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0.1 Introduction

Solution of statistical inverse problems via the frequentist or Bayesian approaches
described in earlier chapters can be a computationally intensive endeavor, particu-
larly when faced with large-scale forward models characteristic of many engineering
and science applications. High computational cost arises in several ways. First, thou-
sands or millions of forward simulations may be required to evaluate estimators of
interest or to characterize a posterior distribution. In the large-scale setting, perform-
ing so many forward simulations is often computationally intractable. Second, sam-
pling may be complicated by the large dimensionality of the input space—as when
the inputs are fields represented with spatial discretizations of high dimension—and
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by nonlinear forward dynamics that lead to multimodal, skewed, and/or strongly cor-
related posteriors. In this chapter, we present an overviewof surrogate and reduced-
order modeling methods that address these computational challenges. For illustra-
tion, we consider a Bayesian formulation of the inverse problem. Though some of
the methods we review exploit prior information, they largely focus on simplify-
ing or accelerating evaluations of a stochastic model for the data, and thus are also
applicable in a frequentist context.

Methods to reduce computational cost of solving of a statistical inverse prob-
lem can be classed broadly in three groups. First, there are many ways to reduce
the cost of a posterior evaluation (or more specifically, thecost of a forward sim-
ulation) through surrogate models, reduced-order models,multigrid and multiscale
approaches, and stochastic spectral approaches. Second, the dimension of the input
space can be reduced, through truncated Karhunen-Loève expansions, coarse grids,
and parameter-space reductions. The third set of approaches targets a reduction in
the number of forward simulations required to compute estimators of interest, i.e.,
more efficient sampling. In the Bayesian setting, these methods include a wide range
of adaptive and multi-stage Markov chain Monte Carlo (MCMC)schemes.

This chapter summarizes the state of the art in methods to reduce the computa-
tional complexity of statistical inverse problems, provides some introductory mate-
rial to support the technical chapters that follow, and offers insight into the relative
advantages of different methods through a simple illustrative example. Section 0.2
presents an overview of state-of-the-art approaches. Section 0.3 then describes our
specific problem setup, with a focus on the structure of the large-scale forward
model that underlies the inverse problem. We then present a detailed comparison
of reduced-order modeling and stochastic spectral approximations in Sections 0.4
and 0.5, respectively. Section 0.6 presents an illustrative example and Section 0.7
provides some concluding remarks.

0.2 Reducing the computational cost of solving
statistical inverse problems

As discussed in Section 0.1, we consider three general classes of approaches to
reducing the computational cost of solving statistical inverse problems: reducing the
cost of a forward simulation, reducing the dimension of the input parameter space,
and reducing the number of samples (forward simulations) required.

0.2.1 Reducing the cost of forward simulations

Many attempts at accelerating inference in computationally intensive inverse prob-
lems have relied on surrogates for the forward model, typically constructed through
repeated forward simulations that are performed in an offline phase. Eldred et al.



(2004) categorize surrogates into three different classes: data-fit models, reduced-
order models, and hierarchical models, all of which have been employed in the
statistical inverse problem setting.

Data-fit models are generated using interpolation or regression of simulation data
from the input/output relationships in the high-fidelity model. In the statistical lit-
erature, Gaussian processes have been used extensively as surrogates for complex
computational models (Kennedy and O’Hagan 2001). These approaches treat the for-
ward model as a black box, and thus require careful attentionto experimental design
and to modeling choices that specify the mean and covarianceof the surrogate Gaus-
sian process. Bliznyuk et al. (2008) use local experimentaldesign combined with
radial basis function approximations to approximate the posterior and demonstrate
the effectiveness of their approach for a pollutant diffusion problem.

Reduced-order models are commonly derived using a projection framework; that
is, the governing equations of the forward model are projected onto a subspace of
reduced dimension. This reduced subspace is defined via a setof basis vectors,
which, for general nonlinear problems, can be calculated via the proper orthog-
onal decomposition (POD) (Holmes et al. 1996; Sirovich 1987) or with reduced
basis methods (Noor and Peters 1980). For both approaches, the empirical basis is
pre-constructed using full forward problem simulations—or “snapshots.” Wang and
Zabaras (2005) use the POD to accelerate forward model calculations in a radiative
source inversion problem. Galbally et al. (2010) combine POD with an empirical
interpolation method (Barrault et al. 2004; Grepl et al. 2007) for Bayesian infer-
ence in a highly nonlinear combustion problem governed by anadvection-diffusion-
reaction partial differential equation. In both of these applications, the choice of
inputs to the simulations—in particular, how closely the inputs must resemble the
inverse solution—can be important (Wang and Zabaras 2005).

Hierarchical surrogate models span a range of physics-based models of lower
accuracy and reduced computational cost. Hierarchical surrogates are derived from
higher-fidelity models using approaches such as simplifying physics assumptions,
coarser grids, alternative basis expansions, and looser residual tolerances. Arridge
et al. (2006) use mesh coarsening for solving a linear inverse problem, employing
spatial discretizations that are coarser than those necessary for accurate solution of
the forward problem. Their Bayesian formulation also includes the statistics of the
error associated with the discretization, but unfortunately the level of mesh coars-
ening required for decreasing the computational cost of large-scale problems to
acceptable levels may result in large errors that are difficult to quantify or that even
yield unstable numerical schemes. Balakrishnan et al. (2003) introduce a polynomial
chaos (PC) representation of the forward model in a groundwater transport parame-
ter identification problem, and obtain the PC coefficients bylinear regression; again,
this process depends on a series of representative snapshots obtained from repeated
forward simulations.



