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0.1 Introduction

Solution of statistical inverse problems via the frequantr Bayesian approaches
described in earlier chapters can be a computationallyéite endeavor, particu-
larly when faced with large-scale forward models charédstierof many engineering
and science applications. High computational cost ariseeveral ways. First, thou-
sands or millions of forward simulations may be requiredvaleate estimators of
interest or to characterize a posterior distribution. mldrge-scale setting, perform-
ing so many forward simulations is often computationallyactable. Second, sam-
pling may be complicated by the large dimensionality of thguit space—as when
the inputs are fields represented with spatial discretinatof high dimension—and
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by nonlinear forward dynamics that lead to multimodal, skéyand/or strongly cor-
related posteriors. In this chapter, we present an overefesurrogate and reduced-
order modeling methods that address these computatioaiénbes. For illustra-
tion, we consider a Bayesian formulation of the inverse [@ob Though some of
the methods we review exploit prior information, they ldygcus on simplify-
ing or accelerating evaluations of a stochastic model ferdéita, and thus are also
applicable in a frequentist context.

Methods to reduce computational cost of solving of a statisinverse prob-
lem can be classed broadly in three groups. First, there arg/ways to reduce
the cost of a posterior evaluation (or more specifically,abst of a forward sim-
ulation) through surrogate models, reduced-order modaltigrid and multiscale
approaches, and stochastic spectral approaches. Seleemtintension of the input
space can be reduced, through truncated Karhunen-Lo@amsions, coarse grids,
and parameter-space reductions. The third set of appreaartgets a reduction in
the number of forward simulations required to compute estiims of interest, i.e.,
more efficient sampling. In the Bayesian setting, these atstinclude a wide range
of adaptive and multi-stage Markov chain Monte Carlo (MCMChemes.

This chapter summarizes the state of the art in methods teesithe computa-
tional complexity of statistical inverse problems, prasdsome introductory mate-
rial to support the technical chapters that follow, and isfi@sight into the relative
advantages of different methods through a simple illustatxample. Section 0.2
presents an overview of state-of-the-art approachesid®e3 then describes our
specific problem setup, with a focus on the structure of thgelscale forward
model that underlies the inverse problem. We then presemetailed comparison
of reduced-order modeling and stochastic spectral apprations in Sections 0.4
and 0.5, respectively. Section 0.6 presents an illuseakample and Section 0.7
provides some concluding remarks.

0.2 Reducing the computational cost of solving
statistical inverse problems

As discussed in Section 0.1, we consider three generaleslasisapproaches to
reducing the computational cost of solving statisticaéirse problems: reducing the
cost of a forward simulation, reducing the dimension of tiguit parameter space,
and reducing the number of samples (forward simulatioreg)ired.

0.2.1 Reducing the cost of forward simulations

Many attempts at accelerating inference in computatigriatensive inverse prob-
lems have relied on surrogates for the forward model, tyfgicanstructed through
repeated forward simulations that are performed in an effihase. Eldred et al.



(2004) categorize surrogates into three different clastas-fit models, reduced-
order models, and hierarchical models, all of which havenbemployed in the
statistical inverse problem setting.

Data-fit models are generated using interpolation or regge®f simulation data
from the input/output relationships in the high-fidelity dab. In the statistical lit-
erature, Gaussian processes have been used extensively@gates for complex
computational models (Kennedy and O’Hagan 2001). Thesmappes treat the for-
ward model as a black box, and thus require careful attetdiexperimental design
and to modeling choices that specify the mean and covarizrhe surrogate Gaus-
sian process. Bliznyuk et al. (2008) use local experimeséaign combined with
radial basis function approximations to approximate thetgroor and demonstrate
the effectiveness of their approach for a pollutant ditffngdroblem.

Reduced-order models are commonly derived using a projefiitmework; that
is, the governing equations of the forward model are preptcinto a subspace of
reduced dimension. This reduced subspace is defined via ef $&tsis vectors,
which, for general nonlinear problems, can be calculatedtie proper orthog-
onal decomposition (POD) (Holmes et al. 1996; Sirovich )9&7with reduced
basis methods (Noor and Peters 1980). For both approatieesntpirical basis is
pre-constructed using full forward problem simulations—amapshots.” Wang and
Zabaras (2005) use the POD to accelerate forward modellattms in a radiative
source inversion problem. Galbally et al. (2010) combinédR@th an empirical
interpolation method (Barrault et al. 2004; Grepl et al. 20fdor Bayesian infer-
ence in a highly nonlinear combustion problem governed bgdaection-diffusion-
reaction partial differential equation. In both of theselagations, the choice of
inputs to the simulations—in particular, how closely thputs must resemble the
inverse solution—can be important (Wang and Zabaras 2005).

Hierarchical surrogate models span a range of physicsddbaselels of lower
accuracy and reduced computational cost. Hierarchicabgates are derived from
higher-fidelity models using approaches such as simptjfyghysics assumptions,
coarser grids, alternative basis expansions, and loosetua tolerances. Arridge
et al. (2006) use mesh coarsening for solving a linear ievpreblem, employing
spatial discretizations that are coarser than those regefes accurate solution of
the forward problem. Their Bayesian formulation also ides the statistics of the
error associated with the discretization, but unfortulyatee level of mesh coars-
ening required for decreasing the computational cost ajelacale problems to
acceptable levels may result in large errors that are diffioiquantify or that even
yield unstable numerical schemes. Balakrishnan et al.3gi@@oduce a polynomial
chaos (PC) representation of the forward model in a groutehti@nsport parame-
ter identification problem, and obtain the PC coefficientsimgar regression; again,
this process depends on a series of representative sngjadtained from repeated
forward simulations.



