ROBUST AND FLEXIBLE MULTI-SCALE
MEDIAL AXISCOMPUTATION

by
MING XU

A thesis sibmitted to the Faaulty of Engineaing
of The University of Birmingham
for the degreeof
DOCTOR OF PHILOSOPHY

Schod of Eledronic and Eledricd Engineeaing
Faaulty of Engineeing
The University of Birmingham
January 2001



UNIVERSITYOF
BIRMINGHAM

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.



Abstract

The principle of the multi-scde media axis (MMA) isimportant in that any objed is de-
teded at a blurring scde propational to the size of the objed. Thus it provides a sound lal-
ance between nase removal and preserving detail. The robustness of the MM A has been re-
fleded in many existing applications in ojed segmentation, recognition, description and
registration. Thisthesis aims to improve the cmmputational aspeds of the MMA.

The MMA is obtained by computing ridgesin a “medialness’ scde-spacederived from an
image. In computing the medialness sde-space we propose an edge-free medialness algo-
rithm, the Concordance-based Medial Axis Transform (CMAT). It nat only depends on the
symmetry of the positions of boundxries, but aso is related to the symmetry of the intensity
contrasts at boundries. Therefore it excludes gpurious MMA branches arising from isolated
boundiries. In addition, the locdisation acaracy for the position and width of an oljea, as
well as the robustnessunder noisy condtions, is preserved in the CMAT. In computing ridges
in the medialness pace we propose the sliding window agorithm for extrading locdly opti-
mal scde ridges. It is smple and efficient in that it can reaily separate the scde dimension
from the seach space but avoids the difficult task of constructing surfaces of conreded
maxima. It can extrad a complete set of MM A for interfering objeds in scde-space e.g. em-
bedded or adjacent objeds. These dgorithms are evaluated using a quantitative study of their

performancefor 1-D signals and qualitative testing on 2D images.
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CHAPTER1: INTRODUCTION 1

Chapter 1 Introduction

1.1 The Importance of Multi-Scale Medial Axis

The solution d many problems in computer vision depends on the aility of image proc-
essng algorithms to adequately represent the shapes of objeds in a scene. The dasdcd ap-
proach to shape description in grey-level images has been to apply some sort of edge detedion
operation and represent objeds based on their boundxries, e.g. using chain codes and B-
splines. This approach has two dfficulties. First, while boundary-based representations may
be used to describe properties such as the length, locd curvature and aientation d the bourd-
ary, they fail to dreadly cgpture more global properties of the objed, such as the end-to-end
length, length-to-width ratio, oweral orientation, symmetry, etc. Secndy, edge detedion is
espedally sensitive to intensity variations and nase. In a discrete image, edges canna be re-
liably extraded withou some notion d spatial scde over which to measure discontinuity
(edge). The use of an unduy small scde enphasises fine detail i ncluding noise. The use of an
unduy large scde distorts the form of deteded oljeds and can lead to many detail s nat being
deteded. Often any one image will i nvave structures at severa scdes. Therefore, it is not
trivial to choase an appropriate scade.

A solution to the first difficulty above is Blum’s media axis transform (MAT) [BLUG7].
In this s£heme, a binary objed is represented by the locus of centres of maximal disks in-
scribed within the objed, together with the radii of these disks. Each medial axis point is as-
sociated with two or more boundxry points where the maximal disk tangentially touches the
boundry. In this way, the MAT establishes the relationship between two or more boundary

sedions sparated by the width of the objed, and can provide agreaer level of global infor-
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mation, such as the overall length and aientation, symmetry, and changes of locd width (nar-
rowing or flaring). In addition, Blum et al. have shown that the spatial position d the ais,
and the radius of the maximal disk encode the paosition, aientation and curvature of boundx
ries[BLU78]. These properties of the MAT expressglobal andlocd shape properties.

A solution to the difficulty of seleding an appropriate scde is provided by scde-space
theory [WIT83] [KOE84] and the mecdhanism of automatic scde seledion [FRI93] [LIN94]
(seeSedion 2.1for detail s). The medial axis transform, combined with these theories, leals to
the concept of the multi-scde medial axis (MM A) [CRO84] [FRIQJ] [PIZ94] [MOR94]. The
MMA for an oljed is defined as a set of curves in scde-space Each spatial position ona
curve marks the middle of the objed and is associated with a spatial scde that indicates the
approximate width of the objed. For a 2-D image, the MM A is obtained by computing the 1-
D ridgesin a3-D “medialness’ scde-spacederived from the image.