0.2.2 Reducing the dimension of the input space

When the object of inference is a spatially distributed parameter, dimensionality
of the input space may naively be tied to dimensionality of the spatial discretiza-
tion. Often, however, there is knowledge of smoothness or structure in the param-
eter field that can lead to a more efficient basis. In particular, one can introduce a
Karhunen-Loève (K-L) expansion based on the prior covariance, transforming the
inverse problem to inference on a truncated sequence of weights of the K-L modes
(Marzouk and Najm 2009). Li and Cirpka (2006) emphasize the role of K-L expan-
sions in enabling geostatistical inversion on unstructured grids. Efendiev et al. (2006)
use K-L expansions to parameterize a log-permeability field, introducing constraints
among the weights in order to match known values of the permeability at selected
spatial locations.

Recent work has also proposed a reduced-basis approach to reducing the dimen-
sion of the input space. In the same way that a reduced-order model is formed by
projecting the state onto a reduced subspace, Lieberman (2009) considers projection
of a high-dimensional parameter field onto an empirical parameter basis. The effec-
tiveness of this approach is demonstrated for a groundwaterinverse problem where
MCMC sampling is carried out in the reduced parameter space.

0.2.3 Reducing the number of samples

A different set of approaches retain the full forward model but use simplified or
coarsened models to guide and improve the efficiency of MCMC sampling. Christen
and Fox (2005) use a local linear approximation of the forward model to improve the
acceptance probability of proposed moves, reducing the number of times the like-
lihood must be evaluated with the full forward model. Higdonet al. (2003) focus
on the estimation of spatially distributed inputs to a complex forward model. They
introduce coarsened representations of the inputs and apply a Metropolis-coupled
MCMC scheme (Geyer 1991) in which “swap proposals” allow information from
the coarse-scale formulation to influence the fine-scale chain. Efendiev et al. (2006)
also develop a two-stage MCMC algorithm, using a coarse-scale model based on
multiscale finite volume methods to improve the acceptance rate of MCMC propos-
als.

0.3 General formulation

Here we describe a general inverse problem formulation and then focus on the
structure of the forward problem. We consider the task of inferring inputsθ from
limited and imperfect observationsd. For simplicity, we let bothd andθ be finite-
dimensional. The relationship between observablesd and inputsθ is indirect, and
is denoted byd = G(θ, η); the additional inputη is a random variable encom-
passing measurement noise and/or modeling errors. The likelihood functionπ(d|θ)



describes the probability of measurementsd given a particular value ofθ. The like-
lihood function thus incorporates the forward model and themeasurement noise,
and results from the particular form ofG. In a Bayesian formulation of the inverse
problem,θ is treated as a random variable, endowed with a prior probability density
πpr(θ) that encodes any available prior knowledge about the inputs. Bayes’ rule then
yields the posterior probability density of the inputs,πpost:

πpost(θ) ≡ π(θ|d) ∝ π(d|θ)πpr(θ). (1)

The expression (1) casts the solution of the inverse problemas a probability density
for the model inputsθ.

This chapter focuses on methods to approximate the input–output mapG(·). In
physical problems,G usually contains a deterministic map fromθ to some idealized
observationsd0; interaction ofd0 andθ with the random variableη then yields
the actual data. We set aside this interaction and concentrate on the deterministic
map, which can be broken into two elements: the state equations that describe the
evolution of the stateu in response to the inputθ, and the output equations that define
the relationship between outputs of interesty—which in turn define the observations
d—and stateu. We present a general nonlinear model in the semi-discrete form that
might result from spatial discretization of a partial differential equation (using, for
example, a finite element or finite volume method), or that might represent a set
of differential-algebraic equations (such as arises in circuit modeling). The semi-
discrete equations describing such a system are

u̇ = f(u, θ, t), (2)

y = h(u, θ, t), (3)

with initial condition
u(θ, 0) = u0(θ). (4)

In this semi-discrete model,u(θ, t) ∈ R
N is the discretized state vector ofN unknowns,

andθ ∈ Θ ⊆ R
p is the vector ofp parametric inputs on some domainΘ. The vector

u0(θ) ∈ R
N is the specified initial state,t is time, and the dot indicates a deriva-

tive with respect to time. The nonlinear discretized residual vectorf : R
N × R

p ×
[0,∞) → R

N is for generality written as a function of the state, parameter inputs,
and time. Our observable outputs are represented in spatially discretized form with
q components in the vectory(θ, t) ∈ R

q, and defined by the general nonlinear func-
tion h : R

N × R
p × [0,∞) → R

q.
If the governing equations are linear in the state (or if a linearized model of (2)

and (3) is derived by linearizing about a steady state), thenthe system is written

u̇ = A(θ)u + g(θ, t), (5)

y = H(θ)u, (6)

whereA ∈ R
N×N is a matrix that possibly depends on the parameters but not onthe

state, and the general nonlinear functiong ∈ R
N represents the direct contributions



of the parameters to the governing equations as well as forcing due to boundary con-
ditions and source terms. For the linearized output equation,H ∈ R

q×N is a matrix
that maps states to outputs, and we have assumed no direct dependence of outputs on
parameters (without loss of generality—such a term could easily be incorporated).

Note that in both (3) and (6), the output vectory is continuous in time. In most
practical situations and in the Bayesian formulation described above, the observa-
tional data are finite-dimensional on some domainD; thusd ∈ D ⊆ R

M consists
of y evaluated at a finite set of times,d = (y(t1), . . . ,y(tnt

)) with M = ntq. We
denote the deterministic forward model mapping inputsθ to finite-time observations
d by G(θ) : Θ → D.

