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Outline

 The database reconstruction theorem, a.k.a. the fundamental 
law of information recovery

 What is a privacy-loss budget?

 How do you respect a privacy-loss budget?

 How do you prove that the rate of privacy loss in published 
data is consistent with the budget?

 What does it mean to prove that the released data are robust 
to all future attacks?
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The Database Reconstruction Theorem

 Powerful result from Dinur and Nissim (2003) [link]

 Too many statistics published too accurately from a 
confidential database exposes the entire database with 
certainty

 How accurately is “too accurately”? 

 Cumulative noise must be of the order 𝑁
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http://dl.acm.org/citation.cfm?id=773173


Database Reconstruction II

 Led quickly to “differential privacy”: 

 Dwork, McSherry, Nissim, and Smith (2006) [link]

 Dwork (2006) [link] 

 Leading formal privacy model
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http://link.springer.com/chapter/10.1007/11681878_14
https://www.microsoft.com/en-us/research/publication/differential-privacy/


Database Reconstruction III

 “The Fundamental Law of Information Recovery” 

 Dwork and Roth, 2014 [link]

 Dwork, undated [link]

 Includes extensions found in 

 Dwork, McSherry and Talwar (2007) [link]

 Muthukrishnan and Nikolov (2012) [link]

 Kasiviswanathan, Rudelson and Smith (2013) [link]

 Dwork, Smith, Steinke, Ullman, and Vadhan (2015) [link]
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https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
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Historical Note

 The U.S. Census Bureau: first organization in the world to use a 
formally private confidentiality protection system in production

 OnTheMap (residential side)

 Machanavajjhala, Kifer, Abowd, Gehrke, and Vilhuber (2008) 
[link]
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http://lehd.ces.census.gov/applications/help/onthemap.html#!confidentiality_protection
https://www.computer.org/csdl/proceedings/icde/2008/1836/00/04497436-abs.html


What is a Privacy-loss Budget?

 Not a dollar budget, but works the same way

 Constrains aggregate risk of partial database reconstruction 
given all published statistics

 Worst-case limit to the inferential disclosure of any identity or 
item

 In differential privacy, worst case is over all possible databases 
with the same schema for all individuals and items
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Why Use Worst-case Protection?

 “Worst case” is “equal protection under the law”

 Protects every person in the population the same way

 Anyone who might have been selected for the census or survey, 
whether in the database or not

 “Average-case” protection does not

 Can identify who is advantaged or disadvantaged a priori
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Respecting a Privacy-loss Budget

 All released statistics can never permit a database 
reconstruction more accurate than the budget

 Protection into the indefinite future 

 For differential privacy, guarantee is over all future attackers 
and any database with the same schema
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Current Context

 Don’t current confidentiality laws require data stewards to respect 
a privacy-loss budget, at least implicitly?

 Unclear
 Law are silent on limitations of what can be learned about the 

confidential data from the released statistics (database 
reconstruction)

 All data publication inherently involves some inferential disclosure 
risk; otherwise, it is useless
 Dwork and Naor (2008) [link]: impossibility theorem
 Kifer and Machanavajjhala (2011)  [link]: no free lunch theorem
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http://repository.cmu.edu/jpc/vol2/iss1/8/
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This Is Not a New Problem

 Ratio of the circumference of a circle to its diameter is constant 
 Ancients didn’t understand irrational numbers:

 Babylonians: π = 3 Τ1 8

 Egyptians: π = 4 × Τ8 9
2

 Israelites: π = 3 [Talmud legislated value]

 Hindu: 𝜋 =
62,832

20,000
= 3.1416

 Euclid: no rational number is exact for this problem
 Archimedes: sequences can approximate 𝜋 with increasing accuracy

 But legal documents continued to use crude approximations
 Takes time to process abstract ideas into practical laws
 Legal guidance on inferential disclosure limitation is important 
 But must be constructed sensibly
Source: Beckman, Petr “A History of Pi” (1971) [link]
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https://www.amazon.com/History-Pi-Petr-Beckmann/dp/0312381859