The significance of the MMA s that the geometric measurement of the media axis and
locd width is made & a scde propationa to the size of the objed of interest. Because larger
objeds can raturaly withstand a greaer amourt of blurring than smaller objeds, the MM A
method wses measurement scaes acarding to the context aaossthe image: it removes more
noise and cetall for larger objeds, while removing lessnoise and retaining detail for smaller
objeds. Thisisin contrast with the use of a single scde in many existing methods. In addi-
tion, the multi-scde medial axes are invariant to spatial trandation, rotation and scding of the
image plane a well aslinea variation o image intensity [PIZ98]. They also have alow sen-
sitivity to nase (spatially uncorrelated), blurring (compared to the objed’s width), and shape
variation [MOR98]. Therefore, the multi-scde media axis provides a robust tod for shape

representation.
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1.2 Applications of Multi-Scale Medial Axis

The invariance of the multi-scde medial axis to spatial trandation, rotation and scding
and its insensiti vity to dsturbances on the form (intensity plus shape) provide agood kesis for

various image analysis tasks, including segmentation, recogniti on and registration.

(1) Segmentation and Visuali zation

The MMA has been widely used in the detedion d blood wessls in medicd images
[KOL95] [FEL97] [KRI98] [SAT98] and roads for remote-sensing [KOL95] [STE9SS]. The
blood wessls and roads in these images are symmetric structures where the scae of symmetry
varies with context. This charaderistic is diredly addressed by the MM A. The deteded MM A
can even help reconstructing the vessels and providing improved visuali zation.

Maximum Intensity Projedion (MIP) has long been used to dsplay 3-D vessl images
(e.g. MR angiography) from a single view. For a given image plane, S, this method assgns
eat pixel, P, onSavaue gqual to the maximum of those pixels that have P as their common
projedion pant on S (Fig. 1.1(a)). However, it contains no information abou the relative
depth of the vessls. One vessl can partialy obscure ancther. On the other hand, an iso-
surfacerepresentation d theinitial image can acourt for the relative depth of the vessls, but
the seledion d an appropriate threshold is criticd (Figs. 1.1(b) and (c)). Krisdan et al.
[KRI98] computed the multi-scade medial axes for these vessels and reconstructed the vessels
using the scde (width) information d the MM A. The result is more wmplete and better con-

neded interpretation (Fig. 1.1(d)).

(2) Description and Reaognition
Fritsch et al. described an ohjed in an MMA hierarchy ordered by scde [FRI95]. The

large-scde MM A for the global figure is a parent to its child MM A correspondng to small-
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(© d) (

Fig. 1.1. The MMA used in vessl detedion and visualization: (a) maximum intensity pro-

jedion d a 3-D ves=l image; (b) and (c): iso-surfaces of the image with high and low

threshalds, respedively; (d) vessls recmnstructed using the MM A. (Courtesy of [KRI98])
scde sub-figures, e.g. protrusions and indentations. This leads to a graph description d the
objed, the nodes of which contain statisticd information related to the individual MM A, and
the acs of which contain information related to the sub-figure type (e.g. protrusion a inden-
tation) and the relationship of the sub-figure MMA to its parent (e.g. relative position, size
and aientation). From such a graph, for a given oljed, from a popdation d different images,
one can generate an oljed model that can in turn be used to automaticdly recognize the same

objed in another image. Such models typicdly contain bah means and variances in its nodes

and arcsto provide aflexible model description.
(3) Registration and Fusion
Fritsch developed an automatic procedure for verifying treament setup in radiotherapy via

the registration o portal image pairs using the MMA [FRI93]. The spatial locaion d the
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MM A was used to define aset of matching axes in areference patal image. The same set of
labeled axes was identified in atreament portal image and automaticaly registered. Axis cor-
responcence was determined using moment-based shape measure wmputed onthe set of all
possble MMA pairs in bah images. It was hown, in a series of simulated images, that this
automatic procedure could determine setup errors of 1mm in translation and 1 degreein rota-
tion[FRI93].

