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__________________________________________________________________________________________________ 

This paper analyzes how to measure changes in inequality in an economy with income growth. The discussion distinguishes 

three stylized kinds of economic growth: 

1. high income sector enrichment, 

2. low income sector enrichment, 

3. high income sector enlargement, in which the high income sector expands and absorbs persons from the low 

income sector. 

The two enrichment types pose no problem for assessing inequality change in the course of economic growth: for high 

income sector enrichment growth, inequality might reasonably be said to increase, whereas for low income sector 

enrichment, inequality might be said to decrease. These judgments are non-controversial and non-problematical. Where 

problems arise is in the case of high income sector enlargement growth. In that case, the two alternative approaches have 

been shown in this paper to yield markedly different results: 

1. The traditional inequality indices generate an inverted-U pattern of inequality. That is, inequality rises in the 

early stages of high income sector enlargement growth and falls thereafter. 

2. The new approach suggested here, based on axioms of gap inequality and numerical inequality, generates a U 

pattern of inequality. That is, inequality falls in the early stages of high income sector enlargement growth and 

rises thereafter. 

The discrepancy between the familiar indices and the alternative approach based on axioms of gap inequality and 

numerical inequality bears further scrutiny. Two courses of action are possible. One might try to axiomatize inequality in 

ways that generate an inverted-U pattern in high income sector enlargement growth, thereby rationalizing the continued 

use of the usual inequality indices with the inverted-U property. Alternatively, one might retain the axioms proposed here, 

embed them into a more formal structure, and construct a family of inequality indices consistent with them. Others might 

wish to pursue the first course; I am at work on the second. 

                                            
* An earlier version of this paper was presented at the Econometric Society Fifth World Congress, Cambridge, Massachusetts, and at seminars at 
Cornell, Warwick, and Southampton Universities. I have benefited from the comments of seminar participants and anonymous referees. 



 

1. Statement of the problem 

When economic growth takes place, a new income distribution vector is obtained. It is customary for applied 

researchers to summarize the data by changes in such statistics as level of national income (GNP), relative income 

inequality, and absolute poverty. A vast empirical literature on the subject has appeared, dating from Kuznets’ justly 

famous 1955 paper. Besides the many studies of individual countries, multi-country studies appear in the works of 

Ahluwalia (1976), Chenery (1979), Fields (1980) and Loehr and Powelson (1981), among others. 

This paper addresses the relative inequality aspect, taking for granted that the change in inequality is a topic of interest. 

I am concerned with a methodological matter that underlies empirical investigations of inequality change in the course of 

economic growth, namely: what criterion to use to gauge whether inequality increases or decreases when economic 

growth occurs.1 

What is done in practice is this. Empirical researchers use inequality measures that are consistent with the Lorenz 

criterion in the weak sense. This means that when one income distribution Lorenz-dominates another, the first distribution 

is deemed at least as equal as the second.2 The class of Lorenz-consistent inequality indices excludes certain inequality 

measures that have been proposed (e.g., the variance and the Kuznets ratio3) but includes many others - among them, 

the coefficient of variation, the Gini coefficient, the Atkinson index and the Theil index. In an empirical situation, if several 

such Lorenz-consistent unequality indices are calculated and if inequality rises/falls by all of these measures, empirical 

researchers usually feel safe in concluding that inequality has in fact risen/fallen. 

Making inequality comparisons on the basis of Lorenz-consistent indices reflects certain judgments about the very 

nature of inequality:4 

AI. Axiom of scale irrelevance: If one income distribution is a scalar multiple of another, then the two distributions are 
equally unequal. 

A2. Axiom of anonymity (or symmetry): If one income distribution is a permutation of the other, then they are equally 
unequal. 

A3. Axiom of population replication: If two populations differ in size but the income shares of the corresponding 
percentile groups are the same, then the two distributions are equally unequal. 

