1

2

∑

α∈R+

m′
αα

′ . (2.10)

Remark 2.1. Our notation slightly differs from the one used in [M2]. First,
in case b our R corresponds to R∨ in [M2]. Also, Macdonald uses the
parameters

kα = −mα . (2.11)

In case c the relation between ki used in [M2, Section 5] and our mi is as
follows:

m1 = −k1 ,m2 = −k3 −
1

2
,m3 = −k2 ,m4 = −k4 −

1

2
,m5 = −k5 . (2.12)

Let us also remark on the notation used in [Ch2]. Note that in case c
we have chosen R = Cn, and not Bn as in [Ch2]; this is done for purely
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notational reasons and agrees with [M2]. In case c the above ti correspond
to a, b,−c,−d, t in [Ch2, Section 6], while mi relate to (k, l, l′,m,m′) used
in [Ch2] by

(m1,m2,m3,m4,m5) = (l, l′,m,m′, k) .

More importantly, [Ch2] uses q2 everywhere in place of the present q.

2.1.3. Integrality assumptions. Below we will mostly deal with the case when
the parameters m are (half-)integers, so let us introduce some additional
notation for that case. Our running assumption will be that

mα ∈ Z+ = {0, 1, 2, . . . } ∀ α ∈ R (cases a and b) (2.13)

and

m1 ±m2 ∈
1

2
+ Z , m3 ±m4 ∈

1

2
+ Z , (2.14)

mi,m
′
i ≥ −1/2 for i = 1, . . . , 4 , m5 ∈ Z+ . (2.15)

The first assumption means that each pair (m1,m2) and (m3,m4) consists
of an integer and a half-integer. For brevity, we will refer to m satisfying
(2.13)–(2.15) as integral parameters.

The following notation will be used below for a, b, c ∈ R:

a 4 (b, c) ⇔ a ∈ {b− Z+} ∪ {c− Z+} . (2.16)

For example, 0 < s 4 (3/2, 2) means that s ∈ {1/2, 3/2, 1, 2}, while 0 < s 4
(−1/2, 2) means that s ∈ {1, 2}.
2.1.4. Weight function for t = q−m. Let us write explicitly the Macdonald
weight function ∇ for integral parameters m as specified above. It will be
convenient to introduce another function ∆ as follows. In case a and b we
put

∆(x) =
∏

α∈R+

mα∏

j=1

(
q−j/2
α q〈α,x〉/2 − qj/2α q−〈α,x〉/2

)
. (2.17)

In case c, we put ∆ = ∆
(1)
+ ∆

(1)
− ∆(2) where

∆
(1)
+ (x) =

∏

α∈R1
+

∏

0<s4(m1,m2)

(
q−s/2q〈α,x〉/2 − qs/2q−〈α,x〉/2

)
, (2.18)

∆
(1)
− (x) =

∏

α∈R1
+

∏

0<s4(m3,m4)

(
q−s/2q〈α,x〉/2 + qs/2q−〈α,x〉/2

)
, (2.19)

and

∆(2)(x) =
∏

α∈R2
+

mα∏

j=1

(
q−j/2
α q〈α,x〉/2 − qj/2α q−〈α,x〉/2

)
. (2.20)

This is related to ∇ (2.8), (2.9) by

∇(x; q, q−m) = C (∆(x)∆(−x))−1 , (2.21)
7



where
C =

∏

α∈R+

qmα(mα+1)/2
α (cases a, b) , (2.22)

or
C =

∏

0<r4(m1,m2)
0<s4(m3,m4)

qn(s+r)
∏

α∈R2
+

qmα(mα+1)/2 (case c) . (2.23)

Finally, if ∆ = ∆R,m is as above then ∆′ will denote the dual function
∆′ = ∆R′,m′ .

2.2. Macdonald scalar product. Let ∇(x; q, t) be the Macdonald weight
function (2.8)–(2.9) associated to (R,m). We are going to define a scalar
product on R[P ], where P = P (R) is the weight lattice of R. Let us first
assume that the parameters m are of the form (2.11) or (2.12), respectively,
with all kα or ki positive integers. In that case it is easy to check that
∇ ∈ R[P ]. For instance, in cases a and b,

∇ =
∏

α∈R

kα−1∏

i=0

(1− qiαq
〈α,x〉) . (2.24)

Then the Macdonald scalar product on R[P ] is defined by

〈f, g〉 = CT [f(x)g(−x)∇(x)] ∀f, g ∈ R[P ] , (2.25)

where CT is the linear functional on R[P ] computing the constant term:

CT

[
q〈ν,x〉

]
= δν,0 .

We can rewrite 〈f, g〉 as an integral over a torus. Namely, if κ is as in
(2.1) then

∫

iVR/κQ∨
q〈ν,x〉 dx = δ0,ν and

∫

iVR/κQ∨
fd x = CT[f ] ∀f ∈ R[P ] ,

where dx is the normalized Haar measure on the torus T = iVR/κQ
∨. The

scalar product (2.25) can therefore be written as

〈f, g〉 =
∫

iVR/κQ∨
f(x)g(−x)∇(x) dx . (2.26)

Note that ∇(x) is real on iVR, and also for any f ∈ R[P ] we have that

f(−x) = f(x). This implies that the scalar product (2.25) is positive defi-
nite.

For other values of the parameters, the usual convention is to define 〈f, g〉
by analytic continuation in t from the above values t = qk. It is easy to see
that the restriction of ∇ on iVR ⊂ VC depends analytically on t provided
that tα (or ti in case c) belong to (0, 1). Therefore, for such parameters the
scalar product is still given by the integral (2.26). However, for other values
of parameters the integral (2.25) no longer gives the correct scalar product.
Indeed, in the process of analytic continuation one might need to deform
the contour of integration when the poles of the weight function ∇ cross
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through iVR. It is far from obvious how to define the correct scalar product
by an analytic formula similar to (2.26) so that it would remain valid for
all t. The present paper provides a (partial) solution to that problem in
the case t = q−m with integral m. As we will see below, a simple recipe
in that case is to shift the integration cycle iVR by a suitable ξ ∈ VR (we
borrowed that idea from [EV2]). Note that on the shifted cycle f(−x) is no
longer equal to the complex conjugate of f(x), therefore we cannot expect
the scalar product to remain positive. This has obvious parallels with the
work [GN], where indefinite scalar products were associated with the Baker-
Akhiezer functions on Riemann surfaces. This is not surprising, since the
Baker–Akhiezer functions considered in the present paper can be viewed as
multivariable analogues of some of the Baker-Akhiezer functions appearing
in the finite-gap theory [N, DMN, Kr1, Kr2].

2.3. Macdonald polynomials. We write R[P ]W for the W -invariant part
of R[P ]. As a vector space, R[P ]W is generated by the orbitsums

mλ =
∑

τ∈Wλ

q〈τ,x〉 , λ ∈ P++ . (2.27)

Definition. Define polynomials pλ = pλ(x; q, t) as the (unique) elements of
R[P ]W of the form

pλ = mλ +
∑

ν<λ

aλνmν , λ ∈ P++ , (2.28)

which are orthogonal with respect to the scalar product (2.26):

〈pλ , pµ〉 = 0 for λ 6= µ . (2.29)

Here aλν depend on q, t and ν < λ denotes that ν, λ ∈ P++ with λ − ν ∈
P+ \ {0}.

The polynomials pλ were introduced by Macdonald in [M1] in cases a and
b (and some subcases of c). In case c they are due to Koornwinder [Ko1].
We will call pλ Macdonald polynomials in all three cases. The existence
of such pλ is a non-trivial fact. Originally, pλ were constructed in [M1,
Ko1] as eigenfunctions of the form (2.28) for certain remarkable difference
operators Dπ, discussed in the next section. Later, Cherednik developed
his celebrated DAHA theory which, among many other things, led to an
alternative construction of Dπ and pλ [C1, C2, C5]. Cherednik’s approach
was extended to Koornwinder polynomials in [No, Sa, St1].

Remark 2.2. In cases a and b the above definition is usually given for the
standard dominance ordering on P++, i.e. with ν ≤ µ meaning that µ −
ν ∈ Q+. It is easy to see (using the uniqueness of pλ) that replacing the
dominance ordering with any weaker partial ordering leads to the same
polynomials. This allows for a uniform notation for all three cases.
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Remark 2.3. One should keep in mind that the coefficients aλν in (2.28)
are certain rational functions of qα and tα. They may have poles and, as a
result, some of pλ do not exist for certain values of q, t. This happens, for
instance, in the case when t = q−m with integral m, and it is this case which
will be of our main interest below.

2.4. Macdonald difference operators. For any τ ∈ VC, T
τ will denote

the shift operator, which acts on a function of x ∈ VC by (T τf) (x) =
f(x + τ). A difference operator D (on a lattice L ⊂ VC) is a finite sum of
aτ (x)T

τ with τ ∈ L. The Macdonald operators (and Koornwinder operator
in case c) are certain remarkable difference operators whose eigenfunctions
are the polynomials pλ. Each D = Dπ is of the form

Dπ =
∑

τ∈Wπ

aτ (x)(T
τ − 1) + a0 , (2.30)

for certain very specific π ∈ V and with some explicitly given aτ (x) and
constant a0. They were introduced in [M1] for cases a, b and in [Ko1] in
case c (in case R = An they also appeared in [R1], see Example below).

In cases a and b the Macdonald operators are labeled by the minuscule
and quasi-minuscule elements π ∈ P (R′). Recall that a nonzero weight
π ∈ P (R) is called minuscule if 〈π, α∨〉 ∈ {−1, 0, 1} for all α ∈ R. It is
known that minuscule dominant weights are in one-to-one correspondence
with nonzero elements of P/Q, which means that they do not exist for
R = E8, F4, G2, see [B]. A weaker notion is that of a quasi-minuscule weight.
By definition, π ∈ P (R) is called quasi-minuscule if π ∈ R and 〈π, α∨〉 ∈
{−1, 0, 1} for all α ∈ R\{±π}. (Note that for for α = ±π we have 〈π, α∨〉 =
±2.) Quasi-minuscule weights exist for all R and are of the form π = wθ,
w ∈W , where θ∨ is the maximal coroot in R∨

+.
Given a (quasi-)minuscule π ∈ P (R′), the Macdonald difference operator

Dπ of type a–b has the form (2.30) with

aτ =
∏

α∈R:
〈α,τ〉>0

1− tαq
〈α,x〉

t
1/2
α (1− q〈α,x〉)

∏

α∈R:
〈(α′)∨,τ〉=2

1− tαqαq
〈α,x〉

t
1/2
α (1− qαq〈α,x〉)

, (2.31)

where tα = q−mα
α as before and the constant a0 is given by

a0 = mπ(−ρ) =
∑

τ∈Wπ

q−〈ρ,τ〉 . (2.32)

Remark 2.4. When π is minuscule, the second product in (2.31) is trivial.
In that case the expression a0 −

∑
τ∈Wπ aτ cancels out and the formula for

Dπ reduces to

Dπ =
∑

τ∈Wπ

aτT
τ , aτ =

∏

α∈R:
〈α,τ〉>0

1− tαq
〈α,x〉

t
1/2
α (1− q〈α,x〉)

. (2.33)
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In case c we have R = 2R1 ∪R2 of type Cn. In this case we take π = e1,
so Wπ = R1 = {±ei | i = 1, 2, . . . , n}. The corresponding operator Dπ is
called the Koornwinder operator and it is given by (2.30) with

aτ (x) = v(〈τ, x〉)
∏

α∈R2:
〈α,τ〉>0

1− tαq
〈α,x〉

t
1/2
α (1− q〈α,x〉)

, (2.34)

where v is the following function of one variable:

v(z) =

(
q

t1t2t3t4

)1/2 ∏4
i=1(1− tiq

z)

(1− q2z)(1− q2z+1)
. (2.35)

The constant a0 is given by the same formula (2.32).

Example. In case R = An−1 = {± (ei − ej) |i < j} ⊂ Rn with mα ≡ m,
each fundamental weight πs = e1 + · · · + es (s = 1, . . . , n) is minuscule and
the corresponding operators Ds = Dπs have the form

Ds =
∑

I⊂{1,...,n}
|I|=s

∏

i∈I
j /∈I

q−m+xi−xj − qm−xi+xj

qxi−xj − q−xi+xj
T I , (2.36)

where T I stands for
∏

i∈I T
ei . The (commuting) operators D1, . . . ,Dn are

known as the conserved quantities (or ‘higher Hamiltonians ’) of the quan-
tum trigonometric Ruijsenaars model [R1], see also [RS] for its classical
counterpart.

Remark 2.5. It follows from Cherednik’s work that there exist in general
n = rank(R) independent commuting difference operators that include the
operators Dπ among them. We will refer to them as Cherednik–Macdonald
operators. Apart from the R = An case as in the above example, the com-
plete set of such operators is known explicitly in some other cases (including
the general case c), see [D, DE].

The polynomials pλ can be uniquely characterized as symmetric eigen-
functions of the difference operators Dπ.

Theorem 2.6. [[M1, Ko1]] In each of the cases a–c and for generic (or
indeterminate) parameters t = {tα}, the polynomials pλ can be uniquely
characterised as eigenfunctions of the operators Dπ of the form (2.28).