Datafusion by theregistration d CT and Utrasoundimages using the MM A was demon-
strated by Liu et al. [LIU94], see Fig. 1.2. The original ultrasound image misses the entire
badk of the ddll, and ore of the amsis at different paositions in the two images (Figs. 1.2a)
and (b)). However, the robustnessand richnessof the MM A representation till all ows the two
images to be registered using the principal MM A branches for the torso, extraded from baoth
images. The fused information from the more detailed CT image provides detail that is not

present in the ultrasoundimage (Figs. 1.2¢) and (d)).

b) (

d) (
Fig. 1.2.Image fusion using MM A-based registration d 3-D images: (a) volume renderings

of a CT image and (b) an utrasoundimage for a baby ddl, (c)(d) two views dowing the
fusion . (Courtesy of [LIU94])
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1.3 Contributions of This Thesis

This thesis aims to improve the mmputational aspeds of the MM A and makes the fol-

lowing contributions to the multi-scde medial axis method

D)

2

3)

(4)

We propcse an edge-free medialnessa gorithm, the Concordance-based Medial Axis
Transform (CMAT). The CMAT medialness nat only depends on the symmetry of
the positions of boundries, bu aso the symmetry of the intensity contrasts at
boundiries. Therefore, it excludes the spurious MMA branches that arise from iso-
lated edges and appea in traditional media nessalgorithms.

We propose adliding window agorithm for extrading localy optimal scde ridgesin
the medialness sde-space This algorithm is smple and efficient being able to read-
ily separate the scde dimension from the search spacewhilst avoiding the difficult
task of constructing surfaces of conneded medialness maxima. In contrast to the
globally optimal scade ridge definition [FRI9J], it can extrad a complete set of MM A
for assemblies of objeds, e.g. embedded or adjacent objeds.

We set up a framework for comparing the performance of different medialnessfunc-
tions using the “operator radius’ rather than the standard deviation d the Gaussan
(or its derivative) as the scde parameter. This al ows various media nessfunctions to
be quantitatively compared. So far as the author is aware adetailed quantitative mm-
parison d these medialnessalgorithms has nat previously been reported.

We analyze the ailiti es of scde-space ad the globally optimal scde ridge definition
[FRI93] to distinguish ojeds within an embedded oljed group.Based onthis analy-
sis, we give some indicaions on the seledion d scde sampling rate, which is gill an

open problem and an adive research areain scde-spacetheory.
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1.4 Organization of ThisThesis

In Chapter 2 the mncepts of scde-space ad medial axis transform are introduced. Then
different schemes for robustly extrading media axes are reviewed and the acourt of multi-
scade medial axis method extended.

In Chapter 3 the computation d boundrinessisintroduced. The Concordance-based Me-
dial Axis Transform is described and the related concordance property presented. The limits
of the globally optimal scde ridge definition to distinguish embedded oljeds are demon-
strated, and the sliding window agorithm for extrading locdly optimal scde ridges in me-
dialnessscde-spaceintroduced.

In Chapter 4 the performance of the CMAT medianessin the 1-D case is analyzed quan-
titatively and compared with, seleded, traditional medialness operators. The performance of
the CMAT on 2D data sets and d the gliding window agorithm are dso demonstrated.

In Chapter 5 the relationship of the CMAT medialnessalgorithm to existing edge-free &-
gorithms and the relationship between the sliding window algorithm to existing scde-space
ridge detedion algorithms are discussed.

Finally, in Chapter 6, conclusions are drawn and suggestion is made for future work.
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Chapter 2 Literature Review

2.1 Multi-Scale Analysis

2.1.1 The Nature of Scale

The problem of scde is facal in any physicd measurement such as imaging. An inherent
property of objeds in the world and in images is that they only exist as meaningful entities
over arange of scades [KOEB4]. The result of a measurement processdepends on the scde &
which this measurement is made. A simple example of thisis given by an image of trees. At a
gpatia scde of centimetres, they are perceived as branches and leares. As the scde increases
to a metre or so, the perception is of the outline of the trunk and canopy. As the scde further
increases to kil ometres, the forest of treesis percaved. The crred seledion o an appropriate
scde is not normally difficult to determine in this stuation for a known task. However, the
scde seledion problem canna be avoided when analyzing unfamiliar scenes. One such ex-
ample is the detedion d edges correspondng to the discontinuities of the image function.
Edge detedion is usualy computed as a diff erence between pixels in some neighbouhood.
There is €ldom a sound reason for choasing a particular size of neighbouhood, since the
“right” size depends on the sharpnessof the edge under investigation. This szeisin general
unknowvn at the pre-processng stage and may vary aaoss an image. Therefore, to avoid
missng any useful information, we would like to tred the scde of the observation as a free
parameter and analyze objeds at arange of scdes.

