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Abstract

We evaluate the bias from endogenous job mobility in fixed-effects estimates of worker- and
firm-specific earnings heterogeneity using longitudinally linked employer-employee data from
the LEHD infrastructure file system of the U.S. Census Bureau. First, we propose two new
residual diagnostic tests of the assumption that mobility is exogenous to unmodeled determi-
nants of earnings. Both tests reject exogenous mobility. We relax exogenous mobility by mod-
eling the matched data as an evolving bipartite graph using a Bayesian latent-type framework.
Our results suggest that allowing endogenous mobility increases the variation in earnings ex-
plained by individual heterogeneity and reduces the proportion due to employer and match
effects. To assess external validity, we match our estimates of the wage components to out-of-
sample estimates of revenue per worker. The mobility-bias corrected estimates attribute much
more of the variation in revenue per worker to variation in match quality and worker quality
than the uncorrected estimates.

Keywords: Earnings heterogeneity; Mobility bias; Latent-type model; Markov chain Monte Carlo
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1 Introduction

We study the consequences of endogenous mobility for estimates of worker and firm effects on

labor market earnings. Our starting point is the fixed-effects estimator for the statistical earn-

ings model developed by Abowd et al. (1999, AKM, henceforth), which decomposes log earnings

into components associated with unobserved worker and employer heterogeneity. Their statisti-

cal model assumes job-to-job mobility is exogenous with respect to the residual in their earnings

equation. Structural interpretations of the estimated worker and firm effects are potentially useful

as measures of unobserved skill and firm-specific earnings premia as long as mobility is exoge-

nous. However, any bias from endogenous mobility will depend on how unmodeled factors that

affect the evolution of wages are associated with the choices of individuals and firms to begin

and end employment relationships. Our goal is to determine whether relaxing the exogenous mo-

bility assumption has major implications for estimates of worker and employer-specific earnings

heterogeneity.

We begin by clearly defining the exogenous mobility assumption entailed by the AKM log

earnings model. The assumption of exogenous mobility implies that job-to-job mobility and job

assignment depend only on time-invariant unobservable characteristics of workers and firms, along

with available time-varying observable characteristics. While this allows for many forms of sort-

ing, it precludes mobility driven by learning about new outside job opportunities (Woodcock 2008),

mobility associated with learning about comparative advantage (Gibbons et al. 2005), or mobility

based on idiosyncratic labor demand shocks (Helwege 1992). The exogenous mobility assumption

is, therefore, subject to considerable skepticism among economists.

Despite this skepticism, there are no tests of exogenous mobility that can be computed from

estimates made under the null hypothesis. We fill this gap by developing two new residual di-

agnostic tests of the exogenous mobility assumption, which we apply to longitudinally-linked

employer-employee data from the U.S. Census Bureau’s Longitudinal Employer Household Dy-

namics (LEHD) program. In both tests, the LEHD data reject the null hypothesis of exogenous

mobility.

Rejecting the exogenous mobility assumption leaves open the question of whether and how

endogenous mobility biases the estimates of worker- and firm-specific contributions to pay. To
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address these questions, we develop a latent-type model of the data generating process that re-

laxes two key assumptions of the exogenous mobility model. First, our model allows for match

effects that are correlated with worker and firm heterogeneity. Second, we allow both earnings

and job mobility to be determined by latent types of workers, firms, and matches. We estimate

the model using Bayesian methods that, because of the non-nested structure of the latent types,

become computationally intensive. We exploit the network structure of the data and associated

model restrictions to speed computation by using a graph coloring algorithm.

Our analysis of the uncorrected estimates from the AKM model derived under the assumption

of exogenous mobility supports our modeling decisions. Our results suggest that: (1) all three

sources of heterogeneity contribute to earnings variation although worker and employer effects are

more important than match effects in the structural estimates as compared to the AKM estimates;

(2) structural match effects are negatively correlated with structural worker and firm effects (impos-

sible under exogenous mobility); (3) there is almost no evidence of positive assortative matching in

the structural worker and firm effects; and (4) in the steady-state, the endogenous mobility model

exhibits the same wage compression due to negative correlation of the worker and firm effects with

the match effect as seen in the simple correlations.

We go on to validate our estimates using data on firm revenues. Using the uncorrected AKM

estimates, we find a strong association of firm revenue with firm effects, but only a very weak

association of revenue with firm-level averages of worker effects and within-match mean residuals.

Using the endogenous-mobility corrected estimates, we find revenue is strongly associated with all

three components of earnings heterogeneity. The latter pattern is consistent with models in which

worker and match effects in earnings represent compensation for productive attributes.

Our analysis and methods are relevant in applications that use estimates of worker and firm

effects as measures of human capital and firm-specific earnings premia. Examples include the

analysis of firm productivity (Iranzo et al. 2008), inter-industry earnings differentials (Abowd et al.

2012), exporter earnings differentials (Krishna et al. 2014), job referral networks (Schmutte 2015),

and earnings inequality (Card et al. 2013). Endogenous assignment also affects the estimation of

neighborhood effects on earnings (Combes et al. 2008), and value-added models of student test

scores (Rothstein 2010; Koedel and Betts 2010; Kramarz et al. 2014).
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2 Background and Motivation

2.1 The AKM Model for Labor Market Earnings

AKM proposed a framework for modeling the logarithm of individual labor earnings in matched

employer-employee data that allows for arbitrary heterogeneity across workers and across employ-

ers. In the AKM model, the log earnings of worker i in period t is

lnwit = Xitβ + θi + ψJ(i,t) + εit. (1)

The log earnings depend on observable characteristics throughXitβ, unobservable individual-level

characteristics, θi, and an unobservable employer-specific component, ψJ(i,t), where J(i, t) is a

function that maps worker-year observations to their unique employer in that year. The method for

selecting the unique employer is elaborated in Section 5.1.1. This model applies to data that include

observations on I individual workers and J employers. The data are observed over T periods and

in any period t, there are a total of Nt observations. The full sample includes N worker-period

observations.

In matrix notation, the earnings model (1) is

lnw = Xβ +Dθ + Fψ + ε (2)

where lnw is the [N × 1] stacked vector of log earnings outcomes lnwit, X is the [N × k] design

matrix of observable time-varying characteristics. In the analysis that follows, and in the empirical

work, lnw andX are measured as deviations from their overall means and we suppress the constant

term. The matrix D is the [N × I] design for the individual effects; F is the [N × J ] design matrix

for the employer effects (non-employment is suppressed here). The unknown fixed effects to be

estimated,
[
βT θT ψT

]T
, have dimension [k × 1] , [I × 1] , and [J × 1] associated with each

of the design matrices.
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Identification and the Exogenous Mobility Assumption

Identification of the parameter vector
[
βT θT ψT

]T
in the statistical model requires the fol-

lowing orthogonality conditions:

E
[
XT ε

]
= 0; E

[
DT ε

]
= 0; E

[
F T ε

]
= 0. (3)

As long as the matrix of data moments has full rank, these conditional moment restrictions yield

an unbiased estimator for the full parameter vector, including the individual and employer effects.

The assumptions in (3) that E
[
DT ε

]
= 0 and E

[
F T ε

]
= 0 are particularly problematic. They

imply that there is no correlation between the earnings residual and an individual’s decision to enter

or exit the labor market, and that there is no correlation between the residual and the assignment

of workers to employers. These assumptions do not have a clear behavioral foundation, but they

follow from the stronger assumption that mobility and assignment are independent of the earnings

residual.

Specifically, we define exogenous mobility by the assumptions:

E [ε|X] = 0 (4)

Pr [D,F |X, ε] = Pr [D,F |X] .

If the exogenous mobility assumptions are satisfied, it is clear that E [ε|X,D, F ] = 0. The orthog-

onality conditions necessary for identification follow. See Abowd et al. (2002) for the method of

ensuring that D and F have full column rank.

Exogenous mobility requires that a worker’s employment history is completely independent

of the idiosyncratic part of earnings captured in ε. Specifically, knowledge of the entire history

of earnings residuals does not convey any information that would help predict job assignment or

worker entry and exit. The exogenous mobility assumption is, thus, equivalent to assuming that all

assignments are pre-determined at birth given full knowledge of X,D, F and
[
βT θT ψT

]T
(Rothstein 2010).
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3 Empirical Model

To relax the assumption of exogenous mobility, we develop a model in which a match-specific

component of the earnings residual predicts the movement of workers between employers. The

huge number of workers and employers render the problem of predicting job mobility extremely

challenging. To make progress, we use a latent-type framework. The three populations of interest

– workers, employers, and job matches – are associated with latent heterogeneity types that affect

earnings, mobility and job assignment. Our model allows for arbitrary correlation between worker

and employer types on observed matches, and also allows for sorting by comparative advantage by

allowing arbitrary correlation between job match quality and worker and employer attributes.

3.1 Model Setup

3.1.1 Population Heterogeneity

The agents are workers, indexed by i ∈ {1 . . . I} and employers, indexed by j ∈ {0 . . . J}. By

convention, when a worker is not employed, we say he is assigned to employer j = 0. On entry to

the labor market, a worker i samples his type from one of L latent ability types, ai ∈ A. Likewise,

each employer, except j = 0, samples her type from one ofM latent types, denoted bj ∈ B. Again,

by convention, the non-employment state is associated with its own latent type, b0; hence, there

are M + 1 employer types counting non-employment.

In our empirical application, we have access to data on the complete population of workers and

employers. Each potential worker-employer match (a job) has an associated latent heterogeneity

component that affects both earnings and mobility: kij ∈ K, where K has cardinality Q. To make

the subsequent formulas easier to interpret, we represent the elements of A,B and K as rows from

the identity matrices IL, IM+1 and IQ, respectively. For instance, if the number of latent worker

types, L = 2, then A = {(1, 0), (0, 1)}.

We assume workers and employers sample their latent ability and productivity types indepen-

dently from multinomial distributions with parameters πa, πb. However, the distribution of match

quality is not independent of worker or employer type. The probability that the latent type of the

match between worker i and employer j is k is Pr (kij = k|ai = a, bj = b) = πk|ab. This spec-
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ification allows for independent match effects as a special case. If match quality is independent

of worker and employer heterogeneity, then AKM estimates of the worker and firm effects are

unbiased even in the presence of endogenous mobility.

3.1.2 Earnings Determination

The log of earnings on any match is given by the following generalization of the AKM model

lnwijt = α +Xijtβ + aiθ + bjψ + kijµ+ εit. (5)

The vector Xijt includes observable time-varying characteristics. In practice, we use the same

vector of observable characteristics that are used for our estimates of the AKM model. We describe

the vector of control variables in Section 5.2. The vectors θ, ψ and µ are parameters with dimension

L×1,M×1, andQ×1, respectively, that describe the effect on the level of log earnings associated

with membership in the various heterogeneity types. We take ε to be normal with mean 0 and

variance σ2, independent and identically distributed across individuals and over time.

3.1.3 Mobility Model

The definition of exogenous mobility in Equation 4 implies that the assignment of workers to

employers and job durations should not depend on any function of the earnings residual. Our

diagnostic analysis in Section 5.2 suggests job mobility and assignment are predicted by a match-

specific component of earnings that may be correlated with worker and firm heterogeneity. We

therefore develop a model of endogenous mobility with these features.

The separation indicator sit = 1, if i separates from his current job at the end of period t, and

sit = 0, otherwise. Recall J (i, t) is the index function that returns the identifier of the firm in

which i is employed in period t. The probability of separation depends flexibly on match quality:

Pr
[
sit = 1|ki J(i,t)

]
= fse

(
ai, bJ(i,t), ki J(i,t); γ

)
≡ γabk (6)

where 0 ≤ γabk ≤ 1.

Furthermore, conditional on separation, the latent type of the next employer depends on the
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quality of the current match, in addition to the productivity of the current employer and the ability

of the worker:

Pr
[
bJ(i,t+1)|ai, bJ(i,t), ki J(i,t)

]
= ftr

(
ai, bJ(i,t), ki J(i,t); δ

)
≡ δabk ∈ ∆M+1 (7)

where δabk ≡
[
δ0|abk, ..., δM |abk

]
is a 1 × (M + 1) vector of transition probabilities, ∆M+1 is the

unit simplex, and J (i, 0) = 0 for all i. The transition probabilities are indexed by all of the latent

heterogeneity in the model. Within a heterogeneity type, the identity of the precise employer is

selected completely at random.