0.2.2 Reducing the dimension of the input space

When the object of inference is a spatially distributed peeger, dimensionality
of the input space may naively be tied to dimensionality @ $ipatial discretiza-
tion. Often, however, there is knowledge of smoothnessracstre in the param-
eter field that can lead to a more efficient basis. In particalae can introduce a
Karhunen-Loeve (K-L) expansion based on the prior covaea transforming the
inverse problem to inference on a truncated sequence ohigedj the K-L modes
(Marzouk and Najm 2009). Li and Cirpka (2006) emphasize tie of K-L expan-
sions in enabling geostatistical inversion on unstructgréds. Efendiev et al. (2006)
use K-L expansions to parameterize a log-permeability,fintdoducing constraints
among the weights in order to match known values of the pédbitityeat selected
spatial locations.

Recent work has also proposed a reduced-basis approactuiing the dimen-
sion of the input space. In the same way that a reduced-orddehis formed by
projecting the state onto a reduced subspace, Lieberm@g)206nsiders projection
of a high-dimensional parameter field onto an empirical petar basis. The effec-
tiveness of this approach is demonstrated for a groundwaterse problem where
MCMC sampling is carried out in the reduced parameter space.

0.2.3 Reducing the number of samples

A different set of approaches retain the full forward modet bse simplified or
coarsened models to guide and improve the efficiency of MCEI@ming. Christen
and Fox (2005) use a local linear approximation of the fodwvaodel to improve the
acceptance probability of proposed moves, reducing thebeumf times the like-
lihood must be evaluated with the full forward model. Higdetnal. (2003) focus
on the estimation of spatially distributed inputs to a coemgbrward model. They
introduce coarsened representations of the inputs ang aplletropolis-coupled
MCMC scheme (Geyer 1991) in which “swap proposals” allovoinfation from

the coarse-scale formulation to influence the fine-scalancBfendiev et al. (2006)
also develop a two-stage MCMC algorithm, using a coarskesoadel based on
multiscale finite volume methods to improve the acceptaateaf MCMC propos-
als.

0.3 General formulation

Here we describe a general inverse problem formulation aed focus on the
structure of the forward problem. We consider the task cdriffig inputs@ from
limited and imperfect observationk For simplicity, we let bothd and@ be finite-
dimensional. The relationship between observabdlesd inputsd is indirect, and
is denoted byd = G(0,n); the additional input; is a random variable encom-
passing measurement noise and/or modeling errors. THinbke functionr(d|0)



describes the probability of measuremaidigiven a particular value d. The like-
lihood function thus incorporates the forward model and rti@asurement noise,
and results from the particular form gf In a Bayesian formulation of the inverse
problem,@ is treated as a random variable, endowed with a prior préibatdensity
mpr(@) that encodes any available prior knowledge about the inBatges’ rule then
yields the posterior probability density of the inputgest

Tpost(0) = 7(0|d) x 7 (d|@) mpr(0). (1)

The expression (1) casts the solution of the inverse probemprobability density
for the model input®.

This chapter focuses on methods to approximate the inptggbmapg(-). In
physical problemsy usually contains a deterministic map fréhto some idealized
observationsly; interaction ofd, and @ with the random variable) then yields
the actual data. We set aside this interaction and conderdgrathe deterministic
map, which can be broken into two elements: the state equsatiat describe the
evolution of the state in response to the inp@t and the output equations that define
the relationship between outputs of intergstwhich in turn define the observations
d—and statex. We present a general nonlinear model in the semi-discoete that
might result from spatial discretization of a partial diffatial equation (using, for
example, a finite element or finite volume method), or thathhigpresent a set
of differential-algebraic equations (such as arises inutirmodeling). The semi-
discrete equations describing such a system are

u="f(ub,t), (2)
y = h(ua 07 t)a (3)

with initial condition
u(0,0) =u’(9). (4)

In this semi-discrete modal(8,t) € RY isthe discretized state vectorfunknowns,
andf € © C R? is the vector op parametric inputs on some domain The vector
u’(0) € RV is the specified initial state, is time, and the dot indicates a deriva-
tive with respect to time. The nonlinear discretized resldectorf : RY x R? x
[0,00) — R¥ is for generality written as a function of the state, parametputs,
and time. Our observable outputs are represented in dpatiatretized form with
g components in the vecten(0, t) € R?, and defined by the general nonlinear func-
tionh : RY x RP x [0,00) — RY.

If the governing equations are linear in the state (or if adinzed model of (2)
and (3) is derived by linearizing about a steady state), thersystem is written

= A(0)u+g(8,1t), (5)
y = H(0)u, (6)

whereA € RV <V is a matrix that possibly depends on the parameters but rthieon
state, and the general nonlinear functipg R represents the direct contributions



of the parameters to the governing equations as well asgrtie to boundary con-
ditions and source terms. For the linearized output eqouakioc R7*V is a matrix
that maps states to outputs, and we have assumed no directdiagre of outputs on
parameters (without loss of generality—such a term couilyebe incorporated).