Let us sketch the proof. The first observation is that the action of each
of Dπ on R[P ]W is lower-triangular in the following sense:

Dπ(mλ) = cλλmλ +
∑

µ<λ

cλµmµ , cλλ = mπ(λ− ρ) . (2.37)

Furthermore, one can show that for generic t (and suitably chosen π) the
diagonal coefficients cλλ with λ ∈ P++ are pairwise distinct:

mπ(λ− ρ) 6= mπ(µ− ρ) for λ 6= µ . (2.38)
11



Therefore, in such case the action of Dπ on R[P ]W is diagonalisable, so it has
uniquely defined eigenfunctions of the form (2.28). Finally, one checks that
the operator Dπ : R[P ]W → R[P ]W is self-adjoint with respect to the Mac-
donald scalar product. Therefore, the above eigenfunctions will be pairwise
orthogonal and, therefore, coincide with the Macdonald polynomials.

Remark 2.7. We should warn the reader that the above proof does not work
for some singular values of the parameters t = q−m for which the action
of Dπ on R[P ]W fails to be semisimple. In particular, this happens when
mα are positive integers (cf. Remark 2.3 above). In this situation, some
of the Macdonald polynomials are not well-defined. However, for any given
t = t0, whenever a particular eigenvalue cλλ of Dπ is simple for t = t0,
the corresponding eigenfunction will be locally analytic in t. Therefore, this
eigenfunction must coincide with the Macdonald polynomial pλ specialised
at t = t0.

Remark 2.8. The Macdonald polynomials pλ are known to be eigenfunctions
for the full family of the Cherednik–Macdonald operators, see Remark 2.5.
Therefore, if we know a particular W -invariant eigenfunction for the whole
family, and if the corresponding eigenvalue is simple for at least one operator
in this family, then the corresponding eigenfunction coincides with pλ. This
implies that pλ is well-defined if W (λ−ρ) 6=W (µ−ρ) for all µ ∈ P++ \{λ}.
(In fact, this only needs to be checked for µ < λ, due to the lower-triangular
nature of the Cherednik–Macdonald operators, cf. (2.37).)

3. Baker–Akhiezer function for Macdonald operators

Throughout this section we assume q ∈ C× is not a root of unity (un-
less specified otherwise). From now on we will work under the integrality
assumptions as specified in 2.1.3. For a given (R,m), the Baker–Akhiezer
functions (BA functions for short) are eigenfunctions of special form for the
Macdonald operators Dπ with t = q−m (or Koornwinder operator in case
c). In cases a and c they were introduced and studied in [Ch2]; case b is
entirely similar.

Let us denote by N ⊂ VR the following polytope associated to (R,m):

N = {1
2

∑

α∈R+

lαα | −mα ≤ lα ≤ mα} . (3.1)

By N ′ we denote the counterpart of N for (R′,m′), i.e.

N ′ = {1
2

∑

α∈R+

lαα
′ | −m′

α ≤ lα ≤ m′
α} . (3.2)

Note that the vertices of N and N ′ are of the form wρ and wρ′, respectively,
with w ∈ W . Below P and P ′ stand for the weight lattices of R and R′,
respectively.

12



3.1. Baker–Akhiezer function. Let ψ(λ, x) be a function of (λ, x) ∈ VC×
VC of the form

ψ = q〈λ,x〉
∑

ν∈N∩ ρ+P

ψν(λ)q
〈ν,x〉 . (3.3)

We will assume that ψ is meromorphic in λ. Let us assume that ψ has the
following properties for each α ∈ R in cases a, b or α ∈ R2 in case c, and
for every j = 1, . . . ,mα:

ψ

(
λ, x+

1

2
jα′

)
= ψ

(
λ, x−1

2
jα′

)
when q〈α,x〉 = 1 . (3.4)

(The equality in (3.4) is understood as an equality of meromorphic functions
of λ.)

In case c, we require in addition to (3.4) for α ∈ R2 the following proper-
ties for each α = ei ∈ R1:

(1) for all 0 < s 4 (m1,m2)

ψ(λ, x − sei) = ψ(λ, x + sei) for qxi = 1 ; (3.5)

(2) for all 0 < s 4 (m3,m4)

ψ(λ, x− sei) = ψ(λ, x+ sei) for qxi = −1 . (3.6)

Notice that for each α = ei we get 1 +
∑4

i=1mi = 2m′
1 different conditions.

Definition. A (nonzero) function ψ(λ, x) with the properties (3.3)–(3.6) is
called a Baker–Akhiezer (BA) function associated to {R,m}.
Remark 3.1. For a finite linear combination f(x) =

∑
ν∈VR

aνq
〈ν,x〉, we call

the support of f to be the convex hull of those points ν ∈ VR where aν 6= 0.
Then the property (3.3) means that, for a fixed λ, the support of ψ is
contained in the set λ + N . Moreover, in the ansatz (3.3) for ψ one can
refine P replacing it by any lattice L containing P : that would still define
the same object independent of the lattice. Note also that in cases a and b
the coefficients ψν in (3.3) are nonzero only if ν ∈ ρ+Q, cf. [Ch2, Corollary
3.4]; this means that in the ansatz (3.3) in these cases one can replace P by
Q.

Theorem 3.2. [cf.[Ch2, Proposition 3.1 and Theorem 3.7]] A Baker–Akhiezer
function ψ(λ, x) exists and is unique up to multiplication by a factor de-
pending on λ. As a function of x, ψ is an eigenfunction of the Macdonald
operators Dπ with t = q−m (or Koornwinder operator in case c). Namely,
we have

Dπψ = mπ(λ)ψ , mπ(λ) =
∑

τ∈Wπ

q〈τ,λ〉 .

In case a this was proved in [Ch2, Section 3], while Section 6 of [Ch2] also
outlines the case c (notice that the variables (λ, x) are denoted as (x, z) in
[Ch2]). The proof in case b is the same; for the reader’s convenience, we
outline the main steps below.
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3.2. Outline of the proof of Theorem 3.2. First, one shows that, if
exists, such a ψ is unique up to a λ-depending factor. This follows the
proof of Proposition 3.1 in [Ch2]. The main idea is that the conditions
(3.4)–(3.6) lead to a linear system on the coefficients ψν , which has at most
one-dimensional solution space when λ is generic.

The most non-trivial part is to prove the existence of ψ; the next obser-
vation is the key. Let Q ⊂ C[P ] denote the subspace of all f(x) that have
the same properties (3.4)–(3.6) as ψ. Explicitly, in cases a and b this means
that for every α ∈ R and j = 1, . . . ,mα a function f ∈ Q must satisfy the
identities

f

(
x+

1

2
jα′

)
= f

(
x− 1

2
jα′

)
when q〈α,x〉 = 1 . (3.7)

In case c (3.7) this should hold for α ∈ R2, while for α ∈ R1 one must have
the identities as in (3.5)–(3.6).

It is easy to see that Q is a ring, with C[P ]W ⊂ Q. We call Q the ring
of quasi-invariants, associated to (R,m); this is a q-analogue of the notion
going back to [CV, FVe]. Then we have the following key result.

Proposition 3.3. [cf.[Ch2, Proposition 2.1]] Under the integrality assump-
tions of 2.1.3, each of the operators Dπ described in Section 2.4 preserves
the corresponding ring of quasi-invariants, i.e. Dπ(Q) ⊆ Q.

Using Proposition 3.3, one can construct a BA function ψ by repeatedly
applying Dπ to a suitable initial function, reducing its support at each ap-
plication so that eventually the support lies within the polytope N . In case
a this is explained in detail in Sec. 3.2 of [Ch2], and everything applies with
only minor changes to all three cases. To formulate the result, we need the
function Q(x) as follows:

Q(x) = ∆(x)∆(−x) , (3.8)

where ∆(x) is defined in (2.17)–(2.20). It is trivial to see that any function
divisible by Q is quasi-invariant.

Theorem 3.4. [cf.[Ch2, Theorem 3.7]] Let Dπ be any of the operators de-
fined in Section 2.4. Define ψ(λ, x) as follows:

ψ =
∏

ν

(Dπ −mπ(λ+ ν))
[
q〈λ+ρ,x〉Q(x)

]
, (3.9)

where mπ are the orbitsums (2.27), Q is as in (3.8), and the product is taken
over all ν 6= 0 having the form ν =

∑
α∈R+

lαα with lα = 0, . . . ,mα. Then

(i) ψ has the required form (3.3);
(ii) the coefficient ψ−ρ in its expansion (3.3) is nonzero and, therefore, ψ is
nonzero;
(iii) ψ satisfies the conditions (3.4)–(3.6);
(iv) as a function of x, ψ is an eigenfunction of the operator Dπ, Dπψ =
mπ(λ)ψ.

14



The proof is completely parallel to the proof of [Ch2, Theorem 3.7]. This
establishes the existence of ψ and finishes the proof of Theorem 3.2. �

3.3. Rank one case. Consider the rank one case R = A1 = {±α} with
mα ∈ Z+ denoted as m. In this situation the cases a and b are equivalent
up to rescaling the variables. We identify VR with R so that α = 2, and fix
the scalar product on VR by 〈α,α〉 = 4. The ring C[P ] is then the ring of
Laurent polynomials in z = qx.

Consider case b, then we have parameters qα = q2 and t := tα = q−2m.
The Macdonald operator corresponding to π = 1 looks as follows:

D =
1− tq2x

t1/2(1− q2x)
T 1 +

1− tq−2x

t1/2(1− q−2x)
T−1 . (3.10)

We have D(Q) ⊆ Q, where the ring of quasi-invariants Q ⊂ C[P ] consists
of all f(x) such that for j = 1, . . . ,m

f (x− j) = f (x+ j) for q2x = 1 . (3.11)

It is easy to show that Q is generated by

u = qx + q−x and v =
(
qx − q−x

) ±m∏

j=±1

(
qx+j − q−x−j

)
. (3.12)

A BA function must have the form

ψ(λ, x) = q(λ+m)x
2m∑

ν=0

ψν(λ)q
−νx , (3.13)

and satisfy the conditions (3.11) in the x-variable. From that one calculates
the coefficients ψν and finds that ψν = 0 for odd ν, while the remaining
coefficients can be chosen as follows:

ψ0 = 1 , ψ2s =

s∏

j=1

(t1/2qj−1 − t−1/2q−j+1)(t1/2qj−1−λ − t−1/2q−j+1+λ)

(qj − q−j)(qj−λ − q−j+λ)

(3.14)
(see [Ch2, Section 4.1] for the details of such calculation.)

The two generators (3.12) are related by

v2 = (u2 − 4)

m∏

j=1

(
u2 − 2− q2j − q−2j

)2
. (3.15)

The ring Q is therefore isomorphic to the coordinate ring of a singular
hyperelliptic curve Γ with 2m double points.

Restricting to λ = n ∈ Z, we obtain a function

ψ(n, x) = zn
m∑

ν=−m

ψν(n)z
ν , z = qx .

Since ψ(n, x) ∈ Q for all n, it can be viewed as a function ψ(n, P ) of n ∈ Z

and P ∈ Γ. The affine curve Γ can be completed by adding two points
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P−, P+, corresponding to z = 0 and z = ∞, respectively. For P near P± we
have the following asymptotic formulas in terms of the local coordinate z:

ψ(n, P ) = ψ±m(n)zn±m(1 + O(z∓1)) as P → P± . (3.16)

3.4. Comparison with the BA functions in finite-gap theory. The
above notion of a Baker–Akhiezer function in the rank one case should be
compared to the Baker–Akhiezer functions that appear in the finite-gap ap-
proach to the Toda lattice equation. Namely, according to [Kr2], the relevant
(stationary) Baker–Akhiezer function is determined by the following algebro-

geometric data: a genus g hyperelliptic curve Γ given by v2 =
∏2g+2

i=1 (u−ui)
and a non-special divisor P1, . . . , Pg on Γ. By definition, the BA function
ψ(n, P ) is a meromorphic function on Γ, depending on the discrete variable
n ∈ Z, that has simple poles at P1, . . . , Pg and whose asymptotic behaviour
near two ‘infinite’ points P± in terms of the local coordinate u ∼ ∞ looks
as follows:

ψ±(n, P ) = µ±n u
±n(1 + ξ1(n)u

−1 + . . . ) .

Such ψ is uniquely defined up to an arbitrary n-dependent factor (this free-
dom is eliminated in [Kr2] by assuming µ+nµ

−
n = 1). To compare this to

(3.16), we use that u ∼ z±1 near P±. We conclude that the BA function
considered above is a particular singular limit of the notion from [Kr2], with
the curve Γ having 2m double points and with the divisor P1 + · · ·+ Pg re-
placed by mP++mP−. Note that the general setup allowing singular curves
Γ and sheaves instead of divisors was suggested in [Mum].

In case c the situation is similar. In this case R = {±2} as before, but
now we have four parameters m1, . . . ,m4 ∈ 1

2Z (the parameter m5 drops
out when n = 1). The ring of quasi-invariants Q consists of all f(x) ∈ C[P ]
such that

f (x− s) = f (x+ s) if

{
qx = 1 and 0 < s 4 (m1,m2) ,

qx = −1 and 0 < s 4 (m3,m4) .

It is easy to see that Q is generated by u = qx + q−x and

v =
(
qx − q−x

)
v−(x)v+(x)

where

v−(x) =
∏

0<s4(m1,m2)

(
q

x−s
2 − q

−x+s
2

)(
q

x+s
2 − q

−x−s
2

)

and

v+(x) =
∏

0<s4(m3,m4)

(
q

x−s
2 + q

−x+s
2

)(
q

x+s
2 + q

−x−s
2

)
.

The two generators are related by the relation

v2 = (u2 − 4)
∏

0<s4(m1,m2)

(
u− qs − q−s

)2 ∏

0<s4(m3,m4)

(
u+ qs + q−s

)2
.

