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ABSTRACT 
Soil Structure Interaction is an interdisciplinary field of endeavor which lies at the intersection of 
soil and structural mechanics, soil and structural dynamics, earthquake engineering, geophysics 
and geomechanics, material science, computational and numerical methods, and diverse other 
technical disciplines. Its origins trace back to the late 19th century, evolved and matured 
gradually in the ensuing decades and during the first half of the 20th century, and progressed 
rapidly in the second half stimulated mainly by the needs of the nuclear power and offshore 
industries, by the debut of powerful computers and simulation tools such as finite elements, and 
by the needs for improvements in seismic safety. The pages that follow provide a concise review 
of some of the leading developments that paved the way for the state of the art as it is known 
today. Inasmuch as static foundation stiffnesses are also widely used in engineering analyses and 
code formulas for SSI effects, this work includes a brief survey of such static solutions.  
 
PROLOGUE 
As anyone who has tried is surely aware, it is quite difficult to provide a concise definition of 
Soil-Structure Interaction (SSI) without actually giving a lengthy explanation instead. This 
predicament is reminiscent of a memorable statement proffered nearly half a century ago by the 
late US Supreme Court justice Potter Stewart, which when paraphrased in the context of this 
paper would read:  

“I shall not today attempt further to define the kinds of material I understand to 
be embraced within the shorthand description of [soil-structure interaction]; 
and perhaps I could never succeed in intelligibly doing so. But I know it when I 
see it”.  

Of course, it is eminently clear that the concept of soil-structure interaction refers to static and 
dynamic phenomena mediated by a compliant soil and a stiffer super-structure, but the discipline 
encompasses so many different, sometimes tenuously connected aspects that it is difficult indeed 
to enounce a cogent definition in just a few words. For one, this area of expertise includes the 
amplification of seismic waves in the soil even before any structure has been erected, so it 
includes the complex dynamic interactions that arise in soil layers by themselves. Thus, it 
behooves to begin with a summary of some of the principal problems encompassed by the theory 
of SSI: 

 Response of a soil domain to external dynamic (or even static) sources acting near —or 
on— the surface. The sources may be concentrated (point loads) or distributed, and they 
could be harmonic in time or suddenly applied with an arbitrary variation in time 
(Green’s functions, or fundamental solutions). 
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 Response of the soil to ground-borne vibrations elicited by earthquakes or some other 
sources, such as fast moving trains, even before any structures lie in their path (Free field 
problem). 

 Response of rigid, ideally massless structures to ground-borne waves passing underneath 
(wave passage or kinematic interaction). 

 Response of ideally massless footings, foundations, piles or caissons embedded in 
compliant soils elicited by static, harmonic or transient loads applied directly onto these 
footings (static and dynamic stiffnesses). 

 Additional deformation of the soil in the neighborhood of an actual structure caused by 
feedback of the structure’s own inertia (inertial interaction).  

 Ad hoc numerical methods needed to analyze any of the above problems (finite element 
models with transmitting boundaries, boundary elements, and so forth). 

Thus, it is not surprising that individuals with a wide range of talents and specialties, from 
mathematicians and scientists to engineers may have participated in the development of this 
discipline. In the sections that follow we shall succinctly revisit some of the most important early 
technical developments that led to the state of the art as we know it today, highlighting the 
pioneers whose work left an indelible mark on the field. This necessitated securing and reading 
copies of very old papers, a task that was quite difficult not only because of the rarity of old 
journals and thus of the papers, but also because of the different notation and writing style then 
in use, not to mention the near universal absence of figures. For example, what many old papers 
refer to as Poisson’s ratio is actually its reciprocal, 1 /m  . Still, the writer did read all of the 
references, and marveled at what was already accomplished more than a century ago and during 
the early part of the twentieth century, even if most of it was restricted to linearly elastic systems. 
 
FUNDAMENTAL SOLUTIONS 
A fundamental solution is an analytical expression for the response anywhere in a solid elicited 
by a static or dynamic point source at some arbitrary location. Such expressions can be thought 
of as influence functions and can be used as tools to construct other, more complex solutions. In 
the course of the 19th and early part of the 20th century a number of scientists —mostly 
mathematicians, but also engineering scientists— provided the theoretical framework together 
with fundamental solutions, or Green’s functions, that not only made the posterior development 
of SSI feasible, but which to this day lie at the heart of the now widely used Boundary Element 
Method (BEM). 
 

The very first scientists to have addressed the problem of loads on or within an infinite (or 
semi-infinite) elastic body were the eminent French mathematicians Gabriel Lamé and Benoît 
Paul Émile Clapeyron, who in the early part of the 19th century addressed the half-space problem 
with mathematical tools and methods so abstruse and convoluted that they failed to obtain any 
useful and practical results. Thus, the very first fundamental solution had to await the middle of 
the 19th century until 1848, when Sir William Thomson —better known as Lord Kelvin—gave 
expressions for the displacements elicited by concentrated static forces acting at some arbitrary 
point in an elastic, infinite solid. Very shortly thereafter in 1849, this was followed by the 
solution of the much more difficult problem of time varying point forces in an infinite medium 
provided by Sir George Gabriel Stokes, Lucasian Professor of Mathematics at Cambridge. The 
Stokes solution, of which time-harmonic forces and static forces are special cases, constitutes 
today a cornerstone in the Boundary Element Method and exerts a most profound influence not 
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only on the field of SSI, but also in geophysics, acoustics and other branches of science. A 
salient characteristic of the Stokes state is that it is one of the few fundamental solutions which 
are known in closed-form throughout space in both the time and frequency domains.  A modern 
rendition of the Stokes solution in two and three dimensions is found in the well known paper by 
British mathematicians Eason, Fulton and Sneddon (1956). 
 

In the last quarter of the nineteenth century, another French mathematician, Joseph Valentin 
Boussinesq published in 1878 a series of short papers in Comptes Rendus that sketched a 
solution method for static, vertical point loads applied onto the surface of an elastic half-space, 
and also gave a closed form solution for a rigid disk with smooth contact on the surface of a half-
space bearing vertical loads, about which more will be said later on. However, it was not until his 
extensive treatise on the subject saw the light in 1885 that the full details of his method, based on 
potentials, were revealed. In the interim, the Italian mathematician Valentino Cerruti, Professor 
of Rational Mechanics and Rector of the University of Rome, published in 1882 a related, 
massive paper in the journal of the Italian Royal Academy (Reale Accademia dei Lincei), to 
which many modern papers make reference to. 
 

