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Effect of N2, Ne and Ar seeding on Alcator C-Mod H-mode confinement
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The mitigation of divertor heat fluxes is an active topic of investigation on existing tokamaks. 

One approach uses radiation, both inside and outside the last closed flux surface (LCFS), to convert 

plasma thermal energy, usually directed towards dedicated plasma facing components, to soft x-ray 

and ultraviolet radiation, spread over a much larger surface area.  Recent enhanced D- H-mode 

experiments on Alcator C-Mod varied the ICRF input power and radiative power losses via impurity 

seeding to  demonstrate  that  normalized energy confinement  depends strongly on the difference 

between input power and the radiated power inside the LCFS.  These investigations also show that 

when seeded with either Ne or N2, a factor of two and higher reduction in outer divertor heat flux is 

achieved while maintaining H98,y2 ~ 1.0.  Conversely, when seeding with Ar, confinement is limited 

to H98,y2 ~ 0.8 for a similar level of exhaust power. 
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I. INTRODUCTION

The removal of core heat exhaust has been identified as one of the primary challenges facing the 

extrapolation of current tokamaks designs to demonstration reactors [1].  To reduce the heat flux to 

plasma facing components (PFCs)  to the ~10 MW/m2 level,  two approaches are being actively 

investigated.  The first is to spread the conducted power over a wider area, either through magnetic 

flux expansion or bringing the same SOL power to PFCs at larger major radii [2].  The second, 

addressed here, seeks to reduce the amount of power reaching PFCs by using impurities inside and 

outside the LCFS to convert plasma thermal energy to isotropic ultraviolet and soft x-ray radiation. 

This technique has been investigated on a number of tokamaks in both type-I and type-III (edge-

localized mode) ELM regimes, though maintaining high normalized confinement has not always 

been demonstrated [3-7].   The present work reports the results of experiments on enhanced D-

(EDA) H-mode plasmas [8] in Alcator C-Mod where the impact to the energy confinement from 

varying  amounts  of  seeded  radiation  loss  and  ICRF  input  power  were  investigated.  The 

experimental energy confinement time,   = WTH/(PIN-dWTH/dt),  where WTH is the stored energy 

calculated from the EFIT pressure profile, is normalized to the ITER98(y,2) scaling and referred to 

as  the H-factor  or  H98.    These experiments  demonstrate,  in  a  fixed configuration,  H98 ~  1.0 

operations with a 50% or more reduction in the power to the outer divertor when N2 or Ne seeding is 

utilized.   Seeding  with  Ar  resulted  in  similar  reductions  in  divertor  heat  loading  but  core 

confinement drops to H98 < 0.8.  Section II of this paper describes the diagnostic tools used for these 

studies, Section III presents the effect of seeded impurity radiation on confinement and Section IV 

presents the reduction in divertor exhaust power and discusses the implication of these results.



II. DESCRIPTION OF EXPERIMENTS

These investigations were completed for EDA H-modes, a steady-state H-mode regime commonly 

utilized on Alcator C-Mod, where the pedestal gradients are continuously relaxed via the so-called 

quasi-coherent mode [8] rather  than by discrete type-I  ELMs typical in most  tokamak H-mode 

regimes.  Line-integrated radiation is measured using an absolutely calibrated resistive bolometer 

array on the low-field side (LFS) midplane and Abel-inverted to find the radial emissivity profile 

[9].  An estimate of the global radiated power is made using a wide-angle bolometer that includes 

the core and a portion of the  divertor radiation.  This unit is calibrated by seeding an ICRF-heated 

plasma to radiative collapse and assuming the signal measured to be equal to the input power.  Both 

these units are sensitive the power deposited by neutrals, but this is assumed to be small compared to 

the radiative losses due to heavy impurity seeding.  The heat flux in the divertor is calculated using 

an infrared thermography diagnostic described in more detail in [10].  Time evolving profiles of 

surface temperature constrain a 2D heat-transport model  to calculate the surface heat-flux profile at 

the outer divertor which is then integrated over the divertor surface, assumming toroidal symmetry 

to calculate the total power to the outer divertor, PO-DIV.  Thomson scattering with ~1 mm resolution 

is used to measure the electron temperature and density profiles in the pedestal region [11].

To test the effect of radiative power loss on confinement a single discharge was repeated adjusting 

input ICRF power level as well as the type and amount of impurity seeding.  N2, Ne and Ar seeded 

H-modes were analyzed along with unseeded H-modes, with all plasmas having varying amounts of 

radiation due to intrinsic Mo and B.  The extrinsic impurity seeding was done through a main-

chamber piezoelectric gas valve with the pressure of the puff varied to change the impurity fraction. 