With nonlinear forward models, the inverse solution is typically represented by
samples simulated from the posterior distribution (1). From these samples, posterior
moments, marginal distributions, and other summaries can be evaluated. Solution of
the statistical inverse problem thus requires many evaluations of the forward model
(typically many thousands or even millions)—a computationally prohibitive proposi-
tion for large-scale systems. In the following two sections, we describe approaches to
accelerate solution of the forward model—model reduction via state projection onto
a reduced basis, and a stochastic spectral approach based ongeneralized polynomial
chaos.

0.4 Model reduction

Model reduction seeks to derive a low-complexity model of the system that is fast to
solve but preserves accurately the relationship between input parametersθ and out-
putsy, represented by the input–output mapG. If the system forward solves required
to evaluate samples drawn from the posterior distribution are performed using a
reduced-ordermodel as a surrogate for the large-scale system, then it becomes tractable
to carry out the many thousands of iterations required to solve the statistical inverse
problem. Most large-scale model reduction frameworks are based on a projection
approach, which is described in general terms in this section. We briefly describe
computation of the basis via POD and reduced basis methods, and then discuss var-
ious options that have been proposed for sampling the parameter space.

0.4.1 General projection framework

The first step in creating a projection-based reduced-ordermodel is to approximate
theN -dimensional stateu(θ, t) by a linear combination ofn basis vectors,

u ≈ Φur, (7)

wheren ≪ N . The projection matrixΦ ∈ R
N×n contains as columns the basis

vectorsφi, i.e., Φ = [φ1 φ2 · · · φn], and the vectorur(θ, t) ∈ R
n contains the

corresponding modal amplitudes.
This approximation can be employed in the general nonlinearsystem (2) or the

general linear system (5), in either case resulting in a residual (since in general the



N equations cannot all be satisfied withn ≪ N degrees of freedom). We define
a left basisΨ ∈ R

N×n so thatΨT Φ = I. Using a Petrov-Galerkin projection, we
require the residual to be orthogonal to the space spanned bythe columns ofΨ. In
the nonlinear case, this yields the reduced-order model of (2)–(4) as

u̇r = ΨT f(Φur, θ, t), (8)

yr = h(Φur, θ, t), (9)

ur(θ, 0) = ΨT u0(θ), (10)

whereyr(θ, t) ∈ R
q is the reduced model approximation of the outputy(θ, t). For

the linear system (5), (6) with initial condition (4), the reduced-order model is

u̇r = Ar(θ)ur + ΨTg(θ, t), (11)

yr = Hr(θ)ur, (12)

ur(θ, 0) = ΨTu0(θ), (13)

whereAr(θ) = ΨTA(θ)Φ andHr(θ) = H(θ)Φ.
As in the full problem described in Section 0.3, the reduced model outputyr

is continuous in time. Following our notation for the full problem, we define the
reduced model data vectordr ∈ D ⊆ R

M to consist ofyr evaluated at a finite set of
times,dr = (yr(t1), . . . ,yr(tnt

)) with M = ntq. We denote the reduced forward
model of state dimensionn that mapsθ to dr by Gn

ROM : Θ → D.
Our approach to reducing the computational cost of solving the inverse problem

is to use the reduced modelGn
ROM in place of the full modelG in the likelihood

functionπ(d|θ). This can lead to a dramatic reduction in the cost of an evaluation
of the posterior distribution (1). However, care must be taken to ensure efficient
construction and solution of the reduced-order models (8)–(10) or (11)–(13). In the
case of general nonlinear parametric dependence, these models have low dimension
but are not necessarily fast to solve, since for each new parameterθ, solution of
the ROM requires evaluating the large-scale system matrices or residual, projecting
those matrices/residual onto the reduced subspace, and then solving the resulting
reduced-order model. Since many elements of these computations depend onN , the
dimension of the large-scale system, in general this process will not be computation-
ally efficient. One option is to employ linearization of the parametric dependence
(Daniel et al. 2004; Grepl and Patera 2005; Veroy et al. 2003). A more general
approach is to employ the missing point estimation approach(Astrid et al. 2008),
which approximates nonlinear terms in the reduced-order model with selective spa-
tial sampling, or the coefficient-function approximation (Barrault et al. 2004; Grepl
et al. 2007), which replaces nonlinear parametric dependencies with a reduced-basis
expansion and then uses interpolation to efficiently compute the coefficients of that
expansion for new parameter values.



0.4.2 Computing the basis

The basis vectors can be calculated with several techniques. Methods to compute the
basis in the large-scale setting include approximate balanced truncation (Gugercin
and Antoulas 2004; Li and White 2002; Moore 1981; Penzl 2006;Sorensen and
Antoulas 2002), Krylov-based methods (Feldmann and Freund1995; Gallivan et
al. 1994; Grimme 1997), proper orthogonal decomposition (POD) (Deane et al.
1991; Holmes et al. 1996; Sirovich 1987), and reduced basis methods (Fox and
Miura 1971; Noor and Peters 1980). Balanced truncation and Krylov-based meth-
ods are largely restricted to linear systems, thus here we focus on a brief description
of reduced basis methods and POD. While the development of these methods has
been in the context of reduction of the forward problem for simulation and (to some
extent) control, recent work has shown applicability to theinverse problem setting,
by introducing strategies that use characteristics of the inverse problem (including
Hessian and prior information) to inform computation of thebasis (Galbally et al.
2010; Lieberman 2009; Nguyen 2005). We discuss some of thesestrategies in the
next subsection.

