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Summary 

Recent insights into the genetic basis of neurological disease have led to the 

hypothesis that molecular pathways involved in synaptic growth, development, and 

stability are perturbed in a variety of mental disorders. Formation of a functional synapse 

is a complex process requiring stabilization of initial synaptic contacts by adhesive 

protein interactions, organization of pre- and post-synaptic specializations by scaffolding 

proteins, regulation of growth by intercellular signaling pathways, reorganization of the 

actin cytoskeleton, and proper endosomal trafficking of synaptic growth signaling 

complexes. Many neuropsychiatric disorders, including autism, schizophrenia, and 

intellectual disability, have been linked to inherited mutations which perturb these 

processes. Our understanding of the basic biology of synaptogenesis is therefore critical 

to unraveling the pathogenesis of neuropsychiatric disorders. 

 

Introduction 

 The formation of a functional, mature neuronal synapse requires a host of 

molecular players to mediate coordinated pre- and post-synaptic growth. In recent years, 

clinically diverse disorders such as autism spectrum disorders (ASDs), schizophrenia, 

epilepsy, and intellectual disability (ID) have been linked to dysfunction of a number of 

proteins implicated in synaptic development [1,2]. For example, deletions of neurexin-1α, 

a synaptic cell adhesion protein, were initially identified by large-scale genetic screens in 

patients with autism and schizophrenia, and subsequently found in patients with severe 

ID and epilepsy [3]. Mutations in genes encoding the SHANK postsynaptic scaffolding 

protein family were first identified in a patient with ID, and later associated with autism 
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and schizophrenia [4,5]. As the number of genes contributing to neuropsychiatric 

disorders has grown, it has become increasingly clear that pathways contributing to 

synaptic development and activity-dependent growth are important in their etiology. 

 Here, we examine genes implicated in synaptogenesis which have been associated 

with neurological disease. In particular, we highlight the role of these genes in synaptic 

cell adhesion, organization of pre- and post-synaptic specializations, growth signaling 

pathways, and endosomal function. Insights into the function of these genes at the 

Drosophila neuromuscular junction (NMJ) are emphasized, as this model glutamatergic 

synapse is well studied within the context of activity-dependent synaptic development.  

  

Specification and stabilization of the synapse is mediated by cell adhesion proteins 

One of the earliest steps in synaptogenesis is the induction and adhesion of 

precisely opposed pre- and post-synaptic domains. Multiple transsynaptic cell adhesion 

complexes operate in parallel to ensure proper synaptic alignment (Figure 1). Mutation of 

synaptic adhesion proteins has been linked to various neuropsychiatric disorders, 

indicating that abnormal formation or maintenance of synaptic contacts may be impaired 

in several neurological diseases [6]. Members of the cadherin and immunoglobulin 

protein superfamilies play an important role in mediating synaptic adhesion. Synaptic cell 

adhesion molecule 1 (SynCAM1) is an immunoglobulin domain containing protein found 

on axonal growth cones, and is one of the first transsynaptic adhesion molecules to 

assemble at developing synapses [7]. Homophilic binding of SynCAM1 across the 

synaptic cleft promotes synapse formation in cultured hippocampal neurons [7]. Recently, 

missense mutations in SynCAM1 have been identified in patients with ASDs, and a 
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SynCAM1 knock-out mouse was found to have impaired social behaviors [8,9]. 

Mutations in a Drosophila SynCAM-like protein, FasII, disrupt synaptic growth at the 

NMJ due to synaptic destabilization [10]. Several members of the cadherin protein family, 

including protocadherins, also mediate transsynaptic adhesion and have been linked to 

ASDs in genome-wide association studies [11,12]. The role of cadherins and 

protocadherins in synaptogenesis is poorly understood, although they likely participate in 

synapse formation and refinement. 

One well studied transsynaptic adhesion complex is neurexin-neuroligin. 

Mutations in neurexins and neuroligins have been identified in several families with 

heritable neurological disorders, including ASDs, schizophrenia, and ID [13]. The 

binding of a presynaptic neurexin to a postsynaptic neuroligin is required for synapse 

function, but whether neurexin-neuroligin binding affects synapse formation is unclear 

[13]. In Drosophila, mutations in the homolog of neurexin, dnrx, cause reduced synaptic 

growth and defective presynaptic active zone formation [14]. Likewise, mutations in 

neuroligin, dnlg1, decrease synaptic growth due to deficits in bouton addition and 

postsynaptic differentiation [15]. In mammals, a synaptogenic role for neurexins is 

suggested by the observation that neurexins bind the postsynaptic glutamate receptor δ2 

via an adaptor protein, which is essential for excitatory synaptogenesis in the cerebellum 

[16].  