All plasmas had Ip ~0.8 MA, Bt ~ 5.4 T and relatively weak shaping (upper ~ 0.2, lower ~ 0.5 and  ~ 

1.5).   The  line-averaged  density  varied  slightly  depending on  confinement  but  was  nominally 

3.0x1020 m-3 or approximately <ne>/nG ~ 0.5.  The L-H threshold power was measured using slow 



ICRF power ramps, but showed significant variation between different run days with PL-H ~ 1.75 +/- 

0.35 [MW], between 1.0-1.5 the accepted scaling [12].   Figure 1 shows the time history of a typical 

N2, Ne and Ar seeded discharge.  Gas puffs were started before the L-H transition and recycling of 

Ar and Ne allowed for slowly evolving radiation during the 4-5 MW ICRF power scan.  Additional 

Ne puffs were required at the highest radiation levels, while for N2, a steady-state puff was required 

to combat the drop in recycling.  Total input power, PIN=POH+PICRF, shown in Figure 1c, is calculated 

assuming 90% absorption of the ICRF power leaving the antenna.  Figure 1d shows the radiated 

power from the two different measurements discussed earlier. The power loss inside the last closed 

flux-surface (LCFS), PRAD,LCFS is calculated by assuming the radial emissivity profile is flux-surface 

symmetric  and  integrating  over  the  plasma  volume  and  is  represented  by  the  dashed  lines. 

Emissivity profiles remain hollow for all  plasmas,  although the edge/core ratio is lower for Ar 

seeding then for Ne or N2.  The solid lines show the time evolution of the estimated global radiated 

power and comparisons to PRAD,LCFS indicate a higher fraction of divertor radiation as the Z of of the 

seeded impurity, ZSEED, is decreased.  Figure 1e demonstrates the H98~1.0 operations, although for 

this particular Ar seeding level it is reached transiently with the rise in radiated power after t~1.0 s 

correlated with a drop in H-factor.  The power to the outer divertor is shown in Figure 1f where the 

Ar-seeded plasma, with the highest PRAD,LCFS, also has the highest PO-DIV, while the N2-seeded plasma, 

with the lowest PRAD,LCFS has the lowest PO-DIV.  This also implies the presence of enhanced divertor 

radiation as ZSEED is decreased, although PRAD,DIV is currently not directly measured.

III. EFFECT OF RADIATION ON CONFINEMENT

Thirty discharges were analyzed,  using time-averaged segments of 30 ms duration, each having 

quasi-steady input power and radiation.  The entire dataset  is shown in Figure 2 where H98 is plotted 

against PSOL=PIN-PRAD,LCFS, indicating that for a given value of PSOL there is a maximum achievable 



H98 that  increases  as  power  through  the  LCFS  is  raised.   At  higher  PSOL values,  normalized 

confinement  appears  to  drop,  correlated with significant  increases  in  edge neutral  density,  in  a 

manner that is consistent with prior experience with D2 gas puffing into EDA H-modes [13].  In 

order to account for background neutral pressure, pWALL variation due to PFC outgassing, an average 

over the LFS midplane Ly- brightness profile is is used as a proxy since the two are expected to be 

tightly correlated.  In Figure 2, different ranges of Ly- brightness are isolated and it is clear that at 

fixed PSOL, increased edge neutral pressure is correlated with reduced confinement. 

To study the ZSEED and PSOL dependance of H98, the dataset is truncated to where the Ly- brightness 

is less than 45 kW/m2 which corresponds to pWALL below 0.2 mTorr.  The effect of different impurity 

species is shown in Figure 3a with H98 again plotted against PSOL, this time differentiated by impurity 

species.  At low levels of seeding, where PSOL is much greater than that at the L-H threshold, all 

cases overlap and show an increase in H98 with PSOL.  This trend appears consistent with core profile 

stiffness arguments as the height of of the electron temperature pedestal, Te,ped, is correlated with the 

normalized  confinement  as  shown  in  Figure  3b.   A systematic  difference  in  confinement  is 

observable at low Te,ped for different impurities seeding cases.  Core electron temperature profiles 

need to be examined in more detail to see if the gradient scale length is affect ed by enhanced core 

power loss from higher-Z impurities.  As PSOL approaches the L/H threshold power, differences in 

H98 are also observed between different impurities in Figure 3a.   The low PSOL unseeded cases 

consist mainly of low PIN, low PRAD data while the low PSOL Ar cases are mostly high PIN, high PRAD 

points, suggesting a hysteresis [14] as the L-H threshold is approached with heavy seeding.