Example: Randomized Response

 Randomized response is provably privacy-loss protective
 Privacy loss bounded by the maximum Bayes factor

max𝐵𝐹 =

𝑃𝑟 𝑆𝑄 = 𝑌𝑒𝑠|𝐴 = 𝑌𝑒𝑠
𝑃𝑟 𝑆𝑄 = 𝑁𝑜|𝐴 = 𝑌𝑒𝑠

𝑃𝑟 𝑆𝑄 = 𝑌𝑒𝑠
𝑃𝑟 𝑆𝑄 = 𝑁𝑜

=
𝑃𝑟 𝐴 = 𝑌𝑒𝑠|𝑆𝑄 = 𝑌𝑒𝑠

𝑃𝑟 𝐴 = 𝑌𝑒𝑠|𝑆𝑄 = 𝑁𝑜
=

ൗ1 2 + 1 − ൗ1 2 ൗ1 2

1 − ൗ1 2 ൗ1 2

= 3

 Bound is the logarithm of the maximum Bayes factor
 If 

 Sensitive question asked with probability ½ 
 And innocuous question is “yes” with probability ½
 Then the maximum Bayes factor is 3, and ln 3 = 1.1

 The privacy-loss expenditure (𝜀-differential privacy) is 1.1
 Sources: Warner (1965) [link] and Greenberg, Abdel-Latif, Simmons, and Horvitz (1969) [link]. SDL 

uses: Fienberg and Steele (1998) [link], Du and Zhan (2003) [link] and Erlingsson, Vasyl and Korolova
(2014) [link].
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http://dl.acm.org/citation.cfm?id=956810
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What Happens to Data Quality?

 Use relative sampling precision

𝑅𝑒𝑙. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑃𝑟 𝐴𝑠𝑘 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑄 2 𝑛

𝜃 1 − 𝜃
𝑛

𝜃 1 − 𝜃

=
1

2

2

= 0.25

 If

 Privacy loss is ln 3 

 Then, relative sampling precision is 25% of the most accurate estimator
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Disclosure Limitation is Technology

 The price of increasing data quality (public “good”) in terms of 
increased privacy loss (public “bad”) is the slope of the 
technology frontier:
 Economics: Production Possibilities Frontier (Risk-Return in finance)

 Forecasting models: Receiver Operating Characteristics Curve

 Statistical Disclosure Limitation: Risk-Utility Curve (with risk on the x-
axis)

 All exactly the same thing

 None able to select an optimal point
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Where social 
scientists act like 
MSC = MSB

Where computer 
scientists act like 
MSC = MSB



Some Examples

 Dwork (2008): “The parameter e in Definition 1 is public. The 
choice of e is essentially a social question and is beyond the 
scope of this paper.” [link, p. 3]

 Dwork (2011): “The parameter e is public, and its selection is a 
social question. We tend to think of e as, say, 0.01, 0.1, or in 
some cases, ln 2 or ln 3.” [link, p. 91]

 In OnTheMap, e = 8.9, was required to produce tract-level 
estimates with acceptable accuracy
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How to Think about the 

Social Choice Problem

 The marginal social benefit is the sum of all citizens’ 
willingness-to-pay for data quality with increased privacy loss

 Can be estimated from survey data

 The next slide shows how

See Abowd and Schmutte (2015) [link].
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Estimated 
Marginal Social 
Benefit Curve

Social Optimum: 
MSB = MSC



How to Prove That a Privacy-loss Budget 

Was Respected

 Must quantify the privacy-loss expenditure of each publication

 The collection of the algorithms taken altogether must satisfy 
the privacy-loss budget

 Requires methods that compose
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How to Prove That the Algorithms are 

Resistant to All Future Attacks

 Information environment is changing much faster than before

 It may no longer be reasonable to assert that a product is 
empirically safe given best-practice disclosure limitation prior 
to its release

 Formal privacy models replace empirical assessment with 
designed protection

 Resistance to all future attacks is a property of the design

22



The Silver Lining

 American Statistical Association on p-values [link]

 Call for more nuanced use 

 Data analysis conducted using privacy-preserving methods: 

 Control the false discovery rate 

 Reduce inferential errors due to multiple comparisons

 Examples: Erlingsson, Vasyl and Korolova (2014) [link]; Dwork et al. (2015) [link]; 
Apple (2016) [link] 
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https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf
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A Long Row to Hoe

 Concerted research and engineering effort needed to bring 
disclosure limitation into the 21st century

 Scientific integrity requires that we tackle this challenge

 First step is experimentation with the technologies known to 
work:

 Synthetic data with validation using formally private synthesizers

 Privacy-preserving data analysis via pre-specified query systems
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Thank you.

john.maron.abowd@census.gov
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