A4. Axiom of rank-preserving equalization: If one distribution X is obtained from another distribution Y by a rank-
preserving equalization of income, then X is more equal than Y.5 

                                            
1 Also of interest is inequality change during economic contractions. These cases, fewer in number, may be thought of as negative growth and may 
be analyzed similarly. 
2 A more stringent criterion, ‘strong Lorenz consistency’, would require that the first distribution be regarded as strictly more equal than the 
second. An example of an index which satisfies only the weaker criterion is the income share of the poorest or richest X%. Income changes among 
the remaining 1 - X% may lead to Lorenz-domination, yet the share received by the poorest or richest X% is unchanged. 
3 The Kuznets ratio is defined as K =∑|𝜃𝑖 − 1/𝑛|, where 𝜃𝑖, is the income share of the ith individual and n is the number of individuals in the 
population. 
4 The modem demonstration of the correspondence between Al, A2 and A4 and the Lorenz criterion for the case of fixed population size is due to 
Fields and Fei (1978). The extension to variable population sizes is immediate, given A3. 
5 A rank-preserving equalization is a transfer of income from a relatively rich person to a relatively poorer one holding their ranks in the income 
distribution constant. 



Based on these axiomatic judgments, the Lorenz criterion for inequality comparisons is justified. It states that when one 

income distribution Lorenz- dominates another, the first distribution is more equal than the second. The Lorenz criterion 

and the axiomatic justification underlying it command wide support among economists and other social scientists. 

The Lorenz-consistent inequality indices, although they accept the Lorenz criterion, go well beyond it. The Lorenz 

criterion provides just a partial ordering; it ranks income inequality only for distributions whose Lorenz curves do not 

intersect. When two distributions’ Lorenz curves cross, the Lorenz criterion provides no inequality ranking; such pairs of 

distributions are Lorenz-incomparable.6  By contrast, the Lorenz-based inequality indices are complete; they provide 

inequality rankings for all pairs of income distributions. Each such inequality index completes the ordering in a particular 

way. The completion rule is implicit in the choice of the index itself. 

Inequality indices have been axiomatized by authors including Atkinson (1970), Sen (1973), Kondor (1975), Kolm (1976), 

Cowell (1977), Cowell and Kuga (1981), Blackorby and Donaldson (1978), Kakwani (1980) and Shor- rocks (1980, 1983). 

For instance, an axiom of concern with income ranks would justify use of the Gini coefficient whereas a concern with 

decomposability into within-group and between-group inequality helps justify the Theil index. A comprehensive review of 

this literature is to be found in Foster (1985). The point I would note from my reading of this literature is that these axioms 

for completing the ordering by use of a particular index have not been derived in a growth context. Maybe these indices 

are suitable for gauging inequality change in an economy with income growth, maybe not; but from the available 

justifications, we have no way of knowing. 

The question to which this paper is addressed is: How suitable are these indices for measuring how income inequality 

changes in a growing economy? My strategy for answering this question is to posit several stylized types of economic 

growth. I then set forth what ‘should’ be happening to income inequality if growth proceeds in the posited ways. Next, I 

investigate how the standard indices treat each stylized growth type. If the treatment were found to accord with what 

‘should’ happen to inequality in that growth type, we could rest assured that the standard measures are appropriate for 

determining how inequality changes under different patterns of income growth. But this is not what I find. Instead, for 

one very important type of economic growth, the standard treatment conflicts with what ‘should’ happen. To try to resolve 

the problem, I evaluate possible ways suggested by others for completing the inequality ordering in an economy with 

income growth. Upon finding that the suggested approaches do not satisfactorily resolve the issue, I then outline the start 

of an alternative approach and demonstrate the existence of an index consistent with the posited axiomatic structure. 

2. Inequality change in several stylized growth types 

All of the essential points of this paper can be analyzed by considering an economy with two real incomes - a high 

income of $4 and a low income of $1 - and a constant population of six persons. Let the initial income distribution vector 

be A = (1,1,1,1,1,4). Suppose the economy experiences income growth of $3, which might be distributed in three 

                                            
6The term ‘Lorenz-incomparable’ is something of a misnomer. The two distributions can be compared. It’s just that the Lorenz criterion is 

incapable of ranking them. 



alternative ways: 

 

These are stylized versions of three different patterns: respectively, the rich getting richer while the poor get nowhere, 

the poor benefiting uniformly while the rich remain stationary, and some of the poor moving up while others of the poor 

remain behind. While no country’s growth experience is represented exactly by any of these patterns, empirical studies 

by development economists would certainly regard each pattern as a stylized typology relevant to some circumstances. 

Particularly appropriate is the ‘high income sector enlargement’ type of growth. In the words of Fei and Ranis (1964, p. 7): 

‘The heart of the development problem may be said to lie in the gradual shifting of the center of gravity of the economy 

from the agricultural to the industrial sector ... gauged in terms of the reallocation of the population between the two 

sectors in order to promote a gradual expansion of industrial employment and output.’ Similar characterizations appear 

in the work of Lewis (1954) and Kuznets (1955, 1966). 