Note that in both (3) and (6), the output vecgois continuous in time. In most
practical situations and in the Bayesian formulation desd above, the observa-
tional data are finite-dimensional on some doninthusd € D C RM consists
of y evaluated at a finite set of timed,= (y(t1),...,y(tn,)) With M = n;q. We
denote the deterministic forward model mapping inguts finite-time observations
dbyG(0): © — D.

With nonlinear forward models, the inverse solution is tglly represented by
samples simulated from the posterior distribution (1) .nFtbese samples, posterior
moments, marginal distributions, and other summaries eavhluated. Solution of
the statistical inverse problem thus requires many evialosiof the forward model
(typically many thousands or even millions)—a computadityprohibitive proposi-
tion for large-scale systems. In the following two sectioms describe approaches to
accelerate solution of the forward model—model reducti@rstate projection onto
areduced basis, and a stochastic spectral approach bagedenalized polynomial
chaos.

0.4 Model reduction

Model reduction seeks to derive a low-complexity model efslistem that is fast to
solve but preserves accurately the relationship betweairt parameter@ and out-
putsy, represented by the input—output m@agf the system forward solves required
to evaluate samples drawn from the posterior distributitn @erformed using a
reduced-order model as a surrogate for the large-scakersytien it becomes tractable
to carry out the many thousands of iterations required teesible statistical inverse
problem. Most large-scale model reduction frameworks ased on a projection
approach, which is described in general terms in this sectie briefly describe
computation of the basis via POD and reduced basis methodshen discuss var-
ious options that have been proposed for sampling the paeasyace.

0.4.1 General projection framework

The first step in creating a projection-based reduced-ondelel is to approximate
the N-dimensional state(6, ¢) by a linear combination of basis vectors,

u~ ®u,, (7)

wheren < N. The projection matrix € RV*" contains as columns the basis
vectorse;, i.e., ® = [¢1 ¢2 - - ¢,], and the vecton,.(0,t) € R" contains the
corresponding modal amplitudes.

This approximation can be employed in the general nonlisgstem (2) or the
general linear system (5), in either case resulting in altedi(since in general the



N equations cannot all be satisfied with« N degrees of freedom). We define
a left basis¥ € RV*" so that®¥” & = 1. Using a Petrov-Galerkin projection, we
require the residual to be orthogonal to the space spannételyolumns ofP. In
the nonlinear case, this yields the reduced-order mod&)ef4) as

u, = UTf(Pu,,0,1), (8)
yr = h(®u,,0,1), 9)
u,(0,0) = ¥7u’ (), (10)

wherey,.(0,t) € R? is the reduced model approximation of the outp(#, ¢). For
the linear system (5), (6) with initial condition (4), thedteced-order model is

. = A, (0)u, + ¥Tg(8,1), (11)
Yr = Hr(e)ura (12)
u,.(0,0) = ¥Tu’(9), (13)

whereA,.(6) = $TA(6)® andH,.(9) = H(9)®P.

As in the full problem described in Section 0.3, the reducexdieh outputy,.
is continuous in time. Following our notation for the fullgilem, we define the
reduced model data vectdy. € D C RM to consist ofy, evaluated at a finite set of
times,d, = (y.(t1),...,y+(tn,)) with M = n,q. We denote the reduced forward
model of state dimensiomthat maps®) to d, by G, : © — D.

Our approach to reducing the computational cost of solviegrverse problem
is to use the reduced mod&l},,,, in place of the full modelG in the likelihood
functionm(d|@). This can lead to a dramatic reduction in the cost of an etialua
of the posterior distribution (1). However, care must bestako ensure efficient
construction and solution of the reduced-order models({&)-or (11)—(13). In the
case of general nonlinear parametric dependence, theselsriave low dimension
but are not necessarily fast to solve, since for each newnpatea 6, solution of
the ROM requires evaluating the large-scale system mataceesidual, projecting
those matrices/residual onto the reduced subspace, andsdihdng the resulting
reduced-order model. Since many elements of these congngatepend oV, the
dimension of the large-scale system, in general this peoe#knot be computation-
ally efficient. One option is to employ linearization of tharametric dependence
(Daniel et al. 2004; Grepl and Patera 2005; Veroy et al. 2083nore general
approach is to employ the missing point estimation apprgastrid et al. 2008),
which approximates nonlinear terms in the reduced-ordefahwith selective spa-
tial sampling, or the coefficient-function approximatid@afrault et al. 2004; Grepl
et al. 2007), which replaces nonlinear parametric depesidewith a reduced-basis
expansion and then uses interpolation to efficiently comphg coefficients of that
expansion for new parameter values.



0.4.2 Computing the basis

The basis vectors can be calculated with several technijjflethods to compute the
basis in the large-scale setting include approximate loaldutruncation (Gugercin
and Antoulas 2004; Li and White 2002; Moore 1981; Penzl 2@#ensen and
Antoulas 2002), Krylov-based methods (Feldmann and Freil@8b; Gallivan et
al. 1994; Grimme 1997), proper orthogonal decompositic@p (Deane et al.
1991; Holmes et al. 1996; Sirovich 1987), and reduced basithads (Fox and
Miura 1971; Noor and Peters 1980). Balanced truncation aiytbi-based meth-
ods are largely restricted to linear systems, thus here wgsfon a brief description
of reduced basis methods and POD. While the developmeniesétmethods has
been in the context of reduction of the forward problem famdation and (to some
extent) control, recent work has shown applicability to ithesrse problem setting,
by introducing strategies that use characteristics of thierse problem (including
Hessian and prior information) to inform computation of theesis (Galbally et al.
2010; Lieberman 2009; Nguyen 2005). We discuss some of stestegies in the
next subsection.