In the reduced basis and POD methods, the basis is formed as the span of a set of
state solutions, commonly referred to as snapshots. These snapshots are computed
by solving the system (2) or (5) for selected values of the parametersθ. In the POD
method of snapshots (Sirovich 1987), the resulting state solutions at selected times
and/or parameter values are collected in the columns of the matrix U ∈ R

n×ns ,

U =
[
u1 u2 . . . uns

]
, (14)

whereui is theith snapshot andns is the total number of snapshots, which depends
on both the number of parameter values considered and the number of timesteps
sampled for each parameter value.

The POD basis is given by the left singular vectors of the matrix U that corre-
spond to the largest singular values. A basis of dimensionn is thus

Φ =
[
φ1 φ2 . . . φn

]
, (15)

whereφi is theith left singular vector ofU, which has corresponding singular value
σi. It can be shown that the POD basis is optimal in the sense that, for a basis of
dimensionn, it minimizes the least squares error of the representationof the snap-
shots in the reduced basis. This error is given by the sum of the squares of the singular
values corresponding to those modes not included in the basis:

ns∑

i=1

‖ui − ΦΦTui‖2
2 =

ns∑

j=n+1

σ2
j . (16)

It is however important to note that this optimality of representation of the snap-
shot set in the general case provides no corresponding rigorous error bound on the
resulting POD-based reduced-order model.



Since the POD basis is orthogonal, a common choice for the left basis isΨ = Φ.
Other choices forΨ are also possible, such as one that minimizes a least-squares
weighted-residual (Bui-Thanh et al. 2008; Maday et al. 2002; Rovas 2003; Rozza
and Veroy 2006), or one that includes output information through use of adjoint
solutions (Lall et al. 2002; Willcox and Peraire 2002).

0.4.3 Computing a basis for inverse problem applications:
sampling the parameter space

A critical issue in computing the reduced basis is sampling of the parameter space:
the quality of the resulting reduced-order model is highly dependent on the choice of
parameters for which snapshots are computed. This is particularly important in the
statistical inverse problem setting, since solution of theinverse problem will likely
require broad exploration of the parameter space. Furthermore, problems of interest
may have high-dimensional parameter spaces and the range ofparameters explored
in solving the inverse problem may not be known a priori.

Sampling methods to build reduced-order models must thus address two chal-
lenges. First, a systematic strategy is needed to choose where and how many samples
to generate. Second, the strategy must be scalable so that parameter spaces of high
dimension can be effectively sampled with a small number of large-scale system
solves. Standard sampling schemes such as uniform sampling(uniform gridding of
the parameter space) or random sampling are one option for creating snapshots.
However, if the dimension of the parameter space is large, uniform sampling will
quickly become too computationally expensive due to the combinatorial explosion
of samples needed to cover the parameter space. Random sampling, on the other
hand, might fail to recognize important regions in the parameter space. One can
use knowledge of the application at hand to determine representative parametric
inputs, as has been done to sample the parameter space for thequasi-convex opti-
mization relaxation method (Sou et al. 2005), and to generate a POD or Krylov basis
for problems in which the number of input parameters is small. Some examples
of applications of parameterized model reduction with a small number of param-
eters include structural dynamics (Allen et al. 2004), aeroelasticity (Amsallem et
al. 2007), Rayleigh-Bénard convection (Ly and Tran 2001),design of interconnect
circuits (Bond and Daniel 2005; Daniel et al. 2004), and parameters describing inho-
mogeneous boundary conditions for parabolic PDEs (Gunzburger et al. 2007). For
optimal control applications, online adaptive sampling has been employed as a sys-
tematic way to generate snapshot information (Afanasiev and Hinze 2001; Fahl and
Sachs 2003; Hinze and Volkwein 2005; Kunisch and Volkwein 1999). However,
these methods have not been scaled to problems that contain more than a handful of
parameters.

To address the challenge of sampling a high-dimensional parameter space to
build a reduced basis, the greedy sampling method was introduced in Grepl (2005);
Grepl and Patera (2005); Veroy and Patera (2005); Veroy et al. (2003) to adap-
tively choose samples by finding the location at which the estimate of the error in



the reduced model is maximum. The greedy sampling method wasapplied to find
reduced models for the parameterized steady incompressible Navier-Stokes equations
(Veroy and Patera 2005). It was also combined witha posteriorierror estimators for
parameterized parabolic PDEs, and applied to several optimal control and inverse
problems (Grepl 2005; Grepl and Patera 2005). In Bui-Thanh et al. (2008), the
greedy sampling approach was formulated as a sequence of adaptive model-constrained
optimization problems that were solved to determine appropriate sample locations.
Unlike other sampling methods, this model-constrainedoptimization sampling approach
incorporates the underlying physics and scales well to systems with a large num-
ber of parameters. In Lieberman (2009), the optimization-based greedy sampling
approach was extended to the inverse problem setting by formulating the sequence
of optimization problems to also include the prior probability density. Lieberman
(2009) also addressed directly the challenge of high-dimensional parameter spaces in
MCMC sampling by performing reduction in both state and parameter, and demon-
strated the approach on a subsurface model with a distributed parameter representing
the hydraulic conductivity over the domain.

0.5 Stochastic spectral methods

Based on polynomial chaos (PC) representations of random variables and processes
(Cameron and Martin 1947; Debusschere et al. 2004; Ghanem and Spanos 1991;
Wan and Karniadakis 2005; Wiener 1938; Xiu and Karniadakis 2002), stochastic
spectral methods have been used extensively forforward uncertainty propagation—
characterizing the probability distribution of the outputof a model given a known
distribution on the input. These methods exploit regularity in the dependence of an
output or solution field on uncertain parameters. They constitute attractive alterna-
tives to Monte Carlo simulation in numerous applications: transport in porous media
(Ghanem 1998), structural mechanics, thermo-fluid systems(Le Maı̂tre et al. 2001,
2002), electrochemistry (Debusschere et al. 2003), and reacting flows (Najm et al.
2009; Reagan et al. 2004).