How ‘should’ inequality change in each of these examples? First consider high income sector enrichment, as in the 

change from A to B. One sees intuitively that inequality is rising. In fact, the new income distribution is Lorenz-inferior to 

the old; see fig. la. Hence, by the Lorenz criterion or by a Lorenz-consistent inequality index: 

C1. Inequality increases for high income sector enrichment (e.g., when the income distribution changes from A to B). 

By similar reasoning, in low income sector enrichment, as in the change from A to C, one sees intuitively that inequality is 

falling, the new income distribution being Lorenz-superior to the old (fig. 1b). Thus: 



 

C2. Inequality decreases for low income sector enrichment (e.g., when the income distribution changes from A to C). 

What about the change in high income sector enlargement, as from A to D? Just looking at the numbers, it is not apparent 

what to say about how inequality changes. Furthermore, the Lorenz criterion is not helpful, because the Lorenz curves 

necessarily cross; see fig. 1c.7 Nonetheless, it seems desirable to say something rather than remain silent on the issue.8 

And it is clear that what we say will depend on the division of the population between the different income categories. 

Thus: 

C3. Inequality changes according to the numbers of persons in the two groups in the case of high income sector 
enlargement (e.g., when the income distribution changes from A to D). 

The task before us is to specify how inequality depends on the numbers in the high and low income categories. 

There are several ways of doing this. One is to accept the pattern generated by commonly-used inequality indices, 

                                            
7The rationale for this and other Lorenz curve shifts is to be found in Fields (1979). In this case, the income shares of the richest and poorest 

persons both increase. This means that where the Lorenz curve emanates from the lower left origin, the new curve lies below the old, and where it 
emanates from the upper right origin, the new curve lies above the old. The two curves cross in the middle. 

8That is, leaving the matter as a partial ordering and not ranking the inequality of distributions like A and D does not seem to be an acceptable 
option. 



which go beyond the Lorenz partial ordering by completing the inequality rankings in particular ways. A second is to 

examine the income distribution vectors, determine what we ‘see’ in the data, and judge inequality change accordingly. 

A third is to develop an axiomatic foundation for determining how inequality changes when there is income growth of the 

specified type. These courses are pursued below and are shown to yield conflicting verdicts. 

3. Approaches to inequality change in high income sector enlargement 

3.1. What the commonly-used inequality measures show 

A number of researchers have examined how different inequality indices change in the course of high income sector 

enlargement growth. In his classic paper, Kuznets (1955) produced a number of examples demonstrating that income 

inequality measured by income shares of particular percentile groups first increases, then decreases, producing an 

inverted-U pattern. Subsequent research demonstrated that the emergence of an inverted-U was hardly coincidental. 

Knight (1976) and Fields (1979) showed independently that in the case of two incomes (high and low), the Gini coefficient 

necessarily follows an inverted-U with an interior maximum. Swamy (1967) showed an inverted-U for the coefficient of 

variation. Robinson (1976) showed that the log variance is a quadratic form increasing at a decreasing rate; in the case of 

zero within-sector inequality, his mathematics imply that inequality follows an inverted-U pattern. Anand and Kanbur 

(1984) considered a number of other measures (Theil’s entropy index, Theil’s second measure, Atkinson’s index, and the 

squared coefficient of variation) in addition to the Gini coefficient and the log variance. Their results imply that in the case 

of zero within-sector inequality, all of the indices considered must follow an inverted-U pattern. 

Table 1 displays the high income sector enlargement process, embodying the change from [1,1,1,1,1,4] to [1,1,1,1,4,4] 

described earlier. Three commonly-used inequality indices - the income share of the poorest, the Gini coefficient and the 

log variance - are calculated. All exhibit the inverted-U pattern. 



 

 

The only rationale I have heard for the inverted-U pattern is circular - that inequality increases and then decreases, 

because that’s what many inequality measures do. Such justifications for certain of these indices as sensitivity to income 

ranks or decomposability do not suffice for purposes of assessing inequality change in the course of economic growth. To 

the best of my knowledge, no other rationale for the inverted-U in this process has been offered. 

3.2. A look at the income distribution vectors 

One way of determining how inequality should change in high income sector enlargement is to examine the income 

distribution vectors themselves. Start with the early phases of a high income sector enlargement process. 