In the reduced basis and POD methods, the basis is formed apdh of a set of
state solutions, commonly referred to as snapshots. Tegesisots are computed
by solving the system (2) or (5) for selected values of theypater®. In the POD
method of snapshots (Sirovich 1987), the resulting stdteisns at selected times
and/or parameter values are collected in the columns of #texxlU € R™*™s,

U=[u v ... u™], (14)

whereu’ is theith snapshot and, is the total number of snapshots, which depends
on both the number of parameter values considered and théeruwh timesteps
sampled for each parameter value.

The POD basis is given by the left singular vectors of the mair that corre-
spond to the largest singular values. A basis of dimensisthus

d=[p' ¢* ... ¢"], (15)

whereg!' is theith left singular vector otJ, which has corresponding singular value
o;. It can be shown that the POD basis is optimal in the senseftited basis of
dimensionn, it minimizes the least squares error of the representatidine snap-
shots in the reduced basis. This error is given by the suneafdhares of the singular
values corresponding to those modes not included in the:basi

Dt - @3 = Y oF (16)
i=1 j=n+1

It is however important to note that this optimality of repeatation of the snap-
shot set in the general case provides no correspondingprigarror bound on the
resulting POD-based reduced-order model.



Since the POD basis is orthogonal, a common choice for thbdsfs ist = ®.
Other choices folr are also possible, such as one that minimizes a least-square
weighted-residual (Bui-Thanh et al. 2008; Maday et al. 20R@vas 2003; Rozza
and Veroy 2006), or one that includes output informatiorotigh use of adjoint
solutions (Lall et al. 2002; Willcox and Peraire 2002).

0.4.3 Computing a basis for inverse problem applications:
sampling the parameter space

A critical issue in computing the reduced basis is sampliiiip@ parameter space:
the quality of the resulting reduced-order model is higldpéendent on the choice of
parameters for which snapshots are computed. This is pkmtig important in the
statistical inverse problem setting, since solution ofitiverse problem will likely
require broad exploration of the parameter space. Furtherproblems of interest
may have high-dimensional parameter spaces and the rampgearheters explored
in solving the inverse problem may not be known a priori.

Sampling methods to build reduced-order models must thdeead two chal-
lenges. First, a systematic strategy is needed to choosewahd how many samples
to generate. Second, the strategy must be scalable so taagtar spaces of high
dimension can be effectively sampled with a small numbelaagjd-scale system
solves. Standard sampling schemes such as uniform sangphirfgrm gridding of
the parameter space) or random sampling are one option éatieg snapshots.
However, if the dimension of the parameter space is largiéoum sampling will
quickly become too computationally expensive due to thelinatorial explosion
of samples needed to cover the parameter space. Randomirsgnapl the other
hand, might fail to recognize important regions in the partenspace. One can
use knowledge of the application at hand to determine reptatve parametric
inputs, as has been done to sample the parameter space fuasieconvex opti-
mization relaxation method (Sou et al. 2005), and to geaer&OD or Krylov basis
for problems in which the number of input parameters is sn&dime examples
of applications of parameterized model reduction with alsmamber of param-
eters include structural dynamics (Allen et al. 2004), eksticity (Amsallem et
al. 2007), Rayleigh-Bénard convection (Ly and Tran 20@g&kign of interconnect
circuits (Bond and Daniel 2005; Daniel et al. 2004), and peatrs describing inho-
mogeneous boundary conditions for parabolic PDEs (Guigsnet al. 2007). For
optimal control applications, online adaptive sampling haen employed as a sys-
tematic way to generate snapshot information (Afanasievtdinze 2001; Fahl and
Sachs 2003; Hinze and Volkwein 2005; Kunisch and Volkwei®2)9 However,
these methods have not been scaled to problems that contaérntihan a handful of
parameters.

To address the challenge of sampling a high-dimensionanpeter space to
build a reduced basis, the greedy sampling method was intgatin Grepl (2005);
Grepl and Patera (2005); Veroy and Patera (2005); Veroy.e28D3) to adap-
tively choose samples by finding the location at which thévexte of the error in



the reduced model is maximum. The greedy sampling methodapalsed to find
reduced models for the parameterized steady incompre$s¢ibiier-Stokes equations
(Veroy and Patera 2005). It was also combined &ifhosteriorierror estimators for
parameterized parabolic PDEs, and applied to several aptiontrol and inverse
problems (Grepl 2005; Grepl and Patera 2005). In Bui-Thanél.e(2008), the
greedy sampling approach was formulated as a sequencepiv@daodel-constrained
optimization problems that were solved to determine apaitgsample locations.
Unlike other sampling methods, this model-constrainethtipation sampling approach
incorporates the underlying physics and scales well tcegystwith a large num-
ber of parameters. In Lieberman (2009), the optimizatiageld greedy sampling
approach was extended to the inverse problem setting byulating the sequence
of optimization problems to also include the prior probipitlensity. Lieberman
(2009) also addressed directly the challenge of high-dsieeral parameter spaces in
MCMC sampling by performing reduction in both state and peater, and demon-
strated the approach on a subsurface model with a distdipateaameter representing
the hydraulic conductivity over the domain.