Cerruti’s paper is rather general in its approach and makes extensive use of integral theorems 
in elastostatics known as Betti’s principle —similar to those that underlie the modern BEM— 
and obtains the response in the interior of an arbitrary solid elicited by tractions or displacements 
prescribed on parts of the external boundaries. Although Cerruti does not use the modern 
language of continuum mechanics, his paper is concerned with what can clearly be recognized 
today as a boundary value problem involving an elastic body surrounded in part by a Dirichlet 
boundary where displacements are prescribed, and in part by a Neumann boundary where 
tractions are prescribed. Thereafter, he goes on to apply his method to a body of infinite extent 
limited by a flat surface (i.e. a half-space); yet nowhere does he provide the final equations for 
the displacement field due to a tangential load famously attributed to him, but leaves this task to 
the reader—at least in this work. However, his equations do indeed contain the tools necessary to 
obtain such a solution, and not just for tangential point loads on the surface but for any load 
distribution, horizontal or vertical. As an example of application of his approach, he does distill 
from his equations the case of vertical loads and obtains results that are in agreement with 
Boussinesq’s.  
 

Curiously, in the introduction to his memoir Cerruti made a brief allusion to Boussinesq’s 
earlier papers, but seemingly was not very impressed by these, for he commented that they 
“appear deficient to me in several respects”. Still, he did not elaborate further on what those 
deficiencies might actually have been.  
 

A significant leap forward came in the form of the fundamental solution for a homogeneous 
half-space subjected to a dynamic load on its surface, which is contained in the celebrated 1904 
paper of Sir Horace Lamb, Professor of Mathematics at the University of Adelaide in South 
Australia. Here, Lamb resorts to a precursor of what constitutes the modern integral transform 
method to obtain the response to either impulsive (2-D) or suddenly applied (3-D) vertical loads 
on the surface of an elastic half-space. [Note: the 2-D space has no step-load solution]. However, 
Lamb lacked in his time the complete set of mathematical tools —not to mention computers— 
necessary to fully evaluate all of his integrals. Thus, Lamb assessed in some detail only the 
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response in the far field at remote distances from the source. Still, to this day and in his honor, 
the problem of a dynamic source applied at the surface of an elastic half-space is referred to as 
Lamb’s problem.  
 

The next major milestone in fundamental solutions came with the publication in 1936 of 
Raymond David Mindlin’s famous set of closed-form equations for the displacement field 
elicited by static, vertical and horizontal point loads buried at an arbitrary depth below the 
surface of an elastic half-space. Legend has it that the brevity of his dissertation at Columbia 
University in New York raised doubts as to its quality, which were dissipated as soon as 
departmental headquarters got word that he had managed to solve a very difficult problem that 
had stumped others before him. Mindlin’s publication appeared in the same year that he earned 
his PhD there, but it was not until 1940 that he was finally appointed Assistant Professor at 
Columbia.  Unbeknownst to him, the Austrian engineer Ernst Melan (1932) had already 
published four years earlier a solution for the two-dimensional counterpart of buried line loads, a 
work about which he was alerted to by S. Timoshenko. Mindlin then added in his 1936 paper a 
comparison with Melan’s formulas and confirmed their agreement with his own solution.  
 

About four decades after Lamb, Cagniard (1939) finally managed to evaluate the requisite 
double integral transforms in Lamb’s problem by means of a very ingenious yet arcane contour 
integration that few understood. Two decades later in turn, de Hoop (1960) succeeded in finding 
a substantial simplification to Cagniard's procedure in what is now referred to as the Cagniard–
de Hoop method. This analytical strategy was also used by Pekeris (1955) and by Chao (1960) to 
obtain closed-form solutions —i.e. not requiring numerical integrations— for impulsive vertical 
and horizontal point loads in a half-space, but only when Poisson's ratio is 0.25  . Thereafter, 
Mooney (1974) generalized Pekeris' results for vertical point loads acting on half-spaces with 
arbitrary Poisson's ratio, but only gave results for the horizontal component of displacement up 
to Poisson’s ratio 0.2631  , which is the value at which the false roots of the equation for the 
speed of Rayleigh waves turn complex. In all of these solutions, displacements are known in 
closed form only on the surface and on the axis of symmetry below the load, and not at interior 
points.  Concerning impulsive line loads in two dimensions, fully closed-form solutions to 
Lamb’s problem exist as of this writing only for sources on the surface and displacements 
anywhere in the body, or for buried line loads and displacements on the surface. By contrast, 
displacements anywhere in the half-space due to dynamic loads contained there can only be 
obtained by purely numerical means, and the same is true when the loads are harmonic, even 
when the line loads are applied on the surface, the SH line load case excepting.  
 

The seminal work of Lamb together with its refinements in the ensuing decades in the early 
and mid- twentieth century provided the exact formulas for the transient response of elastic half-
spaces elicited by suddenly applied line and point sources on its surface. It is thus remarkable 
that comparable closed-form solutions for a single transform, say from the frequency-
wavenumber domain to the frequency-space domain, or alternatively, to the wavenumber-time 
domain, remain lacking. Perhaps the reason lies partly in the difficulty involved in obtaining 
exact results for a single transform —it is rather curious that the double transform should be 
easier— but also because the availability of the space-time solution removed much of the 
motivation to find solutions to such partial transforms. Nonetheless, there is no lack of practical 
solutions based on numerical approaches. A particularly powerful one is the Thin-Layer Method 
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for the Green’s functions of layered media (Kausel 1981, Kausel & Peek, 1982) which now lies 
at the heart of widely used codes such as PUNCH and SASSI, among many others.  
 

Once these pioneering fundamental solutions became widely known, many other such 
solutions for distributed loads of various shapes and characteristics followed, including 
transversely isotropic media, but a review of these is well beyond the scope of this paper. Still, 
many of the static solutions can be found in the well known reference book by Poulos and Davis 
(1972), while the dynamic counterpart —including Stokes’, Lamb’s and Chao’s problems—can 
be found in Kausel (2006).  
 