Stochastic spectral methods have more recently been applied in theinversecon-
text (Marzouk et al. 2007), for both point and spatially distributed parameters (Mar-
zouk and Najm 2009). Here, the essential idea is to constructa stochastic forward
problem whose solution approximates the deterministic forward model over the sup-
port of the prior. This procedure—effectively propagatingprior uncertainty through
the forward model—yields a polynomial approximation of theforward model’s depen-
dence on uncertain parametersθ. The polynomial approximation then enters the
likelihood function, resulting in a “surrogate” posteriordensity that is inexpensive to
evaluate, often orders of magnitude less expensive than theoriginal posterior.

0.5.1 Surrogate posterior distribution

Here we describe the construction of a polynomial-chaos based surrogate poste-
rior in greater detail. Let us begin with (i) a finite-dimensional representation of



the unknown quantity that is the object of inference, and (ii) a prior distribution on
the parametersθ of this representation. For instance, if the unknown quantity is a
field endowed with a Gaussian process prior, the finite representation may be a trun-
cated K-L expansion with mode strengthsθ and priorsθi ∼ N(0, 1). Let Θ ⊆ R

p

denote the support of the prior. The Bayesian formulation inSection 0.3 describes
the inverse solution in terms of the posterior density ofθ, which entails evaluations
of the forward modelG(θ) : Θ → D, with D ⊆ R

M .
Now define a random vectořθ = c(ξ̌), each component of which is given by a

PC expansion

θ̌i = ci(ξ̌) =
∑

|k|≤P

cikΨk(ξ̌), i = 1, . . . , p. (17)

Hereξ̌ is a vector ofp independent and identically distributed (i.i.d.) random vari-
ables,k = (k1, . . . , kp) is a multi-index with magnitude|k| ≡ k1 + . . . + kp, and
Ψk are multivariate polynomials (of degreeki in coordinateξ̌i) orthogonal with
respect to the measure oňξ (Ghanem and Spanos 1991). The total polynomial order
of the PC basis is truncated atP . The vectorθ̌ will serve as an input toG, thus
specifying astochastic forward problem.

Note that the distribution of̌ξ (e.g., standard normal, Beta, etc.) and the corre-
sponding polynomial form ofΨ (e.g., Hermite, Jacobi, etc.) are intrinsic properties
of the PC basis (Xiu and Karniadakis 2002). In the simplest construction, PC coeffi-
cients in (17) are then chosen such thatθ̌ is distributed according to the prior on
θ. This is not a strict requirement, however. A necessary condition on c is that
Ξθ = c−1[Θ], the inverse image of the support of the prior, be contained within
the range of̌ξ. This condition ensures that there is a realization ofξ̌ corresponding
to every feasible value ofθ.

Having defined the stochastic forward problem, we can solve it with a Galerkin
or collocation procedure (see Section 0.5.2 below), thus obtaining a PC representa-
tion for each component of the model output. HereGi is thei-th component ofG
andGP

i is itsP th-order PC approximation:

GP
i (ξ̌) =

∑

|k|≤P

gikΨk(ξ̌), i = 1, . . . , M. (18)

The forward solutionGP obtained in this fashion is a polynomial function ofξ̌.
EvaluatingGP with a deterministic argument,1 it can be viewed simply as a poly-
nomial approximation ofG ◦ c, where◦ denotes composition. We will use this
approximation to replaceG in the likelihood functionL(θ).

Consider the simple case of additive noise,d = G(θ, η) = G (θ) + η, such that
L(θ) = πη (d − G(θ)), with πη being the probability density ofη. The likelihood

1In this exposition we have useďto identify the random variablešθ andξ̌ in order to avoid confusion
with deterministic arguments to probability density functions, e.g.,θ andξ. Elsewhere, we revert to the
usual notational convention and let context make clear the distinction between the two.



function can be rewritten as a function ofξ:

L (c(ξ)) = πη (d− G (c(ξ))) ≈ πη

(
d − GP (ξ)

)
. (19)

This change of variables fromθ to ξ lets us define a posterior density forξ:

πξ(ξ) ∝ L (c(ξ)) πpr (c(ξ)) detDc(ξ). (20)

In this expression,Dc is the Jacobian ofc, det denotes the determinant, andπpr is
the prior density ofθ. The last two factors on the right side,πpr (c(ξ)) detDc(ξ),
are the probability density onξ that corresponds to the prior onθ. Replacing the
forward model in the likelihood function via (19) then yields thesurrogateposterior
densityπP

ξ :

πξ(ξ) ≈ πP
ξ (ξ) ∝ πη

(
d− GP (ξ)

)
πpr (c(ξ)) |detDc(ξ)| . (21)

Despite the change of variables, it is straightforward to recover the posterior expec-
tation of an arbitrary functionf :

Eπpost
f = Eπξ

(f ◦ c) (22)

whereπpost≡ π(θ|d) is the posterior density onΘ, andπξ is the corresponding
posterior density ofξ.

The surrogate posterior distribution may be explored with any suitable sampling
strategy, in particular MCMC. Evaluating the density for purposes of sampling may
have negligible cost; nearly all the computational time maybe spent in solving the
stochastic forward problem, i.e., obtaining the PC expansions in (18). Depending
on model nonlinearities, the necessary size of the PC basis,and the number of pos-
terior samples required, this computational effort may be orders of magnitude less
costly than exploring the posterior via direct sampling. Moreover, as it requires only
the forward model and the prior, the stochastic forward solution may be obtained
“offline,” independently of the data. Accuracy of the surrogate posterior depends on
the order and family of the PC basis, as well as on the choice oftransformationc—
for instance, whether the distribution of̌θ assigns sufficient probability to regions
of Θ favored by the posterior. A detailed discussion of these issues can be found in
Marzouk et al. (2007). Some convergence results are summarized below.