Imagine a situation in which one person is rich and everyone else is poor. Suppose that as a result of economic growth, 

a second person (one who was previously poor) is enabled to become rich, the incomes among everyone else remaining 

unchanged, e.g., [1,1,1,1,1,4]  [1,1,1,1,4,4], as above. What happens to income inequality? Most economists to whom I 

have asked this question answer intuitively that income inequality has declined. Their reasoning goes roughly along the 

lines that the rich person is now in a less elite position, and that for a given gap in incomes between those who are rich 

and those who remain poor, the less elite position of the rich acts to reduce inequality. 

Now imagine another situation in which the initial distribution of income is quite different: most of the people in the 

economy are rich but two are poor. Suppose now that economic growth enables one of the two who had originally been 

poor to become rich while, as before, incomes among others in the economy remain unchanged. For example, suppose 

the income distribution goes from [1,1,4,4,4,4] to [1,4,4,4,4,4], How does income inequality change in this case? Again, 

on a purely intuitive level, most economists to whom I have asked this question say that income inequality has increased. 

They see in this change a situation in which the remaining poor person has now become more isolated from others in the 

economy. In the minds of these observers, income inequality increases on that account. 

Think now of a sequence leading from the first situation to the second, as illustrated by column (1) of table 1. That is, 

start with a small number of high income persons and allow economic growth to proceed in such a way that the high 

income sector enlarges to accommodate an ever-increasing share of the total population. Allow economic growth to 

proceed in this way for a long time, so that fewer and fewer people are left behind in the low income sector, and eventually 

we reach a situation where few people are in the low income sector and economic growth reduces their numbers still 

further. By the preceding reasoning, income inequality should decrease in the early stages of a growth process of this type 

and increase in the later stages. It is quite plausible that somewhere in between, inequality reaches an interior minimum. 

In the absence of arguments to the contrary, suppose for now that inequality declines monotonically until the minimum 

and increases monotonically thereafter. This intuition suggests that inequality follows a U pattern in this type of economic 

growth - contrary to what is generated by the standard inequality measures. 

3.3. A formulation of numerical inequality 

The high income sector enlargement type of growth process is characterized by a constant income gap between the 



 

high and low income sectors but changing numbers in the two groups. If we conceptualize total inequality as depending 

upon the intersectoral income gap and the numbers in each, then with a constant income gap, inequality in this growth 

process varies as does numerical inequality. 

How does numerical inequality vary? In the case where a population consists of two groups, it may be very reasonable 

to regard numerical inequality as being minimized when the two groups are of equal size. In this sense, a family of two 

sons and two daughters may be regarded as having a more equal sex distribution of offspring than a family with four 

children of one sex. In addition, the further is the actual distribution from fifty-fifty, the more numerical inequality there 

may be said to be. One blonde in a group of brunettes, one nudist amidst clothed bathers, one cat in a group of dogs - all 

are situations of pronounced numerical inequality. By analogy, when there are two fixed income amounts, numerical 

equality might be said to be greatest when half the people receive one income and half the other and to be smaller (i.e., 

more inequality) when most receive one income amount and few receive the other. 

An alternative way of conceptualizing numerical inequality is to think of it as having two components: one associated 

with elitism of the rich and the other with isolation of the poor. Elitism of the rich might be seen as most pronounced 

when one income recipient is rich and the rest are poor; as high income sector enlargement proceeds, the rich become 

less elite. Likewise, isolation of the poor is most pronounced when one income recipient is poor and the rest are rich; 

isolation of the poor thus increases as high income sector enlargement proceeds. Intuitively, one might want to say that 

at the beginning of high income sector enlargement, the reduction of elitism of the rich dominates the increase in isolation 

of the poor and numerical inequality thereby decreases, whereas the reverse is true at the other end of the process. In 

between, an interior minimum for numerical inequality can be generated if isolation of the poor is regarded as overtaking 

elitism of the rich. This would arise if isolation of the poor and elitism of the rich are viewed as of comparable orders of 

magnitude, isolation of the poor increases at an increasing rate, and elitism of the rich decreases at a decreasing rate. 

Furthermore, if the two components are viewed as opposite sides of the same coin, one might justifiably conceive of 

numerical inequality as symmetric with minimum at the fifty-fifty point. 