STATIC SSI 
It would appear at first glance that once the solutions for point loads applied onto the elastic half-
space were known, distributed loads would readily follow by recourse to convolutions over the 
loaded surface, but the resulting integrals were rarely tractable when the observation point was 
taken anywhere within the half-space. Still, Boussinesq (1885) himself considered not only the 
problem of vertical point loads, but also managed to find solutions for vertical loads uniformly 
distributed over a finite circular area, although he did so only for the displacements on the 
surface, on the axis of symmetry, and the average displacement under the load. The latter is a 
decent approximation to the compliance of a rigid, circular disk. In addition, he also solved the 
problem of a rigid, circular plate subjected to centered vertical loads, and found both the vertical 
stiffness zK  as well as the stress distribution z underneath the plate under the assumption that 
the contact was smooth, i.e. the plate-soil interface was lubricated, not welded. In modern 
notation, Boussinesq found: 
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where zP  is the total vertical load, G  is the shear modulus,   is Poisson’s ratio, a  is the radius of 
the plate, and ,r z  are the radial and vertical coordinates. 
 

Perhaps one of the earliest contributions to foundation engineering may be found in a 
remarkable paper by Fr. Engesser, who in 1893 wrote Zur Theorie des Baugrundes (About the 
Theory of Soils) in which he discusses the stability and carrying capacity of foundations. Still, 
quantum leaps in the field had to await the arrival of Austrian engineer Karl Terzaghi, now 
regarded as the father of soil mechanics. During the 1930’s, the Institute of Soil Mechanics at the 
Technical University of Vienna (Technische Hochschule Wien) —founded in 1928 and first 
directed by Karl Terzaghi— was abuzz with other notable personalities in the then new field, 
including Arthur Casagrande, Leo Casagrande, Leo Rendulic, Hubert Borowicka, O.K. Fröhlich 
and Wilhelm Steinbrenner, among others. After Terzaghi, the direction of the institute passed on 
to Fröhlich, and a dozen years after World War II in 1957, to Borowicka. Thus, it is not 
surprising to find that a good number of the early, leading advances in soil mechanics and SSI 
may have emanated from the Austro-German academic circles of which the Vienna institute was 
preeminent. Among the papers from that world are those by F. Schleicher (1926), K. Marguerre 
(1931, 1933), E. Melan (1932), W. Steinbrenner (1934), E. Reissner (1936, 1937), H. 
Borowicka, (1939, 1943a, 1943b), K. Girkmann (1940), G. Schubert (1942), and K. Hruban 
(1943), just to name a few.  
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Ferdinand Alois Schleicher, Privatdozent at the Technical University Karlsruhe in Germany 
and later on a civil engineer in the industry, echoed in his own 1926 paper the title of Engesser’s, 
to which he makes reference and pays brief tribute. In this work, Schleicher revisits the 
Boussinesq problem of vertical loads distributed over the surface of an elastic half-space, and 
confirms Boussinesq’s results for both a disk load and for a rigid disk, referring to these as the 
plate of zero and infinite bending stiffness, respectively. He then uses these to infer the value of 
the modulus of sub-grade reaction (Bodenziffer), which is useful in the formulation of foundation 
mechanics problems via distributed Winkler springs, and comments that this coefficient is not a 
material constant of the soil, but is inversely proportional to the linear dimensions of the 
supported loads. More significantly, Schleicher then turns his attention to vertical loads 
uniformly distributed over a rectangular area, and provides what may well turn out to be the first 
closed-form formulas for such loads. Indeed, he provides explicit expressions for the vertical 
displacements anywhere on the surface of the half-space, either within or without the loaded 
area, and observes that the smallest deflection is observed at the four corners and equals one half 
of the deflection at the center, no matter what aspect ratio the load may have, and whatever 
Poisson’s ratio. In addition, he computes the average deflection under the load, goes on to 
specialize these for strip loads and square loads, and compares the latter with the disk load.  
 

Less than a decade after Schleicher, Wilhelm Steinbrenner (1934) published a remarkable 
five-page paper in the short-lived journal Die Strasse, in which he considers once more the 
problem of rectangular loads. In this document he makes the brilliant observation that the 
vertical stresses anywhere in the soil can readily be inferred from the stresses underneath the 
symmetry center of the loaded area, and from there to the corners (or vice-versa), a simple 
calculation which can be obtained by integration of the Boussinesq solution for point loads. 
Stresses elsewhere then follow by simple superposition of appropriately sized rectangular loads, 
including negative loads in the case of observation points beyond the edges of the actual load. 
Without giving any technical details or derivations, he goes on to give his now famous formulas, 
which are very widely used at present in engineering practice. However, given the obscurity of 
the journal he chose as venue and had these formulas not been reproduced by Terzaghi in a later 
edition of his Erdbaumechanik, chances are that they might have been overlooked or forgotten, 
perhaps only to be rediscovered by others in subsequent years. Still, while Steinbrenner’s 
influential paper has been quoted very widely and he received due credit for his insightful 
contribution, it is highly likely that very few people have actually read it. Thus, it may well 
belong to the special class of “most widely unread papers”.  
 

A decade later and during the dark and fateful years of WW-II, Steinbrenner’s colleague H. 
Borowicka (1943a) published a historical paper where he considered strip footings and circular 
disks subjected to eccentric vertical loads. He obtained the stress distribution z  under both of 
these types of footings and went on to extract his now widely used rocking stiffnesses rK . In a 
nutshell and in modern notation: 
Disk: 
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where rM   rocking moment;   azimuth; r  = radial distance to some point within the plate; 
x   abscissa; a   radius or half-width; G  = shear modulus; and   = Poisson’s ratio. 
 

In retrospect, it seems peculiar that the first researchers of static SSI should have neglected 
the plate subjected to the potentially simpler state of torsion, but perhaps this may be because 
vertical gravity loads were primordial in foundation design while torsional stiffnesses had lesser 
utility. Thus, it was not until 1944 that Reissner and Sagoci, then both at Massachusetts Institute 
of Technology, considered the torsional stiffness tK  of a circular plate welded to an elastic half-
space. They obtained the following results: 
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with tM   torsional moment; and r = shear stress at plate-soil interface; and the other symbols 
are as before. 
 