(3.17)
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This defines a singular hyperelliptic curve Γ with 2mα = 1+
∑4

i=1mi double
points. The case of R = A1 considered above can be viewed as a subcase
of this, corresponding to m1 = m3 = −1

2 and m2 = m4 = m. When

m := mα = 1
2 (1 +

∑4
i=1mi) is integer, ψ(λ, x) still has the form (3.13), so

specializing to λ = n ∈ Z we get Krichever’s BA function for the singular
curve (3.17). In the case when m = mα is half-integer, the summation in
(3.13) should be taken over half-integers. Thus, to get a function on Γ, one
needs to restrict to λ = 1

2 + n, n ∈ Z. As a result, the divisor P1 + · · ·+ Pg

in this case has the form (m− 1
2)P+ + (m+ 1

2)P−.

3.5. Normalized BA function. A BA function ψ is not unique because
one can multiply it by a λ-dependent factor. Let us use this freedom and
prescribe the coefficient ψν at one of the vertices of the polytope N to be
as follows:

ψρ = ∆′(λ) , (3.18)

where ∆′ = ∆R′,m′ . Such a BA function is therefore uniquely defined. Note
that the function (3.9) does not satisfy the condition (3.18) in general.

Definition. The normalized BA function is the unique function ψ(λ, x)
with the properties (3.3)–(3.6) and the normalization (3.18).

This choice of normalization is justified by the following result, which in
cases a and c was obtained in [Ch2, Sections 4 and 6].

Theorem 3.5. The normalized BA function ψ has the following properties:
(i) for all w ∈W the coefficient ψwρ in (3.3) has the form

ψwρ = ∆′(w−1λ) ; (3.19)

(ii) ψ(λ, x) can be presented in the form

ψ = q〈λ,x〉
∑

ν∈N∩ρ+P
ν′∈N′∩ ρ′+P ′

ψνν′q
〈ν,x〉q〈ν

′,λ〉 , (3.20)

with ψνν′ ∈ Q(q1/2), where Q(q1/2) denotes the field extension of Q by all

q
1/2
α with α ∈ R;

(iii) We have the following bispectral duality:

ψ(λ, x) = ψ′(x, λ) , (3.21)

where ψ′ is the normalized BA function associated to (R′,m′).

Proof. In case a this follows from Proposition 4.4 and Theorem 4.7 of [Ch2].
The cases b and c can be treated similarly (see Theorems 6.7, 6.8 of [Ch2]

in case c). The statement that ψνν′ ∈ Q(q1/2) is not mentioned in [Ch2],
but it easily follows from the construction of ψ, see formula (3.9) above. �
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Note that the duality (3.21) implies that ψ(λ, x) has the following proper-
ties in the λ-variable: for each α ∈ R (or α ∈ R2 in case c) and j = 1, . . . ,mα

ψ

(
λ+

1

2
jα, x

)
≡ ψ

(
λ− 1

2
jα, x

)
for q〈α

′,λ〉 = 1 , (3.22)

and, additionally in case c,
(1) for all 0 < s 4 (m′

1,m
′
2)

ψ(λ− sei, x) = ψ(λ+ sei, x) for qλi = 1 ; (3.23)

(2) for all 0 < s 4 (m′
3,m

′
4)

ψ(λ− sei, x) = ψ(λ+ sei, x) for qλi = −1 . (3.24)

Part (i) of the above theorem, together with uniqueness of ψ, implies the
following symmetries of ψ.

Lemma 3.6. The normalized BA function has the following invariance
properties:
(i) ψ(wλ,wx) = ψ(λ, x) for any w ∈W ;
(ii) ψ(−λ,−x) = ψ(λ, x).
(iii) ψ(λ, x; q−1) = ψ(λ,−x; q).

For the proof of the first part, see [Ch2, Lemma 5.4]. Parts (ii) and (iii)
are proved similarly. �

Remark 3.7. In the rank one case R = A1, one can express ψ in terms of
the basic hypergeometric series 2φ1(a, b; c; q, z), which reduces the properties
(3.4) and the statements of Theorem 3.5 to the known identities for 2φ1, see
[Ko2]. Other expressions for ψ in the rank-one case exist [R2, EV1, St2]. In
higher rank, for R = An a function closely related to our ψ was constructed
in [FVa] via a version of Bethe ansatz, and in [ES] via representation theory
of quantum groups.

Remark 3.8. From (3.1), (3.3) it follows that ψ can be presented in the form

ψ(λ, x) = q〈λ+ρ,x〉
∑

ν∈P−

Γν(λ)q
〈ν,x〉 , (3.25)

where P− := −P+ and the sum is finite. (In cases a and b the summation
effectively takes place over ν ∈ Q− ⊆ P−, cf. Remark 3.1.) The leading
coefficient Γ0 can be determined from (3.19) as

Γ0 = ∆′(λ) . (3.26)

Recall that this ψ is an eigenfunction of Macdonald difference operators
with t = q−m. For generic t the eigenfunctions are no longer given by
finite sums, but rather infinite series of the form (3.25). Such infinite series
solutions were studied in [LS], [vMS], [vM]. The fact that for t = q−m with
(half-)integer m those series terminate is non-obvious, but it follows from
the above results and the uniqueness of the formal series solution, cf. [LS,
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Proposition 4.13]. Note also that for t = qm+1 the series solutions (3.25) are
no longer finite, but are in fact still elementary functions.

3.6. Roots of unity. The proofs of the above results in [Ch2] require q not
being a root of unity; this is needed for the proof of the crucial Lemma 3.2 of
[Ch2]. In fact, for given multiplicities m one has to avoid only certain roots
of unity. Namely, let us assume that the function ∆ defined by (2.17)–(2.20)
has simple zeroes, i.e. all the factors are distinct. Explicitly, in case a and
b this means that for all α ∈ R

qjα 6= 1 for j = 1, . . . ,mα − 1 . (3.27)

In case c our assumption is that

qj 6= 1 for j = 1, . . . ,m5 − 1 , (3.28)

and that the following numbers are pairwise distinct:

qs with 0 < s 4 (m1,m2) and − qs with 0 < s 4 (m3,m4) . (3.29)

Proposition 3.9. With the conditions (3.27)–(3.29) the statements of The-
orems 3.2, 3.5 remain valid.

Proof. The conditions (3.4)–(3.6) are equivalent to an overdetermined linear
system for coefficients ψν , see the proof of [Ch2, Lemma 3.2]. We know that
ψ exists for generic q, therefore, it must exist for any q. Its uniqueness is
based on [Ch2, Lemma 3.2] and elementary geometric arguments. Looking
at the proof of that lemma in [Ch2], given in case a, one sees that it only
requires an assumption that qj 6= 1 for j = 1, . . . ,mα − 1. In case b it
should be replaced by (3.27). In case c everything is analogous for the roots
α ∈ R2, which gives (3.28). Finally, one needs to look at the corresponding
linear system for α = ei ∈ R1. In that case one can see, similarly to case
a, that in the limit qλi → ∞ this system has the matrix of coefficients
being the Vandermonde matrix built from the numbers appearing in (3.29).
Therefore, the system has only zero solution provided that these numbers
are pairwise distinct. This proves that conditions (3.28)–(3.29) are sufficient
for the uniqueness of ψ in case c. �

Remark 3.10. If one is interested in eigenfunctions of the difference operators
Dπ, then the assumptions (3.27)–(3.29) are not very restrictive. Indeed,
a quick look at the formula (2.31) for the coefficients of the Macdonald
operator in case b shows that if qα is a primitive nth root of unity then mα

can be reduced modulo n as this does not change tα = q−mα . Therefore,
we can always assume that mα < n, and in that case (3.27) is automatic.
The situation in cases a and c is similar. Thus, the Macdonald operators
with q = t−m with integral m will always have BA functions ψ(λ, x) as their
eigenfunctions, for any q ∈ C×. For fixed t = q−m these eigenfunctions are
analytic in q provided (3.27)–(3.29).
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3.7. Generalized Weyl formula. Let us explain, following [Ch2], the re-
lationship between ψ(λ, x) and Macdonald polynomials pλ. Given the nor-
malized BA function ψ(λ, x), we consider two functions Φ± obtained by
(anti)symmetrization in λ:

Φ+(λ, x) =
∑

w∈W

ψ(wλ, x) , Φ−(λ, x) =
∑

w∈W

(−1)wψ(wλ, x) . (3.30)

Note that (anti)symmetrization in x would give the same result, due to
Lemma 3.6; hence, Φ+ is W -symmetric in x, and Φ− is antisymmetric.

Introduce the following function:

δ(x) = ∆(x)∆(−x)δ0(x) , (3.31)

where

δ0(x) =
∏

α∈R+

(
q〈α,x〉/2 − q−〈α,x〉/2

)
.

Recall the vector ρ (2.10) and let

ρ̃ =
1

2

∑

α∈R+

(mα + 1)α . (3.32)

Theorem 3.11 (cf. [Ch2, Theorem 5.11]). For λ ∈ ρ̃+ P++ we have

Φ−(λ, x) = ∆′(λ)δ(x) pλ−ρ̃(x; q, q
m+1) (3.33)

and

Φ+(λ, x) = ∆′(λ) pλ+ρ(x; q, q
−m) . (3.34)

Note that the condition λ ∈ ρ̃+ P++ ensures that ∆′(λ) 6= 0.

Proof. In case a this is [Ch2, Theorem 5.11], and the same proof works in
cases b and c. The proof of (3.33) goes as follows: firstly, one shows that
every antisymmetric quasi-invariant is divisible by δ(x). This proves that
Φ− = δ(x)f(x) for some f ∈ C[P ]W . Next, since Φ− is an eigenfunction of
the Macdonald operators with t = q−m, a simple computation shows that f
must be an eigenfunction of Dπ with t = qm+1. Finally, by comparing the
leading terms and using Theorem 2.6, we get that f is proportional to the
required Macdonald polynomial, see [Ch2] for the details.

The proof of (3.34) is similar. By construction, the left-hand side of
(3.34) is aW -invariant polynomial eigenfunction of the Macdonald operators

with t = q−m, with the required leading exponential term ∆′(λ)q〈λ+ρ,x〉

that comes from ψ(x, λ). We will need a slightly stronger result: ψ, and
therefore Φ+, is a common eigenfunction for the full family of Cherednik–
Macdonald operators with t = q−m. This follows from the results of [Ch2,
Sections 5.1, 5.2]; alternatively, one can derive that by using that ψ(λ, x) is
a specialisation of the formal q-Harish-Chandra series, cf. Remark 3.8.

Thus, the left-hand side of (3.34) is a W -invariant eigenfunction for the
Cherednik–Macdonald operators. By Remarks 2.7, 2.8, to check that it
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coincides with the relevant Macdonald polynomial, it suffices to check that
for λ ∈ ρ̃+ P++ and µ ∈ P++ we have

wλ 6= µ− ρ for w 6= 1 . (3.35)

The assumption on λ gives that 〈λ, α∨〉 > mα for any α ∈ R+. For w 6= 1
we can find a simple positive coroot β∨ such that α∨ := −w−1β∨ is also
positive. Then we have 〈β∨, wλ〉 = 〈w−1β∨, λ〉 = −〈α∨, λ〉 < −mα = −mβ.
This implies that wλ /∈ −ρ+ P++, which proves (3.35). �

Remark 3.12. It follows from Proposition 3.18 below, that for sufficiently
small weights there is a formula similar to (3.34). Namely, the function
ψ(λ, x) is W -invariant if λ ∈ −ρ + P++ ∩ −P++, in which case we have
ψ(λ, x) = ∆′(λ)pλ+ρ(x; q, q

−m). Proof is similar, only in this case it suffices
to check (3.35) for µ− ρ < λ, and this is obvious because now λ ∈ −P++.

Remark 3.13. For m = 0 ψ(λ, x) is simply q〈λ,x〉 while pλ(x; q, q) are the
characters of the corresponding Lie algebra of type R. Thus, for m =
0 formula (3.33) turns into the classical Weyl character formula. In case
R = An formula (3.33) was conjectured by Felder and Varchenko [FVa]
and proved by Etingof and Styrkas [ES]. We note that the evaluation and
duality identities for pλ are trivial consequences of this formula and the
duality (3.21), see [Ch2, Section 5.5] for the details.

Remark 3.14. The above proof of (3.33) uses crucially the characterisation
of pλ as polynomial eigenfunctions for Dπ. There is an alternative way to
prove (3.33) using the orthogonality relations for BA functions. As a by-
product, this gives an alternative way to establish the existence of pλ, see
Remark 4.5 below.

Remark 3.15. As indicated in Remark 3.8, the BA function ψ(x, λ) can be
thought of as a specialization at t = q−m of the asymptotically free eigen-
functions given by the q-Harish-Chandra series [LS]. It is known that for
special values of λ these series becomeW -invariant and reduce to Macdonald
polynomials. However, in the above theorem the corresponding ψ(λ, x) is
not W -invariant and further (anti)-symmetrization is needed. This seems a
contradiction, but in fact the asymptotically free eigenfunctions are not well
defined for those specific λ and t. This is best illustrated in the rank-one
case. We use the notation of Sec. 3.3, so R = A1 = {±2} with qα = q2 and
t = tα = q−2m. In this case the asymptotically free eigenfunctions are given
by φ(x, λ) = q(λ+m)x

∑
ν∈2Z+

φν(λ)q
−νx, where the coefficients are given by

(3.14). From these formulas it is clear that the series is well-defined for
generic λ and arbitrary t. When t = q−2m with m ∈ Z+, the series termi-
nates, reducing to a BA function ψ(x, λ) (normalized by ψρ = 1). On the
other hand, when λ+m ∈ Z+, the series also terminates (if we assume that
m is generic in order to avoid the poles in φ2s). However, if we assume that
m ∈ Z and λ +m ∈ Z+ simultaneously, then the series is not well-defined
(there will be zero factors appearing both in the numerator and denominator
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of φ2s). That is why for such λ, t we may have a symmetric eigenfunction
together with a non-symmetric one, both asymptotically free. Note that this
happens even for t = q2m+2 with m ∈ Z+, when the Macdonald polynomi-
als are perfectly well-defined. In that case the asymptotically free solution
that is valid for generic λ is given by φ(x, λ) = δ−1(x)ψ(x, λ), where δ is as
in (3.31). Such φ can be expanded into an infinite series, and the formula
(3.33) tells us that a suitable combination of these infinite series becomes a
finite sum, reducing to the appropriate Macdonald polynomial.