0.5 Stochastic spectral methods

Based on polynomial chaos (PC) representations of randoiaiblas and processes
(Cameron and Martin 1947; Debusschere et al. 2004; Ghanénspanos 1991;
Wan and Karniadakis 2005; Wiener 1938; Xiu and Karniadaki82}, stochastic
spectral methods have been used extensivelfofevard uncertainty propagation—
characterizing the probability distribution of the outmfita model given a known
distribution on the input. These methods exploit regudritthe dependence of an
output or solution field on uncertain parameters. They ¢anstattractive alterna-
tives to Monte Carlo simulation in numerous applicatioreagport in porous media
(Ghanem 1998), structural mechanics, thermo-fluid syst&m&laitre et al. 2001,
2002), electrochemistry (Debusschere et al. 2003), arcdingaflows (Najm et al.
2009; Reagan et al. 2004).

Stochastic spectral methods have more recently been dpplieeinversecon-
text (Marzouk et al. 2007), for both point and spatially disited parameters (Mar-
zouk and Najm 2009). Here, the essential idea is to constrgtbchastic forward
problem whose solution approximates the deterministiwéod model over the sup-
port of the prior. This procedure—effectively propagatprgpr uncertainty through
the forward model—yields a polynomial approximation of thevard model’s depen-
dence on uncertain parametésThe polynomial approximation then enters the
likelihood function, resulting in a “surrogate” posteragnsity that is inexpensive to
evaluate, often orders of magnitude less expensive thaoriti@al posterior.

0.5.1 Surrogate posterior distribution

Here we describe the construction of a polynomial-chacsdasirrogate poste-
rior in greater detail. Let us begin with (i) a finite-dimemsal representation of



the unknown quantity that is the object of inference, anda(iprior distribution on
the parameter@ of this representation. For instance, if the unknown qunaigi a
field endowed with a Gaussian process prior, the finite reptason may be a trun-
cated K-L expansion with mode strengtisind priorsd; ~ N(0,1). Let® C R?
denote the support of the prior. The Bayesian formulatioBewation 0.3 describes
the inverse solution in terms of the posterior density pivhich entails evaluations
of the forward modeG.(9) : © — D, with D C RM.

Now define a random vectdr = c(£), each component of which is given by a
PC expansion

Oi=ci(§) =Y ca¥u(@), i=1,...p (17)

[k|<P

Here¢ is a vector ofp independent and identically distributed (i.i.d.) randoaniv
ablesk = (k1, ..., k) is a multi-index with magnitudék| = &, + ... + k,, and
Uy are multivariate polynomials (of degrée in coordinate&;) orthogonal with
respect to the measure §{Ghanem and Spanos 1991). The total polynomial order
of the PC basis is truncated & The vectord will serve as an input t&, thus
specifying astochastic forward problem

Note that the distribution of (e.g., standard normal, Beta, etc.) and the corre-
sponding polynomial form o (e.g., Hermite, Jacobi, etc.) are intrinsic properties
of the PC basis (Xiu and Karniadakis 2002). In the simpleastwiction, PC coeffi-
cients in (17) are then chosen such thais distributed according to the prior on
6. This is not a strict requirement, however. A necessary itimmndon c is that
=y = ¢~ 1[0], the inverse image of the support of the prior, be containéHinv
the range of. This condition ensures that there is a realizatio§ obrresponding
to every feasible value @.

Having defined the stochastic forward problem, we can sowéh a Galerkin
or collocation procedure (see Section 0.5.2 below), thiigining a PC representa-
tion for each component of the model output. Héfgis thei-th component ofG
andG? is its Pth-order PC approximation:

|k|<P

The forward solutionG” obtained in this fashion is a polynomial function &f
EvaluatingG " with a deterministic argumentit can be viewed simply as a poly-
nomial approximation ofG o ¢, whereo denotes composition. We will use this
approximation to replacé: in the likelihood functionZ(0).

Consider the simple case of additive noide= G(0, 1) = G (6) + n, such that
L(0) = m, (d — G(0)), with m,, being the probability density af. The likelihood

1in this exposition we have usédo identify the random variable® and€ in order to avoid confusion
with deterministic arguments to probability density fuaos, e.g.0 and&. Elsewhere, we revert to the
usual notational convention and let context make clear igtendtion between the two.



function can be rewritten as a functiongf

L(c(€)) = m (d — G (c(€))) = m (d — GT(€)). (19)
This change of variables frofto £ lets us define a posterior density #r
me(§) oc L (c(§)) mpr (c(£)) det De(§). (20)

In this expressionc is the Jacobian of, det denotes the determinant, angt is
the prior density ob. The last two factors on the right sideyr (c(£)) det Dc(§),
are the probability density oé that corresponds to the prior @¢h Replacing the
forward model in the likelihood function via (19) then yislthesurrogateposterior
densityr/”:

me(€) ~ mf (€) o my (d — GT(€)) mpr (e(€)) [det De(€)). (21)

Despite the change of variables, it is straightforward tmver the posterior expec-
tation of an arbitrary functiorf:

Erpoef = Exc(foc) (22)

wherempost= 7(0|d) is the posterior density of, andr, is the corresponding
posterior density of.