3.2 Interpretation

It is instructive to discuss how exogenous mobility can be expressed in terms of restrictions on the

model of Section 3.1. Specifically, exogenous mobility requires that separation probabilities and

job assignments be independent of match quality. These assumptions are exactly the restrictions

γabk = γab and δabk = δab. For our purposes, it is also important to understand how these assump-

tions interact with assumptions on the match effect, µ, in the earnings equation. The conventional

AKM model assumes no match effect (or, equivalently that the match effect is independent of

worker and firm effects). If we make this assumption as well, so that πk|ab = πkthen our model

reduces to a latent type version of the AKM model.

Identification in the endogenous mobility model is based on using the relational structure of

the data to predict job matches. The labor market is an evolving graph of connections between

workers and their employers. At time t, let the set of identifiers for all I individuals who work in

one of the J + 1 employers (including non-employment), A (t) , and the set of J + 1 employers,

E (t) , be arranged in a bipartite graph where A (t) and E (t) are the two (disjoint) vertex (or node)

sets. There is a link between i ∈ A (t) and j ∈ E (t) if and only if i is employed by j at date

t. The totality of the links (jobs) active at date t, excluding non-employment, can be represented

as an I × J matrix B (t), which is the upper right-hand block of the full adjacency matrix for the

bipartite graph, with i on the rows and j on the columns, and is sometimes called the biadjacency

matrix.
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The collection of labor market relationships at time t, summarized by the adjacency matrix

B (t), we call the realized employment network. The observed labor market data are snapshots of

the market at points in time,B(t1), ..., B(tT ),where T is the total number of available time periods.

Our adjacency matrix representation can be directly related to the AKM framework. When the data

are sorted first by time, t, and then by workers, i, the design matrix of employer effects is

F =


B (1)

B (2)
...

B (T )


where B (t) is the adjacency matrix from the bipartite labor market graph.

Each adjacency matrix, B(t), describes which outcomes (job matches) were observed at each

point in time from the collection of I × J potential outcomes at each moment of time, again

excluding non-employment. The potential outcomes are given by the structural earnings equation

(5). Under exogenous mobility, potential outcomes are selected for observation conditionally-at-

random, givenX . In this sense, the problem of endogenous mobility is a sample selection problem.

To address these selection biases, our model groups together workers and firms with similar

mobility, earnings, and turnover patterns by assigning them to latent types. The model exploits

that, in expectation, workers of the same type matched to firms of the same type have, ex ante, the

same probability of separation and, conditional on separation, the same expected destination.

Our application and proposed procedure are, therefore, also related to stochastic block mod-

els, modularity maximization, and other methods for the detection of “communities” of nodes in

complex social and economic networks. Our main innovation is the use of both node and edge

characteristics in predicting the matches (Hoff et al. 2002; Newman and Leicht 2007; Schmutte

2014).

In this class of models, for a fixed finite dimensional heterogeneity space, the posterior distribu-

tions of the parameters characterizing unobserved heterogeneity and of the earnings and mobility

equations are all proper. Therefore, the Gibbs sampler we will use is well-behaved, producing

samples from the joint distribution of the latent data and model parameters. Elements of the likeli-
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hood function, such as the homoscedastic normal kernel, could be replaced with alternative, finite

parameterizations of the earnings process. Elements of the first-order discrete Markov job tran-

sition process could be generalized to higher finite orders. In Section E.4, we consider the con-

sequences of changing the dimension of the latent worker, firm and match heterogeneity, but we

restrict attention to relatively low-dimensional representations. Thus, our modeling decisions stay

entirely within the realm of feasible finite-dimensional models for which our posterior sampler is

well-behaved. We are unaware of any nonparametric Bayesian analyses of models with the same

network complexity as ours–latent factors in both node types and on the edges.

Bonhomme et al. (2015) also develop a model in which workers and firms have latent un-

observed types that affect earnings and mobility. Their focus is on accounting for the possible

presence of nonseparable worker and firm heterogeneity in the earnings equation. By contrast, the

goal of our model is to consider the biases that can arise from endogenous mobility in the presence

of an omitted correlated match effect. Our model in principle nests the case where worker and

firm heterogeneity are fully non-separable. Furthermore, it allows for the possibility, supported

empirically by the evidence in Figure 3, that non-separability, or the role of match heterogeneity,

varies over the distribution of worker and firm types.

3.3 Likelihood Function

The observed data, yit, consist of labor earnings, observable time-varying characteristics, separa-

tions, and employer identifiers:

yit =
[
lnwi J(i,t)t, Xit, sit, i, J (i, t) , J (i, t+ 1)

]
for i = 1, ..., I and t = 1, ...T. (8)

The latent data vector, Z, consists of the heterogeneity types:

Z = [a1, . . . , aI , b1, . . . , bJ , k11, k12, . . . , k1J , k21, . . . , kIJ ] . (9)

Finally, the complete parameter vector is

ρT =
[
α, βT , θT , ψT , µT , σ, γ, δ, πa, πb, πk|ab

]
, ρ ∈ Θ. (10)
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The observed data matrix is denoted Y . The likelihood function for the parameters is the joint

distribution of observed and latent data (Y, Z) :

L (ρ|Y, Z) ∝
I∏
i=1



T∏
t=1

1√
2πσ2

exp

[
−(lnwit−α−Xitβ−aiθ−bJ(i,t)ψ−ki J(i,t)µ)

2

2σ2

]
×

T−1∏
t=1

[
1− γ〈ai〉〈bJ(i,t)〉〈ki J(i,t)〉

]1−sit [
γ〈ai〉〈bJ(i,t)〉〈ki J(i,t)〉

]sit
×

T−1∏
t=1

[
δ〈bJ(i,t+1)〉|〈ai〉〈bJ(i,t)〉〈ki J(i,t)〉

]sit


×

I∏
i=1

J∏
j=1

[(
L∏
`=1

M∏
m=1

Q∏
q=1

(πa`)
ai` (πbm)bjm

(
πq|`m

)kijq)] (11)

where the notation πa` denotes the `th element of πa (similarly for πbm, etc.) and 〈x〉 means the

index of the non-zero element of the indicator vector x.

The likelihood function factors into a part due to the observed data conditional on the latent

data, and the latent data conditional on the parameters. The observed-data likelihood conditional

on the latent data factors further into separate contributions from the earnings and the mobility pro-

cesses. The mobility process is Markov, and conditionally independent of the earnings realizations

once we know the latent types of the workers, firms and matches. We assume that the matches

initially observed are exogenous.

The power of the model comes from the predictive equation for the latent data Z – the unob-

served types associated with worker, employer, and match heterogeneity. Given the observed data

and the parameters, the posterior predictive distribution of Z is computed as the complete-data

likelihood divided by the observed-data likelihood. The observed-data likelihood is calculated by

integrating out the latent data. We describe our estimation procedure in detail in Section 4.

4 Estimation Method

Our empirical approach is Bayesian, but standard estimation techniques are not effective because

the worker and employer effects are not nested. We estimate the model by adapting the Gibbs

sampler for finite mixture models as developed in Tanner (1996) and Diebolt and Robert (1994)

to our model, allowing for multiple overlapping levels of correlation across observations. As in
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the data augmentation algorithm, we iterate between sampling from the posterior distribution of

the parameters given the complete data – both observed and latent data – and sampling from the

posterior predictive distribution of the latent data – the unobserved worker, employer, and match

types – given the model parameters.

Below, we derive the posterior distribution of the model parameters given the latent data. The

derivation is standard, as is the method for sampling. The more challenging task, both analytically

and computationally, is deriving, and sampling from, the posterior predictive distribution for unob-

served types. Under the model, the posterior distribution for the latent type depends on the relative

likelihood contribution of a particular entity (worker, employer or match) under each latent type.

Generically, the likelihood contribution of a worker depends not only on his own ability type, but

also on the productivity type of the employer he works for, and the match quality type.

We exploit the relational structure of the data together with conditional independence assump-

tions implied by the model to facilitate computation. We update the worker effects first, then the

employer effects, then the match effects. Furthermore, the conditional independence assumptions

in the model imply that the latent types of the workers can be updated simultaneously (in parallel).

The same is true of the match heterogeneity types.

For employer heterogeneity, the situation is more complex. Because the probability of assign-

ment to a new employer is a function of the previous employer, the likelihood contribution of a

given employer is not independent of the employers to which it is directly connected through the

realized mobility network. Therefore, the latent type of any employer is not independent of the

type of its network neighbors. Without further analysis, this requires that the employer types be

updated sequentially, which is very time consuming.

We use the network structure of the data together with our modeling assumptions to parallelize

the computation. Specifically, under the model for the observed and latent data, the probability that

a firm is of a particular type is independent of the types of all firms with which it is not connected

through a direct job-to-job transition; that is, firms that do not have a degree-one network con-

nection. We apply a graph coloring algorithm to the employer projection of the realized mobility

network to partition employer nodes into disjoint groups, based on this conditional independence

assumption, that can be updated in parallel. The effectiveness of this technique therefore depends
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on both the conditional independence assumption in the model and the network structure of the

data. If all firms were degree-one connected to one another through job-to-job flows, this method

would not provide any parallelization. Instead, we find that firms can be separated into just 24

separate groups within which no two firms are connected by a direct job-to-job transition.

4.1 Prior and Posterior distributions

The prior on the parameter vector ρT =
[
α, βT , θT , ψT , µT , σ, γ, δ, πa, πb, πk|ab

]
is the product

of priors on its component terms. Each vector of probabilities, γ, δ, πa, πb, πk|ab, has a Dirichlet

distribution with prior sample size equal to one. Each element of the Dirichlet parameter vector is

given by the inverse of the dimension of the probability vector.

We choose conjugate priors for the earnings and mobility model parameters. Conditional

on the population type probabilities, πa, πb, πk|ab, the coefficients in the log earnings equation,(
α, βT , θT , ψT , µT

)
have uninformative normal prior distributions. The variance parameter, σ, has

the inverted gamma prior IG (ν0, s0). We set ν0 = 1 and s0 = 1.

We also constrain the population probability-weighted average earnings heterogeneity effects

to be zero. That is, πTa θ = πTb ψ = πTk|ab(`m)µ = 0 for all `,mwhere πk|ab(`,m) ≡ Pr [kij = k|ai = `, bj = m].

This assumption highlights the inherent sample selection problem. If all workers were observed

in all matches in all periods, there would be no endogenous mobility bias because all counter-

factuals would be observed, not latent. With the preceding assumptions, we derive the posterior

distributions for each parameter in Appendix C.

4.2 Gibbs Sampler

We start the Gibbs sampler with initial values for the parameter vector and latent data, ρ(0), Z(0).

To update the parameter vector, we sample from the posterior distributions defined in Appendix

C. We must still define the posterior distribution for the latent data, Z, given the observed data

and parameters. To update the ability types for the workers, we sample from a multinomial with

probability that worker i falls in the `th type:

Pr (ai = `|a−i, b, k, Y, ρ) =
Pr (a−i, b, k, Y |ρ, ai = `) Pr(ai = `)

Pr (a−i, b, k, Y |ρ)
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=
πa` Pr (a−i, b, k, Y |ρ, ai = `)∑L

`′=1 [πa`′ Pr (a−i, b, k, Y |ρ, ai = `′)]
. (12)

where a−i represents the types of all workers other than i. To calculate equation (12) requires com-

puting the likelihood contribution of i when assigned to each of the L ability types. In our model,

the posterior probability of ai is independent of a−i, conditional on the rest of the data (latent and

observed): Pr (ai = `|a−i, b, k, Y, ρ) = Pr(ai = `|b, k, Y, ρ). This conditional independence al-

lows us to speed computation by updating the latent types of each worker in parallel. The proof

is a straightforward consequence of the conditional independence across workers in the likelihood

function for the complete data.