3.8. Evaluation. Relation 3.34 gives a well-defined expression for pλ only
if λ ∈ ρ̃+ρ+P++, i.e. if λ is sufficiently large. This reflects the fact that for
mα ∈ Z+, some of pλ are not well-defined, cf. [Ch2, Corollary 5.13]. This is
also related to the fact that while for generic λ the function ψ(λ, x) has the
support λ+N , for special λ the support becomes smaller. In particular, the
support can reduce to a single point, as the following proposition shows.

Proposition 3.16. For λ = wρ, w ∈ W , the normalized BA function
ψ(λ, x) does not depend on x and is equal to ∆′(−ρ) 6= 0.

Proof. The vectors wρ point to the vertices of the polytope N . Each vertex
corresponds to a choice of a positive half R+ ⊂ R, and for any two adjacent
vertices λ1, λ2 we have λ2 = sα(λ1) and λ2 = λ1 − mαα for a suitable

α ∈ R. Put λ = 1
2(λ1 + λ2). Then 〈α, λ〉 = 0 so that q〈α

′,λ〉 = 1; also

λ1,2 = λ ± 1
2mαα. Therefore, applying (3.22) with j = mα gives us that

ψ(λ1, x) = ψ(λ2, x) in cases a, b, or c with α ∈ R2. In the remaining case
α = 2ei ∈ 2R1 this also works, because in that case we can use (3.23) for
s = m′

1:

ψ(λ−m′
iei, x) = ψ(λ+m′

iei, x) .

According to (2.4), we have m′
iei =

1
2mαα. Therefore, in that case we also

obtain that ψ(λ1, x) = ψ(λ2, x).
So, in all cases we obtain that the functions ψ(wρ, x) with w ∈W are all

the same. Each of these functions has support within wρ+N . Since

∩w∈W{wρ+N} = {0} ,

they all are constants. To evaluate this constant, we need to look at the
coefficient ψρ(−ρ) in (3.3), which equals ∆′(−ρ) by (3.18). The fact that
this is nonzero is easy to check. �

Remark 3.17. By duality (3.21), we also have ψ(λ,wρ′) = ∆(−ρ′) for all
w ∈ W . In particular, for λ = ρ and x = ρ′ this gives ψ(ρ, ρ′) = ∆(−ρ′) =
∆′(−ρ).

More generally, we have the following result, which reduces to Proposition
3.16 in the case µ = 0.
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Proposition 3.18. Let µ ∈ P++ be such that 〈α∨, µ〉 ≤ mα for every simple
root α ∈ R+, and λ := µ− ρ. Then ψ(λ, x) ∈ R[P ]W and we have

ψ(λ, x) =
∑

ν≤µ

aµνmν , aµµ = ∆′(λ) 6= 0 .

Here ν ≤ µ denotes the same partial ordering on P++ as in (2.28).

Proof. For any simple root α ∈ R+ we have 〈α∨, λ〉 = 〈α∨, µ〉 −mα, there-
fore, −mα ≤ 〈α∨, λ〉 ≤ 0. Put λ1 = λ and λ2 = sαλ, where sα is the
corresponding simple reflection. Then the same argument as above shows
that ψ(λ1, x) = ψ(λ2, x), i.e. ψ(λ, x) = ψ(sαλ, x). By Lemma 3.6(i), we
have ψ(λ, x) = ψ(λ, sαx). Since this applies to every simple reflection, we
conclude that ψ(λ, x) is W -invariant. The support of ψ(λ, x) is contained in
λ+N , thus ψ must be a combination of orbitsums mν with ν ≤ λ+ ρ = µ.
The leading coefficient aµµ can be found as ψρ(λ), which equals ∆′(λ). Since
〈α′, λ〉 ≤ 0 for all simple roots, we have ∆′(λ) 6= 0. �

As mentioned earlier, in the case t = q−m some of the Macdonald polyno-
mials pλ do not exist. We have seen that there are two types of Macdonald
polynomials that exist for t = q−m, namely, pλ with large λ as in (3.34), or
pµ with small µ as in Proposition 3.18. It is interesting to note that, as the
formula (4.1) below shows, pλ’s have positive norms, while the norms of pµ
are all zero.

Remark 3.19. The result of Proposition 3.16 can be viewed as a counterpart
of the evaluation formula for pλ. Indeed, let us substitute x = −ρ′ into
(3.34). Using Remark 3.17, we get that ψ(wλ,−ρ′) = ∆′(−ρ) for all w ∈W .
As a result, (3.34) gives us that

|W |∆′(−ρ) = ∆′(λ) pλ+ρ(−ρ′; q, q−m) ,

provided λ sufficiently large so that pλ+ρ are well-defined. Denoting µ = λ+ρ
and using the notation ρm, ρ′m for vectors (2.10), we get

pµ(ρ
′
−m; q, q−m) = |W | ∆′(ρ−m)

∆′(µ+ ρ−m)
. (3.36)

This should be compared with the evaluation identity for pλ, see [C2] in
cases a, b, or [M2] for all three cases. In fact, formula (3.36) can be obtained
from the formula [M2, (5.3.12)] for pλ(ρ

′
k; q, q

k) by analytic continuation in
k, assuming the existence of pλ(x; q, q

−m).

4. Orthogonality relations for BA functions

Let us say that ξ ∈ VR is big if |〈α, ξ〉| ≫ 1 for all α ∈ R; more precisely,
we will require that

|〈α∨, ξ〉| > mα for all α ∈ R . (4.1)
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Let Cξ = ξ + iVR be the imaginary subspace in VC; it is invariant under
translations by κQ∨. Let dx denote the translation invariant measure on Cξ

normalized by the condition
∫

Cξ/κQ∨
dx = 1 .

Theorem 4.1. For any λ, µ ∈ VR with λ − µ ∈ P and any big ξ ∈ VR we
have ∫

Cξ/κQ∨

ψ(λ, x)ψ(µ,−x)
∆(x)∆(−x) dx = δλ,µ(−1)M∆′(λ)∆′(−λ) , (4.2)

where δλ,µ is the Kronecker delta and M =
∑

α∈R+
mα.

Proof. The condition λ−µ ∈ P guarantees that ψ(λ, x)ψ(µ,−x) is periodic
in x with respect to the lattice κQ∨, thus, the integral is well-defined. The
proof of the theorem rests on the following result.

Proposition 4.2 (cf. [EV2, Theorem 5.1]). Let I(ξ) denote the integral in
the left-hand side of (4.2). Then I(ξ) does not depend on ξ provided it is
big in the sense of (4.1).

The proof of the proposition occupies the next section. Assuming it, we
can evaluate the integral by taking the limit ξ → ∞ in a suitable Weyl
chamber. Indeed, let us assume that ξ stays deep inside the negative Weyl
chamber, i.e. 〈α, ξ〉 ≪ 0 for every α ∈ R+. In that case

Re〈α, x〉 = 〈α, ξ〉 ≪ 0 for any x ∈ ξ + iVR ,

hence
∣∣q−〈α,x〉

∣∣ ≪ 1. The properties (3.25)–(3.26) give us the asymptotic
behaviour of ψ for x ∈ Cξ as ξ → ∞ inside the negative Weyl chamber:

ψ(λ, x) ∼ ∆′(λ)q〈λ+ρ,x〉 and

ψ(µ,−x) = ψ(−µ, x) ∼ ∆′(−µ)q〈−µ+ρ,x〉 .

For those x we also have

∆(x)∆(−x) ∼ (−1)
∑

α∈R+
mαq2〈ρ,x〉 .

As a result, the asymptotic value of the integrand is

(−1)M∆′(λ)∆′(−µ)q〈λ−µ,x〉 .

In the case µ = λ this immediately leads to (4.2). On the other hand, when
µ − λ is dominant the integrand tends to zero as ξ → ∞ in the negative
chamber, thus the integral must vanish. Finally, by switching to another
Weyl chamber one obtains the same result in the general case. �
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4.1. Proof of Proposition 4.2. The proof is parallel to the proof of [EV2,
Theorem 5.1]. Let us first demonstrate the idea in the rank-one case of
R = A1 = {α,−α} ⊂ R, Q = Zα, P = 1

2Q. In that case the integrand in
(4.2) is a meromorphic function of a single complex variable x ∈ C, periodic
with the period κα∨; we denote the integrand as F (x). Thus, we have

I(ξ) =

∫ ξ+κα∨

ξ
F (x) dx .

To prove that I(ξ) = I(ξ′), we need to look at the residues of F between
the lines Re(x) = ξ and Re(x) = ξ′. The integrand has simple poles at

points where q〈α,x〉 = q±j
α with j = 1, 2, . . . ,mα. These poles are naturally

organized in groups, with 2mα poles in each group. Namely, for any y such
that q〈α,y〉 = 1, we have 2mα poles of F at

x = y±j := y ± 1

2
jα′ with j = 1, . . . ,mα . (4.3)

The requirement that ξ is big is equivalent to saying that these poles lie on
one side of the line Re(x) = ξ. We need to check that I(ξ) = I(−ξ′) for
ξ, ξ′ ≫ 0. For that it is sufficient to check that the sum of the residues of F
at the points (4.3) equals zero.

From (3.4) we have

ψ(λ, y−j) = ψ(λ, yj) ∀ j = 1, 2, . . . ,mα ,

and the same for ψ(µ, x). Also, it is clear that ∆(x)∆(−x) is invariant under
the group {±1} ⋉ κZα∨, which is isomorphic to the affine Weyl group of
R = A1. From that it easily follows that

resx=y−j F (x) = −resx=yj F (x) ∀ j = 1, 2, . . . ,mα .

Thus, the sum of the residues is indeed zero, and we are done.
The higher rank case is similar. We will give a proof for cases a and b;

case c is entirely similar. For future application to deformed root systems
[Ch4], let us make most of our arguments independent of the properties
of root systems. Thus, we will only assume that P and Q∨ are full rank
lattices in VR, with R ⊂ P and with Q∨ contained in the dual to P , i.e.
with 〈P,Q∨〉 ⊂ Z.

The hyperplanes 〈α, x〉 = 0 with α ∈ R separate VR into several connected
regions (chambers). Clearly, I(ξ) does not change when ξ stays within a
particular chamber while remaining big. To show that the value of the
integral is the same for every chamber, it is enough to check that I(ξ) = I(ξ′)
when ξ and ξ′ belong to adjacent chambers. Suppose that the two chambers
are separated by the hyperplane 〈α, x〉 = 0 for some α ∈ R. Without loss of
generality, we may assume that ξ′ = sαξ, with 〈α∨, ξ〉 > mα. Moreover, we
can move ξ and ξ′ inside the chambers to achieve that

|〈β, ξ〉| ≫ |〈α, ξ〉| for all β 6= ±α in R , (4.4)

and the same for ξ′.
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The integral over Cξ/κQ
∨ can be computed by integrating over any

(bounded, measurable) fundamental region for the action of κQ∨ on Cξ.
For example, we can choose a basis {ǫ1, . . . , ǫn} of Q∨ and integrate over the
set of x ∈ VC of the form

x(t1, . . . , tn) = ξ + κ

n∑

i=1

tiǫi , ti ∈ (0, 1) . (4.5)

Moreover, one can replace ǫi by ǫ
′
i =

∑
aijǫj where the matrix A = (aij)

is upper-triangular with aii = 1: it is easy to see that the set (4.5) for {ǫ′i}
will still be a fundamental region. (Note that the entries of A do not have
to be integers, so ǫ′i may not belong to Q∨.) Using this, we can change the
direction of ǫ1 arbitrarily; we will assume that ǫ1 is parallel to the above α.

Up to an irrelevant constant factor we have dx = dt1 . . . dtn and

I(ξ) =

∫
F (x) dt1 . . . dtn , x = x(t1, . . . , tn) ,

with

F (x) =
ψ(λ, x)ψ(µ,−x)
∆(x)∆(−x) . (4.6)

For I(ξ′) we have a similar formula

I(ξ′) =

∫
F (x′) dt1 . . . dtn , x′(t1, . . . , tn) = ξ′ + κ

n∑

i=1

tiǫi .

Both integrals can be computed by repeated integration. Therefore, to prove
that I(ξ) = I(ξ′) it suffices to check that for any t2, . . . , tn ∈ R we have

∫ 1

0
F (x) dt1 =

∫ 1

0
F (x′) dt1 . (4.7)

Since ǫ1 is parallel to α, the variable x in the first integral moves in the
direction of κα∨ through the point

y = ξ + κ

n∑

i=2

tiǫi .

Similarly, x′ in the second integral moves in the same direction through the
point

y′ = ξ′ + κ

n∑

i=2

tiǫi .

Since y− y′ = ξ− ξ′ = ξ − sαξ = 〈α∨, ξ〉α, the integration takes place along
two parallel lines in the complex plane {y + zα′ | z ∈ C}, which makes the
situation similar to the rank-one case above. Namely, if we denote by L and
L′ the above two lines through y and y′ then the relation (4.7) is equivalent
to ∫

L/κZα∨
F (y + zα′) dz =

∫

L′/κZα∨
F (y + zα′) dz . (4.8)
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We therefore need to look at the poles of F (y+ zα′) as a function of z ∈ C.
The poles between L and L′ are those where

q〈α,y+zα′± 1
2
jα′〉 = 1 with j = 1, 2, . . . ,mα . (4.9)

Other factors in ∆(x)∆(−x) will not contribute because of the assumption
(4.4) and the fact that y ∈ ξ + iVR.