When an image is cagptured the finest scde is defined and the multi-scde processcan ony
be simulated by convdving the original image with progressvely larger blurring operators.

For this multi-scae representation to behave in a reasonable way, some genera constraints
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need to be impased onthe operators for the awnstruction d scde-space

One aucia constraint is that no rew detal shoud be generated as sde increases
[KOE84] [WIT83] [YUI86 [LIN92]. Koenderink introduced the wncept of causality
[KOE84], which means that new level surfaces must not be aeaed in the scde-spacerepre-
sentation as sde increases. Lindeberg determined that the operators $oud na increase the
number of locd extremain any 1-D signal under convdution [LIN92]. Ancther crucia con-
straint for scde-space operators is that the scde-space representation must be invariant to
gpatia trandation, rotation and scding [ter91] [FLO92]. Each of these two constraints needs
to be further combined with some other requirements, e.g. lineaity and semi-group poperty.
Although the general constraints for constructing scde-spacerepresentations are presented in
avariety of ways by different authors, they ead read the same @nclusion, that the Gausgan
kernel and its derivatives are the uniquely appropriate blurring operator when considering a

wide range of contextsin which littl e, if any, prior knowledgeis available.

2.1.2 Linear Scale-Spaces and Diffusion

The linea scde-spaceof a signal, as introduced by Witkin [WIT83] and further devel-
oped in [KOES84] [BAB86] [YUI86] [LIN94], is an embedding of the origina signa into a
one-parameter family of derived signals constructed by convdution with Gausgan kernels of
increasing width. Let x = (xl,xz, ------ ,xN) denate aspatial position in N-dimensional space
and | (x) represents agiven signal. Then the scde spacerepresentation, L(x,0), of thesignal,
I (X), isdefined as:

L(x,0) = 1(x) OG(x,0)
L(x,0) = 1(x)

(2.1)
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where gisthe scde parameter; G(x,0) isthe Gaussan kernel with standard deviation o:

G(x,0) :Wex%%% 2.2

Under the progressve Gausdan burring, it was foundthat [WIT83)]:

The derived signals beacome smocther with increasing scde (Fig. 2.1(a)). For a 1-D
signal, new locd extrema of any order spatial derivative caina be aeded at a larger
scde[LIN9].

The locaion d ead fedure point (e.g. alocd maximum, an edge or a zero-crossng
of the derivative of the signal) changes continuowsly with scde. Therefore, it is poss-
bleto tradk and relate the feature points aadoss sde.

Feaure points annihilate in pairs with increasing scade. The scde & which a feaure
point annihil ates indicaes the significance of the fedure point.

Thelocaion d eat feaure point at coarse scde is shifted from its fine scde locaion
(Fig. 2.1(b)). The locdisation of a feaure point is most acarate & finest scde and

can be traced from coarse to fine scde to combine the alvantages of robustnessand

1 hj} i Mn @Mﬂ.nﬂl ﬂﬂ (i (

@

Fig. 2.1.The scde-spacerepresentation d a signal (a) and the zero-crossngs of its ssoond &
rivative (b). (Courtesy of [WIT83)])
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acaracy [BER87].