0.5.2 Forward solution methodologies and convergence results

Solution of the stochastic forward problem (18) is an essential step in the inversion
procedure outlined above. While a survey of polynomial chaos methods for solving
ODEs and PDEs with random inputs is beyond the scope of this chapter (see for
instance Najm (2009); Xiu (2009)), we highlight two broad classes of approaches.
Stochastic Galerkin methods (Ghanem and Spanos 1991; Le Maˆıtre et al. 2001;
Matthies and Keese 2005) involve a reformulation of the governing equations, essen-
tially creating a larger system of equations for the PC coefficientsgik; these equations



are generally coupled, though one may take advantage of problem-specific structure
in devising efficient solution schemes (Xiu and Shen 2009). Stochastic collocation
methods (Babuška et al. 2007; Xiu and Hesthaven 2005), on the other hand, are
“non-intrusive”; these require only a finite number of uncoupled deterministic sim-
ulations, with no reformulation of the governing equationsof the forward model.
Collocation methods using sparse grids (Bieri et al. 2009; Ganapathysubramanian
and Zabaras 2007; Ma and Zabaras 2009; Nobile et al. 2008; Smolyak 1963; Xiu
and Hesthaven 2005), offer great efficiency and ease of implementation for higher-
dimensional problems.

For systems with more complex dynamics—discontinuities orbifurcations with
respect to uncertain parameters, or even limit cycles (Beran et al. 2006)—global
bases may be unsuitable. Instead, piecewise polynomial (Wan and Karniadakis 2005,
2009) or multi-wavelet (Le Maı̂tre et al. 2004) generalizations of polynomial chaos
enable efficient propagation of uncertainty; such bases canalso be used to construct
surrogate posteriors. Indeed, the overall Bayesian inference scheme is quite flexi-
ble with regard tohow one chooses to solve a stochastic forward problem. Error
analysis of the Bayesian stochastic spectral framework (Marzouk and Xiu 2009)
has reinforced this flexibility. The relevant convergence results can be summarized
as follows. Consider the mean-square error, with respect toπpr, in the forward
solution:e(P ) ≡ ‖GP (ξ) − G(ξ)‖L2

πpr
. Suppose that observational errorsηi are

additive and i.i.d. Gaussian. Ife(P ) converges at a particular rate,e(P ) ≤ CP−α,
then at sufficiently largeP , the Kullback-Leibler (KL) divergence of the true poste-
rior from the surrogate posterior maintains at least the same rate of convergence,

D
(
πP

ξ ‖πξ

)
. P−α. In particular, exponential convergence of the forward solu-

tion implies exponential convergence of the surrogate posterior to the true posterior.
(Recall that the Kullback-Leibler divergence quantifies the difference between prob-
ability distributions in information theoretic terms (Gibbs and Su 2002).) These
results provide a guideline relevant toanyapproximation of the forward model.

0.6 Illustrative example

We explore the relative advantages and disadvantages of model reduction and stochas-
tic spectral approaches in the context of a simple transientsource inversion problem.
Consider a dimensionless diffusion equation on a square domainΩ = [0, 1] × [0, 1]
with adiabatic boundaries:

∂u

∂t
= ∇2u +

s

2πγ2
exp

(
−
|θ − x|2

2γ2

)
[1 − H(t − T )], (23)

∇u · n = 0 on ∂Ω, (24)

u(x, 0) = 0 in Ω. (25)

The solution fieldu(x, t) can represent temperature or the concentration of some
contaminant species, withx ≡ (x1, x2) ∈ Ω and timet ≥ 0. H(t) denotes the unit



step function. Thus, the source term in (23) comprises a single localized source,
active on the intervalt ∈ T =[0, T ] and centered at locationθ ∈ Θ = Ω with strength
s and characteristic widthγ.

The governing equations (23)–(25) are discretized on a uniform spatial grid using
a second-order-accurate finite difference scheme. This spatial discretization and the
application of the boundary conditions lead to a semi-discrete system of the form
(5)–(6), linear in the state but nonlinear in the parametersθ. The state vectoru(t)
containsu(x, t) evaluated at theN grid points; the sparse matrixA ∈ R

N×N reflects
the spatial discretization and application of the Neumann boundary conditions; and
g(θ) is a nonlinear function representing the source term in Eq. (23). Note thatg is
here just a function of the parameters (the source location)and not the state.

In the inverse problem, we are given noisy observations of the solutionu(x, t)
at a few locations in space and a few instants in time. From these data, we wish
to infer the source locationθ = (θ1, θ2). For simplicity, we assume that the shutoff
timeT , strengths, and source widthγ are known. We assume that observations ofu

are available fornt = 3 time instants,t ∈ {0.1, 0.2, 0.3}, atq = 9 locations on a uni-
form3 × 3 grid covering the domainΩ. The forward modelG(θ) is thus a map from
the source locationθ to noise-free observationsd0 ∈ R

qnt . These observations are
perturbed with additive Gaussian noiseη to yield the data vectord = d0 + η. Com-
ponents ofη are i.i.d.,η ∼ N

(
0, σ2I

)
. The likelihood function is therefore given

by L(θ) = πη (d− G(θ)). The prior onθ reflects a uniform probability assignment
over the entire domain of possible source locations,θi ∼ U(0, 1). The posterior den-
sity is then

π(θ|d) ∝ πη (d − G(θ))1Ω(θ)

=

{
exp

(
− 1

2σ2 (d− G(θ))
T

(d − G(θ))
)

if θ ∈ Ω,

0 otherwise.