Finally, it was not until the middle of the 20th century that the set of four stiffnesses of a rigid 
disk was completed, when Mindlin (1949) presented results for a plate subjected to tangential 
loads, in the horizontal displacement mode now referred to as swaying. Using an unorthodox and 
most ingenious approach based on the Hertz theory of two bodies in contact, he derived the 
lateral stiffness hK  of a rigid, circular membrane which is infinitely stiff in its own plane and 
infinitely flexible in the transverse direction, so no vertical contact stresses are elicited. He found 
that 
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with xz  being the contact stress, which is parallel to the applied tangential load xP . 
 

Comparing the contact stresses in the basic loading cases described, it can be seen that the 

stress magnification factor 2 2 2 2 2a r a x y     is present in all four cases, all exhibit an 

integrable singularity at the edge of the disk, and none of the contact stresses depend on 
Poisson’s ratio. A large number of authors have discussed the physical significance of these 
characteristics, so their observations need not be revisited herein.  
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HISTORICAL OVERSIGHT 
It would appear that with Mindlin’s contribution one could close the subject of static SSI, but 
there remains one iniquitous historical oversight that must first be dealt with, to set the record 
straight. An intense review of the modern geotechnical literature and books on theoretical soil 
mechanics yielded only scant hints that the problem of uniformly distributed, static loads in the 
shape of disks and rectangles could by now have been completely solved. In other words, it was 
not at all clear to the writer that displacements and stresses for circular and rectangular loads 
could be found anywhere in the soil mass by sole recourse to formulas, and not via tables and 
charts obtained numerically or by means of nomographs such as Newmark’s. The standard 
references listed formulas only for the surface and/or the axis of symmetry, and in most cases, 
only for a subset of the stresses, usually the vertical component.  Attempts by the writer to find 
the missing components via integral transform methods foundered upon reaching Laplace 
transforms not listed anywhere in standard tables and which Matlab and Mathematica were not 
able to solve either. As it turns out, the details of these two load cases were considered in full in a 
pair of extraordinary papers of enormous theoretical and historical significance, but which for 
unfathomable reasons the technical community hardly noticed and thus allowed largely to pass 
into oblivion. These two forgotten gems are Terazawa (1916) and Love (1929). 
 

Kwan-ichi Terazawa, a distinguished professor and scientist in Japan in the early years of the 
20th century chose as venue for his 1916 paper the Journal of the College of Science of the 
Imperial University of Tokyo, a serial publication that may have had only limited circulation 
outside of Japan. Apparently, the material presented in this paper—in impeccable English, one 
may add— may have been the subject of a doctoral dissertation of his at Cambridge University 
in the UK, for a footnote on page 62 indicates that it was written there. Thus, it is not surprising 
that this massive paper may have been known to some circles in the UK and that copies 
circulated there. In fact, Love in his 1929 paper does indeed make reference to Terazawa, and 
this is how it came to our attention. With the kind help of Prof. Emeritus Michio Iguchi of the 
Science University of Tokyo, we were then able to secure a copy, for it was not available in any 
of the major libraries in the US.  
 

Unlike Boussinesq’s strategy based on potentials, Terazawa got his inspiration from Lamb 
and formulated the problem of the loaded half-space in terms of integral transforms. By 
managing to find solutions to all of the difficult integrals we alluded to earlier he bested some of 
the sharpest minds who were to follow him in the decades ahead. Not only did he provide a 
complete solution to the problem of uniform vertical disk loads, including displacements and 
stresses at arbitrary interior points, but considered other load distributions, such as a bell load, 
and observed that the depression (or dishing) left on the surface has an infinite volume even if 
the work performed by the load is finite. Even more remarkably, he applied onto the surface the 
load distribution elicited by the vertically loaded, rigid plate, and found the displacements and 
stresses everywhere. The paper is heavy in mathematics, and employs symbols such as those for 
the complete elliptic integrals that differ from the current norm, all of which makes reading more 
difficult. Still, while this paper may turn off the casual reader, it is a must-read for the 
cognoscenti.  
 

Then there is also the notable 1929 memoir by Love already mentioned. Augustus Edward 
Hough Love, the Sedleian Professor of Natural Philosophy at the University of Oxford and 
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Fellow of Queen’s College, was the most eminent mathematician of the early 20th century to 
work on the theory of elasticity. His 1929 paper alluded to earlier appears in the bibliography list 
of R.E. Gibson’s 1974 Rankine Lecture, but Gibson makes only a brief and non-specific 
reference to Love’s groundbreaking paper. That after Gibson this extraordinary and massive 
memoir were to have been largely ignored or remain obscure within the technical community is 
difficult to comprehend. Perhaps the reason may be that the nascent geotechnical world at the 
time of Love’s publication may have been enamored of the engineering solutions emanating 
from the academic circles spearheaded by Terzaghi, and did not care much for abstract 
mathematical papers from elasticians elsewhere. Whatever the reasons, the fact is that Love 
considered in great detail the problem of both disk loads and rectangular loads, and provided 
complete solutions to both. Thus, Love not only beat Steinbrenner by half a decade, but gave far 
more detail on the solutions in the interior of the half-space. A simplified, concise rendition of 
Love’s solution for displacements anywhere due to a rectangular load applied at the surface can 
be found in Becker and Bevis (2004). May we suggest that Geotechnical Engineering owes Love 
an apology?  
 

A word in closing. When loads other than vertical are considered, especially tangential disk 
loads, one arrives at additional, difficult-to-solve integrals. While they may not be found in any 
tables of integrals, and Mathematica also fails to solve these, it turns out that a subset of such 
integrals was provided half a century ago by Eason, Noble and Sneddon (1955). Starting from 
their solutions, Hanson and Puja, in a remarkable 1997 paper in the Quarterly of Applied 
Mathematics, were able to extend the set of Eason et al and found all of the requisite integration 
formulas. Thus, some 130 years after Boussinesq and Cerruti, the set of analytical tools needed 
to provide a closed-form solution to distributed static loads, horizontal or vertical, applied onto 
the surface of an elastic half-space is at long last complete.  
 