The surrogate posterior distribution may be explored wityh suitable sampling
strategy, in particular MCMC. Evaluating the density forpases of sampling may
have negligible cost; nearly all the computational time rbhayspent in solving the
stochastic forward problem, i.e., obtaining the PC exparssin (18). Depending
on model nonlinearities, the necessary size of the PC kmsisthe number of pos-
terior samples required, this computational effort may ters of magnitude less
costly than exploring the posterior via direct sampling.rbtuver, as it requires only
the forward model and the prior, the stochastic forward tsembumay be obtained
“offline,” independently of the data. Accuracy of the suraitgposterior depends on
the order and family of the PC basis, as well as on the choiten$formatiore—
for instance, whether the distribution 8fassigns sufficient probability to regions
of © favored by the posterior. A detailed discussion of thesgeissan be found in
Marzouk et al. (2007). Some convergence results are surneadoelow.

0.5.2 Forward solution methodologies and convergence rel¢si

Solution of the stochastic forward problem (18) is an esaksitep in the inversion
procedure outlined above. While a survey of polynomial shmethods for solving
ODEs and PDEs with random inputs is beyond the scope of ttdpteh (see for
instance Najm (2009); Xiu (2009)), we highlight two broadsdes of approaches.
Stochastic Galerkin methods (Ghanem and Spanos 1991; heeM# al. 2001;
Matthies and Keese 2005) involve a reformulation of the goivg equations, essen-
tially creating a larger system of equations for the PC coieffitsy;y ; these equations



are generally coupled, though one may take advantage ofgme$pecific structure
in devising efficient solution schemes (Xiu and Shen 200&)ci&astic collocation
methods (BabusSka et al. 2007; Xiu and Hesthaven 2005), erotther hand, are
“non-intrusive”; these require only a finite number of unptad deterministic sim-
ulations, with no reformulation of the governing equatia@ighe forward model.
Collocation methods using sparse grids (Bieri et al. 2008n&pathysubramanian
and Zabaras 2007; Ma and Zabaras 2009; Nobile et al. 2008ly8kn1963; Xiu
and Hesthaven 2005), offer great efficiency and ease of mmai¢ation for higher-
dimensional problems.

For systems with more complex dynamics—discontinuitiesifurcations with
respect to uncertain parameters, or even limit cycles (Betaal. 2006)—global
bases may be unsuitable. Instead, piecewise polynomial &vd Karniadakis 2005,
2009) or multi-wavelet (Le Maitre et al. 2004) generalizas of polynomial chaos
enable efficient propagation of uncertainty; such basesisanbe used to construct
surrogate posteriors. Indeed, the overall Bayesian inferescheme is quite flexi-
ble with regard tohow one chooses to solve a stochastic forward problem. Error
analysis of the Bayesian stochastic spectral frameworkZM& and Xiu 2009)
has reinforced this flexibility. The relevant convergenesutts can be summarized
as follows. Consider the mean-square error, with respeatptoin the forward
solution:e(P) = ||GF (&) — G(é)”Lipr' Suppose that observational erroisare

additive and i.i.d. Gaussian. ¢{ P) converges at a particular ratg,P) < CP~“,
then at sufficiently largé’, the Kullback-Leibler (KL) divergence of the true poste-
rior from the surrogate posterior maintains at least theeseate of convergence,
D (wfﬂwf < P~“. In particular, exponential convergence of the forwardisol
tion implies exponential convergence of the surrogateguimstto the true posterior.
(Recall that the Kullback-Leibler divergence quantifies difference between prob-
ability distributions in information theoretic terms (G®i& and Su 2002).) These
results provide a guideline relevantdayapproximation of the forward model.

0.6 lllustrative example

We explore the relative advantages and disadvantages @lmeatliction and stochas-
tic spectral approaches in the context of a simple transigumice inversion problem.
Consider a dimensionless diffusion equation on a squaregdin= [0, 1] x [0, 1]
with adiabatic boundaries:

ou o s |0 —x|?

=Vt e (P20 e e
Vu-n=0 ondf, (24)
u(x,0) =0 in{. (25)

The solution fieldu(x,t) can represent temperature or the concentration of some
contaminant species, with = (z1,z2) € € and timet > 0. H(¢) denotes the unit



step function. Thus, the source term in (23) comprises desilogalized source,
activeontheinterval € 7 =0, 7] and centered at locatighe © =  with strength
s and characteristic width.

The governing equations (23)—(25) are discretized on atmigpatial grid using
a second-order-accurate finite difference scheme. Thisagpécretization and the
application of the boundary conditions lead to a semi-@igcsystem of the form
(5)—(6), linear in the state but nonlinear in the paramefflerBhe state vecton(t)
containsu(x, t) evaluated at thé/ grid points; the sparse matrik € RV >V reflects
the spatial discretization and application of the Neumawmmbdary conditions; and
g(0) is a nonlinear function representing the source term in £8). Note thag is
here just a function of the parameters (the source locatind)not the state.

In the inverse problem, we are given noisy observations @stilutionu(x, t)
at a few locations in space and a few instants in time. Fromethiata, we wish
to infer the source locatiofl = (6, 62). For simplicity, we assume that the shutoff
time T, strengths, and source widtl are known. We assume that observations of
are available fon; = 3 time instants; € {0.1,0.2,0.3}, atqg = 9 locations on a uni-
form3 x 3 grid covering the domaife. The forward modez(0) is thus a map from
the source locatiofl to noise-free observationk, € R?*t. These observations are
perturbed with additive Gaussian noig¢o yield the data vectat = dy + 1. Com-
ponents ofp are i.i.d.,n ~ N (0, 021). The likelihood function is therefore given
by L(6) = 7, (d — G(8)). The prior ord reflects a uniform probability assignment
over the entire domain of possible source locatiénsy U (0, 1). The posterior den-
sity is then

7(0]d) x m,(d— G(8))1a(0)

0 otherwise.