 Another family of postsynaptic cell adhesion proteins, the leucine-rich repeat 

transmembrane proteins (LRRTMs), were identified in a screen for synaptogenic proteins 

and subsequently found to bind neurexins [17-19]. Similar to neurexins and neuroligins, 

mutations in LRRTMs have been associated with both autism and schizophrenia, and are 
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thought to promote synapse formation [20,21]. The netrin-G ligand (NGL) proteins form 

a subfamily of LRRTM synaptic adhesion molecules implicated in the etiology of 

schizophrenia and biopolar disorder [22,23]. NGLs promote excitatory synaptogenesis by 

binding to presynaptic netrin G and LAR receptors, as well as postsynaptic proteins [23]. 

The combinatorial action of neurexins, neuroligins, LRRTMs, and NGLs is not well 

understood, and these complexes may act redundantly at the synapse. 

 Several other cell adhesion proteins whose synaptic role is unclear have also been 

associated with neurological disease. Contactin-associated protein-2 (CNTNAP2) is a 

single-pass transmembrane protein distantly related to neurexins, and is associated with 

ASDs, schizophrenia, ID, and epilepsy by genome-wide linkage analysis [24]. A synaptic 

role for CNTNAP2 was recently demonstrated in Drosophila, in which neuronal 

knockdown of CNTNAP2 (NrxIV) resulted in aberrant synaptic morphology and 

misregulation of a critical active zone component [3]. Another recently recognized 

synaptic cell adhesion molecule is amyloid precursor protein (APP), a type I membrane 

protein involved in Alzheimer’s disease pathogenesis. APP was found to promote 

synaptogenesis in culture and is required both pre- and post-synaptically to regulate 

mammalian NMJ structure and function, presumably by forming a transsynaptic adhesion 

complex [25]. Similarly, regulation of the Drosophila APP homolog critically controls 

synaptic growth at the NMJ [26]. The involvement of various synaptic cell adhesion 

proteins in neuropsychiatric diseases indicates that abnormal synapse formation or 

specification may be a common risk factor for mental disorders. 

 

Organization of pre- and post-synaptic domains by scaffolding proteins 
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Formation of a functional synapse requires assembly of synaptic proteins into 

domains specialized for neurotransmitter release and reception. Scaffolding proteins are 

critical mediators of this process on both sides of the synapse. Scaffolds are composed of 

multiple protein-protein interaction domains, and form a physical link between adhesion 

proteins, ion channels, neurotransmitter receptors, intracellular signaling cascades, and 

the actin cytoskeleton. 

One of the strongest links between synaptic organization and neurological disease 

is the SHANK family of scaffolding proteins. SHANK proteins localize to the excitatory 

postsynaptic density and contain multiple protein-protein interaction domains. Mutations 

in SHANK2 and SHANK3 have been identified in patients with autism, mental 

retardation, and schizophrenia [4,5]. In conjunction with HOMER, SHANKs form a 

mesh-like matrix at the postsynaptic density which regulates the morphology of dendritic 

spines and recruits postsynaptic density proteins [27]. The connection between SHANK 

scaffolds and mental dysfunction was recently strengthened by the finding that FMRP, 

the RNA binding protein mutated in Fragile X syndrome, inhibits the translation of 

SHANK1 [28]. Fragile X syndrome is the most common inherited form of mental 

retardation and is associated with abnormal dendritic morphology. Deregulated synthesis 

of SHANK scaffolds may contribute to this abnormal morphology.            

The membrane-associated guanylate kinase (MAGUK) scaffolding protein family 

has multiple members that are present pre- and post-synaptically. One MAGUK family 

member, CASK, is a causative gene in X-linked mental retardation [29]. CASK is an 

essential vertebrate protein involved in assembly and functional maturation of the 

synapse [30]. Interestingly, CASK directly interacts with neurexin-1, which it 
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phosphorylates in a developmentally regulated manner [29], although the functional 

significance of neurexin phosphorylation is unclear. CASK also interacts with the 

adhesion protein SynCAM1, which recruits CASK from cytosol to the membrane [31]. 

The strong association of mutations in presynaptic CASK and postsynaptic SHANKs 

with neurological disease highlights an important role for synaptic scaffolding proteins. 

 

Activity-dependent synaptic development depends on intercellular signaling 

pathways 

 Once a synapse has formed, neuronal activity plays an essential role in shaping 

and maintaining synaptic connections [32]. Anterograde and retrograde secreted signaling 

molecules, including the Wnts and BMPs, regulate synaptic growth (Figure 1) and may 

also contribute to the development of neurological disease.  The Wnt family of signaling 

molecules participates in a broad range of processes, from neurogenesis to synaptic 

plasticity. Several Wnt pathway components have been implicated in the pathogenesis of 

schizophrenia and Alzheimer’s, raising the question of how this pathway functions at the 

synapse [33,34]. At the Drosophila NMJ, the Wnt pathway signals bidirectionally to 

mediate synaptic growth in response to patterned neuronal stimulation [35]. 