These lines of reasoning lead to the conclusion that numerical inequality is U shaped in high income sector enlargement 

growth, and so too (at least in the interior) is total inequality. Once again, we have arrived at an inequality pattern that 

conflicts with the commonly-used indices. 

3.4. An inconsistency 

I conclude that some of the familiar measures of inequality yield rankings inconsistent with various conceptions of how 

inequality is changing in the process of high income sector enlargement. Many of these indices are Lorenz-consistent; this 

is not their problem. The problem is that the Lorenz criterion is a partial ordering, and when these indices complete the 

ordering, they do so in a way that is both unjustified and, in my view, unjustifiable. 

To resolve the inconsistency, we might seek a criterion that satisfies two desiderata: (i) it is consistent with the Lorenz 

criterion, in the sense that whenever the Lorenz criterion provides a ranking, the new criterion yields the same ranking, 

and (ii) it generates a U pattern in high income sector enlargement growth. Section 4 considers two ways that have been 



 

proposed for moving beyond the Lorenz ordering and concludes that neither satisfies both desiderata. Section 5 proposes 

an alternative that does. 

4. Results regarding generalized Lorenz curves and the axiom of composite transfers 

Recent papers by Shorrocks (1983) and by Shorrocks and Foster (1985) propose additional axioms which help complete 

the ordering of income distributions when the Lorenz criterion is indecisive. This section examines whether the axioms 

proposed are helpful for making inequality comparisons in a dualistic economy with income growth. The answer, alas, is 

negative. 

Shorrocks (1983) addresses the question of how to rank income distributions taking account of location and dispersion 

aspects simultaneously. Shorrocks’ recommended solution, derived axiomatically from properties of social welfare 

functions, is to rank income distributions according to Generalized Lorenz Curves, the GLC being a transformation of the 

familiar Lorenz curve with the vertical axis elongated to gauge income amounts rather than income shares. Thus, one 

distribution dominates another by the GLC criterion if, after ordering the recipients from lowest income to highest, the 

cumulative incomes of the first distribution always exceed those of the second. Shorrocks was not the first to rank income 

distributions according to such a criterion - I, for instance, did exactly that in my 1977 paper comparing income 

distributions over time in the economic growth of Brazil - but he was the first to justify this procedure axiomatically. His 

paper, though imaginative and careful, is not helpful in making inequality comparisons in high income sector enlargement 

processes. Clearly, in high income sector enlargement, the new Generalized Lorenz Curve dominates the old, and 

therefore the new distribution welfare-dominates the old by Shorrocks’ criterion. But that is not the issue - ours is 

inequality comparisons - and Shorrocks (1983) does not resolve the matter, since in that work, level of income and 

inequality in the distribution of income are blended into a single criterion. 

Shorrocks and Foster (1985) directly address the inequality comparison issue. They offer a plausible axiom drawn from 

the work of Sen (1973), Kolm (1976), Cowell (1977) and Kakwani (1980) and derive from it a theorem which helps make 

inequality comparisons when the Lorenz criterion cannot. The axiom pertains to a composite transfer of a given amount 

of income consisting of two parts: a progressive transfer of a large sum from a relatively rich person to a relatively poor 

one, and a regressive transfer of a small sum from a relatively rich person to another who is even richer. The transfer- 

sensitivity axiom weights the large gain of the poor person more than it does the small gain of the rich person. 

Consequently, the axiom states that such a composite transfer should be viewed as reducing inequality. From this axiom, 

Shorrocks and Foster derive the following theorem regarding inequality comparisons when Lorenz curves cross: 

Theórem. Suppose the Lorenz curve for income distribution X lies initially above that for distribution Y, and that the two 

curves then cross once. Suppose further that the variance of 𝑌(𝜎𝑌
2)) is at least as great as the variance of 𝑋(𝜎𝑋

2). Then, 
the inequality of Y is greater than the inequality of X, i.e., I(Y) > I(X), for all inequality measures satisfying the transfer 
sensitivity axiom. 

It may be shown that the conditions of the theorem are met in the early stages of high income sector enlargement 

growth. We have already seen that the Lorenz curves cross once, as depicted in fig. 1c. Consistent with Shorrocks and 

Foster’s terminology, call the pre-enlargement Lorenz curve X and the post-enlargement Lorenz curve Y. The variance may 



 

be shown to be a quadratic in the size of the modern sector, rising when the modern sector is small and falling when it is 

large.9 In the zone of rising variance, the conditions of Shorrocks and Foster’s, theorem are met: Lorenz curve X cuts Lorenz 

curve Y from above and 𝜎𝑌
2 > 𝜎X

2 (In the zone of falling inequality, the variance inequality is reversed, so the theorem does 

not apply.) 