The posterior predictive distribution for the latent match quality is Pr (ks = q|a, b, k−s, Y, ρ) =

Pr (ks = q|a, b, Y, ρ) , which likewise follows from the conditional independence assumptions in

the model. Hence, for a given type of workers and employers, (a, b), the latent quality of each

match is conditionally independent from the others. We exploit the conditional independence by

parallelizing these updates as well.

The posterior distribution for employer types exhibits a conditional dependence that is not

present for workers or matches. When a worker changes jobs, the latent type of the employer for

the successor job depends on the the latent type of the employer on the origin job. Therefore, the

posterior probability that a firm is of a particular type depends directly on the types of firms to

which it is connected through the realized mobility network.

The posterior distribution is

Pr(bj = m|a, b−j, k, Y, ρ) = Pr(bj = m|a, bN(j), k, Y, ρ) (13)

where bN(j) denotes the latent types of the employers in N (j), the set of neighbors of j (in the

employer projection of the realized mobility network). We use this result to define a partition of

employers into groups that can be updated in parallel. The details of our graph-coloring algorithm

appear in Appendix E.1.
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5 Data

We implement the model empirically using matched employer-employee data from the LEHD

program of the U.S. Census Bureau. Our analysis compares estimates from the standard AKM

decomposition with estimates from the model described in Section 3. This comparison indicates

that relaxing the exogenous mobility assumption may have a large effect on estimated worker,

employer, and match effects. To validate our model, we bring in data on firm revenue, which is not

part of the LEHD infrastructure file system. This section briefly describes the sources of data and

how we prepared the research files.

5.1 Data Sources

5.1.1 LEHD Analysis Population

Our analysis population is the universe of dominant job records from the LEHD data for the states

of Indiana, Illinois, and Wisconsin for the years 1999–2003. If a worker has earnings reported

from multiple employers during the year, the dominant job is the one with highest earnings. We re-

strict attention to workers who are never younger than 18 nor older than 70. There are 60,123,894

person-year observations in the population covering 15,998,626 workers and 712,494 firms. De-

tails of the data sources and variable preparation are described in Appendix E.3.

We estimate the complete AKM decomposition on this analysis population, and use the es-

timates to perform residual diagnostic tests of the exogenous mobility assumption. We describe

these tests in Section 5.2. We also use our full population estimates of the AKM parameters,

θAKM and ψAKM to create initial tyes of workers, firms, and matches for the Gibbs sampler. For

each match, we construct an AKM orthogonal match effect, µAKM , as the average residual during

the match. Next, we construct the deciles of θAKM , ψAKM , and µAKM within their respective

populations (across workers, across firms, and across matches).

5.1.2 LEHD Sample for Structural Estimation

Estimation of the structural model on the full analysis population is computationally infeasible.

We therefore draw a 0.5% simple random sample of workers from the analysis population, re-
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taining their full employment histories. The final analysis sample includes 395,930 Person-year

observations (including years spent in non-employment) that cover 79,186 Persons, 60,589 Firms,

and 133,870 Matches. We assign each observation in the analysis sample the appropriate θ-decile,

ψ-decile, and µ-decile based on the AKM estimates to use as starting values for the latent types of

workers, employers and matches.

5.1.3 Firm Revenue Data

We match our analysis sample with firm-level data on total revenue per worker. The firm-level

revenue data is built up from the 2002 Economic Census. For the economic census, revenue is de-

fined as “the total sales, shipments, receipts, revenue or business done by domestic establishments

(excludes foreign subsidiaries) within the scope of the economic census.” (U.S. Census Bureau

2006, p. A-2). Sector-specific variations are elaborated in U.S. Census Bureau (2006, pp. A-2-A-

6). The population for the revenue data is all establishments that appear in the Census Employer

Business Register. The economic census collects sales data from a sample of establishments. The

sampling is based on industry and establishment size. For non-sampled establishments, which are

missing conditionally at random (i.e., ignorably missing), the missing revenue data are multiply

imputed using a model that conditions on all frame variables. The result is a dataset that contains

the universe of all business establishments with complete data on revenue and employment. Next,

the establishments in the LEHD data are matched to establishments in the business register. The

establishment identifiers in the LEHD are distinct from the establishment identifiers in the busi-

ness register, necessitating the use of a statistical matching procedure. For firms with multiple

establishments we sum revenue and employment across all establishments and compute revenue

per worker directly.

5.2 Estimation and Diagnostic Analysis of the AKM Model

We estimate the AKM model from equation (2) using the method described in Abowd et al. (2002).

When estimating the AKM model and the structural endogenous mobility model, the vector of

time-varying controls, Xit contains a quartic in age interacted with gender, race, and ethnicity,

year controls, and a detailed set of controls for attachment to the job over the year. The latter
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controls, for job attachment, are built from the quarterly earnings records. We include them to

address the problem that predicted earnings will otherwise be too large mechanically in years of

job transition. A complete discussion of the control variables and their role in estimation appears

in Appendix E.3.

In our estimate of the AKM decomposition on the LEHD analysis population, firm effects

explain 15 percent of the variation in log earnings. Fixed worker effects explain 32 percent. Ob-

servable, time-varying characteristics explain an additional 46 percent of earnings variation. When

we restrict our analysis to the 0.5% sample used in structural estimation, the shares of earnings

explained by each component are identical. Table OA1 reports the complete matrix of estimated

covariances for our analysis sample, along with the analogous covariances for the endogenous

mobility model.

5.2.1 Testing the Exogenous Mobility Assumption

We develop two tests that exploit the exogenous mobility assumption that current earnings resid-

uals should not be predictive of future employer assignments. Both tests strongly reject the null

hypothesis of exogenous mobility for these data. We describe the procedure for calculating both

test statistics in detail in Appendix B.

The first test, the match effects test, checks whether the firm effect of a worker’s future employ-

ers are independent of the average residual in the current job. The match effects test yields a test

statistic, X2 = 1, 169, 205, that is distributed chi-square with 8, 991 degrees of freedom. Using

conventional criteria, this test has a p-value less than 10−6.

The second test, the productive workforce test, checks whether the average worker effect of

future employees of a particular employer are predictive of the residuals on that firm’s current

period earnings payments. The productive workforce test has a test statistic X2 = 34, 950 that is

distributed chi-square with 900 degrees of freedom. Again, using conventional criteria, this test

has a p-value less than 10−6.

As discussed in Andrews et al. (2008), the estimated firm effects contain a linear combination

of all residuals for all workers in all time periods. In short samples, this could induce a spurious

correlation between current residuals and future firm effects, even if the the assumptions of ex-
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ogenous mobility hold. We recomputed the match effects test using a hold-out sample to compute

the average match-specific residual and obtain a test statistic of 619, 539. We conclude that the

qualitative features of our analysis of residuals from the AKM decomposition are not driven by

spurious correlation bias.

5.2.2 Evidence for Match Effects in the AKM Results

Figures 1a and 1b display the average AKM residual within cells defined by unique pairs of worker

effect - firm effect deciles. Figure 1a displays this information as a three-dimensional bar graph,

akin to Card et al. (2013). Unlike the German data analyzed by Card et al. (2013), the LEHD

sample exhibits more variation in the average match effect across cells. Therefore, we report the

same information in Figure 1b as a grouped bar graph. The data are grouped by worker effect

deciles along the horizontal axis. Within each group we plot bars for each firm effect decile, given

the worker effect decile, whose heights correspond to the average match effect within each. Figure

1b is thus a “flattened” version of the same information displayed in Figure 1a. While the average

residuals are less than 2 log points in many cells, their magnitudes are sometimes larger and vary

considerably across worker deciles and across firm deciles. In particular, the residual earnings of

low earnings workers vary considerably with the type of firm. Likewise, residual earnings on jobs

in low-earnings firms vary considerably with the type of worker employed. As a diagnostic tool,

Figure 1a supports our inclusion of correlated match effects in the structural model.

This finding relates our work to the theoretical literature dealing with the link between the

AKM earnings decomposition and assignment models of the labor market, particularly Eeckhout

and Kircher (2011) and Shimer (2005). These papers demonstrate that person and firm effects

are not sufficient to identify sorting on unobserved worker ability and firm productivity. These

assignment models often, though not necessarily, imply that a match effect has been omitted from

the structural earnings equation. Assignment models also imply that the estimated person and firm

effects are complicated transformations of parameters describing the latent productivity and ability

of the underlying populations and workers and employers together with the equilibrium earnings

and assignment process. It is therefore very difficult to say whether the patterns observed in Figure

1a and the remainder of this paper are consistent with any specific assignment model. Abowd
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Figure 1: Mean residual from the AKM decomposition by Worker/Firm effect deciles.

et al. (2015) explore this matter formally with respect to the coordination friction model in Shimer

(2005).

5.2.3 Evidence on the Exogenous Mobility Assumption

The exogenous mobility assumption in equation 4 implies, among other things, that for workers

who change jobs, the match effect (average residual) on the origin job should not help predict

the destination job. A straightforward corollary, following Bayes’ Rule, is that the average match

effect for workers changing jobs is independent of the type of firm to which they are transiting.

Knowledge of the future firm type should be uninformative about the current match effect after

controlling for the type of the worker and the type of origin firm under exogenous mobility.

We assess this corollary implication graphically in Figure 2. The figure displays a grouped bar

graph that shows the average residual within cells defined by origin firm–destination firm pairs.

The figure is organized with origin firm types along the horizontal axis. Within each origin firm

type are displayed 10 bars whose height represents the average residual on the job from which the

worker separates, for each of the ten destination firm types.

If the assumption of exogenous mobility were valid, the average match effect on the origin job

should not help predict destination firm type. If this were the case, then Figure 3 would show a

repeating pattern across all destination firm types. Instead, there is a visually evident correlation
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Figure 2: Mean AKM residual within origin/destination firm effect decile. Legend is for destina-
tion firm types.

between destination firm and the average match effect. For example, among workers whose origin

firm has a high estimated firm effect, movements to low-earnings firms are predicted by high

average residuals on the origin job. Likewise, for workers employed initially in low-earnings

firms, movement to high-wage firms is predicted by a low average residual on the origin job.

Figure OA1 offers a different view on these results, by plotting the average change in residual

for workers as they change jobs. Again, if mobility is exogenous, the change in residual should be

zero in expectation, and not predictive of the origin or destination firm type. Instead, we observe

that job transitions from the lowest decile to the highest decile of firm effects are associated with

large positive changes in residual earnings. Likewise, job transitions from the highest deciles to

lower deciles are associated with negative changes in residual earnings.

Finally, the data show some evidence of earnings compression across worker types, and across

firms within worker types. The average match effects are larger, and more consistently negative,

as we move from Worker Type 1 (low-earnings workers) to Worker Type 10 (high-wage workers).

Focusing on Figure 3c, within a specific destination firm type, there is some evidence that the

average match quality is higher on origin jobs in low-earnings firms and lower on origin jobs

in high-wage firms. A similar pattern is exhibited across firm types in Figure 1b. Altogether,
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(b) Worker Effect Decile 5
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(c) Worker Effect Decile 10

Figure 3: Mean AKM residual within origin/destination firm effect decile, disaggregated by worker
effect decile. Legend is for destination firm types.

these plots reinforce the residual diagnostic tests in Section 5.2.1 and help illustrate what form

endogenous mobility bias may take.

What sort of model might produce the observed patterns? For the high-type workers, the

observed pattern is consistent with selection: workers only leave jobs with high match effects when

moving to high-paying firms. For the low-type workers, the observed pattern is consistent with

workers sorting across jobs that trade off outside opportunities and match-specific compensation.

That is, a worker may accept low earnings today in exchange for better mobility up the job ladder.

A simpler explanation, offered by a reviewer, is that an earnings floor affects low-earnings workers,

and is more binding in low-earnings firms. Our empirical model is sufficiently rich to allow for

the observed differences in the relationship between earnings and mobility across worker and firm

types.