Presynaptically, Wnt regulates cytoskeletal dynamics through inhibition of glycogen 

synthase kinase 3β (GSK-3β), a cytoplasmic pathway component which interacts with the 

microtubule and actin cytoskeletons. Single nucleotide polymorphisms in GSK-3β are 

associated with schizophrenia, and GSK-3β was recently found to interact with DISC1, a 

major schizophrenia susceptibility gene [33,36]. Postsynaptically, Wnt signaling causes 

translocation of the cleaved receptor Frizzled into the nucleus, which promotes growth of 



 8 

the postsynaptic membrane [35,37]. Polymorphisms in Wnt signaling components have 

been linked to neurodegenerative diseases such as Alzheimer’s, though whether this late-

onset disease is related to Wnt’s synaptogenic function is unclear [38].     

A second synaptic growth signaling pathway is the bone morphogenetic protein 

(BMP) pathway, dysregulation of which is associated with multiple neurodegenerative 

diseases [39]. Retrograde BMP signaling at the Drosophila NMJ is initiated by release of 

the BMP ligand Gbb by the muscle, which triggers a signaling cascade in the presynaptic 

neuron [40]. BMP signaling activates a transcription factor which targets multiple genes, 

including a recently described Rac GTPase activator [40]. Rac GTPases regulate the actin 

cytoskeleton and are important for growth of dendritic spines, which mechanistically 

links BMP signaling to structural synaptic plasticity [41]. Recently, synaptic Rac1 

GTPase activity was shown to be regulated by FMRP and DISC1, raising the possibility 

that both Fragile X and schizophrenia may have impaired BMP mediated activity-

dependent synaptic growth [42,43].  

 

Synaptic growth signaling requires proper endosomal trafficking 

 Regulation of endosomal traffic is a critical component of synaptic growth and 

development. Growth signals released during activity, such as the Wnts and BMPs 

described above, bind to synaptic transmembrane receptors and are internalized as 

receptor-ligand signaling complexes. These signaling complexes are transported within 

the endosomal system, in which receptors signal from an early endosome population 

before signal inactivation in the recycling endosome or lysosome (Figure 2). Many of the 

synaptic growth mutants identified in Drosophila alter endocytic trafficking, with 
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mutants that disrupt formation of signaling endosomes causing reduced synaptic growth, 

and mutants altering traffic to the recycling endosome or lysosome causing synaptic 

overgrowth due to enhanced signaling [44,45]. Retrograde transport of signaling 

endosomes containing neurotrophins is also important for neuronal survival and may be 

disrupted in neurodegenerative diseases such as Alzheimer’s and Down’s syndrome [46].  

The hereditary spastic paralegias (HSPs) are a group of neurological disorders 

caused by mutations in several genes which regulate the endosomal trafficking of BMP 

receptors [39,47]. Mutation of the early endosomal HSP gene NIPA1 results in less 

efficient sorting of the type II BMP receptor to the lysosome, suggesting that HSP 

etiology may involve upregulation of BMP signaling due to altered endocytic trafficking 

[47]. Disruption of endosomal function is also implicated in neurodevelopmental 

disorders, including autism and attention-deficient/hyperactivity disorder, for which 

recent genome-wide association and copy number variation studies have implicated the 

Na+/H+ exchangers 6 and 9 (NHE6, 9) [48,49]. NHE6 and 9 are thought to fine-tune the 

pH of early endosomes, disruption of which may alter ligand-receptor dissociation and 

lead to abnormal synaptic growth signaling [50]. Endosomal regulation of signaling 

pathways involved in synaptic growth and development appears critical for activity-

dependent circuit refinement. 

 

Conclusion 

 Abnormal synaptic development is thought to underlie multiple 

neurodevelopmental disorders which present with clinically distinct phenotypes. Altered 

synaptic structure or function may also lead to changes in neuronal connectivity which 
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predisposes an individual to neurodegenerative disease. We have highlighted several 

genes implicated in neuropsychiatric disease which have defined roles in synaptic 

development. Mutations in different genes or gene combinations may lead to a similar 

disease phenotype; thus understanding common molecular pathways in which these genes 

function is important for unraveling disease pathogenesis. Recent advances in genome 

sequencing and large scale genetic screening has identified numerous susceptibility loci 

which converge on pathways involved in synaptogenesis. Our understanding of the basic 

biology of synaptic growth and development is critical to furthering our understanding of 

synaptic dysfunction in brain disorders.   

 

Figures Legends 

 

Fig. 1. Proteins implicated in neuropsychiatric disorders that participate in synaptic 

growth and development. Formation of a functional synapse requires transsynaptic 

interaction of cell adhesive proteins, organization of synaptic domains by scaffolding 

proteins, intercellular growth signaling pathways, actin cytoskeletal remodeling, and 

endosomal trafficking of receptor-ligand signaling complexes. Many of the proteins 

associated with brain disorders have been implicated in these processes.  

 

Fig. 2. Endosomal regulation of synaptic growth signaling pathways. Growth signals 

released during neuronal activity, including Wnts and BMPs, bind to presynaptic 

receptors and are internalized as receptor-ligand signaling complexes. These complexes 
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signal from early endosomes, and are recycled to the plasma membrane through the 

recycling endosome or degraded in the lysosome.  
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