_ { exp (—5k (d—G(0)" (- G(0)) if BeQ, (26)

Figure 1 shows an example forward solution, obtained @9 & 69 uniform
grid. The plots show the solution field(x, ) before and after the source shutoff
time of 7' = 0.2. The source is located &= (0.6,0.9), with strengths = 2 and
width v = 0.05. The solution field at the earlier time is peaked around thecso
location and contains useful information for the inverselylem. After the shutoff
time, however, the field tends to flatten out due to diffustewentually observations
of the u-field at times well after the shutoff will provide no usefaférmation for
inference of the source location.

We now consider solution of the inverse problem using twaagimation approaches—
a POD-based reduced order model and a polynomial chaogjsterobtained with
pseudospectral stochastic collocation. Constructinggipeoximate posterior distri-
bution ineithercase requires evaluating the forward model at a number ahpater
values{#6,,...,0¢}. With POD, these forward model evaluations are used to con-
struct the snapshot matrix, while for stochastic collamathey are used to evaluate
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Figure 1 Solution field:(x, t) of the full forward model at two different times for
source parametets= (0.6,0.9), T = 0.20, s = 2, andy = 0.05.

integrals for the PC coefficients:

gic(UE) = ; G (0) Uy (8) T (0) dO (27)
Q

G (0;) Uy (0;) w;. (28)
=1

J

Since the priorr,,, is uniform on®, the polynomialsly are taken to be bivariate
Legendre polynomials, while the nodes and weidlfts w; }JQ:l are chosen accord-
ing to a Gaussian quadrature rule. In particular, we use sotgoroduct of-point
Gauss-Legendre rules ¢, 1], such that) = 2. In the comparison below, we use
the same nodal set @) parameter values to construct the snapshot matrix (14).
This is certainly not the only choice (or even the best cHai¢@arameter values to
employ for POD. Our selection is motivated mostly by simiplicso that identical
forward simulations support both approximation techngji#e revisit this choice
in later remarks.

We first evaluate the accuracy of the different forward medel a function of
the “order” of approximation. Th&? error of an approximate forward mod@! is
defined as

e = /( 1G(6) — G(8) 2 mpr(0) dB. (29)

In other words, this is the prior-weighted error in modeldicdons integrated over
the parameter space. The precise meaning of “order” demendsntext, of course.
With stochastic collocation, we take order to be the maxip@ynomial degree
P. In the projection approach, order is the dimension of ttticed model, i.e.,
the number of POD basis vectaisretained. Figure 2 shows the error for both
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Figure 2 L? error in the approximate forward models, versus polynooggreeP
for stochastic collocation and versus the number of moedés POD. Dotted line
represents) = 36.

methods of approximation. In Figure 2(a), the error de@sgamsore or less expo-
nentially with polynomial degree, provided a sufficientigth order quadrature rule
(Q = 100) is applied. Results with a 6-point quadrature rule in edokction (@ =

36) diverge forP > 5; this is understandable, as the degree of the integrand’in (2
increases withk| and aliasing errors corrupt the higher-degree polynonueffe
cients. In Figure 2(b), error decreases with the number dd R@desn, but the
accuracy of the reduced model at largedepends o). For smallerQ—i.e., less
dense coverage of the parameter space—the error begirst¢aplat a larger value
than for@ = 100. These results suggest that sufficiently large values df Qcand

n are needed for an accurate reduced-order model.

Turning from the forward model approximation to the postedistribution,
Figure 3 shows the posterior density of the source locatidf|d) (26), for vari-
ous forward model approximations. The ddtaeflect the same source parameters
used in Figure 1, i.eqQ = (0.6,0.9). Observations of the exact solution field are per-
turbed with Gaussian noisg~ N (0,0%7), with o = 0.2. The noise magnitude is
therefore roughly 20-40% of the nominal valueslgf Figure 3(a) shows the base-
line case: contours of the exact posterior density, obthinia evaluations of the
full forward modelG. Plots (b) and (c) show contours of the approximate posterio
densityr{, obtained by evaluation of the stochastic collocation m&igl, at poly-
nomial ordersP = 2 and P = 10, respectively. Plots (d) and (e) show the contours
of the approximate posterior density,,,,; obtained with POD model&} ) of
dimension: = 6 andn = 66, respectively. Both the stochastic collocation and POD
models were constructed with = 100 forward evaluations, at parameter valées
chosen with a 10-point quadrature rule in each directiorsufficiently highP or n,
both types of models yield close agreement with the truegpiastdensity. Note that
the true posterior is multi-modal; all three modes are wafitared by the surrogate



posterior densities in Figure 3(d)—(e).