5.2.4 Job Change Event Study

Our diagnostics are related to the event study analysis proposed in Card et al. (2013). They observe

that under the exogenous mobility model, there should be a symmetry between earnings increases

observed for workers moving from low-earnings firms to high-wage firms and earnings decreases

observed for workers moving from high-wage to low-earnings firms. Figure 4 illustrates such an

event study applied to our analysis sample. For the analysis, we restrict the sample to workers who

are continuously employed over the five year window, change jobs exactly once, and for whom the
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Figure 4: Mean Log Earnings Net of Observed Characteristics for Workers Who Change Jobs in
2001 by Quartile of Firm Effect for Origin and Destination Firms, 1999–2003. See Table OA5 for
complete results.

year of job change is 2001. This way we observe workers for two full years before and after the job

change. Each job is assigned to its quartile in the firm-effect distribution. Each work history in the

sample can be assigned to an origin-quartile / destination-quartile cell. For each year of our data,

between 1999–2003, we plot the average log earnings, net of observed characteristics, within each

transition cell. If exogenous mobility holds, we expect to see (1) no change in earnings leading up

to, or after, the job transition, and (2) that the earnings gains from moving to higher quartiles are

symmetric to earnings losses from moving down quartiles. The figure is largely consistent with

(1), but less so on (2). Instead, moves from the first to the fourth quartile yield smaller earnings

gains than the earnings losses associated with moves from the fourth to the first quartile.
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6 Results from Estimation of the Endogenous Mobility Model

We fit the structural model described in Section 3 to the 0.5% LEHD analysis sample using the

Gibbs sampler. Our results are based on 9, 968 draws, taken in approximately equal proportion,

from three parallel runs of the Gibbs sampler. The sampler appears to converge after roughly

500 iterations, but exhibits extensive within-chain autocorrelation. Because of the computational

demands, we could not take a large enough sample to eliminate the effects of autocorrelation by

thinning the sample by, say, selecting every 1, 000th sample to analyze. Instead, we report Monte

Carlo standard errors, as described in Appendix Section E.2, that properly account for the serial

correlation within each sequence of draws from the sampler.

Before the final estimation, we engaged in a model selection step to determine the number

of support points for the distribution of latent person, employer, and match heterogeneity. We

base model selection on the criterion that the structural model should explain as much of the

variation in earnings as the AKM decomposition. We estimated the model, adding support points

to latent heterogeneity distributions until the variance of the structural earnings residual was near

the variance of the AKM residual (after removing the orthogonal AKM match effect). That is,

we sought a model with granularity sufficient to have as much explanatory power in the earnings

equation as the unrestricted AKM model. This approach yields an upper bound on the amount of

heterogeneity needed to fit the data, as recommended by Gelman, Carlin, Stern, Dunson, Vehtari

and Rubin (2013). Details of model selection appear in Appendix E.4.

We report results based on a model in which there are ten points of support for each distribution.

That is, there are ten worker types (L = 10), ten employer types (M = 10), and ten match types

(Q = 10). A comparison of the correlation with log earnings of εGibbs and εAKM reported in Table

2 shows we were able to obtain a good fit on residual variation. The correlation between the AKM

residual and log earnings is Corr (y, εAKM) = 0.17, while the correlation between the structural

residual and log earnings is Corr (y, εGibbs) = 0.24. In practice, our model may include more

support points for the employer heterogeneity than needed. If so, the apparent lack of parsimony

does not introduce problems with our results, since we can collapse redundant types in our over-

parameterized model.

Our main results use five years of data to limit the influence of drift in the latent heterogeneity

22



over time. A countervailing concern is that the short window may not provide enough variation to

separate the influence of worker, firm, and match heterogeneity. In Appendix F, we report results

from estimating our model on the same 0.5% random sample of workers, but where the data are

augmented with all available dominant jobs that are recorded in the LEHD infrastructure filesystem

between 1990-2010. The results using the extended work histories lead to identical conclusions

about the nature of endogenous mobility, and so we focus in the main text on discussing results

from the primary analysis sample.

6.1 Summary of Structural Earnings Model Estimates

Figure 5 depicts the posterior distribution of the structural earnings equation parameters using the

same scale on the y-axis for each panel. The figures plot the posterior mean ±2 ×MCSE. The

plot showing the posterior mean along with the 5th and 95th percentile of the posterior distribution

is nearly identical and appears for reference as Figure OA2 in the online appendix. For consistency

with the conventional AKM decomposition, we report the earnings parameters as deviations from

the grand mean of log earnings.
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(c) Structural Match Effect, µ

Figure 5: Posterior distribution of earnings equation parameters. Dashed lines indicate the region
within 2×MCSE of the estimate.

Note that there is variation in the estimated earnings parameters on all three heterogeneity

dimensions. All of these posterior distributions are extremely tight around the posterior mean of

the value of the effect for each type. The dispersion of the match effects is much greater than that

of the person effects, θ, or employer effects, ψ. There is very little variation in estimated employer
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effects between types 3 and 8. Our model only really detects four or five distinct employer types.

Consequently, for the highest-paying firms, those with the largest values of ψ, where two of those

four types are located, the confidence intervals around the posterior mean firm effects are very

tight.

Table 1: Posterior Distribution of Worker, Firm, and Match Population Heterogeneity

(1) (2) (3)
Worker Firm Match

Mean MCSE Mean MCSE Mean

πA1 0.0828 0.0477 πB1 0.0541 0.0012 πK1 0.0391
πA2 0.0512 0.0179 πB2 0.3374 0.1461 πK2 0.0595
πA3 0.1151 0.0354 πB3 0.0263 0.0341 πK3 0.0814
πA4 0.1305 0.0353 πB4 0.0293 0.0358 πK4 0.1046
πA5 0.0936 0.0230 πB5 0.0273 0.0298 πK5 0.1174
πA6 0.1004 0.0164 πB6 0.0265 0.0264 πK6 0.1229
πA7 0.1376 0.0206 πB7 0.0246 0.0239 πK7 0.0847
πA8 0.1164 0.0094 πB8 0.0083 0.0007 πK8 0.1222
πA9 0.1201 0.0149 πB9 0.4136 0.0254 πK9 0.2028
πA10 0.0523 0.0051 πB10 0.0524 0.0038 πK10 0.0653

Columns (1) and (2) report the posterior distribution of the estimated probability that a worker or firm, respectively,
belongs to each latent heterogeneity type. The types are sorted in increasing order by the associated wage hetero-
geneity component. Column (3) report the marginal distribution across the population of latent match heterogeneity
types. There are no associated MCSE estimates because the marginal distribution is computed from the conditional
distribution of match quality given the worker and firm types.

Table 1 reports the posterior mean and MCSE of the parameter governing the population dis-

tribution of worker types, πA, the population distribution of employer type, πB, and the marginal

probability for match type, πK . The latter probability is computed by integrating the conditional

probability, πk|ab over worker and employer types. All worker types occur in the population with

positive probability, however, workers are less likely to be of the highest and lowest type in the

population. The case is even more extreme for employers. The distribution of employer types

has only four or five distinct points of support. The distribution of employer types is thus very

coarse. By contrast, the distribution of match types is the most granular. The marginal distribution

of match types is clearly skewed toward higher match quality.
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For completeness, Table OA3 in Appendix A reports the posterior mean and MCSE for the

parameters associated with observed covariates included in the earnings model. Furthermore, the

reader may be concerned that our earnings model, while richly specified, does not explicitly control

for serial correlation in the residual. Table OA4 summarizes the posterior distribution of residual

autocorrelation at up to three lags, and shows that they are quite small.

Comparison of AKM and Structural Estimates

Table 2 reports correlations, weighted by job duration, among earnings and its components as esti-

mated by least squares (labeled AKM) and from our structural endogenous mobility model (labeled

Gibbs). Column (1) reports the correlation of earnings (labeled lnw) with each of the earnings

components. In the structural estimates, much more of the variation in earnings is explained by

individual heterogeneity than in the AKM estimates. Much less of the variation is explained by

employer and match specific heterogeneity. As we will see, though, this is partially due to a strong

negative correlation between the structural match effect and the structural firm and worker effects.

Table 2: Correlation Matrix of Wage Equation Parameters: LEHD Data 0.5% Sample, (10, 10, 10)
Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

lnw XβAKM θAKM ψAKM µAKM εAKM XβGibbs θGibbs ψGibbs µGibbs εGibbs

lnw 1.00
XβAKM 0.47 1.00
θAKM 0.36 −0.57 1.00
ψAKM 0.45 0.05 0.10 1.00
µAKM 0.20 0.00 0.00 0.00 1.00
εAKM 0.17 0.00 0.00 0.00 0.00 1.00

XβGibbs 0.79 0.59 0.13 0.23 0.03 0.02 1.00
θGibbs 0.47 0.13 0.30 0.22 0.00 0.00 0.21 1.00
ψGibbs 0.33 0.08 0.13 0.41 0.08 0.00 0.15 0.01 1.00
µGibbs 0.04 −0.00 0.04 −0.08 0.20 0.00 −0.03 −0.46 −0.46 1.00
εGibbs 0.24 0.01 0.07 0.07 0.12 0.68 0.00 0.00 0.00 0.00 1.00

Table entries are means of the correlation between the indicated variables across 9, 968 draws from the Gibbs sampler
described in the text.

The AKM estimates of the person and firm effects have a positive correlation of 0.10. This

result contrasts somewhat with prior estimates from LEHD data that reported a correlation closer
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to zero (Abowd et al. 2003; 2012). This discrepancy may reflect changes over time in the nature

of assortative matching, as seems to have been the case in Germany (Card et al. 2013). The AKM

match effect, because it is estimated from the least squares residual, is restricted to be uncorrelated

with the AKM person and firm effects, as is the case in our subsample. However, the structural

person and firm effects are strongly negatively correlated with the structural match effect.

In the structural estimation, the correlation between person and firm effects is much weaker, at

0.01. Note that this need not be the case: our structural model allows for separation and assign-

ment outcomes to be arbitrarily associated with worker and firm types. In the structural model,

there is a very strong negative correlation between the structural match effect and the structural

worker effect (−0.46) and the structural firm effect (−0.46). The structural estimates also exhibit a

positive correlation between observed and unobserved components of individual earnings hetero-

geneity: Corr (XβGibbs, θGibbs) = 0.21. This result contrasts with the AKM estimates, for which

Corr (XβAKM , θAKM) = −0.57.

The bottom-left panel of Table 2 reports the correlation between the mobility-biased AKM

parameters and the structural parameters. This panel provides some insight into the endogenous

mobility bias. Observe, first, that there is a positive correlation between the AKM heterogeneity

components and their structural counterparts. Second, the AKM estimates of the worker and firm

effects combine information from the structural worker, firm, and match effects. In particular,

the structural match effect is positively correlated with the AKM person effect and negatively

correlated with the AKM firm effect.

These results indicate that the positive correlation between the AKM person and firm effects

does not reflect positive assortative matching on latent worker and employer characteristics. The

correlation arises instead because high-earnings workers are typically employed on low-paying

matches, and the heterogeneity from those matches loads onto the OLS worker and firm effects.

The structural model indicates that workers are assigned randomly to firms, and that most earnings

variation is associated with worker and match-specific heterogeneity. However, that match-specific

heterogeneity acts to compress the earnings distribution. Random assignment is a feature of models

of labor market search of the type surveyed in Mortensen (2003) and Pissarides (2000). Our

findings are also consistent with the basic framework outlined by Gruetter and Lalive (2009), who
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observe that in the presence of endogenous mobility, realized match effects compress the earnings

distribution and, as a result, the estimated variance of firm effects in the AKM model will be biased

downward relative to the true variance.

Table OA2 in Appendix A reports the same information in the form of a regression of the

structural estimates of the earnings decomposition components on the AKM estimates of all com-

ponents. These regressions compute the conditional expectation of the structure given the AKM

estimates. They can be used to compute estimates of the earnings components corrected for en-

dogenous mobility bias from data for which only the AKM estimates are available.