DYNAMIC SSI 
Properly speaking, the theory of dynamic SSI began in 1936 with a publication by Erich (Eric) 
Reissner in which he explores the behavior of circular disks on elastic half-spaces subjected to 
time-harmonic vertical loads. Eric Reissner —born 1913 in Aachen, Germany, and the eldest son 
of yet another prominent engineering scientist, Prof. Dr. Ing. Hans Reissner— received his 
doctorate in 1935 from the Technische Hochschule Berlin-Charlottenburg, which today 
corresponds to the Technical University Berlin, or TUB. A few years later in 1938, he earned a 
second doctorate in mathematics from the Massachusetts Institute of Technology and in 1939 
joined the faculty there, where he remained in service until 1970. Thereafter, he moved on to the 
University of California in San Diego in the capacity of Professor of Applied Mechanics until his 
passing away in 1996. Besides his pioneering work on SSI, Reissner was also very well known 
for his contribution to the theory of the Reissner Plate and to the Hellinger-Reissner Variational 
Principle, just to name another two of his most conspicuous achievements.  
 

At the time of his dissertation, Reissner was by no means alone in the pursuit of solutions to 
dynamically loaded foundations. For example, Karl Marguerre penned a couple of remarkable 
papers in 1931 and 1933 which dealt with harmonically loaded soils and plates, including 
layered media. Still, while Marguerre gained some interesting engineering insights on the 
dynamic behavior of such systems, he became ultimately overwhelmed by the sheer complexities 
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of wave propagation and his developments petered out, so it can safely be affirmed that his 
papers are now mostly of historical and not of practical significance.  
 

In Reissner’s 1936 paper, which emanated from his dissertation in Berlin, he assumes the 
plate to have frictionless contact with the soil. However, he did not actually manage to solve a 
true mixed boundary value problem, but assumed instead a uniform stress distribution 
underneath the plate together with the rather coarse assumption that the displacement at the 
center of the load equals the displacement of the plate. Barely a year later in another path-
breaking paper, Reissner (1937) addressed the problem of an elastic half-space excited at the 
surface by concentrated and distributed torsional sources. He considered point moments, ring 
moments and distributed torsional disk sources, and assessed the torsional response of massive 
cylinders under the assumption of contact shearing stresses that increased linearly with distance 
to the axis. In addition, he also considered the case of a soil stratum of finite depth, a soil layer 
underlain by an elastic half-space, and even discussed briefly the generalization to soils whose 
properties change continuously with depth. Despite the simplifications concerning the 
distribution of contact stresses in either paper, and considering the notable insights he gained 
without the advantage of computers, especially with regard to radiation damping and to the 
equivalent mass-spring-damper analog system, it can be affirmed that Reissner is indeed the 
grandfather of dynamic SSI.  
 

Just a few years later and in yet another towering achievement, Reissner & Sagoci together 
with a companion paper by Sagoci in the same 1944 issue of the Journal of Applied Physics 
provided not only the very first rigorous solution ever to a mixed boundary value problem 
involving a dynamically loaded plate but, together with exact formulas for rigid spheres to which 
we refer in the ensuing, constitutes one of the very few problems for which closed form solutions 
are known. Using oblate spheroidal coordinates, they managed to find exact expressions for rigid 
circular plates loaded in torsion at arbitrarily high frequencies, although they achieved this at the 
expense of a formulation in terms of admittedly obscure spheroidal wave functions. This choice 
resulted in formulas that “lacked a simple form”, to borrow from the criticisms used in some 
more modern papers on soil-structure interaction, in which their authors go on to detract 
somewhat the practical value of the Sagoci solution while endorsing their own one based on 
integral transforms, or on purely numerical methods. They do this in part because accurate 
subroutines for spheroidal wave functions are not readily available or easy to come by, and also 
because the use of oblate and prolate spheroidal coordinates is only applicable to torsional 
problems, not to mention that the writers did not wish to educate themselves in the use of such 
functions. We may add that by means of a straightforward stretching of the vertical coordinates, 
the Reissner-Sagoci solution can readily be generalized to transversely isotropic media (Kausel, 
2008).  
 

Some four decades after Reissner & Sagoci, Apsel & Luco (1976) took up once more the use 
of spheroidal coordinates to provide an exact solution to the torsional response of both prolate 
and oblate ellipsoidal foundations embedded in an elastic half-space, subjected to a harmonic 
torque about the vertical axis, and to SH waves propagating along arbitrary directions. Except for 
the limiting case of a hemispherical foundation, for which exact results can be written, they 
ultimately used numerical approximations to evaluate the response. Based on their descriptions, 
it would seem that Apsel & Luco may have been unaware that the special problem of a rigid 
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sphere in a full-space subjected to torsion —which differs trivially from the hemisphere— had 
already been solved earlier by Chadwick & Trowbridge (1967a) in both the frequency and time 
domains. An additional exact solution by these same writers (1967b) also exists for a sphere 
subjected to lateral (or vertical) loads, again both in the frequency and time domain. However, 
because of the presence of the free surface which serves as a guide for surface waves, the 
solution for the sphere in a full-space undergoing translation is no longer equivalent to a 
hemisphere in a half-space, although it probably exhibits similar characteristics. This could be 
ascertained by comparing the solution for the sphere with the solution for a hemisphere provided 
by Luco and Wong (1986), and of the four cases evaluated by them the torsional case should 
provide a perfect match. Now, the expressions for a rigid, massless sphere of radius a  contained 
in a full space with S and P wave velocities ,S PC C , mass density  , Poisson’s ratio   and 

subjected to either a dynamic torque  zM   or a force  P   are so simple that they can be 

reproduced herein without much ado (the time domain solution is for a unit impulse). Let   be 
the dimensionless frequency,   the dimensionless time, and   the ratio of S-wave to P-wave 
velocity, defined by 
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The rotation and translation of the sphere are then 
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in which , 1,2,3j j   are the three roots of the cubic equation 

      3 2 2i 1 2 1 9 2 9i 1 9 0                

For Poisson’s ratios less than 0.498,  2 1conj     (i.e. the negative conjugate) while the 

third root is purely imaginary. Above that threshold all three roots are purely imaginary, of 
which the first root grows as 1a  without bound as the incompressible solid is approached. The 
response in the time domain for the translational case is qualitatively similar to the impulse 
response function of a 2-DOF system with supercritical damping. A rigid sphere with arbitrary 
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mass, and displacements anywhere beyond the sphere may also be described explicitly in both 
the frequency and time domains. In addition, it is a simple matter to find complete solutions to 
the scattering problems associated with waves impinging onto the sphere. 
 

The most important reason for summarizing the formulas for a sphere in a full space is that 
together with the Reissner-Sagoci + Apsel-Luco + Chadwick-Throwbidge solutions, these are 
exact formulas, and thus constitute valuable instruments in the arsenal of canonical problems, 
ready to serve as yardsticks against which the results obtained with approximate numerical 
methods can —and should— be judged.  
 