A more quantitative measurement of posterior error is thiébidak-Leibler (KL)
divergence from the true posterior to the approximate piosté etting 7 denote the
approximate posterior density, the KL divergencé () from 7 (0) is:

D(7r|%)_/@7r(0)log% ae. (30)

Figure 4 showd (r||7) versus the order of approximation for the POD and stochas-
tic collocation approaches. The true valu&aind all of the other source parameters
are identical to Figure 3; the same data veelds used throughout. We contrast
POD and collocation models constructed using eiher 36 and@ = 100 nodesin
the parameter spaé. The integral in (30) was evaluated with the trapezoidad,rul
using a uniform grid of dimensio#d x 69 on the se®’ = [0.3,0.7] x [0.6,1] C ©.
(Note that ignoring the remaining area of the parameter doomntributes negligi-
ble error, since the posterior density in these regionsasiyeero, as can be seen in
Figure 3.)

Figures 4(a) and 4(c) show that, provided the valu@ g sufficiently high, both
approaches achieve similar posterior accuracy. As in Eiguthe accuracy of the
polynomial chaos-based surrogate posterior degradeodliasing errors whe®
is too small;@ effectively limits the maximum polynomial degree that isanangful
to employ. When) is larger, however, rapid convergenceld{r||7) with respect
to polynomial degree is observed. Error in the POD-basegate posterior also
decays rapidly with increasing model order in the= 100 case. When fewe? val-
ues are used to train the POD modgl£ 36), errors tend to be larger. Interestingly,
though, these errors start to decay anewrfor 40. With n = 66 modes, the errors
associated with th€ = 36 and@Q = 100 surrogate posteriorsy;,, differ by less
than a factor of two.

Computational speedups over the full model, which takesamately six sec-
onds per forward simulation, are significant in both caseg.a similar levels of
accuracy, the POD models are several times more costlyuweforsimulation time
than the stochastic collocation models. Indeed, in thegmtasase it is faster to eval-
uate a polynomial expansion (18) than to integrate a redocger model (11)—(13).
On the other hand, if) is small, then the stochastic collocation approach cannot
achieve high accuracy, but error in the POD-based posteviatinues to decline as
more modes are added. For the current problem, therefooa)yfa limited num-
ber of full model evaluations can be performed (offline), B@D approach is a
better choice; while if) can be chosen sufficiently high, the stochastic collocation
approach yields equivalent accuracy with much smallementomputational cost.

The computational times reported here and shown in Figureré wbtained on
a desktop PC with an Intel Core 2 Duo processor at 3.16 GHz &8 df RAM.
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Figure 3 Contours of the posterior densit§{f|d) using the full forward model and
various approximations. Contour lines are plottedletqually spaced contour levels
in the rang€d0.02, 1].
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either@ = 36 (dotted) or@Q = 100 (solid) nodes in parameter space.



0.7 Conclusions

The simple numerical example above suggests that, whileehmediuction may
require fewer offline forward simulations to achieve a dartaccuracy, polyno-
mial chaos-based surrogate posteriors may be significehthgper to evaluate in
the online phase. These conclusions are necessarily galiéem-specific, however.
Our illustrative example was strongly nonlinear in the pageters, but these param-
eters were limited to two dimensions. The governing equatigere also linear in
the stateu. It is important to consider how the relative computatiordt of these
methods scales with dimensionality of the parameter spadevith the dynamical
complexity of the forward model, among other factors.

These questions underscore many challenges and open mpeoliiesurrogate
and reduced-order modeling for statistical inverse proisleTechniques are needed
to rigorously inform construction of the surrogate modethwéomponents of the
inverse formulation, specifically incorporating both piiileformation and data. While
some success has been demonstrated in this regard for gnoplems, challenges
remain in incorporating prior models for more complex figleg., with discontinu-
ities or other geometric structure) and in conditioning atadcollected at multiple
scales. High dimensionality also raises several open sssuecessful surrogate
modeling in this context should exploit the spectrum of tbenard operator and
any smoothing or structure provided by the prior in orderaduce the number of
input parameters. Rigorous error bounds on the posterfopated using a surrogate
or reduced-order model remain another outstanding chgaléfithout some way of
estimating the effects of using a surrogate in place of thefodel, we cannot quan-
titatively answer questions such as how many samples auéreelto compute the
basis.

Answers to these questions again may depend on the detdite atlgorith-
mic approaches. In the previous example, we focused on isitypand did not
apply more sophisticated approaches for either model teghuar polynomial chaos
approximation. With model reduction, for example, we did @mploy greedy sam-
pling in the parameter space; with stochastic collocatiendid not employ sparse
grids (particularly anisotropic and adaptive sparse godfigh-dimensional prob-
lems), nor did we explore partitioning of the prior suppantéor alternate poly-
nomial bases. In tackling more complicated problems, omailshcertainly draw
from the literature in all of these areas in developing faduwaodel approximation
schemes suited to inverse problems.

Beyond reducing the complexity of forward simulations, wisaneeded even
more arecombinationf the approaches discussed in Section 0.2—simultaneously
approximating the forward model, reducing the size of tipaitrspace, and reducing
the requisite number of samples. Many of these methods willidscribed in the
ensuing chapters.

Finally, we close by noting that this volume focuses on sofubf the inverse
problem—success is measured by our ability to accuratéimatse some parame-
ter of interest. However, in many scientific and engineeappglications, the inverse



problem is merely one step on the path to solving an ultimeséyh or control prob-
lem; that is, the inference task is often followed by a decigiroblem downstream.
Potentially significant opportunities exist for an integihconsideration of inference
and decision problems. For example, the downstream dagsablem can inform
solution of the inverse problem by defining the level of aecyrto which specific
features of the parameter should be resolved. The decisidabgm might also guide
the construction of more parsimonious surrogate or rechocddr models.
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