6.2 Summary of Structural Mobility Model

Figures 6 and 7 summarize the mobility model by presenting the stationary distribution of worker-

firm pairs and the expected match effect on each such pair. We obtain the steady-state distribution

by computing the kernel of the Markov transition matrix implied by our mobility model from the

estimated parameters, γ, δ, πA, πB and πK|AB. This gives us, for each worker type, the steady-state

probability of observing a worker of that type matched to a particular type firm on a particular type

of match.
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Figure 6: Expected structural match effect by worker/firm type cells. Legend is firm types.
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Figure 7: Expected share of matches in steady-state for each worker-type firm-type combination.
Legend is firm types.

Figure 6 is structured identically to its AKM analog (Figure 1b). Each bar represents the

expected match effect, conditional on a worker type–firm type cell. The bars are grouped by

worker type, so that within each worker type, we see the pattern of expected match effects for

workers of that type when matched to different firm types. The figure shows two key patterns:

the expected match effect is strongly decreasing with firm type and with worker type. Thus, the

mobility model in steady-state exhibits the same compression pattern we observed in Table 2, as

anticipated in our discussion of the AKM estimates.

Institutions might provide a partial explanation for the observed compression. Workers may

have positive estimated match effects when employed in low-earnings firms because those firms are

constrained by the minimum wage. This would certainly be a type of match-specific determinant

of pay that would depend on worker and firm type, and would also change worker mobility. This

could also explain why, when low-type workers move up the firm ladder, they do not get as much of

a boost as high-type workers. We thank an anonymous referee for pointing out this interpretation.

Figure 6 shows the expected match effect conditional on observing a given worker-firm combi-

nation. Figure 7 gives the probability of observing each worker-firm combination in steady-state.

Again, the data are grouped by worker type, so that within each group, the bars show the probabil-

28



ity of observing a worker in a firm of each type. The pattern for each worker type is very similar to

the population distribution of firm types reported in Table 1. There is some evidence of a selection

effect: workers of type 10 are roughly 50 percent more likely to be observed in high-wage firms

than workers of type 1. This is consistent with the weak evidence of positive assortative match-

ing from Table 2. Overall, it appears that worker-firm matches are sampled almost randomly in

steady-state.
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Figure 8: Probability of not being employed in the sample frame by worker effect decile (AKM)
and latent worker type (Structural)

Figure 8 shows the probability of non-employment, conditional on the latent worker type. For

comparison, we also show the corresponding probabilities when workers are grouped by the decile

of their AKM worker effect. The estimates from the structural model show the non-employment

probability is weakly decreasing in the latent worker type. That is, more highly paid workers are

more likely to be employed. This standard mover-stayer result is not assumed in estimation. By

contrast, the results based on the AKM worker effect deciles indicate that highly-paid and low-

paid workers are less likely to be employed than workers in the middle of the distribution. The

non-employment probabilities may seem high because they incorporate transitions out of the labor

force and into employment outside our three-state sample frame in addition to unemployment.

Finally, Figure 9 displays the structural analog to Figure 3. It reports, for workers who leave

29



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

Ex
pe

ct
ed

 M
at

ch
 E

ffe
ct

 (O
rig

in
)

Origin Firm Type

1 2 3 4 5 6 7 8 9 10 11

(a) Worker Type 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

Ex
pe

ct
ed

 M
at

ch
 E

ffe
ct

 (O
rig

in
)

Origin Firm Type

1 2 3 4 5 6 7 8 9 10 11

(b) Worker Type 5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

Ex
pe

ct
ed

 M
at

ch
 E

ffe
ct

 (O
rig

in
)

Origin Firm Type

1 2 3 4 5 6 7 8 9 10 11

(c) Worker Type 10

Figure 9: Expected match effect within origin/destination employer type cells, disaggregated by
worker type. Legend is firm types.

their job, the expected match effect on the origin job conditional on the types of the origin and

destination job. The plots are disaggregated by worker type. The plots illustrate the compression

pattern that emerged in the discussion of Table 2. The match effect is negatively correlated with

the origin firm type, as well as with worker type. Furthermore, conditional on worker type and

origin-firm type, the magnitude of the match effect does not appear to provide nearly as much

power to predict the destination job type as was the case in Figure 3 based on the mobility-biased

AKM estimates.

6.3 Validation: Relationship with Revenue

If the AKM estimates are biased by endogenous mobility, we should observe a difference in the re-

lationship between employer revenues and the earnings heterogeneity components estimated from

our structural model. Table 3 reports the results of estimating a firm-level regression of log rev-

enue per worker on the estimated firm effect, the average worker effect within firm, and the average

match effect within firm. For this analysis, we restrict the sample to jobs from 2002, which is the

reference year for the revenue data in the 2002 Economic Census. After this restriction, the sample

consists of 60,589 firms. The columns under (1) report the parameter estimates and standard errors

from the regression onto firm-level aggregates of the structural earnings components. The columns

under (2) reports the estimates from the regression onto firm-level aggregates of the uncorrected

AKM earnings components.
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Table 3: Regression of Log Revenue Per Worker on Structural and AKM Estimates of Wage De-
composition Components

(1) (2)
Structural AKM

Coef Ste Coef Ste
Firm Avg. θ 0.1967 0.0129 0.0637 0.0062
ψ 0.2349 0.0133 0.510 0.0140
Firm Avg. µ 0.1732 0.0141 0.007 0.0194
Firm Avg. Xβ 0.0398 0.0077 0.0354 0.0059
Intercept 3.3526 0.0687 3.4542 0.0445
N 60, 589 60, 589

Coefficient estimates from firm-level regressions of log revenue per worker onto firm-level averages of estimated
earnings heterogeneity. Panel (1) uses the estimated wage components corrected for endogenous mobility bias from
the structural model. Panel (2) uses the uncorrected estimates computed using the AKM decomposition under the
assumption of exogenous mobility. The sample is based on data from 2002, the reference year for revenue data in
the 2002 Economic Census. The revenue data are multiply imputed where missing, and the reported coefficients and
standard errors include Rubin’s correction for imputation uncertainty.

When we use the AKM components of earnings heterogeneity, revenue per worker is strongly

correlated with the AKM firm effect, and only negligibly correlated with the average worker and

match effects. When, by contrast, we use the estimates of earnings heterogeneity from the endoge-

nous mobility model, the average match effect and average worker effect are much more strongly

correlated with revenue. We also find that the correlation between the structural firm effect and log

revenue per worker is considerably smaller than when the AKM firm effect is used: 0.2349 versus

0.5100.

We interpret these results as supporting our correction for endogenous mobility. Revenue per

worker should be a function of total human capital, both in the form of average worker quality

and match quality, and any productive advantage accorded by the firm-specific wage premium. In

the uncorrected estimates, there is no relationship between worker quality (average worker effect)

or match quality and revenue. The variation in revenue per worker, which drives workers across

jobs, loads entirely onto the firm effect. After the correction for endogenous mobility, worker

heterogeneity and match quality have the relationships we would expect with revenue per worker. It

remains the case that more productive firms – those with greater revenue per worker – are also high-
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wage firms. Finally, we note that the regression of firm revenue on AKM earnings components is

potentially biased by sampling errors in the component estimates. Under some conditions, this

problem might not affect the regression onto Gibbs posteriors.

7 Conclusion

Our analysis confirms the importance of relaxing the assumption that job mobility is exogenous.

Exogenous mobility is essential to any direct causal interpretation of the AKM earnings decom-

position as well as for downstream applications that use the estimated worker and firm effects as

measures of skill and compensation policy. Our findings indicate that the assumption of exoge-

nous mobility is rejected in data from the LEHD program. Furthermore, the analysis of residuals

from the AKM decomposition indicates the presence of omitted match-specific heterogeneity. That

omitted match-specific heterogeneity is predictive of the type of firm to which a worker moves.

To relax the exogenous mobility assumption, we estimate a latent-type model that incorporates

these features. We allow for a match effect that is arbitrarily correlated with worker and firm het-

erogeneity, and we allow the match effect to drive both the decision to separate and the type of firm

to which the worker moves. Our results indicate that allowing for correlated match effects has a

strong effect on estimated worker- and firm-specific heterogeneity. Validation against firm revenue

data suggest that our corrections for endogeneity move the estimated effects in an economically

meaningful direction.

Our analysis is subject to some caveats. Our model is extremely computationally intensive, re-

quiring us to estimate on a sample of the LEHD data. While we have used a dense sub-sample, the

implications of sampling in relational, or network data, particularly for this sort of analysis remain

poorly understood. The parallelization afforded by the graph coloring algorithm can be scaled up,

but not within the computing facilities available through the Census Bureau. Additionally, we have

considered one model that relaxes the exogenous mobility assumption. The model we consider is

consistent with the residual diagnostics, but other models are possible.

For researchers working with these models, our results indicate that it is important to test for

failure of the exogenous mobility assumption. When it fails, it may also be important to attempt
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to correct for endogenous mobility bias. We find that the OLS estimates from the AKM model

are positively correlated with conceptually appropriate effects that were estimated correcting for

endogenous mobility. However, correcting for endogenous mobility has a substantial affect on

the relationship between worker and firm earnings heterogeneity, and on the relationship of these

components with firm revenue per worker. These findings recommend that caution is warranted

when interpreting worker and firm effects estimated under the AKM assumptions, as originally

noted by Abowd and Kramarz (1999).
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Appendices
A Online Appendix: Supplemental Tables and Figures

Table OA1: Covariance Matrix of Earnings Equation Parameters: LEHD Data 0.5% Sample,
(10, 10, 10) Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

lnw XβAKM θAKM ψAKM µAKM εAKM XβGibbs θGibbs ψGibbs µGibbs εGibbs

lnw 1.949 0.920 0.629 0.278 0.078 0.056 0.919 0.551 0.327 0.045 0.107
XβAKM 0.920 1.989 −1.022 0.029 −0.001 0.001 0.693 0.151 0.075 −0.005 0.006
θAKM 0.629 −1.022 1.599 0.056 0.000 0.000 0.135 0.315 0.112 0.038 0.029
ψAKM 0.278 0.029 0.056 0.194 0.000 0.000 0.085 0.087 0.126 −0.029 0.010
µAKM 0.078 −0.001 0.000 0.000 0.080 0.000 0.007 0.000 0.016 0.044 0.011
εAKM 0.056 0.001 0.000 0.000 0.000 0.056 0.004 0.000 0.000 0.000 0.052
XβGibbs 0.919 0.693 0.135 0.085 0.007 0.004 0.701 0.146 0.090 −0.017 0.000
θGibbs 0.551 0.151 0.315 0.087 0.000 0.000 0.146 0.707 0.003 −0.305 0.000
ψGibbs 0.327 0.075 0.112 0.126 0.016 0.000 0.090 0.003 0.485 −0.251 0.000
µGibbs 0.045 −0.005 0.038 −0.029 0.044 0.000 −0.017 −0.305 −0.251 0.619 0.000
εGibbs 0.107 0.006 0.029 0.010 0.011 0.052 0.000 0.000 0.000 0.000 0.107

Table entries are means of the covariance between the indicated variables across 9, 968 draws from the Gibbs sampler
described in the text using the estimation sample, with number of person-year observations 395,930.
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Table OA2: Regression of Structural Earnings Decomposition Components on AKM Estimates of
Earnings Decomposition Components

XβGibbs θGibbs ψGibbs µGibbs εGibbs

XβAKM 0.2600 0.0402 0.0129 0.2791 0.0159
(.0010) (.0031) (.0017) (.0113) (.0004)

θAKM 0.2389 0.2094 0.0559 0.2116 0.0265
(.0021) (.0105) (.0022) (.0071) (.0008)

ψAKM 0.3305 0.3812 0.6308 −0.2547 0.0413
(.0012) (.0475) (.0438) (.0181) (.0020)

µAKM 0.0944 0.0006 0.2012 0.5519 0.1374
(.0005) (.0001) (.0114) (.0137) (.0028)

εAKM 0.0637 −0.0007 −0.0002 −0.0048 0.9359
(.0003) (.0001) (.0000) (.0002) (.0003)

Constant 7.2656 −0.2421 −0.0344 −2.2883 −0.1258
(.0574) (.0186) (.0015) (.0774) (.0035)