In addition to convdving the signal with a set of Gaussan kernels of increasing size, an-
other way to generate the scade-spaceis using the diffusion equation [KOE84]. The diffusion
equation is the well-known physicd equation that describes how a hea distribution, L,
evolves over time t in a homogeneous medium with uriform condctivity ¢, given an initial

hed distribution | (x) [WID75]. The diffusion equationis expressd as:

oLy _ cO?L(x,t)
ot (2.3

L(x,0) =1(x)
At locd maxima of L, 0°L <0; thus dL/0t <0 and L deaeases. At a locd minima of L,
0°L >0; thus dL/dt >0 and L increases. Therefore the diffusion equation hes the dfed of
suppressng small | ocd variations. It was foundthat computing the sca e-spacerepresentation
of asignal at scde o corresponds to iteratively diffusing the signal using the diffusion equa-
tion for atime t =0?/2 [KOE84]. Each step o the iterative diffusion is analogous to con-
volving the scded image, computed at the previous gep, by a much smaller Gaussan kernel.

Due to the semi-group poperty of the Gausdan kernels, the result of convdving a Gaussan

kernel with a Gausgan kernel is ancther, larger Gaussan kerndl, i.e.:

G(x,0,) OG(X,0,) = G(x,Jo? +0?) (2.4)

2.1.3 Anisotropic Diffusion
Under the @owve uniform diffusion, the locaion d feaures, e.g. edges, at a coarse scdeis
displaced from their original locaion. To improve the locdi sation acairacy for feaure paints,
it is desirable to restrict the diffusion d information around these feaure points [PER9Q]

[WHI93], using anisotropic diffusion.
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By considering the condctivity, ¢ in Eq. (2.3), to be avariable over space ad time
(scde), the anisotropic diffusion equation is defined as:

oL(x,t)
ot

= O e(x,t)0OL(x,t)) (2.5

For the edge detedionin scde-space to encourage diffusion within aregionin preference
to dffusion acrossboundxries, the condLctivity, ¢, can be chasen as a monaonicdly deaess-
ing function of the gradient magnitude. This anisotropic diffusion processcorresponds to ap-
plying alarger Gaussan kernel within aregion and a smaller Gausdan kernel acossboundx
ries.

The anisotropic diffusionis ometimes criti cised because it seeksto oltain arobust feaure
detedion at large scdes by successvely diffusing the signal, but it uses the estimates of these

fedures, at ead scde including small scade, to control the diffusion pocess Therefore, the

signal-to-naiseratio in the original image is criti cd to the successof the fedure detedion.

2.1.4 Feature Detection in Scale-Space

Although in principle the Gaussan kernel is all one neeals to generate ascde-space the
result is only a set of scded versions of a given image. This s highly insufficient for a com-
plete locd description d the image structure. For avision system to be aleto derive avariety
of symbadlic representations from images, it is required to combine the mwnvdution ouput of
the Gausdan derivative operators of different orders and at different scdes into a more -
plicit description d image geometry. Floradk, ter Haa Romeny et al. [FLO92] have wn-
structed a complete hierarchicd family of up to N-order derivatives of scde-spacefilters (N
may approximate infinity), cadled N-jets, and shown that this family of derivativesis ufficient

for a complete determination d the locd image structure. On the other hand, given a weekly
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boundd inpu, the scde-spacederivatives are infinitely differentiable and guaranteed to con-
verge & any scde [LIN94], which fadlit ates the (posshbly nonlinea) combination d scae-
spacederivatives.

Of the many passble schemes for combining scde-spacederivatives, an important class
generates outputs that do nd depend onthe abitrary choice of the image @ordinate system,
i.e. the output values are invariant to the rotation and trandation d the image function. This

ensures that geometric resporses refled image geometry only. A simple example of a geomet-

ric invariant is the first-order gradient magnitude, |[JL(x,0)||, which captures edge-like prop-

erties [CAN86]. Ancther example is the semnd-order Lapladan, O°L(x,0), which captures

edges [MARS8(], blobs [LIN94] and ridges [FRI93]. More complex combinations of scde-
spacederivatives for deteding corners, junctions and ridges can be foundin [ter91] [FLO92Z]

[LIN94] [LINOSg].