Applying the theorem to the zone of rising variance, the conclusion of the theorem is that I(Y)>I(X). That is, inequality 

rises with high income sector enlargement until the turning point of the variance is reached. In this way, Shorrocks and 

Foster’s theorem provides a criterion for comparing inequalities in some situations when the Lorenz criterion is 

incomplete. 

Unfortunately, the inequality comparison derived from Shorrocks and Foster’s theorem seems to go the wrong way: 

their criterion has inequality rising when a small fraction of income recipients are in the high income sector and that sector 

expands to include more people. Intuitively, though, I see no reason that inequality should increase in this circumstance. 

I would want to say, contrary to their criteria, that when a small high income sector is enlarged to absorb an increased 

population share, inequality decreases. Thus, despite its clear attraction for ranking inequalities when redistributing a 

given amount of income, I conclude that the approach offered by Shorrocks and Foster is not helpful for ranking 

inequalities in enlargement processes in which income is growing.  

5. Toward an axiomatization of inequality in an economy with income growth 

The time has come to axiomatize inequality along the lines discussed above. It would assuredly be desirable that the 

axiomatization be consistent with the Lorenz axiomatization. If this were so, it would yield an identical ranking of inequality 

whenever the Lorenz criterion is capable of ranking income distributions. But in addition, it would rank the inequality of 

two income distributions in some cases when the Lorenz criterion cannot rank them because of Lorenz curve crossing. 

Fortunately, this is possible. The axioms I propose further complete the inequality ranking left incomplete by the Lorenz 

ranking, while ranking as the Lorenz criterion does whenever the Lorenz criterion produces a ranking. I begin by referring 

the reader to the Lorenz axioms A1-A4 on page 358: these serve as the basis for what follows. 

In searching for additional axioms, I have found it useful to conceptualize the inequality in a dualistic economy as 

consisting of two parts: gap inequality and numerical inequality. Some observers may care more about one aspect of 

inequality than the other, but it would be unusual not to be concerned about both. The Lorenz criterion is as incomplete 

as it is, because it confounds these two logically distinct notions by amalgamating them into measures of income shares. 

Gap inequality is the idea that inequality varies directly with the spread in income between persons in the high and low 

income groups. This idea is so widely shared as to be virtually universal. Absolute gap inequality would appropriately be 
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measured by income differences, while relative gap inequality would be measured by income ratios. Consistent with the 

Lorenz criterion as a basis for making relative inequality comparisons, and consistent also with the prevailing concern for 

changes in relative income inequality, it is the income ratio that would be relevant to consider. In the two-income, n-

person world under analysis here, define relative gap inequality R as the ratio of the per capita income of persons in the 

high income group (YH) to the per capita income of persons in the low income group (YL). Then: R = YH/YL. Defined in this 

way, when all incomes are the same, it is arbitrary who is high income and who is low, so YH = YL in that case. I then 

propose: 

A5. Axiom of relative gap inequality: Relative gap inequality increases/ remains the same/decreases if and only if the 
ratio of per capita income in the high income sector to that in the low income sector increases/remains the 
same/decreases. 

Thus, by A5, R(𝜃), defined for all 𝜃 ≧ 1 is specified so that R(𝜃) is increasing in 𝜃 and R(1) = 1. 

The ‘if’ part of the axiom - that a change in the income ratio will change inequality in the same direction - is not new. In 

fact, it is implied by A4, which is why the Lorenz axioms suffice to rank inequality in the cases of high income sector 

enrichment and low income sector enrichment. The ‘only if’ part of the axiom is new. Most importantly, it states that if 

the income ratio between the two sectors remains the same, then gap inequality must remain unchanged. The intuitive 

appeal of this property is clear. Its force comes with reference to high income sector enlargement, wherein incomes per 

person in the two sectors, and hence their ratio, are constant, provided both sectors have strictly positive numbers of 

persons in them. Thus, A5 implies that gap inequality is constant in high income sector enlargement.10 

Numerical inequality is the idea that inequality is related to the sizes of groups in a population. It is reasonable to regard 

there as being a most equal numerical distribution, not necessarily unique, and to expect that the most numerically equal 

distribution will be located at some central point. Accordingly, define numerical inequality N as N = N(nH,/n), where nH is 

the number of persons in the high income sector and n is the total population size. 𝜙 = nH/n can take any rational value in 

the interval [0,1]. 