(26)

Figure 1 shows an example forward solution, obtained on a69 × 69 uniform
grid. The plots show the solution fieldu(x, t) before and after the source shutoff
time of T = 0.2. The source is located atθ = (0.6, 0.9), with strengths = 2 and
width γ = 0.05. The solution field at the earlier time is peaked around the source
location and contains useful information for the inverse problem. After the shutoff
time, however, the field tends to flatten out due to diffusion.Eventually observations
of theu-field at times well after the shutoff will provide no useful information for
inference of the source location.

We now consider solution of the inverse problem using two approximation approaches—
a POD-based reduced order model and a polynomial chaos surrogate obtained with
pseudospectral stochastic collocation. Constructing theapproximate posterior distri-
bution ineithercase requires evaluating the forward model at a number of parameter
values{θ1, . . . , θQ}. With POD, these forward model evaluations are used to con-
struct the snapshot matrix, while for stochastic collocation they are used to evaluate
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Figure 1 Solution fieldu(x, t) of the full forward model at two different times for
source parametersθ = (0.6, 0.9), T = 0.20, s = 2, andγ = 0.05.

integrals for the PC coefficients:

gik〈Ψ
2
k〉 =

∫

Θ

Gi (θ)Ψk (θ)πpr (θ) dθ (27)

≈

Q∑

j=1

Gi (θj)Ψk (θj)wj . (28)

Since the priorπpr is uniform onΘ, the polynomialsΨk are taken to be bivariate
Legendre polynomials, while the nodes and weights{θj, wj}

Q
j=1 are chosen accord-

ing to a Gaussian quadrature rule. In particular, we use a tensor product ofl-point
Gauss-Legendre rules on[0, 1], such thatQ = l2. In the comparison below, we use
the same nodal set ofQ parameter values to construct the snapshot matrix (14).
This is certainly not the only choice (or even the best choice) of parameter values to
employ for POD. Our selection is motivated mostly by simplicity, so that identical
forward simulations support both approximation techniques. We revisit this choice
in later remarks.

We first evaluate the accuracy of the different forward models as a function of
the “order” of approximation. TheL2 error of an approximate forward modelG̃ is
defined as

e =

∫

Θ

‖G(θ) − G̃(θ)‖2 πpr(θ) dθ. (29)

In other words, this is the prior-weighted error in model predictions integrated over
the parameter space. The precise meaning of “order” dependson context, of course.
With stochastic collocation, we take order to be the maximalpolynomial degree
P . In the projection approach, order is the dimension of the reduced model, i.e.,
the number of POD basis vectorsn retained. Figure 2 shows theL2 error for both
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Figure 2 L2 error in the approximate forward models, versus polynomialdegreeP
for stochastic collocation and versus the number of modesn for POD. Dotted line
representsQ = 36.

methods of approximation. In Figure 2(a), the error decreases more or less expo-
nentially with polynomial degree, provided a sufficiently high order quadrature rule
(Q = 100) is applied. Results with a 6-point quadrature rule in each direction (Q =
36) diverge forP > 5; this is understandable, as the degree of the integrand in (27)
increases with|k| and aliasing errors corrupt the higher-degree polynomial coeffi-
cients. In Figure 2(b), error decreases with the number of POD modesn, but the
accuracy of the reduced model at largern depends onQ. For smallerQ—i.e., less
dense coverage of the parameter space—the error begins to plateau at a larger value
than forQ = 100. These results suggest that sufficiently large values of both Q and
n are needed for an accurate reduced-order model.

Turning from the forward model approximation to the posterior distribution,
Figure 3 shows the posterior density of the source location,π(θ|d) (26), for vari-
ous forward model approximations. The datad reflect the same source parameters
used in Figure 1, i.e.,θ = (0.6, 0.9). Observations of the exact solution field are per-
turbed with Gaussian noiseη ∼ N

(
0, σ2I

)
, with σ = 0.2. The noise magnitude is

therefore roughly 20–40% of the nominal values ofd0. Figure 3(a) shows the base-
line case: contours of the exact posterior density, obtained via evaluations of the
full forward modelG. Plots (b) and (c) show contours of the approximate posterior
densityπP

SC obtained by evaluation of the stochastic collocation modelGP
SC, at poly-

nomial ordersP = 2 andP = 10, respectively. Plots (d) and (e) show the contours
of the approximate posterior densityπn

ROM obtained with POD modelsGn
ROM of

dimensionn = 6 andn = 66, respectively. Both the stochastic collocation and POD
models were constructed withQ = 100 forward evaluations, at parameter valuesθ

chosen with a 10-point quadrature rule in each direction. Atsufficiently highP or n,
both types of models yield close agreement with the true posterior density. Note that
the true posterior is multi-modal; all three modes are well captured by the surrogate



posterior densities in Figure 3(d)–(e).
A more quantitative measurement of posterior error is the Kullback-Leibler (KL)

divergence from the true posterior to the approximate posterior. Lettingπ̃ denote the
approximate posterior density, the KL divergence ofπ̃(θ) from π(θ) is:

D(π‖π̃) =

∫

Θ

π(θ) log
π(θ)

π̃(θ)
dθ. (30)

Figure 4 showsD (π‖π̃) versus the order of approximation for the POD and stochas-
tic collocation approaches. The true value ofθ and all of the other source parameters
are identical to Figure 3; the same data vectord is used throughout. We contrast
POD and collocation models constructed using eitherQ = 36 andQ = 100 nodes in
the parameter spaceΘ. The integral in (30) was evaluated with the trapezoidal rule,
using a uniform grid of dimension69 × 69 on the setΘ′ = [0.3, 0.7]× [0.6, 1] ⊂ Θ.
(Note that ignoring the remaining area of the parameter domain contributes negligi-
ble error, since the posterior density in these regions is nearly zero, as can be seen in
Figure 3.)