2.1.5 Automatic Scale Selection

Although scae-space theory describes how information can best be cmbined aaoss
scde, it doesnat indicate how to seled the most appropriate scae for further analyses. Fritsch,
Pizer et al. [FRI9J] [PIZ94] and Lindeberg [LIN94] have contributed to the development of a
framework that incorporates the mechanism of automatic scade seledion in scde-spacefedure
detedion. In scde seledion, resporse from a feaure detedor (i.e. some cmbination d nor-
mali sed Gaussan derivatives) is compared aaoss sde. For eat spatia position, the scae &
which the detedor assumes aloca maximum resporse refleds the dharaderistic length of un-
derlying image feaures observed from that position andis likely to be the “optimal” scde for
the analysis of that position. Such “optimal” scdes are usualy varying aaossan image, e.g.

increasing along the midde line of aflaring shape.
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When the size (scde) and structure (feaure type) of afeaure detedor is best fit to alocd
region d the form (intensity plus shape), the strongest response will be generated at this <de
that is propartional to the charaderistic length of the image feaure of interest. This charader-
istic length has been proved to correspondto the radius of a “blob”, the width of an elongated
objed, the width of edge slope (diffusenesg, or the wavelength of a sinusoidal signal [FRI9J]
[LINOS].

The significance of automatic scde seledion is the alaptive scde seledion within an im-
age. Robustnessis enhanced by using the largest degree of smoathing that does not saaifice
image structure. Scde seledion alows the most appropriate scde of smoothing to automati-

cdly be used in ead part of animage.
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2.2 Medial AxisTransform (MAT)

2.2.1 Definitions

The media axis of a planar shape is the locus of centres of maximal disks inscribed
within that shape [BLU67], seeFig. 2.2@). When ead media axis point is associated with the
radius of its maximal disk, it is referred to as medial axis transform (MAT), because the shape
can be recvered asthe union d these maximal disks. In an equivaent definition o the MAT,
known as the “prairie fire”, Blum considered a fire front initiated simultaneously on all the
boundiries and propagating with a @wnstant speed inside the shape. The medial axis is the lo-
cus of points where fire fronts originating from different boundiry points med and then
guench, seeFig. 2.2b). The time & which the fire front reates the quenching point corre-

sponds to the radius of the maximal disk [BLU67].

aYave ,
X

Fig. 2.2.Media axis definitions using (a) maximal disks and (b) prairie fire model.

Some guivalent definitions of the MAT can be foundin [MONG8§]. In Blum's later
symmetric ais transform (SAT) [BLU73], the restriction that the maximal disks must lie en-
tirely within the objed was removed, and thus the SAT can cgpture aditional symmetries.
For example, the SAT of the @owve redangle has a horizontal axis as long as the shape and an
additional verticd axis as high as the shape. This concept is equivalent to the prairie fire that

continues to propagate dter meding other fire fronts. Blum’s work onthe MAT led to a num-
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ber of other definitions focusing on the medial properties of objeds. These include the
smoathed locd symmetries (SLS) [BRA84], which is the locus of the midpant of the chord
conreding the two tangent points of eady maximal disk, and the processinferring symmetric
axis (PISA) [LEY87], which is the locus of the midpant of the ac connreding the two tangent
points of eaty maximal disk. However, these transforms are not readily described in terms of
objed boundry [MOR95|.

The MAT provides adired encoding of locd properties of objed shape, such as boundary
orientation and curvature, and d global properties, such as overal length and aientation
[MOR95]. Ancther attradive property of the MAT is that the branching structure of an ojed
is refleded by the branching of the axes. The graphicd structure fadlit ates the decompasition
of a complicated shape into simple parts. In this case, branching points of the medial axes or
locd width minima dong the medial axes sparate eab conreded media axis treeinto seg-
ments. The union d the maximal disks of ead axis sgment naturally constitutes a simple

part of the shape.

2.2.2 MAT for Binary Shapes

Many attempts have been made to implement the MAT for segmented (binary) shapes in
digital images, though they may be referred to as diff erent names such as keletonization and
thinning. These methods often fail to preserve one or anather fundamental property such as
conredivity and Euclidean metric. Most of these dgorithms can be dassfied as:

(1) Topdogicd thinning

Most agorithms in the literature ae based ontopdogica thinning or morphdogicd ero-
sion. They repeaedly ped off the pixels on the contour of an ojed whenever the removal

does nat change the shape topdogy. This is an approximation d the “prairie fire” process
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Different sequential [HIL69] [ARC78] [DIL87] and parallel [CHI87] [GUO89] implementa-
tions exist. Because of the anisotropic nature of the commonly used redangular grids, these
algorithms tend to use aregular metric, e.g. city block and chessoard, rather than Euclidean
metric, to preserve mnredivity. While the mnredivity of the resulting skeletons can be guar-
anteed, their geometric acaracgy islimited and their representations are rotation dependent.