Similarly to the rank-one case, the poles (4.9) are organized into groups
with 2mα poles in each group. Namely, by a suitable shift in the z-variable,
we can always make q〈α,y〉 = 1 in such a way that the poles (4.9) will
correspond to z = ±1

2j with j = 1, . . . ,mα. Now everything boils down to
the following property of the integrand (4.6).

Lemma 4.3. For any x ∈ VC with q〈α,x〉 = 1 and for all j = 1, . . . ,mα we
have

resz=−j/2 f(z) + resz=j/2f(z) = 0 , where f(z) := F (x+ zα′) . (4.10)

The lemma can be proved in the same manner as in the rank-one case,
by using the properties (3.22) and the invariance of ∆(x)∆(−x) under the
group W ⋉ κQ∨. �

Using the lemma, we conclude that the relation (4.8) is valid, and this
finishes the proof of Proposition 4.2. �

4.2. Norm identity for Macdonald polynomials. Let us keep the no-
tation of section 3.7. We can use Theorems 3.11 and 4.1 to easily compute

the norms of polynomials pλ(x; q, t). Namely, take λ̃ = ρ̃+ λ with λ ∈ P++,

and consider the function Φ−(λ̃, x) as defined in (3.30). Then we can use
Theorem 4.2 to compute the integral

∫

Cξ/κQ∨

Φ−(λ̃, x)Φ−(λ̃,−x)
∆(x)∆(−x) dx .

Indeed, expanding Φ− in terms of ψ’s and using the fact that wλ̃ = w′λ̃
only when w = w′, we obtain that the integral equals

∑

w∈W

(−1)M∆′(wλ̃)∆′(−wλ̃) = |W |(−1)M∆′(λ̃)∆′(−λ̃) .

(Here we used the W -invariance of ∆′(λ)∆′(−λ).)
According to (3.33), we have

Φ−(λ̃, x) = (−1)M∆′(λ̃)δ(x) pλ(x) , pλ(x) = pλ(x; q, q
m+1) . (4.11)

Substituting this into the integral gives:
∫

Cξ/κQ∨
pλ(x)pλ(−x)

δ(x)δ(−x)
∆(x)∆(−x) dx = |W |(−1)M

∆′(−λ̃)
∆′(λ̃)

.

Now it is easy to check that

δ(x)δ(−x)
∆(x)∆(−x) = C−1(−1)|R+|∇(x; q, qm+1) , (4.12)
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where δ is as in 3.7 and C is the constant (2.22)–(2.23).
As a result, we obtain that

∫

Cξ/κQ∨
pλ(x)pλ(−x)∇(x) dx = C(−1)M̃ |W |∆

′(−λ− ρ̃)

∆′(λ+ ρ̃)
, (4.13)

where we used M̃ :=
∑

α∈R+
(mα + 1).

Since now the integrand has no poles, we can shift the cycle Cξ back to
iVR, so the left-hand side becomes the Macdonald scalar product 〈pλ, pλ〉.
This leads to the formula for the norms of pλ(x; q, t) in the case t = qm+1,
cf. [C1, M2]. �

Remark 4.4. Note that the above proof of the norm identity does not use
shift operators or an inductive step fromm tom+1. In that respect it is very
different from other known proofs that use the idea going back to [O]. There
is also an alternative method of deriving the formula for 〈pλ, pλ〉/〈1, 1〉, using
intertwiners, see [C3, C4]. But then one still has a problem of computing
the so-called constant term 〈1, 1〉.
Remark 4.5. The above argument can, in fact, be used to give a simpler proof
of (3.33) together with the existence of Macdonald polynomials. Namely,
let us define pλ in terms of ψ with the help of formula (4.11). Then, just
by using the quasi-invariance and skew-symmetry of Φ− (like at the first
step in the proof of Theorem 3.11), we conclcude that such pλ will be a
symmetric polynomial of the form (2.28). It remains to show that thus
defined functions satisfy (2.29) for t = qm+1. To this end, we know that for
dominant weights λ 6= µ we have by Theorem 4.1 that

∫

Cξ/κQ∨

Φ−(λ̃, x)Φ−(µ̃,−x)
∆(x)∆(−x) dx = 0 .

This gives that ∫

Cξ/κQ∨
pλ(x)pµ(−x)∇(x) dx = 0 ,

similarly to the way we obtained (4.13) above. Since now the integrand has
no poles, we can shift the cycle Cξ back to iVR, so this relation turns into

〈pλ, pµ〉 = 0. Thus, we showed that (4.11) holds true for some pλ ∈ C[P ]W

which will satisfy (2.28)–(2.29). This simultaneously proves the existence of
pλ and the relation (4.11).

4.3. The case of |q| = 1. The relations (4.2) and their proof remain true
for q ∈ C× with |q| 6= 1. In that case one still uses Cξ = ξ+κVR with κ given
by (2.1). Moreover, a similar result is true for |q| = 1 when κ ∈ R. In that
case we know that the BA function ψ exists and is analytic in q provided
(3.27)–(3.29). Then we have the following analogue of Theorem 4.1.

Theorem 4.6. Assume that |q| = 1 and conditions (3.27)–(3.29) are satis-
fied. Put Cξ = iξ + VR with ξ ∈ VR, assuming ξ is regular, i.e. 〈α, ξ〉 6= 0
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for all α ∈ R. Then for such Cξ and λ, µ ∈ VR with λ−µ ∈ P , the relations
(4.2) remain valid.

For generic q on the unit circle this is proved similarly to Theorem 4.1.
Namely, due to a cancelation of residues the integral does not depend on ξ
(provided it stays regular), after which the integral is evaluated by letting
ξ → ∞. For non-generic q such that (3.27)–(3.29) are satisfied, the integrand
depends analytically on q, so the result survives when q approaches those
values. �

5. Cherednik–Macdonald–Mehta integral

Throughout this section 0 < q < 1 and ψ(λ, x) is the normalized BA
function of type b associated to (R,m). Recall that in this case we have
(R′,m′) = (R,m), so ψ(λ, x) = ψ(x, λ) and ∆′ = ∆, where ∆ is given by

(2.17) with qα = q〈α,α〉/2.
Let dx be the translation invariant measure on Cξ = ξ + iVR, normalized

by the condition ∫

Cξ

q−|x|2/2dx = 1 , |x|2 := 〈x, x〉 .

(Note that |x|2 < 0 for x ∈ iVR.)
Our goal is to prove the following integral identity (its further generaliza-

tions, including cases a and c are discussed in Section 7 of the Appendix).

Theorem 5.1. For any λ, µ ∈ VC and any big ξ ∈ VR we have
∫

Cξ

ψ(λ, x)ψ(µ, x)

∆(x)∆(−x) q−|x|2/2 dx = (−1)MC−1/2q(|λ|
2+|µ|2)/2ψ(λ, µ) , (5.1)

where C is the constant (2.22) and M =
∑

α∈R+
mα.

The proof of the theorem will be based on the following proposition,
similar to Proposition 4.2.

Proposition 5.2. Let I(ξ) denote the integral in the left-hand side of (5.1).
Then I(ξ) does not depend on ξ provided ξ remains big in the sense of (4.1).

Note that in this case we integrate over a non-compact cycle, but the

integral converges absolutely due to the rapidly decaying factor q−|x|2/2.
The proposition can be proved by looking at the residues of the integrand
in (5.1) given by

G(x) =
ψ(λ, x)ψ(µ, x)

∆(x)∆(−x) q−|x|2/2 .

Without the factor q−|x|2/2 we would have a cancelation of the residues as

in Lemma 4.3. Now, the crucial fact is that the function g(x) = q−|x|2/2

satisfies the quasi-invariance conditions (3.7). Indeed, we have for j ∈ Z

that

g(x− 1

2
jα)/g(x +

1

2
jα) = qj〈α,x〉 = 1 for q〈α,x〉 = 1 . (5.2)
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As a result, the same cancelation of the residues as in Lemma 4.3 also takes
place for G, and the rest of the proof remains the same. �

Before proving the theorem, let us mention a ‘compact’ version of the
integral (5.1). Let θ(x) denote the theta-function associated with the lattice
P :

θ(x) =
∑

γ∈P

q〈γ,x〉q|γ|
2/2 . (5.3)

We have the following standard fact (see e.g. [EV2, Lemma 4.3]):

Lemma 5.3. If f(x) is a smooth function on Cξ, which is periodic with
respect to the lattice κQ∨, then

∫

Cξ

f(x)q−|x|2/2 dx =

∫

Cξ/κQ∨
f(x)θ(x) dx .

�

When λ + µ ∈ P , the product ψ(λ, x)ψ(µ, x) is κQ∨-periodic. In that
case we can reformulate Theorem 5.1 in the following way.

Theorem 5.4. If ξ ∈ VR is big and λ+ µ ∈ P , then
∫

Cξ/κQ∨

ψ(λ, x)ψ(µ, x)

∆(x)∆(−x) θ(x) dx = (−1)MC1/2q(|λ|
2+|µ|2)/2ψ(λ, µ) .

5.1. Proof of Theorem 5.1. Let us first assume that ξ belongs to the
negative Weyl chamber, i.e. 〈α, ξ〉 ≪ 0 for α ∈ R+. The denominator in (5)
can be presented as

∆(x)∆(−x) = (−1)M q2〈ρ,x〉
∏

α∈R+

±mα∏

j=±1

(
1− qjαq

−〈α,x〉
)
.

For x ∈ ξ + iVR we have Re〈α, x〉 = 〈α, ξ〉 ≪ 0 and
∣∣q−〈α,x〉

∣∣ ≪ 1 for

α ∈ R+. Therefore, we can expand each of the factors (1− qjαq−〈α,x〉)−1 into
a geometric series and obtain that

[∆(x)∆(−x)]−1 = q−2〈ρ,x〉
∑

γ∈Q−

aγq
〈γ,x〉 , a0 = (−1)M . (5.4)

The series converges uniformly and absolutely on Cξ provided that ξ lies
deep inside the negative Weyl chamber. Using (5.4) and (3.25), we can
expand the function

F (x) =
ψ(λ, x)ψ(µ, x)

∆(x)∆(−x)
into a similar convergent series:

F (x) = q〈λ+µ,x〉
∑

γ∈P−

fγq
〈γ,x〉 , f0 = (−1)M∆(λ)∆(µ) . (5.5)

30



All the coefficients fγ in the series will be functions of λ and µ of the
form:

fγ =
∑

ν,ν′∈N∩ ρ+P

aγ;ν,ν′q
〈ν,λ〉q〈ν

′,µ〉 (5.6)

with suitable coefficients aγ;ν,ν′ (this is immediate from (3.3)).
Note that the coefficients aγ in (5.4) and, as a consequence, aγ;ν,ν′ in (5.6)

have moderate (‘exponentially linear’) growth, namely,

|aγ | < Aq〈u,γ〉 and |aγ;ν,ν′ | < A′q〈u
′,γ〉 for all γ, ν, ν ′ , (5.7)

for suitable constants A,A′ and vectors u, u′ ∈ VR.
Substituting the series (5.5) into (5.1) and integrating termwise, we obtain

a series expansion for the integral (5.1) as follows:

I(ξ) =
∑

γ∈P−

fγ

∫

Cξ

q〈λ+µ+γ,x〉q−|x|2/2 dx =

∑

γ∈P−

fγq
|λ+µ+γ|2/2 = q|λ+µ|2/2

∑

γ∈P−

fγq
〈γ,λ+µ〉q|γ|

2/2 . (5.8)

Let us view now this expression as a function of λ. Since each of the co-
efficients fγ , as a function of λ, is a polynomial in R[P ] whose exponents
spread over the polytope N , we have that

I(ξ) = q|λ+µ|2/2
∑

γ∈ρ+P−

gγq
〈γ,λ〉 , (5.9)

with some coefficients gγ that depend on µ. It follows from (5.5) that

gρ = (−1)M∆(µ)
∏

α∈R+

q−mα(mα+1)/4
α . (5.10)

From the way the expression (5.9) was obtained, it is clear that each gγ is

a finite combination of the terms aγ′;ν,ν′q
〈γ′+ν′,µ〉q|γ

′|2/2 with γ′ ∈ γ + N .
Since we are keeping µ fixed, we can use (5.7) to obtain an estimate for gγ :

|gγ | < Bq〈v,γ〉q|γ|
2/2 for all γ , (5.11)

with a suitable constant B and v ∈ VR.
It follows that the coefficients gγ are fast decreasing as |γ| → ∞, therefore,

the series (5.9) defines an analytic function of λ of the form

I(ξ) = q|λ+µ|2/2
∑

γ∈P

gγq
〈γ,λ〉 , (5.12)

where gγ = 0 unless γ ∈ ρ+ P−. Note that presentation of I(ξ) in the form

(5.12) is unique, as it comes from the Fourier series of g(λ) = I(ξ)q−|λ+µ|2/2

on the torus T = iVR/κQ
∨.

We arrive at the conclusion that for ξ deep in the negative Weyl chamber,
I(ξ) is given by the series (5.12), where gγ = 0 unless γ ∈ ρ + P−. If we
apply the same arguments for, say, ξ′ in the positive Weyl chamber, we
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would get a similar series for I(ξ′), but with nonzero Fourier coefficients
only for γ ∈ −ρ + P+. Since I(ξ) = I(ξ′), we conclude that the two series
coincide and, therefore, have only a finite number of terms. Moreover, by
moving ξ to various Weyl chambers, we conclude that all γ with gγ 6= 0
must lie within the polytope with vertices {wρ |w ∈ W}, i.e. the polytope
N . Therefore,

I(ξ) = q|λ+µ|2/2
∑

γ∈N∩ ρ+P

gγq
〈γ,λ〉 .