The postwar decades of the 50’s and 60’s saw a rapid expansion of activities in the area of 
SSI, which led to the publication of a fairly large number of papers dealing with dynamically 
loaded circular plates resting on half-spaces as well as on strata of finite depth. Some of the most 
noteworthy among these are the papers by Quinlan (1953), Sung (1953), Bycroft (1956), 
Warburton (1957), Thomson & Kobori (1963), Awojobi & Grootenhuis (1965), and Gladwell 
(1968).  This was also the time when Barkan’s seminal —but by now outdated— book on 
dynamics of foundations reached publication, of which the English translation from the Russian 
made its debut in 1962. Another excellent book of this era is due to Richart, Hall and Woods 
(1970), which continues to be a valuable resource to this day.  All of the previously cited papers 
are based on some kind of approximation, either in the way that the contact stresses are 
distributed, or in how the integral equations are solved and evaluated. A common characteristic 
is that they only provide results over a limited range of frequencies, and all but Thomson-Kobori 
address solely the problem of circular disks.  Three of these papers merit further comments.  
 

Bycroft’s (1956) formidable paper —in which he spares nothing in heavy mathematical 
artillery— considers all four modes of vibration and assumes that the stress distribution in the 
dynamic case can be approximated by the static distribution and determines the plate’s 
compliances by taking a weighted average of the displacements over the loaded area, which is in 
general an excellent approximation. However, he restricts his analyses to a fairly low frequency 
range. In addition, he appears to have been unaware of Mindlin’s results for he arrives at a 
somewhat different static stiffness in swaying, namely 
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7 8hK G a
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8

2hK G a
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
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which is larger by a factor 8
7 when 0  , yet identical to Mindlin’s when 0.5  . This modest 

difference in horizontal static stiffness may well have resulted from Bycroft’s rather inconsistent, 
simultaneous assumptions of zero rotation of the plate together with zero vertical contact stress, a 
problem of which he was certainly aware, for he mentioned that much in a brief comment. Some 
two decades later, Bycroft (1977) picked up the subject once more and provided asymptotic 
approximations for the compliances in all four modes when the frequencies are high. 
 

Then there is the paper by Thomson & Kobori (1963). Of all works cited above, it is the only 
one of that era to address the problem of rectangular foundations subjected to vertical loads (but 
note that Awojobi & Grootenhuis, 1965, also considered 2-D strip footings). Like other papers of 
this period, they again limited their results to low frequencies, assumed the plate to be smooth, 
the vertical stresses to be uniform, and rather disappointingly, that the compliance of the plate 
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was the same as the displacement at the center of the rectangle. Thus, these compliances are 
almost certainly too large.  
 
INTERACTION EFFECTS WITHIN AND NEAR THE STRUCTURE 
Up to this point in time, the narration has focused solely on the foundation, but it is the 
interaction of seismic waves with the structure and its effects on the soil nearby which ultimately 
matter. As it turns out, the problem of dynamic ground-structure interaction had already been 
considered as early as 1935 in Japan by Katsutada Sezawa and Kiyoshi Kanai (1935a) who 
published a truly remarkable, pioneering paper on the subject. In their work, they modeled an 
idealized structure as a thin cylindrical rod terminated at the base by a hemispherical tip which is 
embedded in a homogeneous half-space. The latter is subjected to plane, vertically propagating P 
waves which, upon hitting the hemispherical foundation, are partly scattered in all directions and 
partly transmitted into the rod, which in turn feeds back into the soil and contributes to the 
scattered field. They had, of course, to make simplifying assumptions in their model, such as the 
wavelengths of incident waves in the soil being much longer than the width of the structure, and 
they also ignored diffraction effects on the scattered field elicited by the adjacent free surface. 
Using analogous methods, they also considered shear beams and bending beams supported by a 
half-space subjected to vertically propagating S waves. They ultimately concluded that the 
severity of the motion in the structure was limited by the loss of energy in the form of waves that 
feed back into the soil, even for an undamped superstructure, so that resonance effects remain 
limited, and thus, that SSI is beneficial. Contemplating in this day and age those very early 
results, one can only marvel and wonder how, despite the significant complications entailed by 
their equations, the researchers managed to evaluate and present plots of amplification functions 
at a time when computers did not exist. 
 

Half a decade later in 1940, Caltech professor Romeo Raoul Martel offers one of the earliest 
commentaries in the US on the possible interaction between structures and soils. Although 
mostly anecdotal in character, his observations cite the results of studies on the 1933 Long Beach 
earthquake together with observed effects on the Hollywood Storage Building as well as 
Japanese researches of the 1930’s, and opined that damage to buildings on soft soils, deep 
alluvia, or high elevations can be expected to be more widespread than in buildings resting on 
firm or level ground. In addition, citing the relative seismic quiescence observed in tunnels, he 
also speculated on the possible reduction of motion intensity with depth. However, Martel lacked 
the wherewithal to confirm his predictions, for strong motion instruments were rare in his time, 
seismic records were few in number and he had little reliable empirical (or theoretical) evidence 
on which to base his predictions.  
 

The topic was taken up again in 1954 by R.G. Merrit together with earthquake engineering 
legend, Caltech’s Prof. George Housner, who began by observing that horizontal records 
obtained in basements are similar to records of motions on parking lots nearby, which is 
evidence that the lateral compliance of the foundation has little or no effect on motions. 
However, they surmised that rocking could be important and that its telltale signature might 
conceivably show up in the field records. To demonstrate this effect, they proceeded to idealize 
the superstructure as a rigid block mounted on a rotational spring whose stiffness was based on 
the moment of inertia of the foundation about the rocking axis together with the bearing capacity 
of the soil, and assessed this admittedly simple system with an ad hoc analog computer made up 
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of electrical circuits, a tool whose very application would be unthinkable in today’s digital world. 
With this rather crude model, they arrived at the result that any beneficial effects of rocking in 
reducing base shear would depend strongly on both the earthquake characteristics and the height 
of the building, yet ultimately they attained inconclusive results, bringing their paper to a close 
with the observation that “the base shear … will [not be affected] by any degree of foundation 
compliance that can be expected in standard practice.”  A few years later, Housner (1957) once 
more revisits the subject and on the basis of actual strong motion records demonstrates that the 
Hollywood Storage Building had measurable effects on motions nearby. This elongated building 
—which Hradilek and Luco (1970) report being mounted on concrete piles— has a short 
dimension in the North-South direction, and a long dimension in the East West direction. By 
comparing the motions in the basement in both directions with the corresponding motions 
recorded outside in the parking lot, Housner observed that waves in the ground that propagated 
along the long direction suffered significant filtering, yet waves moving in the short direction did 
not. Thus, he was the first researcher to demonstrate rather conclusively that the phenomenon 
now referred to as wave passage or kinematic interaction, is real and results in decreased 
effective motions in the vicinity of a relatively rigid structure of sizable proportions. This occurs 
because the stiff structure cannot accommodate the deformations in the ground elicited by waves 
shorter in wavelength than the dimensions of the foundation, and thus filters them out.  
 