Results from running a regression of the earnings components estimated under the endogenous mobility model on
earnings components estimated using the AKM decomposition. The reported values are the mean parameter estimate
and the correlated-draw Monte Carlo standard errors across 9,968 draws from the Gibbs sampler using the estimation
sample, with number of person-year observations 395,930.
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Table OA3: Observed Covariate Parameters: AKM and Structural Estimates

(1) (2)
AKM Model Structural Model

Variable Estimate Mean (MCSE)

age 0.5555 0.6321 (.0064)
age2 −0.1864 −0.2087 (.0023)
age3 0.0277 0.0311 (.0003)
age4 −0.0016 −0.0018 (.0000)

female× age −0.2534 0.0031 (.0021)
age2 0.0866 −0.0091 (.0010)
age3 −0.0136 0.0019 (.0002)
age4 0.0008 −0.0001 (.0000)

black× age −0.2226 0.0157 (.0025)
age2 0.0788 −0.0160 (.0019)
age3 −0.0127 0.0035 (.0004)
age4 0.0008 −0.0002 (.0000)

hispanic× age 0.0644 0.0369 (.0063)
age2 −0.0323 −0.0173 (.0050)
age3 0.0065 0.0042 (.0012)
age4 −0.0004 −0.0002 (.0001)
sixq2 0.8851 0.7553 (.0069)
sixq3 1.6680 1.6226 (.0088)
sixq4 2.0301 2.1874 (.0115)
sixq5 2.3843 2.6303 (.0120)
sixq6 2.6301 2.7496 (.0103)

sixqleft −0.1161 −0.0629 (.0037)
sixqright −0.1054 −0.0301 (.0042)
sixq4th −0.3500 0.0882 (.0009)

sixqinter 0.2688 −0.3877 (.0030)
yr2000 0.0233 0.0044 (.0007)
yr2001 0.0308 −0.0020 (.0008)
yr2002 0.0494 −0.0089 (.0012)
yr2003 0.0611 −0.0097 (.0014)

σ 0.3277 (.0039)

Num. Obs. 60,123,894 395,930

Table entries are parameters on time-varying characteristics included in both the AKM model and the structural en-
dogenous mobility model. Column (1) reports parameter estimates from the fit of the AKM model to the LEHD
analysis population. Columns under (2) report the posterior means and Monte Carlo Standard Errors for parameters
on the indicated control variable based on 9,968 draws from the Gibbs sampler.
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Table OA4: Serial correlation in structural residuals

Correlation Coeff. MCSE

ρt,t−1 0.1153 0.0054
ρt,t−2 −0.0294 0.0060
ρt,t−3 −0.0805 0.0067

Each row reports the posterior mean and MCSE across 9,968 draws from the Gibbs sampler of the within-worker
correlation in the unexplained residual portion of earnings from the endogenous mobility model.
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Table OA5: Mean Log Earnings Net of Observed Characteristics for Workers Who Change Jobs
in 2001 by Quartile of Firm Effect for Origin and Destination Firms, 1999–2003

Transition 1999 2000 2001 2002 2003
Cell

1 to 1 0.587 0.604 0.642 0.645 0.647
1 to 2 0.625 0.614 0.975 1.017 1.041
1 to 3 0.726 0.703 1.353 1.387 1.411
1 to 4 0.799 0.746 1.803 1.821 1.853
2 to 1 1.017 1.030 0.756 0.765 0.759
2 to 2 1.208 1.239 1.264 1.264 1.273
2 to 3 1.354 1.356 1.585 1.602 1.622
2 to 4 1.496 1.488 1.996 2.013 2.041
3 to 1 1.449 1.437 0.741 0.770 0.760
3 to 2 1.567 1.577 1.367 1.394 1.398
3 to 3 1.806 1.834 1.857 1.845 1.860
3 to 4 1.997 2.004 2.205 2.205 2.236
4 to 1 2.025 2.042 0.727 0.723 0.717
4 to 2 2.025 2.045 1.378 1.413 1.430
4 to 3 2.124 2.182 1.964 1.960 1.967
4 to 4 2.403 2.491 2.487 2.443 2.456

The table entries are means of log earnings net of the effect of observed time-varying characteristics for a specific year
and transition cell. The sample is the LEHD analysis population described in Section 5.1.1 who change jobs exactly
once between 1999 and 2003, and where the year of job transition is 2001. This sample follows 566,300 workers
across 183,100 unique firms for a total of 2,832,000 person-year observations. Each job is assigned to a quartile based
on the estimated AKM firm effect. The “Transition Cell” column indicates the quartile of the origin and destination
job. Figure 4 displays a selection of these transition summaries.
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Figure OA1: Mean change in the AKM residual within origin/destination firm effect decile. Leg-
end is for destination firm types.
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(a) Structural Worker Effect, θ
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(b) Structural Firm Effect, ψ
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(c) Structural Match Effect, µ

Figure OA2: Posterior distribution of wage equation parameters. The solid line indicates the
posterior mean. Dashed lines indicate the 5th and 95th percentiles.
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B Online Appendix: Formal Test of Endogenous Mobility
To implement the tests, we discretize estimated person effects, firm effects, and residuals onto
a fixed support. The quantiles that define the support points are calculated from a point-in-time
snapshot of the distribution of dominant jobs in progress as of April 1, 2002. That distribution is
restricted to full-time, full-year jobs held by individuals age 18-70. Finally, in testing, we use all
465 million dominant job observations for workers 18-70 that occur between 1999 and 2002. Test
1, the match effects test, uses data for about 104 million job changers during 1999-2004, inclusive.
Test 2, the productive workforce test, uses data for about 4 million firms alive in 2001.

B.1 Data Preparation and Definitions
Given the fitted values from the AKM decomposition, we select the sample of individuals and
employers active at the beginning of 2002, quarter 2 (April 1, 2002). For this sample, we compute
deciles from the estimated θ̂i, ψ̂J(i,t), and ε̂it as described above. Using the estimated deciles, we
discretize each component of the decomposition onto 10 fixed points of support. We adopt the
following notation:

Q (z) = a denotes quantile a for z ∈ {θ, ψ, ε}

and
]Q (z) denotes then number of quantiles for z ∈ {θ, ψ, ε} .

In the tests presented below, we use deciles, so ]Q (z) = 10.

B.2 Test Statistic 1: Match Effects Test
Under the hypothesis of exogenous mobility, the match effect for a given individual–employer pair
can be estimated using the average residual for the most recent completed job at j by i. We denote
these match effects as εit−1 for those individuals who change employers between periods t− 1 and
t. Formally,

εit−1 =

∑
{s|J(i,s)=j∧s<t∧J(i,s)6=J(i,t)}

ε̂is∑
1 {s|J (i, s) = j ∧ s < t ∧ J (i, s) 6= J (i, t)}

An individual for whom εit−1 > 0 received wage payments while employed at J (i, t− 1) = j that
exceeded their expected value, again under the hypothesis of exogenous mobility. The opposite is
true for individuals for whom εit−1 < 0.

B.2.1 Derivation of the Match Effects Test Statistic

To form a test statistic that captures the potential for εit−1 to be predictive of the next employer type,
we count all (i, t) pairs where J (i, t− 1) 6= J (i, t) (job changers) in quantiles of the components
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θ̂i, ψ̂J(i,t−1), ψ̂J(i,t), and εit−1:

nabcd =
∑

{i,t|J(i,t−1)6=J(i,t)}

1


Q
(
θ̂i

)
= a ∧

Q
(
ψ̂J(i,t−1)

)
= b ∧

Q
(
ψ̂J(i,t)

)
= c ∧

Q (εit−1) = d


. (B-1)

The joint probability of observing nabcd is

πabcd = Pr
{
Q (θi) = a ∧Q

(
ψJ(i,t−1)

)
= b ∧Q

(
ψJ(i,t)

)
= c ∧Q (εit−1) = d

}
.

Exogenous mobility implies that the match effect from period t− 1 should not be predictive of the
transition from ψJ(i,t−1)to ψJ(i,t) for an individual with θi. This hypothesis can be formalized as
conditional independence of the outcome(

Q (θi) = a ∧Q
(
ψJ(i,t−1)

)
= b ∧Q

(
ψJ(i,t)

)
= c
)

from Q (εit−1) = d. In terms of the joint probabilities we compute

X2
ν1

= Test (πabcd = πabc+π+++d) (B-2)

where the subscript + denotes the marginal distribution with respect to the indicated dimension,
and degrees of freedom are given by

ν1 =
(
# (Q (θi))×#Q

(
ψJ(i,t−1)

)
×#Q

(
ψJ(i,t)

)
− 1
)
× (#Q (εit−1)− 1) .

B.2.2 Computation of the Match Effects Test

We compute the test statistic (B-2) by direct calculation of the chi-squared statistic from the 4-way
contingency table defined by the discretized earnings heterogeneity under the conditional indepen-
dence assumption πabcd = πabc+π+++d. The population of job changers consists of individuals i
for whom J (i, t− 1) 6= J (i, t) for t = 1999, ..., 2003. The entire population of individuals and
employers was used to compute the quantiles of the θ̂i, ψ̂J(i,t−1), ψ̂J(i,t), and εit−1 distributions.
Then the counts (B-1) were tabulated using all observations in the job-changer population and
used to compute the relevant marginal frequencies for the test.

B.3 Test Statistic 2: Productive Workforce Test
Our second test considers the implications of exogenous mobility for the employer’s choice of
workforce distributions over θi. The average amount by which wages deviate from their expecta-
tions, under exogenous mobility, for a given workforce at a point in time can be computed as the
average residual for all employees at J (i, t) = j in year t
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ε̃jt =

∑
{i|J(i,t)=j}

ε̂it∑
1 {i|J (i, t) = j}

.

An employer for whom ε̃jt > 0 has paid higher than expected wages in period t; and the opposite is
true for ε̃jt < 0. Although there could be many reasons for this, we will refer to ε̃jt as a measure of
workforce productivity. However, the exogenous mobility hypothesis is silent about the meaning
of ε̃jt. What matters is its relationship to the within-employer distribution of θi. If ε̃js is predictive
of the within-employer distribution of θi for some period t > s, given ψj , then exogenous mobility
fails because the distribution of future employment depends on residuals in the theoretical AKM
decomposition.

To implement this test, consider two periods s < t and all employers with strictly positive
employment in period s. Compute the counts

nabc|s =
∑
j

1
{
Q
(
ψj
)

= a ∧Q (ε̃js) = c
}
×

∑
{i|J(i,s)=j∧Q(ψj)=a}

Q (θi) = b


and

nabc|t =
∑
j

1
{
Q
(
ψj
)

= a ∧Q (ε̃js) = c
}
×

∑
{i|J(i,t)=j∧Q(ψj)=a}

Q (θi) = b

 .

Note that the two counts are not independent because they condition on the same distribution of
employers alive in period s. Let

πabc|s = Pr
{
Q
(
ψj
)

= a ∧ (Q (θi) = b|s) ∧Q (ε̃js) = c
}

and
πabc|t = Pr

{
Q
(
ψj
)

= a ∧ (Q (θi) = b|t) ∧Q (ε̃js) = c
}
.

Then, the statistic for testing the conditional independence of the within-employer distribution over
θi with respect to the residual is

X2
ν2

= Test

(
ln

(
πabc|s
πabc|t

)
= ln

(
πab+|s
πab+|t

))
(B-3)

with degrees of freedom ν2 = (#Q (θi)− 1)×(#Q (ε̃js)− 1)+
(
#Q

(
ψj
)
− 1
)
×(#Q (θi)− 1)×

(#Q (ε̃js)− 1).
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B.3.1 Derivation of the Productive Workforce Test Statistic

To see why the test in equation (B-3) is correct, consider the log-linear model

ln

(
πabc|s
πabc|t

)
=

(
µa|s − µa|t

)
+
(
µb|s − µb|t

)
+
(
µc|s − µc|t

)
+
(
γab|s − γab|t

)
+
(
γac|s − γac|t

)
+
(
γbc|s − γbc|t

)
+
(
ρabc|s − ρabc|t

)
where the notation is as follows:

• µz|t denotes main effects of z ∈
{
Q
(
ψj
)
, Q (θi) , Q (ε̃js)

}
in period t,

• γyz|t denotes 2-way interactions of (y, z) ∈
{
Q
(
ψj
)
, Q (θi) , Q (ε̃js)

}
in period t,

• ρxyz|t denotes 3-way interactions of (x, y, z) ∈
{
Q
(
ψj
)
, Q (θi) , Q (ε̃js)

}
in period t.