As a function of λ, I(ξ) inherits from ψ(λ, x) the properties (3.22). The

multiplication by q|λ|
2/2 does not affect these properties (see (5.2)). Thus,

the function I(ξ)q−(|λ|2+|µ|2)/2 satisfies (3.3) and (3.4) (with (λ, µ) taking
place of (x, λ)). By Theorem 3.2, these properties characterize ψ uniquely
up to a factor depending on the second variable. Hence,

I(ξ)q−(|λ|2+|µ|2)/2 = C(µ)ψ(λ, µ) , for some C(µ) .

Comparing (3.18) and (5.10), we conclude that C(µ) = (−1)MC−1/2, as
needed. This finishes the proof of the theorem. �

5.2. Integral transforms. In this section ψ(λ, x) is the normalized BA
function in any of the cases a, b or c. Let us introduce

F (λ, x) =
ψ(λ,−x)
∆′(λ)∆(x)

. (5.13)

Note that F (x, λ) = F ′(λ, x), where F ′ is the counterpart of F for the dual
data (R′,m′). In particular, in case b we have

F (λ, x) =
ψ(λ,−x)
∆(λ)∆(x)

, F (λ, x) = F (x, λ) .

The relations (4.2) can be rewritten as
∫

Cξ/κQ∨
F (λ,−x)F (µ, x) dx = δλ,µQ

−1(λ) , where

Q(λ) = (−1)M
∆′(λ)

∆′(−λ) and λ− µ ∈ P . (5.14)

This makes them look similar to [EV2, Theorem 2.2].
The formula (5.1) in case b, when written in terms of F (λ, x), is equivalent

to∫

Cξ

F (λ,−x)F (µ, x)q−|x|2/2 dx = (−1)MC−1/2q(|λ|
2+|µ|2)/2F (λ, µ) , (5.15)

where C is the constant (2.22) (cf. [EV2, Theorem 2.3]).
We can use functions (5.13) to define Fourier transforms, following the

approach of [EV2]. Since the proofs repeat verbatim those in [EV2], we will
only formulate the results, referring the reader to the above paper for the
details.
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For ξ, η ∈ VR consider the imaginary subspace Cξ = ξ + iVR and the real
subspace Dη = iη + VR. Let S(Cξ) and S(Dη) be the Schwartz spaces of
functions on Cξ and Dη respectively. Introduce the spaces Sη(Cξ) = {φ :

Cξ → C | q2i〈η,x〉φ(x) ∈ S(Cξ)} and Sξ(Dη) = {φ : Dη → C | q−2〈ξ,λ〉φ(λ) ∈
S(Dη)}. Obviously, these spaces are canonically isomorphic to S(Cξ) and

S(Dη). The modified Fourier transform f(x) 7→ f̂(λ) :=
∫
Cξ
q2〈λ,x〉f(x) dx

defines an isomorphism Sη(Cξ) → Sξ(Dη). The inverse transform f̂(λ) 7→
f(x) is given by the formula f(x) =

∫
Dη
q−2〈λ,x〉f̂(λ) dλ. This fixes uniquely

a normalization of the Lebesgue measure dλ on Dη, which will be used from
now on.

Consider two integral transformations

KIm : Sη(Cξ) → Sξ(Dη) , f(x) 7→
∫

Cξ

F (λ,−x)f(x) dx ,

and

KRe : Sξ(Dη) → Sη(Cξ) , f(λ) 7→
∫

Dη

F (λ, x)Q(λ)f(λ) dλ ,

where Q is given in (5.14).

Theorem 5.5 (cf. [EV2, Theorem 2.4]). Assume that ξ ∈ VR is big and
η ∈ VR is regular in a sense that ∆′(λ)∆′(−λ) is non-vanishing on Dη.
Then the integral transforms are well defined, continuous in the Schwartz
topology, and are inverse to each other,

KImKRe = Id , KReKIm = Id .

5.3. Cherednik–Macdonald–Mehta integral over real cycle. In case
b, we can use Theorem 5.5 to derive a ‘real’ counterpart of Theorem 5.1,
similarly to [EV2]. Namely, formula (5.15) says that for a fixed generic µ
one has

KIm

(
F (µ, x)q−(|x|2+|µ|2)/2

)
= (−1)MC−1/2q|λ|

2/2F (λ, µ) .

Applying KRe to both sides, we obtain

F (µ, x)q−(|x|2+|µ|2)/2 = (−1)MC−1/2

∫

Dη

F (λ, x)F (λ, µ)Q(λ)q|λ|
2/2 dλ .

Expressing everything back in terms of ψ, we obtain
∫

Dη

ψ(λ,−x)ψ(λ,−µ)
∆(λ)∆(−λ) q|λ|

2/2 dλ = C1/2ψ(µ,−x)q−(|x|2+|µ|2)/2 .

In the derivation of this formula we assumed that x ∈ Cξ and µ is generic.
However, since both sides are obviously analytic in µ and x, the formula
remains valid for all µ, x ∈ VC. After rearranging and using that ψ(λ, x) =
ψ(x, λ), we get the following result.
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Theorem 5.6 (cf. [EV2, Theorem 2.6]). Let Dη = iη + VR with η regular
in the sense of Theorem 5.5. Then for any µ, ν ∈ VC we have

∫

Dη

ψ(µ, λ)ψ(ν,−λ)
∆(λ)∆(−λ) q|λ|

2/2 dλ = C1/2q−(|ν|2+|µ|2)/2ψ(µ, ν) ,

where C is the constant (2.22).

5.4. Symmetric version. Similarly to Section 4.2, we can use the gener-
alized Weyl formula to derive the analogues of Theorems 5.1, 5.4, 5.6 for
Macdonald polynomials pλ in case b. This gives a simple proof of the iden-
tities proved by Cherednik in [C5] using the double affine Hecke algebras.

Let pλ and ∇ denote the Macdonald polynomials and weight function,

respectively, in case b with t = qm+1. For λ, µ ∈ P++ let us put λ̃ = λ+ ρ̃,
µ̃ = µ+ ρ̃ in the notations of Sections 3.7 and 4.2. Also, put

∆̃(x) := Cδ(x)/∆(x) = C∆(−x)δ0(x) , (5.16)

where C is the constant (2.22).

Theorem 5.7 (cf. [C5, Theorems 1.1 and 1.2]). We have the following
identities:
∫

iVR

pλ(x)pµ(x)q
−|x|2/2∇(x) dx = (−1)MC−1/2 |W |q(|λ̃|2+|µ̃|2)/2∆̃(µ̃)pλ(µ̃) ,

∫

iVR/κQ∨
pλ(x)pµ(x)θ(x)∇(x) dx = (−1)MC−1/2 |W |q(|λ̃|2+|µ̃|2)/2∆̃(µ̃)pλ(µ̃) ,

∫

VR

pλ(x)pµ(−x)q|x|
2/2∇(x) dx = C1/2|W |q−(|λ̃|2+|µ̃|2)/2∆̃(µ̃)pλ(µ̃) .

Here C is the constant (2.22) and θ(x) is the theta-function (5.3).

Proof. The first two formulas are obviously equivalent. We will only derive
the first identity, since the third one is entirely similar.

Consider the integral

∫

Cξ

Φ−(λ̃, x)Φ−(µ̃, x)

∆(x)∆(−x) q−|x|2/2 dx ,

where Φ−(λ̃, x), Φ−(µ̃, x) are as in (3.33). Expanding Φ− in terms of ψ and
applying formula (5.1), we conclude that the integral equals

(−1)MC−1/2q(|λ̃|
2+|µ̃|2)/2

∑

w,w′∈W

(−1)ww′
ψ(wλ̃,w′µ̃) .

Using Lemma 3.6(i), we get that
∑

w,w′∈W

(−1)ww′
ψ(wλ̃,w′µ̃) = |W |

∑

w∈W

(−1)wψ(wλ̃, µ̃) = |W |Φ−(λ̃, µ̃) .
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Therefore,
∫

Cξ

Φ−(λ̃, x)Φ−(µ̃, x)

∆(x)∆(−x) q−|x|2/2 dx = (−1)MC−1/2|W |q(|λ̃|2+|µ̃|2)/2Φ−(λ̃, µ̃) .

After substituting expression (3.33) for Φ− and rearranging, we get

∫

Cξ

pλ(x)pµ(x)
δ(x)δ(x)

∆(x)∆(−x)q
−|x|2/2 dx

= (−1)MC−1/2|W |q(|λ̃|2+|µ̃|2)/2 δ(µ̃)

∆(µ̃)
pλ(µ̃) .

It follows from (3.31), (4.12) that

δ(x)δ(x)

∆(x)∆(−x) = C−1∇(x) .

As a result, we obtain that
∫

Cξ

pλ(x)pµ(x)q
−|x|2/2∇(x) dx = (−1)MC−1/2|W |q(|λ̃|2+|µ̃|2)/2∆̃(µ̃)pλ(µ̃) .

Since the integrand in the left-hand side is non-singular, we can shift the
contour back to iVR, and this leads to the required result. �

5.5. q-Macdonald–Mehta integral. Putting λ = µ = 0 in Theorem 5.7
gives us different variants of the q-analogue of the Macdonald–Mehta integral
[M3], due to Cherednik [C5]. For instance, we have

∫

iVR

q−|x|2/2∇(x; q, qm+1) dx = (−1)MC1/2|W |q|ρ̃|2∆̃(ρ̃) . (5.17)

If we denote k := m+1 and ρk := 1
2

∑
α∈R+

kαα, then (5.17) can be written
as ∫

iVR

q−|x|2/2∇(x; q, qk) dx = |W |
∏

α∈R+

(q〈α,ρk〉; qα)∞

(qkαα q〈α,ρk〉; qα)∞
. (5.18)

This makes it equivalent to the q-Macdonald–Mehta integral from [C5]. Each

quantity q〈β,ρk〉 with β ∈ R+ can be expressed as a polynomial in tα = qkαα ,
after which the right-hand side of (5.18) allows analytic continuation to all
complex values of tα. According to [C5], (5.18) remains true for any kα > 0.
This, however, does not allow t = q−m with mα ∈ Z+, so it is not clear from
the results of [C5] how to extend the formula (5.18) to such values.

On the other hand, Theorem 5.1 allows us to evaluate directly an integral
of Macdonald–Mehta type for t = q−m. Namely, let us put λ = µ = ρ
in (5.1). By Proposition 3.16, ψ in that case becomes a nonzero constant
∆(−ρ). We therefore obtain

∫

Cξ

(∆(x)∆(−x))−1 q−|x|2/2 dx = (−1)MC−1/2q|ρ|
2
∆−1(−ρ) . (5.19)
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Here −ρ = ρ−m in the above notation. This identity can be written as
∫

ξ+iVR

q−|x|2/2∇(x; q, q−m) dx =
∏

α∈R+

(q〈α,ρ−m〉; qα)∞

(q−mα
α q〈α,ρ−m〉; qα)∞

, (5.20)

where the expression in the right-hand side is to be taken formally:

∏

α∈R+

(q〈α,ρ−m〉; qα)∞

(q−mα
α q〈α,ρ−m〉; qα)∞

=
∏

α∈R+

mα∏

j=1

(
1− q−j

α q〈α,ρ−m〉
)−1

.

One can check that this expression coincides with the right-hand side of
(5.18) evaluated at kα = −mα ∈ Z−, cf. Remark 3.19. (This is not entirely
trivial, cf. [M1] where expressions similar to (5.18) are evaluated at kα = 0.)
Thus, (5.20) can be viewed as an analytic continuation of (5.18), which
justifies Cξ being a correct contour in the case t = q−m.

Remark 5.8. An alternative approach would be to keep the same contour,
but add corrections by taking into account the residues of the integrand
between iVR and Cξ. This looks more complicated but has an advantage
of handling the case of t = q−m with non-integer m. The results of [KS]
seem to indicate such a possibility (at least, in rank one), see also [C6].
On the other hand, we note that in Theorems 4.6 and 5.6 the integration
is performed over a real cycle which does not depend of m. Therefore, we
expect these statements to remain valid (by analytic continuation in m) for
non-integer m, with a suitably defined ψ(λ, x). The same remark applies to
the summation formula (6.1) below.

Remark 5.9. BA functions can be also defined and constructed in the ra-
tional and trigonometric settings, see [CFV2, Ch1]. They can be viewed as
suitable limits of ψ(λ, x) when q → 1, so some of the above results survive
in such a limit. For example, the orthogonality relations can be stated and
proved in a similar fashion. Also, the Cherdnik–Macdonald–Mehta integral
survives in the rational (but not trigonometric) limit. Note that in the ra-
tional case ψ(λ, x) exists also in non-crystallographic cases (for instance, for
the dihedral groups). However, our proof of (5.1) does not work in the ra-
tional case, so by allowing q → 1 we can only obtain the result for the Weyl
groups. It would be therefore interesting to find a direct proof of Cherednik–
Macdonald–Mehta integral for BA functions in the rational setting, cf. [E]
where the Macdonald–Mehta–Opdam integral is computed for all Coxeter
groups in a uniform fashion.
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Appendix

by Oleg Chalykh

6. Summation formulas

In [C5] Cherednik gives a version of Theorem 5.7 with integration replaced
by summation. Here we prove a similar result for BA functions, which leads
to new identities of Cherednik type. This also gives an elementary proof of
Cherednik’s results [C5, Theorem 1.3].