IV. DISCUSSION

The results from Section III illustrate that, regardless of the variety of power sources and sinks, 



normalized confinement  depends primarily  on the net  power through the plasma edge.   In this 

context, applying techniques which seek to remove heat from the plasma outside of the core but 

inside of the LCFS, the so-called radiative mantle, provides no benefit if PIN is near the PL-H.  Such a 

trend also sets a clear mission for radiative divertor scenarios since the L-H threshold power or 

greater will need to be deposited into the SOL and a large fraction not allowed to reach the PFCs. 

Converting this power into radiation outside the LCFS must be done with minimal increase in core 

radiation which suggests low-Z impurities will be the most efficient as shown previously on Alcator 

C-Mod [15].  This can now be shown more conclusively by comparing H98 to power to the outer 

divertor as measured with new IR thermography diagnostics discussed in Section II.  As shown in 

Figure 4a., these experiments demonstrate nearly a factor of two reduction in PO-DIV with H98~1.0 

when using Ne seeding.  Extrapolating the trends to PODIV=0 (i.e. detachement) for both Ne and Ar 

seeding would result in L-mode levels of energy confinement, consistent with earlier experiments 

[15].   Although the C-Mod thermography data for N2-seeded plasmas is limited to a few time slices, 

a x5 reduction of PO-DIV is observed while still  maintaining H98~1.0 also in agreement with past 

results.  When PO-DIV is normalized to the input power as shown in Figure 4b, the Ne and N2 seeded 

plasmas are able to reach the desired outer divertor loading condition for ITER [1].  To reduce PO-

DIV/PIN to such a level when seeding with higher-Z impurities or operating without seeding results in 

much lower, H98 ~ 0.8, confinement. 

These results show that in an EDA H-mode configuration, an operating space in ZSEED and nz exists 

where H98 ≥ 1.0 operations are possible with reduced divertor heat flux.  To apply these results to 

other C-Mod plasmas and other devices or confinement regimes requires understanding of what 

determines  the  boundaries  of  this  space.  The  electron  temperature-dependent  radiation  physics 

certainly plays a primary role but impurity transport in the pedestal and divertor can also expected to 



be  important.   The  observed  deterioration  of  confinement  with  increasing  Mo or  Ar  levels  is 

expected  from a  pedestal  height  that  increases  with  edge  conducted  power  since  a  substantial 

amount of the radiation is well inside the LCFS.  As ZSEED  decreases, the radiation layer moves 

towards lower temperatures approaching the the plasma edge and divertor. The data shown in Figure 

3a cannot make a distinction between the LCFS and the top of the pedestal and it is unclear if there 

exists  a  region  between  the  two  where  radiation  will  not  effect  the  height  of  the  pedestal. 

Additionally, we expect some poloidal variation of the edge radiation layer in the vicinity of the x-

point which will require a more comprehensive bolometer diagnostic.
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FIGURE 1:  Time history of a typical nitrogen (green), neon (blue) and argon (red) seeded 

EDA H-mode used in these experiments.  Impurity seeding (a) begins prior to 

application of ICRF heating (c) which induces the L-H transition as evident in 

the density (a) and temperature (b) traces.  Radiated power (d) inside the LCFS 

(dashed) and the estimated global PRAD (solid) increase as well.   Steady 

confinement (e) of H98~1.0 is reached with Ne and N2 seeding with low power to 

outer divertor (f) measured using IR thermography.

FIGURE 2: Correlation of normalized confinement, H98, with power to the scrape-off layer, 

PSOL.  Neon seeded shots (open symbols) are distinguished by brightness of edge 

viewing Lyman-, correlated to edge neutral pressure.  Including remaining data 

(small black circles) shows an empirical limit to the achievable H98 for a given 

PSOL

FIGURE 3: (a) Correlation of H98 with PSOL for different impurity seeding.  Above the L-H 

threshold power the confinement scales with PSOL regardless of the seeding 

species.  This trend is consistent with core profile stiffness (b) as the 

confinement is tightly coupled to the height of the electron temperature pedestal 

FIGURE 4: (a) When using Ne and N2 seeding, good energy confinement (H98 ~ 1.0) be 

maintained as power to the outer divertor, PO-DIV, is reduced by ~50% in 

contrast to Ar which results in H98 < 0.9.   (b) Normalized to input power, the 

outer divertor loading approaches levels desired by ITER .