The change in main effects of Q
(
ψj
)

from period s to t,
(
µa|s − µa|t

)
, must be 0 since the

population of employers is restricted to be identical in both periods. Similarly, the change in main
effects of Q (ε̃js) ,

(
µc|s − µc|t

)
, must be 0 since the workforce productivity distribution is only

measured at period s. The change in interaction of Q
(
ψj
)

and Q (ε̃js) ,
(
γac|s − γac|t

)
, must also

be 0 for the same reason.
This leaves two sets of parameters that are unconstrained by the null hypothesis–the change

in main effects of Q (θi),
(
µb|s − µb|t

)
, with df = (#Q (θi)− 1) and the change in interaction of

Q
(
ψj
)

and Q (θi),
(
γab|s − γab|t

)
, with df =

(
#Q

(
ψj
)
− 1
)
× (#Q (θi)− 1). The parameters

affected by the null hypothesis are the change in interaction of Q (θi) and Q (ε̃js),
(
γbc|s − γbc|t

)
,

with df = (#Q (θi)− 1) × (#Q (ε̃js)− 1) and the change in interaction of Q
(
ψj
)
, Q (θi) and

Q (ε̃js),
(
ρabc|s − ρabc|t

)
, with df =

(
#Q

(
ψj
)
− 1
)
× (#Q (θi)− 1) × (#Q (ε̃js)− 1). Under

the null hypothesis
(
γbc|s − γbc|t

)
= 0 and

(
ρabc|s − ρabc|t

)
= 0 with df = ν2 = (#Q (θi)− 1) ×

(#Q (ε̃js)− 1) +
(
#Q

(
ψj
)
− 1
)
× (#Q (θi)− 1)× (#Q (ε̃js)− 1).

B.3.2 Computation of the Productive Workforce Test Statistics

We use the method of moments for test (B-3). The observations are firms j with positive employ-
ment in s. For each firm compute

xj =


nj1t
nj+t
− nj1s

nj+s
nj2t
nj+t
− nj2s

nj+s

...
nj(#Q(θi)−1)t

nj+t
−

nj(#Q(θi)−1)s

nj+s


where

njqt =
∑

{i|J(i,t)=j}

1 (Q (θi) = q) .
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and xj is [(#Q (θi)− 1)× 1] . For each value of a and c compute the vector of means and the
covariance matrix

x̄ac =

∑
{j|Q(ψj)=a∧Q(ε̃js)=c}

nj+sxj

∑
{j|Q(ψj)=a∧Q(ε̃js)=c}

nj+s

Vac =

∑
{j|Q(ψj)=a∧Q(ε̃js)=c}

nj+s (xj − x̄ac) (xj − x̄ac)′

∑
{j|Q(ψj)=a∧Q(ε̃js)=c}

nj+s
.

N =
∑
j

1 (j|∃i : J (i, s) = j)

For each value of a compute the expected mean under the null hypothesis

x̄a =

∑
{j|Q(ψj)=a}

nj+sxj

∑
{j|Q(ψj)=a}

nj+s
.

Then,
X2
ν2

= N
∑
a,c

(x̄ac − x̄a)′ V −1ac (x̄ac − x̄a) .

Under the null hypothesis, X2
ν2

follows a chi-square distribution with ν2 degrees of freedom.

C Online Appendix: Posterior Distribution of the Parameter
Vector

The posterior distribution of ρ given (Y, Z) is

p (ρ|Y, Z) ∝ £ (ρ|Y, Z)
1

σν0+1
exp

(
− s

2
0

σ2

) L∏
`=1

π
1
L
−1

a`

M∏
m=1

π
1
M
−1

bm (C-1)

×
L∏
`=1

M∏
m=0

Q∏
q=1

(
π

1
Q
−1

q|`m γ
1
2
−1

`mq

(
1− γ`mq

) 1
2
−1

M∏
m′=0

δ
1

M+1
−1

m′|`mq

)
.

This distribution factors into posterior distributions for the model parameters that are independent,
conditional on the latent data, from which we sample.
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To characterize these distributions, we introduce new notation. The matrix G = [X ABK] is
the full design of observed characteristics, ability, productivity, and match types given the observed
and latent data. The term ν, which appears in the posterior of σ, is ν = N + ν0 − (L + M + Q).
The sum of squared log earnings residuals is

s2 =

lnw −G

ˆ
α
θ
ψ
µ



T lnw −G

ˆ
α
θ
ψ
µ




ν
. (C-2)

The remaining parameters are sampled from Dirichlet posteriors, denoted by D.
Key to estimation are various counts from the completed data. na` is the count of workers with

ability type `. nbm is the number of employers in productivity type m. nk|abq is the number of
matches observed in quality type q. nseplmq is the number of observations in which a worker in ability
type ` separates from an employer in productivity type m when match quality was q. Finally,
ntransm′|`mqis the number of transitions by workers in ability type ` from a match with an employer in
productivity type m and match quality type q to an employer in productivity type m′.

The posterior distribution of the wage equation parameters is
α
β
θ
ψ
µ

 |σ ∼ N


ˆ
α
β
θ
ψ
µ

, σ2
(
GTG

)−1
 (C-3)

where
ˆ
α
β
θ
ψ
µ

 =
(
GTG

)−1
GTw,

and

σ2 ∼ IG

(
ν

2
,

2

νs2

)
. (C-4)

The posterior distributions for the latent heterogeneity types are Dirichlet:

πa ∼ D

(
na1 +

(
1

L

)
, . . . , naL +

(
1

L

))
; (C-5)

πb ∼ D

(
nb1 +

(
1

M

)
, . . . , nbM +

(
1

M

))
; (C-6)
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πk|ab ∼ D

(
nk|ab1 +

(
1

Q

)
, . . . , nk|abQ +

(
1

Q

))
. (C-7)

The posterior distributions of the separation and assignment parameters of the mobility model are
also Dirichlet:

γlmq ∼ D

(
nsep`mq +

(
1

2

)
, nstay`mq +

(
1

2

))
; (C-8)

δb|lmq ∼ D

(
ntrans0|`mq +

(
1

M + 1

)
, . . . , ntransM |`mq +

(
1

M + 1

))
. (C-9)

D Online Appendix: The Mobility Model in Steady-State
The stationary distribution of the mobility model gives a steady-state distribution of employment
spells across worker, employer, and match types. This, it turns out, is a model for the realized
mobility network, characterized in the data by the design matrix of employer effects, F , and the
associated cross-product term, DTF . We also interpret it as a characterization of the selection
model – the process by which particular matches are selected from the set of all possible matches.

The stationary distribution is simple to characterize: define λ`,m,q to be the expected number
of matches in steady-state between workers of type ` and employers of type m on matches with
quality q. Now define the diagonal matrix

Λ = diag([λ111, λ112, . . . , λLMQ]T ). (D-1)

Note that Λ does not account for transitions to non-employment. For exposition, suppose L =
M = Q = 2 so Λ is 8 × 8. In estimation, we let L, M , and Q vary and report results for the case
L = Q = M = 10.

In steady-state, observed log earnings data lnw are drawn from a discrete distribution propor-
tional to Λ. Net of the statistical residual, and the effect of observed time-varying characteristics,
Xβ, the potential outcomes lnw −Xβ − ε are completely characterized by an LMQ× 1 vector,
ỹ with

ỹ`,m,q = α + θ` + ψm + µq. (D-2)

The model therefore specifies

• Potential Outcomes: ỹ, and

• Selection Process: Λ.

Define a set of indicator matrices analogous to the person, employer, and match design matri-
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ces. For the 2× 2× 2 model, this matrix is simply

[
D̃ F̃ G̃

]
=



1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1
0 1 1 0 1 0
0 1 1 0 0 1
0 1 0 1 1 0
0 1 0 1 0 1


. (D-3)

The notation D̃,F̃ , and G̃ highlights the connection between these reduced-dimension objects and
the design matrices of worker and employer effects in the full data AKM model.

Net of Xβ and ε, the earnings data are sampled from a distribution proportional to

Λỹ = Λ
(
D̃θ + F̃ψ + G̃µ

)
(D-4)

and the full cross-product matrix is

[
D̃ F̃ G̃

]T
Λ
[
D̃ F̃ G̃

]
=

D̃TΛD̃ D̃TΛF̃ D̃TΛG̃

F̃ TΛD̃ F̃ TΛF̃ F̃ TΛG̃

G̃TΛD̃ G̃TΛF̃ G̃TΛG̃

 . (D-5)

Notice that the upper-left block of the cross-product matrix in (D-5) is a model for the Laplacian
of the realized mobility network, which is random noise around this steady-state distribution.

E Online Appendix: Estimation and Data Details

E.1 Parallelization of Employer Updates through Graph Coloring
To speed computation of the employer updates, we exploit the conditional independence restriction
in the update formula, equation (13). For any employers, j and j′, we say j and j′ are degree-
one connected if any worker was observed to move from j directly to j′ in the sample. The set,
N (j), is the set of all employers, j′, that are degree-one connected to j. Equation (13) implies
that if j′′ is not in N (j) and j is not in N (j′′), then Pr [bj = m|a, b−j, k, Y, ρ] is independent of
Pr [bj′′ = m|a, b−j′′ , k, Y, ρ] and, therefore, conditional on the rest of the latent data, the latent type
of j and j′′ can be updated at the same time (in parallel).

To fully exploit the network structure and conditional independence assumptions, we need
groups of employers such that no two employers are degree-one connected. In the language of
graph theory, this problem is equivalent to graph coloring in which the task is to color each node
of a graph so that no two degree-one connected nodes have the same color, and to do so using the
fewest colors possible.

For a general graph, the problem of finding the minimum number of colors is intractable. For
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our task, it is sufficient to find a coloring that yields a small number of partitions relative to the
highest degree node in the data (well over 1,000). To that end, we implement the greedy sequential
coloring algorithm described in Gebremedhin et al. (2005). Briefly, the algorithm sorts network
nodes from highest to lowest degree (that is, sorting employers in descending order by the number
of job-to-job separations). The first node is assigned a color at random. For every other node, we
assign the least frequent color that has not already been applied to one of its neighbors. If there is
no such color, we add a new color to the list and continue.

In our data, this algorithm yields a coloring that partitions employers into 24 non-intersecting
subsets. We update the employer types in parallel within each subset, and in sequence across the
subsets. Our partition is well below the algorithmic worst-case guarantee: a coloring with as many
colors as the highest-degree node in the graph, which is much greater than 1,000.

E.2 Calculation of Monte Carlo Standard Errors
When reporting results, we report Monte Carlo standard errors (MCSE) in place of, or in addition
to, the posterior standard deviation. Unsurprisingly, we observe substantial autocorrelation across
draws from the Gibbs sampler. The MCSE are computed using time-series methods that account
for uncertainty about the location of the posterior distribution associated with autocorrelation in the
chain. Using MCSE provides a practical and rigorous method for combining information across in-
dependent runs of the Gibbs sampler (we use three). The MCSE also fully exploit the information
within each sample, while addressing within-thread autocorrelation, relative to more conventional
ad hoc approaches like thinning the sample. Our ability to do so is all the more important given the
computational burden of each draw. Even with the parallelization described in Section E.1, draw-
ing from the Gibbs sampler is very time-consuming. Here, we describe implementation choices
that affect our analysis. We refer the reader interested in the theoretical and practical details of
computing the MCSE to the survey by Geyer (2011).

In calculating the MCSE, we implement the multivariate extension developed in Kosorok
(2000) of initial sequence methods originally proposed by Geyer (1992). There are three variants
of the initial sequence method, all of which exploit reversibility of the Markov Chain to determine
the largest lag to include when computing the autocorrelation coefficient. The values reported in
our tables are estimates from the initial positive sequence method, which are the most conserva-
tive. The other two methods, which we also implement, are the initial monotone and initial convex
sequence methods. There is no meaningful difference across the estimates. In practice, we com-
pute the univariate MCSE for each parameter due to numerical instability in the auto-covariance
matrices.