(2) Analyticd computation

Another classof agorithm computes the symmetric axes from a polygonal approximation
of a shape. Some methods find pairs of oppaite boundry line segments and compute the
midlines between them [BOO79] [SHA81]. Many other algorithms are based onthe mmputa-
tion d aVorona diagram (VD) of the boundxry line segments [MONG69] [LEES2] [BRA92Z]
[OGN95]. These dgorithms lit the paygona shape into regions separated by the VD of the
boundry line segments or its dual the Delaunay triangulation (DT), and delete the peripheral
DT cdlswhich are not relevant to the description d the shape. The final result is the Vorona
skeletons. Reaursive deletion d DT cdls may be avoided if an adequate measure for the
“relevance” of ead VD branch is chosen. The problem hereis that a poygonal approximation
is often insufficiently acaurate for general shapes, and introduces numerous additional skele-
ton kranches.

(3) Distancetransform (DT)

A distancetransform asggns ead pixel within a shape avalue egual to the distanceto the
neaest boundry point, acording to some metric. This results in a distance map for that
shape. The skeletons of the shape ae the ridges of the distance map. Different metrics can be
used to compute the distance transform. Skeletons based on the regular metric [ROS66]
[ARC89], e.g. city block and chessoard, can be computed very quickly and are assured to be

conreded, bu they are not acarate and nd robust under rotations. Methods based on Euclid-
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ean o quasi-Euclidean metrics [DAN8Q] [HO86] [KLE87] [WRI93] are acarate, but discon-

nedion d skeletal branches requires pedal treament.

2.2.3 MAT for Grey-Level Shapes

After Blum’'s MAT definition for binary shapes, several generdlizations of the MAT to
grey-scae images were propaosed in the ealy literature. According to the MAT definition that
they are based on,these dgorithms can be dassfied as:

(1) Methods based onthe “maximal disks’

Ahujaet al. foundmaximal homogeneous disks in a grey-scade image. The set of centres,
radii, and average grey levels of these disks defines a generalized MAT, cdled the spatial
piecavise gproximation by neighbouhoods (SPAN)[AHU78]. Pal et al. defined the fuzzy
media axis transformation (FMAT) [PAL92], which uses a union d maximal fuzzy disks to
represent a grey-scde image. The membership value in afuzzy disk is the minimum intensity
among those points that have the same distance from the centre of this disk acarding to the
regular metric.

(2) Methods based onthe “prairie fire” model

Peleg et al. defined the min-max media axis transform (MMM AT) [PEL81], in which
min and max operations are iterated over a neighbouhood. This is analogous to the binary
“shrinking” and “expanding” operations of binary mathematicd morphdogy. Wang et al.
propcsed the GRADMAT [WAN82], which computes a score, for ead pant P, by acaimu-
lating edge resporse maxima aounda drcle cantred at P and at a range of circle radii. The
points with a high score lie midway between pairs of edges and were @mnsidered as MAT
points. Arcdi et al. propcsed a parall el thinning algorithm that relies on an iterative eosion d

grey-level images [ARC95]. He noted that the skeleton kranches are locaed along ridges, or
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locaed centrally within a plateau of the image function. For the ridges, the sets of pixels with
an increasing intensity level were successvely removed urtil only the set of ridge pixels was

left; For the plateaus, pixels were removed symmetricdly.

2.3 MAT Significance Hierarchies

One problem of the MAT is that small variations in the boundxry of a shape can gredly
change the media axis gructure. For example, a small protrusion onthe boundary will pro-
duce along MAT branch and can distort the main branch from which the peripheral branches
stem, see Fig. 2.3. A related problem is the ladk of a measure for the relevance of MAT
branches to the description d the shape. A hierarchicd MAT representationis potential to de-
scribe the relative importance of ead medial axis and to overcome these dfeds. The descrip-
tion d the detail ed aspeds of a shape provided in the lower levels of this hierarchy does not
disturb the primary description at higher levels of the hierarchy [P1Z87]. Ancther advantage of
the hierarchicd MAT representation is that it suppats top-down (large scde first) objed de-

scription, reaognition and matching. Several methods have been proposed to construct hierar-

Fig. 2.3.The medial axes are sensitive to detailed boundry perturbations.

chicd MAT representations.