Consistent with the ideas presented in section 3.3 above, I propose: 

A6. Axiom of numerical inequality: Numerical equality is greatest when the population is divided evenly between two 
groups; numerical inequality is greater the further is the actual division from fifty-fifty.11 

Thus, N(𝜙) is decreasing (increasing) in 𝜙 for all 𝜙 less than (greater than) 0.5. 

It need not concern us what precise metric to use to determine the distance of an actual distribution from fifty-fifty, as 

long as we understand that 51-49 is somewhat away, 60-40 is further away, and 99-1 is furthest away, and the measure 

we use has this monotonicity property in both directions. Symmetry might also be a desirable property to impose. 

                                            
10 This statement needs to be qualified at the endpoints. One would want to say that gap inequality increases from zero when the first person 
leaves the low income sector for the high income sector, and likewise that gap inequality decreases to zero when the last low income person is 
absorbed into the high income sector. 
11 In looking at population subsamples, the most equal point might correspond to population shares other than fifty-fifty. For present purposes, the 
precise location of the numerically most equal point is of little consequence as long as it is in the interior of (0,100%). 



 

As regards the three dualistic development typologies, A6 implies: 

(i) Numerical inequality is unchanged in high income sector enrichment. 

(ii) Numerical inequality is unchanged in low income sector enrichment. 

(iii) Numerical inequality follows a U pattern in high income sector enlargement.12 

It is reasonable and appealing to regard overall inequality in a dualistic economy with income growth as a composite of 

gap inequality and numerical inequality. When strictly positive weight is given to each, term the resulting concept 

composite inequality. Define composite inequality as C = C(R(YH/YL), N(nH/n)). We need an axiom specifically relating 

composite inequality to gap inequality and numerical inequality. Consequently, I propose: 

A7. Axiom of composite inequality: Composite inequality depends directly upon gap inequality and numerical inequality. 

If one of the components is unchanged, composite inequality varies directly with the level of the other. The 

creation/elimination of an income gap creates/eliminates composite inequality. 

Thus, C is increasing in R and N and C > 0 if and only if R > 1. Note also that this axiom permits a ‘discontinuity’ at the 

endpoints in the sense that when we go from a situation where all individuals have the same income to one where a single 

individual has a different income from the others, inequality may jump sharply. I view this as a strength, not a weakness, 

of A7. 

We are now in a position to apply the preceding axioms to the three types of dualistic growth: 

For high income sector enrichment: 

(i) Gap inequality increases. 

(ii) Numerical inequality is unchanged. 

(iii) Composite inequality increases. 

For low income sector enrichment: 

(i) Gap inequality decreases. 

(ii) Numerical inequality is unchanged. 

(iii) Composite inequality decreases. 

For high income sector enlargement: (see fig. 2) 

(i) When the first person enters the high income sector, gap inequality increases, because people are no longer 

equally poor. 

(ii) Gap inequality is unchanged in the interior. 

(iii) When the last person enters the high income sector, gap inequality decreases, because everyone has equally 

                                            
12 This statement pertains to the interior segment only, i.e., strictly positive numbers of persons are in both sectors. 



 

high income. 

(iv) Numerical inequality falls until the fifty-fifty point, rises thereafter. 

(v) Composite inequality is created when the first person enters the high income sector and is eliminated when 

the last person leaves the low income sector. 

(vi) In the interior, composite inequality falls until the fifty-fifty point and rises thereafter. 

The conclusions that composite inequality rises in high income sector enrichment and falls in low income sector 

enrichment are noteworthy only because something would be wrong with our axioms were the results otherwise. Much 

more important is the finding for high income sector 

 

enlargement growth: In (the interior of) high income sector enlargement, gap inequality is constant, numerical inequality 

is U-shaped, and total inequality is U-shaped. This result is so important, because no sign of an inverted-U pattern appears. 

Recall that in the high income sector enlargement process many inequality indices exhibit inverted-U patterns for 

income inequality; these include some that are strictly Lorenz-consistent (the Gini coefficient, Theil’s entropy measure, 

Theil’s second measure, the Atkinson index and the coefficient of variation), one that is weakly Lorenz-consistent (the 

income share of the poorest X% of the population), and one that is not Lorenz-consistent (the log variance). Thus: For the 



 

case of high income sector enlargement growth, the rankings obtained from many commonly-used indices are opposite 

from the inequality rankings that would be derived on the basis of the gap inequality and numerical inequality axioms. 