E.3 Details of Variable Construction
Here we describe how the analysis variables are constructed from the LEHD microdata. Note
that the raw UI records that supply the LEHD infrastructure are quarterly earnings records. Our
analysis data are at the job-year level. Our key dependent variable, annual earnings, is constructed
by summing all quarterly earnings records (converted to base year 2000 dollars using CPI-U) for
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the same job (worker matched to firm) over the year in question. To deal with outliers in earnings,
we Winsorize at the 0.01 and 99.99 percentiles.

Demographic characteristics of the worker are linked from the National Individual Character-
istics File (NICF). These characteristics originate from Social Security records and other sources,
including Census 2000 and the American Community Survey. These characteristics, and their
construction, are described in Abowd et al. (2009), and subsequent internal research.

We also construct controls for the sequence of earnings records observed over the year. These
controls address the problem that jobs that end mid-year will mechanically have lower earnings
than jobs that last all year, even if the rate at which labor market earnings are acquired remains
constant. These are based on a bit string, called sixqwindow, that records the observed pattern of
quarters with positive earnings for a given job-year combination. The variable sixqwindow also
records whether the worker was observed employed on the current job at the end of the preceding
year and in the start of the subsequent year. So, for example, sixqwindow=000011 for a job that
started in the last quarter of the current year and continued into the first quarter of the next year.
Likewise, sixqwindow=110000 for a job on which a worker was employed at the end of the last
year, and also reported earnings into the first quarter of the current year. As a final example, a job
which is continuing from the preceding year, and continuing into the next year, and in which the
worker was employed all year will have sixqwindow=111111.

There are 60 feasible values of sixqwindow (since strings of the form x0000y are ruled out).
We summarize the salient information from these strings in a set of ten indicator variables. These
are

• sixq1 is an indicator equal to 1 if the sum of entries in sixqwindow is equal to 1, and
zero otherwise.

• sixq2 is an indicator equal to 1 if the sum of entries in sixqwindow is equal to 2, and
zero otherwise.

• sixq3--sixq6 are defined equivalently to the above.

• sixqleft is equal to 1 if sixqwindow has a continuous list of zeros from the right and
ones from the left.

• sixqright is equal to 1 if sixqwindow has a continuous list of ones from the right and
zeros from the left.

• sixqinter is equal to 1 if sixqwindow has a continuous list of ones interrupted by a
single sequence of zeros.

• sixq4th is equal to 1 if sixqwindow indicates the worker was employed in the fourth
quarter of the year.

These variables are effective in dealing with differences in job attachment over the year. An-
other option is to use the same information to convert the earnings data into an annualized level that
measures the earnings a worker would earn if they accrued earnings at the same rate through the
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entire year. The latter approach requires ad hoc assumptions about when jobs tend to end within
the quarter. By contrast, we can see exactly how the endogenous mobility model treats such cases
from the coefficient estimates in Table OA3. For example, consider the contrast between a job-year
observation for which the worker is continuously employed relative to a job-year observations for
which the worker is employed through the third quarter. In terms of the estimated parameters, the
worker employed full time full year will have sixq6=1, sixqleft=1, sixqright=1 (and all other job
attachment dummies=0). By contrast, the worker employed through the second quarter will have
sixq3=1 and sixqleft=1 (and all other attachment dummies=0). Assuming all else is the same, the
difference in predicted log earnings is 0.5321. That is, earnings on a job that ends during the third
quarter are predicted to be 60 percent as large a job that lasts all year and continues into the next.
The 60 percent figure captures the fact that jobs with reported earnings in the third quarter likely
do not last to the end of the quarter.

E.4 Details of Selecting the Number of Latent Types
Following the guidance in Gelman, Carlin, Stern, Dunson, Vehtari and Rubin (2013, p. 536), our
intention was to select a specification in which the number of latent types is an upper bound and
let the data reveal the number of occupied types. To that end, through an initial model selection
step, we selected the number of latent worker, firm, and match types to make the unexplained
variation in the structural earnings model as close as possible to the residual variance from the
AKM decomposition. We also favored specifications that are a priori symmetric in the number
of latent types. This process resulted in our preferred specification with ten latent types for each
dimension of heterogeneity. As discussed in the text, it appears ex post that while there is mass
in each of the latent worker and match types, only four of the latent firm types have support. The
missing categories are effectively collapsed in the posterior summaries.

An alternative procedure is to use a formal model selection criterion. For non-singular models
like ours, the literature cautions that the Akaike, Bayesian, and Deviance Information Criteria are
either technically infeasible, or not theoretically well-justified (Watanabe 2013; Gelman, Carlin,
Stern, Dunson, Vehtari and Rubin 2013). The recommended alternative is the Watanabe-Akaike
Information Criterion (WAIC) as it is both fully Bayesian, computationally tractable, and formally
connected to cross-validation. See Gelman, Hwang and Vehtari (2013) for complete details.

We applied the WAIC to models with 3, 5, 7, and 10 latent types on each dimension. For the
model selection exercise, we draw 1000 samples under each specification and compute the WAIC
based on a 1-in-25 thinned subsample after a 500 sample burn-in. The results appear in Table OA6.

The WAIC is lowest for the model with 5 latent heterogeneity types and highest for our pre-
ferred model with 10 latent types. The model with 10 types has non-trivially higher likelihood
than the others. These findings are consistent with our view that the model with 10 latent types
represents an upper bound on the number for our purpose of fitting the existing data.

Figures OA3 and OA4 show the estimated wage components and distribution across latent types
respectively for the models with 5, 7, and 10 latent types. These figures indicate that the pattern
of model estimates is broadly consistent across specifications. It is only when we go to the model
with 10 types that it becomes evident that several of the latent firm types are not filled. Again,
these categories are effectively collapsed when the data are postprocessed to generate posterior
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Table OA6: Likelihood and Watanabe-Akaike Information Criterion under Different Specifications

Model WAIC Likelihood

L,M,Q = 3 1, 174, 843 −431, 720
L,M,Q = 5 1, 109, 066 −363, 529
L,M,Q = 7 1, 139, 649 −367, 601
L,M,Q = 10 1, 153, 349 −337, 972

summaries. To instead perform an exhaustive model selection search using WAIC would require
us to separately fit the model under each of the 1000 possible combinations of types. It is therefore
infeasible. Given the goals of our analysis, the methodological literature and the data both support
our choice to model 10 latent types as an explicit upper bound.
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(a) Structural Worker Effect, θ
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(b) Structural Firm Effect, ψ
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(c) Structural Match Effect, µ
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(d) Structural Worker Effect, θ
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(e) Structural Firm Effect, ψ
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(f) Structural Match Effect, µ
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(g) Structural Worker Effect, θ
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(h) Structural Firm Effect, ψ
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(i) Structural Match Effect, µ

Figure OA3: Posterior distribution of earnings equation parameters. Dashed lines indicate ±2 ×
MCSE. The top row reports the specification with L = M = Q = 5 latent types. The second
row reports the specification with L = M = Q = 7 latent types. The second row reports the
specification with L = M = Q = 10 latent types.
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(a) Dist. of Worker Types (b) Dist. of Employer Types (c) Marginal Dist. of Match Types

(d) Dist. of Worker Types (e) Dist. of Employer Types (f) Marginal Dist. of Match Types

(g) Dist. of Worker Types (h) Dist. of Employer Types (i) Marginal Dist. of Match Types

Figure OA4: Posterior distribution of workers, employers, and matches across latent types. The
top row reports the specification with L = M = Q = 5 latent types. The second row reports the
specification with L = M = Q = 7 latent types. The second row reports the specification with
L = M = Q = 10 latent types.
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F Online Appendix: Results using Extended Work Histories
We report results of estimating the structural model on an extended version of our main analysis
sample. Specifically, we augment the main analysis sample by attaching the complete work history
from 1990–2010 for each of the workers. This “extended work history” sample includes 1,778,490
person-year observations that cover 181,592 firms, and 389,718 matches. It is constructed to con-
tain the primary analysis sample from the main text as a strict subset. The results reported here are
based on 7, 922 draws from three parallel runs of the Gibbs sampler after removing a 300 iteration
burn-in. A complete archive of these results is available by request.
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(a) Structural Worker Effect, θ
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(b) Structural Firm Effect, ψ
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(c) Structural Match Effect, µ

Figure OA5: Posterior distribution of earnings equation parameters. Dashed lines indicate the
region within 2×MCSE of the estimate.

Table OA7 reports the posterior mean and MCSE of the parameter governing the population
distribution of worker types, πA, the population distribution of employer type, πB, and the marginal
probability for match type, πK .

Table OA8 reports correlations, weighted by job duration, among earnings and its components
as estimated by least squares (labeled AKM) and from our structural endogenous mobility model
(labeled Gibbs). It is the analogue to Table 2 from the main text.

Table OA9 reports the results of estimating a firm-level regression of log revenue per worker
onto the estimated firm effect, the average worker effect, and the average match effect. It is the
analogue to Table 3 from the main text.
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Table OA7: Posterior Distribution of Worker, Firm, and Match Population Heterogeneity: Ex-
tended Work Histories

(1) (2) (3)
Worker Firm Match

Mean MCSE Mean MCSE Mean

πA1 0.0875 0.0078 πB1 0.2038 0.2668 πK1 0.0093
πA2 0.1317 0.0127 πB2 0.5985 0.2682 πK2 0.0249
πA3 0.1448 0.0032 πB3 0.0003 0.0001 πK3 0.0916
πA4 0.1379 0.0094 πB4 0.0003 0.0001 πK4 0.0616
πA5 0.0988 0.0103 πB5 0.0003 0.0001 πK5 0.0509
πA6 0.1005 0.0064 πB6 0.0002 0.0001 πK6 0.0620
πA7 0.0835 0.0052 πB7 0.0002 0.0000 πK7 0.1014
πA8 0.0695 0.0034 πB8 0.0159 0.0114 πK8 0.1572
πA9 0.0968 0.0067 πB9 0.0203 0.0129 πK9 0.3463
πA10 0.0490 0.0017 πB10 0.1602 0.0049 πK10 0.0948

Results from the strucutral model estimated using extended work histories. It is structured identically to Table 1 from
the main text.

Table OA8: Correlation Matrix of Earnings Equation Parameters: Extended Work Histories

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

lnw XβAKM θAKM ψAKM µAKM εAKM XβGibbs θGibbs ψGibbs µGibbs εGibbs

lnw 1.00
XβAKM 0.44 1.00
θAKM 0.39 −0.49 1.00
ψAKM 0.50 0.07 0.17 1.00
µAKM 0.34 0.03 0.00 −0.00 1.00
εAKM 0.20 −0.02 0.00 0.00 −0.00 1.00

XβGibbs 0.78 0.56 0.25 0.24 0.04 −0.02 1.00
θGibbs 0.50 0.14 0.38 0.27 0.00 0.00 0.25 1.00
ψGibbs 0.27 0.02 0.12 0.42 0.11 0.00 0.10 0.04 1.00
µGibbs 0.06 0.05 −0.05 −0.10 0.28 0.00 −0.00 −0.23 −0.74 1.00
εGibbs 0.27 0.00 0.02 0.08 0.17 0.78 0.00 0.00 0.00 0.00 1.00
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Table OA9: Regression of Log Revenue Per Worker on Structural and AKM Estimates of Earnings
Decomposition Components: Extended Work Histories

(1) (2)
Structural AKM

Coef Ste Coef Ste
Firm Avg. θ 0.2288 0.0119 0.0234 0.0059
ψ 0.2431 0.0082 0.6735 0.0133
Firm Avg. µ 0.2046 0.009 0.0158 0.0094
Firm Avg. Xβ 0.0343 0.0063 −0.0231 0.0045
Intercept 3.4898 0.0532 3.9476 0.0247
N 60, 116 60, 116
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