Figures 4(a) and 4(c) show that, provided the value ofQ is sufficiently high, both
approaches achieve similar posterior accuracy. As in Figure 2, the accuracy of the
polynomial chaos-based surrogate posterior degrades due to aliasing errors whenQ
is too small;Q effectively limits the maximum polynomial degree that is meaningful
to employ. WhenQ is larger, however, rapid convergence ofD (π‖π̃) with respect
to polynomial degree is observed. Error in the POD-based surrogate posterior also
decays rapidly with increasing model order in theQ = 100 case. When fewerθ val-
ues are used to train the POD model (Q = 36), errors tend to be larger. Interestingly,
though, these errors start to decay anew forn > 40. With n = 66 modes, the errors
associated with theQ = 36 andQ = 100 surrogate posteriorsπn

ROM differ by less
than a factor of two.

Computational speedups over the full model, which takes approximately six sec-
onds per forward simulation, are significant in both cases. But at similar levels of
accuracy, the POD models are several times more costly in forward simulation time
than the stochastic collocation models. Indeed, in the present case it is faster to eval-
uate a polynomial expansion (18) than to integrate a reduced-order model (11)–(13).
On the other hand, ifQ is small, then the stochastic collocation approach cannot
achieve high accuracy, but error in the POD-based posteriorcontinues to decline as
more modes are added. For the current problem, therefore, ifonly a limited num-
ber of full model evaluations can be performed (offline), thePOD approach is a
better choice; while ifQ can be chosen sufficiently high, the stochastic collocation
approach yields equivalent accuracy with much smaller online computational cost.

The computational times reported here and shown in Figure 4 were obtained on
a desktop PC with an Intel Core 2 Duo processor at 3.16 GHz and 4GB of RAM.
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Figure 3 Contours of the posterior densityπ(θ|d) using the full forward model and
various approximations. Contour lines are plotted at40 equally spaced contour levels
in the range[0.02, 1].
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Figure 4 Kullback-Leibler divergence from the exact posterior to the approximate
posterior. Plots (a) and (b) show the results for stochasticcollocation models of dif-
ferent polynomial degree. Plots (c) and (d) show the resultsfor POD models of
different order. In both cases, models are constructed withforward simulations at
eitherQ = 36 (dotted) orQ = 100 (solid) nodes in parameter space.



0.7 Conclusions

The simple numerical example above suggests that, while model reduction may
require fewer offline forward simulations to achieve a certain accuracy, polyno-
mial chaos-based surrogate posteriors may be significantlycheaper to evaluate in
the online phase. These conclusions are necessarily quite problem-specific, however.
Our illustrative example was strongly nonlinear in the parameters, but these param-
eters were limited to two dimensions. The governing equations were also linear in
the stateu. It is important to consider how the relative computationalcost of these
methods scales with dimensionality of the parameter space and with the dynamical
complexity of the forward model, among other factors.

These questions underscore many challenges and open problems in surrogate
and reduced-order modeling for statistical inverse problems. Techniques are needed
to rigorously inform construction of the surrogate model with components of the
inverse formulation, specifically incorporating both prior information and data. While
some success has been demonstrated in this regard for simpleproblems, challenges
remain in incorporating prior models for more complex fields(e.g., with discontinu-
ities or other geometric structure) and in conditioning on data collected at multiple
scales. High dimensionality also raises several open issues; successful surrogate
modeling in this context should exploit the spectrum of the forward operator and
any smoothing or structure provided by the prior in order to reduce the number of
input parameters. Rigorous error bounds on the posterior computed using a surrogate
or reduced-order model remain another outstanding challenge. Without some way of
estimating the effects of using a surrogate in place of the full model, we cannot quan-
titatively answer questions such as how many samples are required to compute the
basis.

Answers to these questions again may depend on the details ofthe algorith-
mic approaches. In the previous example, we focused on simplicity and did not
apply more sophisticated approaches for either model reduction or polynomial chaos
approximation. With model reduction, for example, we did not employ greedy sam-
pling in the parameter space; with stochastic collocation,we did not employ sparse
grids (particularly anisotropic and adaptive sparse gridsfor high-dimensional prob-
lems), nor did we explore partitioning of the prior support and/or alternate poly-
nomial bases. In tackling more complicated problems, one should certainly draw
from the literature in all of these areas in developing forward model approximation
schemes suited to inverse problems.

Beyond reducing the complexity of forward simulations, what is needed even
more arecombinationsof the approaches discussed in Section 0.2—simultaneously
approximating the forward model, reducing the size of the input space, and reducing
the requisite number of samples. Many of these methods will be described in the
ensuing chapters.

Finally, we close by noting that this volume focuses on solution of the inverse
problem—success is measured by our ability to accurately estimate some parame-
ter of interest. However, in many scientific and engineeringapplications, the inverse



problem is merely one step on the path to solving an ultimate design or control prob-
lem; that is, the inference task is often followed by a decision problem downstream.
Potentially significant opportunities exist for an integrated consideration of inference
and decision problems. For example, the downstream decision problem can inform
solution of the inverse problem by defining the level of accuracy to which specific
features of the parameter should be resolved. The decision problem might also guide
the construction of more parsimonious surrogate or reduced-order models.
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