We will consider case b, so (R,m) is a reduced irreducible root system
with W -invariant multiplicities mα ∈ Z+, and (R′,m′) = (R,m). Gener-
alizations to cases a and c are considered in Section 7.5. Throughout this
section |q| < 1.

For any f(x) and ξ ∈ VC, define 〈f〉ξ as

〈f〉ξ =
∑

γ∈P

f(ξ + γ) ,

assuming convergence. For instance,

〈q|x|2/2〉ξ = q|ξ|
2/2θ(ξ) ,

where θ(x) is the theta function (5.3).

Theorem 6.1 (cf. [C5, Theorem 1.3]). For any λ, µ ∈ VR and ξ ∈ VC we
have〈

ψ(λ, x)ψ(µ,−x)
∆(x)∆(−x) q|x|

2/2

〉

ξ

= C1/2q−
|λ|2+|µ|2

2 ψ(λ, µ)〈q
|x+λ−µ|2

2 〉ξ . (6.1)

where C is the constant (2.22). In particular, for λ− µ ∈ P we get
〈
ψ(λ, x)ψ(µ,−x)
∆(x)∆(−x) q|x|

2/2

〉

ξ

= C1/2q−
|λ|2+|µ|2

2 ψ(λ, µ)q|ξ|
2/2θ(ξ) . (6.2)

We assume that ξ is generic so that the left-hand side of (6.1), (6.2) is
well-defined.

Proof. Denote

F (λ, µ;x) =
ψ(λ, x)ψ(µ,−x)

w(x)
q|x|

2/2 , w(x) := ∆(x)∆(−x) . (6.3)

Using (3.3), (3.25) and duality, one easily checks that for every v ∈ Q∨ we
have

F (λ, µ;x+ κv) = e2πi〈x+λ−µ,v〉eπiκ|v|
2
F (λ, µ;x) , (6.4)

F (λ+ κv, µ;x) = F (λ, µ + κv;x) = e2πi〈x+ρ,v〉F (λ, µ;x) . (6.5)

Below we mostly write F (x) for F (λ, µ;x).
The sum 〈F (x)〉ξ =

∑
x∈ξ+P F (x) is well-defined if ξ belongs to the fol-

lowing set:
V reg
C = {ξ ∈ VC |w(ξ + γ) 6= 0 ∀ γ ∈ P} .
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The complement VC \ V reg
C is a union of hyperplanes, each given locally

by qsαq
〈α,x〉 = 1 for some α ∈ R and s ∈ Z. This set of hyperplanes is

locally finite and P -invariant, thus for every ξ ∈ V reg
C there exist a constant

ǫ = ǫ(ξ) > 0 such that |w(x)| > ǫ for all x ∈ ξ + P . For such ξ the sum∑
x∈ξ+P F (x) is absolutely convergent, due to the exponentially-quadratic

factor q|x|
2/2 and the fact that 1/w(x) remains bounded. Therefore, f(ξ) :=

〈F (x)〉ξ is holomorphic on V reg
C . We claim that f(ξ) extends to an entire

function on VC.
To see that, let us look at the behaviour of f(ξ) near the hypersurface

πα,s := {ξ ∈ VC | qsαq〈α,ξ〉 = 1} .

We have

f(ξ)(1− qsαq
〈α,ξ〉) =

∑

x∈ξ+P

ψ(λ, x)ψ(−µ, x)q|x|2/2 1− qsαq
〈α,ξ〉

w(x)
. (6.6)

Choose ξ0 ∈ πα,s away from the hyperplanes πβ,r with β 6= α. Then there
exist a constant C such that for all ξ near ξ0

∣∣∣∣∣
1− qsαq

〈α,ξ〉

w(x)

∣∣∣∣∣ < C for all x ∈ ξ + P .

As a result, the sum (6.6) converges absolutely and uniformly for all ξ near
ξ0. This implies that f(ξ) has at most first order pole along πα,s, and
its residue is the (absolutely convergent) sum of the residues of the terms
F (ξ+γ). In every subsum

∑
r∈Z F (ξ+γ0+rα) there are exactly 2mα terms

with a pole along πα,s, and their residues sum to zero due to Lemma 4.3
and (5.2). As a result, f(ξ) has a removable pole along πα,s, as needed.

Having established analyticity of f(ξ) = 〈F (x)〉ξ , we now look at its
translation properties. It is clearly periodic with respect to P . It follows
from (6.4) that for v ∈ Q∨

f(ξ + κv) = f(ξ) e2πi〈ξ+λ−µ,v〉eπiκ|v|
2
.

Now a simple check shows that the function 〈q |x+λ−µ|2

2 〉ξ has the same trans-
lation properties in ξ-variable. A standard simple fact from the theory of
theta-functions tells us that these two functions must differ by some factor
independent of ξ. We record this in the following form:

〈F (x)〉ξ = ϕ(λ, µ)q−|λ−µ|2/2〈q
|x+λ−µ|2

2 〉ξ , (6.7)

for some entire function ϕ(λ, µ). It remains to relate ϕ to ψ(λ, µ).
Using (6.5) and (6.7), it is easy to see that

ϕ(λ+ κv, µ) = ϕ(λ, µ + κv) = e2πi〈ρ,v〉ϕ(λ, µ) ∀ v ∈ Q∨ .
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As a result, ϕ can be presented as a convergent (Fourier) series of the fol-
lowing form:

ϕ(λ, µ) = q〈λ+µ,ρ〉
∑

ν,ν′∈P

aνν′q
〈λ,ν〉q〈µ,ν

′〉 . (6.8)

We want to show that this series is finite. For that we will look at the
asymptotics of ϕ as λ, µ → ∞. To get the asymptotics for ϕ(λ, µ), we check
the behaviour of the left-hand side in (6.7).

Switching x, λ in (3.3) and (3.25), we present ψ as a finite sum of the
form

ψ(λ, x) = q〈λ,x+ρ〉
∑

ν∈P−

Γν(x)q
〈ν,λ〉 , (6.9)

with Γ0 = ψρ = ∆(x) and Γν = ψν+ρ(λ). Since the support of ψ(λ, x) in
the x-variable is λ+N , we have that suppΓν ⊆ N for all ν.

Let Dη = iη + VR for some generic η ∈ VR. Then the same arguments as
in [EV2, Lemma 8.1] prove the following result.

Lemma 6.2. For all ν, Γν/Γ0 is bounded from above when restricted to
Dη. �

This lemma and (6.9) have the following consequence.

Corollary 6.3. Let c(λ) = maxα∈R+〈α, λ〉. We have uniformly for all
x ∈ Dη:

ψ(λ, x) = q〈λ,x+ρ〉∆(x)(1 +O(q−c(λ))) as c(λ) → −∞ .

�

Using this result we obtain a uniform asymptotics for the function (6.3)
on Dη:

F (x) = q〈λ−µ,x〉q〈λ+µ,ρ〉q|x|
2/2(1 +O(q−c))

as c := max{c(λ), c(µ)} tends to −∞.
It follows that for ξ ∈ Dη

〈F (x)〉ξ = q〈λ+µ,ρ〉〈q〈λ−µ,x〉q|x|
2/2〉ξ(1 +O(q−c)) .

Substituting this in (6.7) and assuming λ, µ ∈ P , we conclude that

q−〈λ+µ,ρ〉ϕ(λ, µ) = 1 +O(q−c) .

Since λ, µ tend to infinity independently, this implies that

ϕ(λ, µ) = q〈λ+µ,ρ〉
∑

ν,ν′∈P−

aνν′q
〈λ,ν〉q〈µ,ν

′〉) , a00 = 1 .

Taking into account asymptotics in various Weyl chambers, we obtain that

ϕ(λ, µ) =
∑

ν,ν′∈N∩ρ+P

ϕνν′q
〈λ,ν〉q〈µ,ν

′〉 ,

with ϕρρ = 1. Therefore, the function ψ̃(λ, µ) := q〈λ,µ〉ϕ(λ, µ) will have the
form as in (3.20).
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Note that by (6.7) we have

〈F (x)〉ξ = ψ̃(λ, µ)q−(|λ|2+|µ|2)/2〈q
|x+λ−µ|2

2 〉ξ .
The left hand-side obviously inherits from ψ the properties (3.4) in λ, µ.

Also, the expression 〈q |x+λ−µ|2

2 〉ξ in the right-hand side is P -periodic in λ, µ,

so it satisfies (3.4) trivially. As a result, ψ̃(λ, µ) must have properties (3.4)
as well. Note that, by construction, we have ψ(λ, µ) = ψ(µ, λ).

We see that ψ̃ has the same properties as the normalized BA function
ψ, therefore they differ by a constant factor. The normalized ψ has ψρρ =

C−1/2, while ψ̃ρρ = 1. Thus, ψ̃ = C1/2ψ. This finishes the proof of the
theorem. �

We can use the generalized Weyl formula (3.33) to obtain a symmetric
version of the above theorem, thus recovering Cherednik’s result [C5, The-
orem 1.3]. We will use the notation of Theorem 5.7.

Theorem 6.4 (cf. [C5, Theorem 1.3]). Let ∇(x) = ∇(x; q, qm+1) and
pλ(x) = pλ(x; q, q

m+1) in case b. Then for any λ, µ ∈ P++ and any ξ ∈ VC
we have

∑

x∈ξ+P

pλ(x)pµ(−x)q|x|
2/2∇(x)

= (−1)M̃C1/2|W |q−
|λ̃|2+|µ̃|2

2 ∆̃(µ̃)pλ(µ̃)q
|ξ|2/2θ(ξ) ,

where θ(x) is the theta function (5.3), λ̃ = λ + ρ̃, µ̃ = µ + ρ̃ and M̃ =∑
α∈R+

(mα + 1).

This is checked in the same way as Theorem 5.7. �

7. Gaussian integrals, twisted BA functions and twisted

Macdonald–Ruijsenaars model

Let us consider for a moment what happens if we replace the Gaussian

q−|x|2/2 in Theorem 5.1 by q−a|x|2/2 with a > 0. For Proposition 5.2 and the

cancelation of residues to work, we need the function g(x) = q−a|x|2/2 to be
quasi-invariant, i.e. take equal values along the shifted hyperplanes:

g(x− 1

2
jα) = g(x+

1

2
jα) for q〈α,x〉 = 1 and j ∈ Z . (7.1)

We have

g(x− 1

2
jα)/g(x +

1

2
jα) = qaj〈α,x〉 .

Therefore, (7.1) will hold as soon as a ∈ N.
So, let us take a = ℓ ∈ N and consider the integral

∫

Cξ

ψ(λ, x)ψ(µ, x)

∆(x)∆(−x) q−ℓ|x|2/2 dx . (7.2)
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It turns out that this integral is still ‘computable’, but for ℓ > 1 the result
will be expressed in terms of a new function ψℓ whose properties are similar
to those of ψ. This ‘twisted’ BA function ψℓ will be a common eigenfunction
for a certain quantum integrable model given by commuting W -invariant
difference operators that generalize the Macdonald operators Dπ. To the
best of our knowledge, this model is new; in the case R = An it generalizes
the trigonometric Ruijsenaars model [R1]. This will be explained in Sections
7.1–7.4 below. Finally, Section 7.5 discusses the situation in cases a and c.
Note that in those cases theorem 5.1 is not true. Indeed, in case a, for

instance, the function g(x) = q−|x|2/2 does not satisfy the relevant quasi-
invariance properties:

g(x− 1

2
jα′)/g(x +

1

2
jα′) = qj〈α

′,x〉 6= qj〈α,x〉

as soon as α′ 6= α. As a result, the cancelation of residues will not work

unless we replace q−|x|2/2 by g(x) = q−ℓ|x|2/2 with suitably chosen ℓ. Thus,
while Theorem 5.1 is not true in cases a and c, its twisted version with
suitable ℓ will work. This is discussed in Sec. 7.5 below.

7.1. Twisted BA functions. We keep the notation of Section 3. In this
section we consider case b only, so all the notation of Section 3 applies with

(R′,m′) = (R,m) and qα = q|α|
2/2.

For a reduced irreducible root system R, aW -invariant set of labels mα ∈
Z+, and an integer ℓ ∈ N, a twisted BA function ψℓ (of type b) has the
following form:

ψℓ(λ, x) = q〈λ,x〉/ℓ
∑

ν∈N∩ ρ+ℓ−1P

ψν(λ)q
〈ν,x〉 , (7.3)

where N is the polytope (3.1).
The function ψℓ must also satisfy further conditions, similar to (3.4).

Namely, we require that for each α ∈ R, j = 1, . . . ,mα and any ǫ with
ǫℓ = 1 we have

ψℓ

(
λ, x− 1

2
jα

)
= ǫjψℓ

(
λ, x+

1

2
jα

)
for q〈α,x〉/ℓ = ǫ . (7.4)

Definition. A function ψℓ(λ, x) with the properties (7.3)–(7.4) is called a
twisted Baker–Akhiezer function associated to the data {R,m, ℓ}.

For ℓ = 1 this is the definition of Section 3. Our goal is to prove the
following two results.

Theorem 7.1. (1) A twisted Baker–Akhiezer function ψℓ(λ, x) exists and
is unique up to multiplication by a factor depending on λ.

(2) Let us normalize ψℓ by requiring (3.18) (recall that ∆′ = ∆ in case
b). Then we have

ψℓ(λ, x) = ψℓ(x, λ) .
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(3) As a function of x, ψℓ is a common eigenfunction of certain pairwise
commuting W -invariant difference operators Dπ

ℓ , π ∈ P++, namely,

Dπ
ℓ ψℓ = mπ(λ)ψℓ , mπ(λ) =

∑

τ∈Wπ

q〈τ,λ〉 .