A decade later, the celebrated engineer and University of Illinois’ Prof. Nathan M. Newmark 
(1969) considered the torsional response of otherwise symmetric structures elicited by waves 
which pass underneath the foundation, a phenomenon that he referred to as the Tau Effect. By 
this he meant the time delay in excitation to parts of the foundation caused by waves that 
impinge first on one side of the building and then on the other, i.e. / sL C  , where L  is the 
width of the foundation and sC  is the speed of horizontally propagating shear waves. This 
phenomenon too is a manifestation of kinematic interaction, and it results in effective seismic 
motions to the structure that would not exist if the waves propagated vertically and the structure 
was not embedded. Thereafter, the topic was taken up again many other researchers, including a 
well known study by Robert Scanlan (1976). A beautifully simple engineering approximation to 
this phenomenon, which merely requires knowledge of the free-field problem evaluated at the 
soil-structure interface together with the stiffness functions for the embedded foundation, was 
given by Iguchi (1982).  
 

During the mid 1960’s, Parmelee made initial assessments of SSI effects by means of a very 
simple structural model with three degrees of freedom, namely the translation and rotation of the 
base together with the lateral motion of the superstructure. The system was mounted on lateral 
and rocking springs based on Bycroft’s stiffness functions. In the first of his two papers, only 
static stiffnesses without any damping were used, and only harmonic response functions were 
obtained, while in the second, he considered the frequency-dependence of the foundation 
impedances over the limited frequency range for which they were available, and employed 
synthetic earthquakes with no more than ten terms. Lacking an FFT at the time of this work —
Cooley-Tukey’s FFT algorithm only saw the light in 1965— and struggling with numerical 
limitations, this study attained only limited success in evaluating SSI effects.  
 

Shortly thereafter, Sarrazin et al (1972) adopted once again Parmelee’s model but accounted 
also for the height of the center of mass of the foundation above the line of action of the soil 
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springs. More importantly, they used both frequency-dependent impedances and also evaluated 
the impedances at the coupled soil-structure frequencies so as to be able to work with frequency-
independent “springs and dashpots”. They presented extensive sets of graphics with the relative 
values of rocking, swaying and structural frequencies, and most importantly, the effective 
damping at the frequency of the coupled mode of vibration as a function of the aspect ratio i.e. of 
the building height. They found that rocking damping can be very low —just a few percent— but 
that swaying damping is typically very high, anywhere from 30% to more than 100% of  critical 
value. Thus, they confirm Housner’s contention that in most practical cases swaying is not 
important. In their study, they also apply random vibration theory to assess the maximum 
response of the structure to white noise input. By and large, this well-organized investigation 
concludes that SSI is beneficial in that response amplitudes are decreased in comparison with the 
response for a fixed based condition. They also point out that hysteretic damping in the soil is 
very important, especially when the coupled soil-structure frequency is low, i.e. when radiation 
damping in rocking is low. The results of this compelling study with simple models are most 
valuable when considered in the context of simplified, code-type design procedures.  
 

Finally, in 1975 and 1977, the eminent Rice University Prof. Anestis Veletsos shows that 
interacting systems can accurately be modeled via simple systems with modified periods and 
appropriate levels of damping, which allows applications to design with standard response 
spectra. As Housner and Sarrazin before him, he observes that the translation of the base is 
similar to that of the free field, and that rocking is important. Veletsos also concludes that 
hysteretic damping is essential, that SSI increases damping and reduces deformations in the 
structure, and that for tall structures the effective damping in SSI may sometimes be less than for 
fixed-base structures.  
 
CONTEMPORARY ERA 
The beginning of the modern era in SSI can be said to have begun some four decades ago with 
the publication of the profoundly influential papers by Veletsos & Wei (1971) and by Luco & 
Westmann (1971, 1972), which provided complete rigorous solutions to the problem of circular 
plates underlain by elastic half-spaces excited dynamically over a broad range of frequencies, 
and for a wide set of Poisson’s ratios. After these pioneering works made their debut, the rate of 
progress in the discipline of SSI took a rapid acceleration and diversification, driven mainly by 
the needs of the nuclear power and offshore industries. In addition to Juan Enrique Luco and 
Anestis (“Andy”) Veletsos, some of the other principal figures working on dynamic SSI at that 
time included Harry B. Seed, John Lysmer, Anil Chopra, Izzat M. Idriss, Paul C. Jennings, 
Jacobo Bielak, Paul Christiano, Hung L. (“Dave”) Wong, Mihailo D. Trifunac, Robert V. 
Whitman, José M. Roësset, John T. Christian, Milos Novak, W.D. Liam Finn, Hiroshi Tajimi, 
Takuji Kobori and Ryoichiro Minai, just to name a few heavyweights.  
 

The decades of the mid 1960’s to mid 1970’s were also marked by the triumphal entry of 
powerful digital computers together with versatile numerical methods —especially finite 
elements— both of which helped to radically change the research paradigm and shift its 
emphasis away from purely analytical methods. Thus, instead of continuing to solve highly 
idealized mathematical problems involving, say, rigid circular disks welded onto perfectly 
homogeneous half-spaces, it became possible to address irregularly-shaped, flexible foundations 
embedded in inhomogeneous or layered media, and even account for rather complex effects such 
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as the inelasticity of the soil.  This was also the time when sophisticated computer programs such 
as SHAKE, LUSH, SASSI, and CLASSI entered the scene and —at least in the nuclear power 
industry— acquired mythical status as the supreme instruments by means of which one could 
solve nearly any practical SSI problem.  As a result, some of the programs began being used in 
the industry by persons who lacked proper knowledge of the underlying assumptions, i.e. as 
black boxes, a situation that was clearly undesirable. Then again, as the numerical predictions 
began to outrun the observable, they stimulated intensive research on experimental methods and 
laboratory verification, all of which helped to provide a reality-check on the complex numerical 
models then in vogue.  
 