6. Indexing A1-A7 

The axiomatic set A1-A7 is best operationalized by constructing statistical measures for use by applied researchers. The 

process of representing axioms by a statistical measure is called indexing. Any measures so constructed should fully reflect 

the new axiomatization, but will also go beyond it by completing the ordering in ways implied by the measures themselves. 

The properties of any proposed measures need to be scrutinized with great care, so as to assure their consistency with 

intuitive concepts of inequality. 

The first question that immediately arises is whether there exists any inequality index consistent with A1-A7. Indeed 

there is. Take 

 

This measure is obviously anonymous and hence satisfies A2. It is the product of two exponentiated terms. The first, (YH/YL 

- 1), measures relative gap inequality. It is easily seen to be consistent with the axiom of scale irrelevance (A1), the axiom 

of rank-preserving equalization (A3), and the axiom of relative gap inequality (A5). The second term, (K+
1

4
 –  nH n L/n 2), 

measures numerical inequality. This term is derived by regarding an equal division of the population between higher and 

low income groups as most equal in terms of numerical inequality. At the most equal point nH/n = ½ and nL/n = ½. Using 

the product norm, the most equal point has equality 
1

2
∗

1

2
=

1

4
 and any other point has equality (nH/n)(nL/n). The difference 

between actual equality and the most equal allocation is then (nH/n)(nL/n) – ¼. If this difference is subtracted from the 

amount of numerical inequality at the most equal point, K,  the result may be taken as a measure of numerical inequality. 

Note that this component satisfies the axiom of population replication (A3) as well as the axiom of numerical inequality 

(A6). The exponent ∝ gauges the relative importance of gap inequality compared to numerical inequality. The values ∝ = 

1 and ∝=0 represent concern only for gap inequality and only for numerical inequality, respectively. Intermediate values 

of ∝ strictly between 0 and 1 represent a concern for composite inequality, expressed as a positive function of gap 

inequality and numerical inequality, satisfying A7. Note that as long as ∝ > 0 (i.e., gap inequality receives some weight, as 

indeed it should for any reasonable inequality index), when incomes in .the two groups are the same, composite inequality 

is zero. Otherwise, it is positive. 



 

This shows that the axiomatic system A1-A7 is indexable. Having found one index that is consistent with the postulated 

axiomatic structure, a task for future research is to construct other possible measures in the two-income, n-person world 

and examine their properties. 

7. Conclusion 

This paper has analyzed how to measure changes in inequality in an economy with income growth. The preceding 

discussion distinguished three stylized kinds of economic growth: 

1. high income sector enrichment, 

2. low income sector enrichment, 

3. high income sector enlargement, in which the high income sector expands and absorbs persons from the low 

income sector. 

The two enrichment types pose no problem for assessing inequality change in the course of economic growth: for high 

income sector enrichment growth, inequality might reasonably be said to increase, whereas for low income sector 

enrichment growth, inequality might be said to decrease. These judgments are non-controversial and non-problematical. 

Where problems arise is in the case of high income sector enlargement growth. In that case, the two alternative 

approaches have been shown in this paper to yield markedly different results: 

1. The traditional inequality indices generate an inverted-U pattern of inequality. That is, inequality rises in the early 

stages of high income sector enlargement growth and falls thereafter. 

2. The new approach suggested here, based on axioms of gap inequality and numerical inequality, generates a U 

pattern of inequality. That is, inequality falls in the early stages of high income sector enlargement growth and 

rises thereafter. 

The discrepancy between the familiar indices and the alternative approach based on axioms of gap inequality and 

numerical inequality bears further scrutiny. Two courses of action are possible. One might try to axiomatize inequality in 

ways that generate an inverted-U pattern in high income sector enlargement growth, thereby rationalizing the continued 

use of the usual inequality indices with the inverted-U property. Alternatively, one might extend the line of reasoning 

proposed here. One obvious class of measures to consider is the CES class, of which the Cobb-Douglas form I is a special 

case. Other tasks that would enhance the empirical usefulness of any index derived would be to extend the analysis to 

account for more than two sectors and for intra-sectoral inequality. 

Others might wish to pursue the first course; I am at work on the second. 
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