The operators Dπ
ℓ have the same leading terms as (Dπ)ℓ, i.e. they are lower-

term perturbations of the Macdonald operators raised to the ℓth power.

Theorem 7.2. For any ℓ ∈ N, any λ, µ ∈ VC and big ξ ∈ VR we have
∫

Cξ

ψ(λ, x)ψ(µ, x)

∆(x)∆(−x) q−ℓ|x|2/2 dx = (−1)MC−1/2q
|λ|2+|µ|2

2ℓ ψℓ(λ, µ) , (7.5)

where ψℓ is the normalized twisted BA function and C, M are the same as
in Theorem 5.1.

Theorem 7.1 is analogous to Theorem 3.2, but we cannot use the same
method to prove it. The reason is that the arguments of [Ch2] exploit in an
essential way Macdonald operators and their properties. In the twisted case
there exist certain analogues of these operators (these are Dπ

ℓ appearing
in Theorem 7.1), but we cannot write them down explicitly. In fact, the
existence of Dπ

ℓ will be established only once we know the existence of ψℓ.
So we change our tack: we will instead define ψℓ by the formula (7.5) and
from that we will derive the required properties (7.3)–(7.4).

7.2. Proof of Theorem 7.1. Let Iℓ(ξ) denote the integral (7.2). Since the

function g(x) = q−ℓ|x|2/2 satisfies (7.1), the residues of the integrand cancel
as in Lemma 4.3, therefore, Iℓ(ξ) will not depend on ξ provided that it is
big.

Now we compute the integral using series expansion as in Section 5.1.
Assuming ξ belongs to the negative Weyl chamber, we get similarly to (5.8)
that

Iℓ(ξ) =
∑

γ∈P−

fγ

∫

Cξ

q〈λ+µ+γ,x〉q−ℓ|x|2/2 dx =

∑

γ∈P−

fγq
1
2ℓ
|λ+µ+γ|2 = q

1
2ℓ
|λ+µ|2

∑

γ∈P−

fγq
1
ℓ
〈γ,λ+µ〉q

1
2ℓ
|γ|2 , (7.6)

where the coefficients fγ(λ, µ) are exactly the same as in (5.8).
Comparing such expansions for different chambers, we conclude (in the

same way as in Section 5.1) that Iℓ is an elementary function of the form

Iℓ = q
1
2ℓ

|λ+µ|2
∑

ν∈N∩ ρ+ℓ−1P

ψν(λ)q
〈ν,µ〉 .

Therefore, Iℓ has the form q
1
2ℓ

(|λ|2+|µ|2)ψℓ(λ, µ) where ψℓ has the required
form (7.3) (with x replaced by µ).
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As a function of µ, Iℓ has the properties (3.4). As a result, we obtain that

for j = 1, . . . ,mα and for q〈α,µ〉 = 1

q
1
2ℓ
|µ− 1

2
jα|2ψℓ(λ, µ− 1

2
jα) = q

1
2ℓ
|µ+ 1

2
jα|2ψℓ(λ, µ +

1

2
jα) .

It is easy to see that these are equivalent to conditions (7.4) (again, with x
replaced by µ).

This proves the existence of a function ψℓ satisfying (7.3)–(7.4). To show
that it is nonzero, we compute the leading coefficient ψρ. This is done by
using the formula (5.10), which still applies in our case. The result is that

ψρ = (−1)MC−1/2 ∆(λ). The uniqueness of ψℓ, up to a factor depending
on λ, can be proved by exactly the same arguments as in [Ch2, Proposition
3.1]. Finally, Iℓ is obviously symmetric in λ and µ, therefore, ψℓ(λ, µ) is also
symmetric:

ψℓ(λ, µ) = ψℓ(µ, λ) .

Thus, the Gaussian integral automatically gives us the normalized and sym-
metric ψℓ. This finishes the proof of parts (1) and (2) of Theorem 7.1.

Part (3) follows from the uniqueness of ψℓ by the so-called Krichever’s
argument familiar in the finite-gap theory[Kr1, Kr2], cf. [Ch2, Section
5.1]. Namely, recall the ring Q ⊂ R[P ] of quasi-invariants (3.7). Note
that R[P ]W ⊂ Q. We have the following result.

Theorem 7.3 (cf. [Ch2, Theorem 5.1 and Proposition 5.3]). (1) For each
f(x) ∈ Q there exists a difference operator Df in λ-variable on the lattice P
such that ψℓ(λ, x) is its eigenfunction: Dfψℓ = f(x)ψℓ. All these operators
pairwise commute.

(2) For any dominant weight π ∈ P++ and f = mπ(x) the corresponding
operator Df is W -invariant and has the form

Df =
∑

τ∈Wπ

aτT
ℓτ + l.o.t. ,

where the leading coefficients aτ are given by

aπ(λ) =
∆(λ)

∆(λ+ ℓπ)
, awπ(λ) = aπ(w

−1λ) .

This is proved in the same way as [Ch2, Theorem 5.1 and Proposition
5.3].

Part (3) of Theorem 7.1 now follows immediately from this result after
switching between x and λ. This completes the proof of Theorem 7.1.

7.3. Proof of Theorem 7.2. This is now immediate from above: we have

Iℓ(ξ) = (−1)MC−1/2q
1
2ℓ
(|λ|2+|µ|2)ψℓ(λ, µ) ,

where ψℓ will satisfy all the properties of the normalized twisted BA function.
�
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7.4. Summation formula. We can also generalize the summation formula
to the twisted case. Since the arguments are entirely analogous, we only
formulate the result.

Theorem 7.4. For any λ, µ ∈ VR and ξ ∈ VC we have

∑

x∈ξ+P

ψ(λ, x)ψ(µ,−x)
∆(x)∆(−x) qℓ|x|

2/2 = C1/2q−
|λ|2+|µ|2

2ℓ ψℓ(λ, µ)
∑

x∈ξ+P

q
ℓ
2
|x+λ−µ

ℓ
|2 ,

where C is the constant (2.22) and ψℓ is the twisted BA function associated
to (R,m, ℓ).

One can use Theorems 7.2, 7.4 and the generalized Weyl formula (3.33)
to express, in terms of the twisted BA functions, the integrals and sums

∫

iVR

pλ(x)pµ(x)∇(x)q−ℓ|x|2/2 dx ,
∑

x∈ξ+P

pλ(x)pµ(x)∇(x)qℓ|x|
2/2

for pλ = pλ(x; q, q
m+1), ∇ = ∇(x; q, qm+1) in case b. In particular, this

gives an expression for
∫
iVR

∇(x)q−ℓ|x|2/2 dx. In general, however, this does

not seem to lead to a nice factorized form as in the case ℓ = 1.

7.5. Twisted BA functions in cases a and c. Let us consider the Gauss-
ian integrals for the remaining cases a and c of Macdonald’s theory. Note
that case a for R = A,D,E is the same as case b if we choose the scalar
product so that all roots have length

√
2. Thus, the only cases not cov-

ered by Theorems 5.1 and 7.2 are case c (when R = Cn) and case a for
R = Bn, Cn, F4, F

∨
4 , G2, G

∨
2 . Also note that the cases R = F4 and R = F∨

4

are equivalent because these roots systems are isomorphic, and the same is
true for G2, while the cases R = Bn and R = Cn can be obtained from case
c by a suitable specialization of the parameters mi.

Let ψ = ψR,m be the corresponding normalized BA function. Consider
the integral (7.2). As a starting point, we would like that integral to be
independent of ξ (provided that it is big). To have the cancelation of residues

as in Lemma 4.3, we need g(x) = q−ℓ|x|2/2 to satisfy the properties

g(x− 1

2
jα′) = g(x+

1

2
jα′) for q〈α,x〉 = 1 ,

where α ∈ R in case a or α ∈ R2 in case c. In addition to that, in case c we
need that

g(x− sei) = g(x+ sei) for qxi = ±1 , (7.7)

where s ∈ 1
2Z.

This puts the following restrictions on ℓ in case a:

ℓ ∈ 1

2
|α|2Z for all α ∈ R . (7.8)

44



If we assume that the short roots in R have length
√
2, then we have

ℓ ∈





Z R = An,Dn, E6−8 ,

2Z R = Bn, Cn, F4 ,

3Z R = G2 .

In general, let νR denote

νR = max
α∈R

{|α|2/2} ,

then our conditions on ℓ can be written in all cases as

ℓ ∈ νRZ ∩ (νR∨)−1Z . (7.9)

In case c, we obtain from (7.7) that ℓ ∈ 2Z. In fact, since we only need
(7.7) to hold for certain half-integral s (see (3.5)–(3.6)), it is possible to
choose ℓ ∈ Z if either m3 or m4 is 1/2. We will ignore this option, and will
always assume for simplicity that ℓ ∈ 2Z in case c.

Our goal is to show that the integral (7.2) for such ℓ can be expressed
in terms of a suitably defined BA function. What looks particularly pecu-
liar in cases a , c is that the usual BA function ψ(λ, x) is not self-dual,
ψ(λ, x) 6= ψ(x, λ), since one has also to switch from (R,m) to (R′,m′) under
the duality. However, the twisted BA functions ψℓ defined below are always
self-dual, even for the case c with full five parameters m1, . . . ,m5.

So, let (R,m) be of type a or c, in the notation of Section 2.1. That
is, in case a we consider a reduced root system R and W -invariant integers
mα ∈ Z+, and put (R′,m′) = (R∨,m). In case c, we take R = R′ = Cn with
m,m′ being (half-)integers mi and m

′
i (2.5).

Choose ℓ such that

ℓ ∈ νR′Z ∩ (νR′∨)−1Z . (7.10)

(This is the choice, dual to (7.9). In case c this still means ℓ ∈ 2Z.)
A twisted BA function ψℓ in cases a or c has the same form (7.3):

ψℓ(λ, x) = q〈λ,x〉/ℓ
∑

ν∈N∩ ρ+ℓ−1P

ψν(λ)q
〈ν,x〉 .

It must also satisfy further conditions, similar to (7.4). Namely, for each
α ∈ R (in case a) or α ∈ R2 (in case c), any j = 1, . . . ,mα and any ǫ with
ǫℓ = 1 we have

ψℓ

(
λ, x− 1

2
jα′

)
= ǫjψℓ

(
λ, x+

1

2
jα′

)
for q〈α,x〉/ℓ = ǫ . (7.11)

In case c, we require additionally for each α = ei ∈ R1 the following: for
any ǫ with ǫ2ℓ = 1

(1) for all 0 < s 4 (m1,m2)

ψ(λ, x − sei) = ǫ2sψ(λ, x + sei) for qxi/ℓ = ǫ , provided ǫℓ = 1; (7.12)
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(2) for all 0 < s 4 (m3,m4)

ψ(λ, x− sei) = ǫ2sψ(λ, x+ sei) for qxi/ℓ = ǫ , provided ǫℓ = −1 . (7.13)

Definition. Let ℓ be as in (7.10). A function ψℓ(λ, x) of the form (7.3) sat-
isfying conditions (7.11)–(7.13) is called a twisted Baker–Akhiezer function
of type a or c, respectively, associated to the data {R,m, ℓ}.

Now the same arguments as in case b prove the following results.

Theorem 7.5. (1) A twisted Baker–Akhiezer function ψℓ(λ, x) exists and
is unique up to multiplication by a factor depending on λ.

(2) Let us normalize ψℓ by requiring (3.18). Then we have

ψℓ(λ, x) = ψℓ(x, λ) .

(3) As a function of x, ψℓ is a common eigenfunction of certain pairwise
commuting W -invariant difference operators Dπ

ℓ , π ∈ P++, namely,

Dπ
ℓ ψℓ = mπ(λ)ψℓ , mπ(λ) =

∑

τ∈Wπ

q〈τ,λ〉 .

The operators Dπ
ℓ have the same leading terms as (Dπ)ℓ, i.e. they are lower-

term perturbations of the Macdonald operators raised to the ℓth power.

Theorem 7.6. Let ψ(λ, x) be the normalized BA function associated to
(R,m) in cases a or c. Let ℓ be as in (7.9). For any λ, µ ∈ VC and big
ξ ∈ VR we have

∫

Cξ

ψ(λ, x)ψ(µ, x)

∆(x)∆(−x) q−ℓ|x|2/2 dx = (−1)MC−1/2q
|λ|2+|µ|2

2ℓ ψ′
ℓ(λ, µ) , (7.14)

where C, M are the same as in Theorem 5.1 and ψ′
ℓ = ψR′,m′,ℓ is the nor-

malized twisted BA function associated to the dual data (R′,m′, ℓ).

We also have the related summation formulas, similar to Theorem 7.4 and
proved in the same way.

Theorem 7.7. Assume the notation of Theorem 7.6. For any λ, µ ∈ VR
and ξ ∈ VC we have

∑

x∈ξ+P ′

ψ(λ, x)ψ(µ,−x)
∆(x)∆(−x) qℓ|x|

2/2 = C1/2q−
|λ|2+|µ|2

2ℓ ψ′
ℓ(λ, µ)

∑

x∈ξ+P ′

q
ℓ
2
|x+λ−µ

ℓ
|2 ,

where P ′ = P (R′) is the weight lattice of R′ and ψ′
ℓ is the twisted BA function

of type a or c, associated to (R′,m′, ℓ).

Remark 7.8. In [St1] some analogues of Cherednik–Macdonald–Mehta iden-
tities are obtained for Koornwinder polynomials, with a suitably chosen
periodic version of the Gaussian. This does not seem to be directly related
to the Gaussians used above, so it is not clear to us whether our methods
can be adapted to the Gaussians from [St1].
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