Peculiarly, although the Finite Element and Boundary Element Methods saw the light at 
about the same time, the latter took much longer to find widespread use. One of the pioneers in 
the use of Boundary Elements for foundation mechanics problems was José Dominguez 
(1978a,b), who first obtained the impedances of rectangular foundations embedded in an elastic 
half-space.  
 

It was also during this time that the writer was fortunate enough to have worked on the 
subject of SSI and have published a lengthy seminal paper which received wide attention by 
bringing into focus some key aspects of SSI and clarifying the source of inconsistencies observed 
in analyses by alternative methods (Kausel & Roësset 1974). Indeed, many of the SSI models 
employed up through the early 1970’s were relatively “simple” in the sense that they were 
restricted to systems in which the foundation rested directly onto the surface of a homogeneous 
half-space, and the seismic motion in the free field was invariant in horizontal planes, e.g. the 
motions resulted from waves propagating vertically in a laterally homogeneous soil. For such 
models, the intuitively obvious strategy of prescribing the free-field motion directly underneath 
the soil “springs” supporting the structure in a formulation in the frequency domain was both 
sufficient and rigorous. However, when discrete methods of analyses, such as finite elements, 
started being applied to SSI problems, and especially when embedded structures began to be 
considered, substantial discrepancies were observed between the results of the numerical 
analyses and the classical analytical method, which demanded an explanation as to why the 
differences. This motivated the development by us of the so-called three-step solution, which 
provided the means to accomplish fully consistent comparisons between the results obtained by 
purely numerical models with finite elements and those by the lumped parameter method based 
on foundation impedances or “springs” together with seismic motions prescribed underneath 
these springs. In a nutshell, the three steps in this method are:  

 Kinematic interaction, which considers the response of the foundation embedded in the 
actual soil and subjected to the seismic environment defined in the free field at the soil-
structure interface before the soil has been excavated.  

 Foundation stiffnesses, which provide the frequency-dependent impedances for the 
foundation embedded in the actual soil medium.  

 Inertial interaction, where the structure is supported on the impedances determined in 
step 2, and is subjected at the base to the motions found in step 1.  

Thus, the comparisons of the results obtained with both the direct approach (i.e. finite 
elements) and with the lumped parameter method were inconsistent —the apples and oranges 
problem— and disagreed with each other because the wrong stiffnesses and the wrong support 
motions were used.  Details are by now well known and need not be elaborated further herein. 
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For the record, however, we wish to add that the monikers “kinematic interaction” and “inertial 
interaction” were originally coined by Prof. Robert V. Whitman at MIT in the months following 
our paper. To the best of our knowledge, these concepts first appeared in print in our lecture 
notes in a well-attended course on SSI in Santa Margherita, Italy (Kausel, 1976) and then again 
in a refereed journal by Kausel, Whitman et al (1978).  
 

From this point on, the discipline broadened enormously and gave rise to myriad papers, to 
the point that we could not do justice herein with even a cursory review. Examples are:  

 The free field problem, especially the amplification of vertically propagating waves by 
means of practical algorithms which account for inelastic effects, e.g. Schnabel et al 
(1972).  

 Complex material behavior, e.g. Seed & Idriss (1969) 
 Consideration of non-horizontally layered soils, undulating or dipping layers, subjected to 

miscellaneous kinds of seismic waves 
 Soils whose properties change continuously with depth, e.g. Vrettos (1991,1999).  
 Diffraction of waves by topographic features, such as basins, canyons and depressions, 

wedges, cliffs or hills, and their effect on structures, e.g. Sánchez-Sesma et al (2000). 
 Scattering of waves by foundations embedded in various soil configurations, e.g. 

Trifunac (1971, 1973), Lee (1988). 
 Footings of miscellaneous shapes and with various degrees of embedment, subjected to 

either forces or arbitrary seismic environments. 
 Footings on layered soils, e.g. Luco (1974); Kausel (1974); Gazetas & Roësset, (1976) 
 Effect of foundation flexibility, e.g. Savidis & Richter (1979). 
 Single piles, pile groups, caissons, and all of these in various kinds of soils, e.g. Kaynia & 

Kausel (1982). 
 Multiple footings, i.e. structure-soil-structure interaction, e.g. Wong & Luco (1986), Lin 

et al (1987) 
 Structural response and effects, e.g. Roësset et al (1972), Bielak (1976) 
 Non-linear effects, such as partial lift-off and inelastic soils. 
 Poro-elastic effects. 
 Transverse isotropy, anisotropy 
 Numerical methods, e.g. Karabalis & Beskos (1984), Apsel & Luco (1987), Alarcón & 

Cano (1989) 
 Large scale experimentation on SSI effects 
Still, in the next decade or two, a subset of the best contributions by contemporary 

researchers in SSI will eventually be duly recognized for their lasting value, at which time they 
too will be the subject of historical surveys yet to be written. In all likelihood, however, such 
future reviews will have to focus much more narrowly on specific sub-disciplines, given the 
significant breadth that the subject of SSI has now attained.  
 
EPILOGUE 
The writer together with his innumerable colleagues around the world —many of them 
personally known to him— have been privileged to have contributed to the development of a 
fascinating technical discipline. We are also grateful for the opportunities that the engineering 
science community at large as well as the funding agencies afforded us and made our work 
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possible. Nonetheless, a cause of some concern is the recent proliferation of papers which 
seemingly rediscover known facts and methods and mistake these for new knowledge. It is not 
recognition that any in the older generation seeks —as the late pop artist Andy Warhol would 
have put it, they all had their fifteen minutes of fame— but for the state-of-the-art to make true 
progress, it behooves for the current and future generations of young researchers and scientist to 
be aware of what has already been accomplished. It is only by profiting from the predecessors’ 
already accumulated experience, knowledge and wisdom that true progress may accrue in 
decades to come. Or as the Latin metaphor has it, nanos gigantum humeris insidentes. 
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