2.3.1 MAT Pruning for Binary Shapes

To systematicdly identify which branches of the MAT could be pruned it is necessary to
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assgn ead axis point a measure of “significance” for the representation d the global proper-
ties of the shape. Then lessessential sedions of the MAT can be removed. MAT pruning does
naot include resolution reduction and thus preserves the topdogicd structure of a shape. A hi-
erarchy of medial axes can also be anstructed, based onthis sgnificance measure [OGN95).
An ealy significance measure is the propagation velocity of ead symmetrica axis point
in the prairie fire model [BLU73], which relies further on the velocity of the fire front (bourd-
ary) and the angle between meding fire fronts. The propagation velocity of ead axis paoint is
low for a “flat” protrusion (in the boundary) that often results in along axis branch but is less

significant for the description d the shape. For example, letting v, be the velocity of the fire

front and 6 be the inner angle between two fire fronts, the propagation welocity of the ais

paint for thisangleis v, =v, /sin(@/2). It is sow for an oktuse angle (77/2 <6 < r) and fast

for anaaute angle (0< 8 <m/2).

The dfea of pruning onthe MAT is smilar to morphdogicd opening. Clealy pruning
an insignificant axis srodd na significantly change ashape description. A significance meas-
ure based on this principle was defined as the maximal thickness of the implied erosion
[HO86] [BRA92Z]. The significance measure of a point A on an axis with endpant E is:
R(E)+dist(A, E)-R(A), where R is the radius of the maximal inscribed disk for an axis point
and dist is the distance between pdnts. This measure is low for a “flat” protrusion onthe
boundry, in which R(A) is much larger than R(E). The importance of this measure is that it
increases monaonicdly from thetip o the aisinwards towards alimiti ng value. Therefore, a
threshold can be gplied withou danger of disconreding the MAT. A similar significance
measure, defined asthe eosion areain the MAT pruning, was described in [SHA9§].

Another significance measure is the ratio of the length of the boundry unfolded by an
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axis sgment to the length of the axis segment [BLU78]. For “flat” protrusions in the bourd-
ary, the aes are usually associated with small amount of boundxry they unfold. Blum

[BLU78] suggested a differential measure 0B(a)/da, where a is the ais arclength parameter

and B(a) the length of the boundry unfolded by the ais ssgment reading axis point a. Axis
significance is determined by the integration d the differential significance measure over a.
Ogniewicz [OGN95| suggested a significance measure that is the length of boundary unfolded
by an axis ssgment. This measure dso increases monaonicaly inward along the ais and thus
iscdled “insideness’. Ogniewicz foundthat the ais points degp inside an ohjed, usually with
ahigh “insideness’ measure, are less ®nsitive to boundry variations and more relevant to the

description d significant shape properties, seeFig. 2.4.

@ b) (
Fig. 2.4. The boundry (thick line) unfolded by (a) an insignificant axis and (b) a significant

axis.

2.3.2 Contour Smoothing for Binary Shapes

The foll owing two categories of MAT hierarchies involve multiple resolution procedures.
At lower resolution ohjea descriptions are simplified. The importance of eat axis branch is
determined by the order of annihilation undr successve resolution reduction. To oltain a

multi-resolution oljed representation contour smoothing and region durring have been used.



CHAPTER2: LITERATURE REVEW 22

Contour smocthing may be gplied to various boundiry representations, such as curva
ture. Dill et al. iteratively deleted the cntour of an oljed but retained padnts representing
“significant” convexity [DIL87]. The “significance” of the mnwvexity is determined by first
smoathing the boundxry curvature with a low-pass filter at multiple resolutions and then
threshalding the aurvature. The remaining points of “significant” convexity constitute arobust
set of skeletons. Rom et al. divided the objed boundry into segments separated by points of
maximum curvature and repeaedly removed the small est segments by fitting a spline to the
locd objed boundry [ROM93]. The ais for ead removed segment is computed separately
and thus does nat disturb the ais representation d the principal shape property.

A more systematic goproach to contour smoathing is given by curve evolution [SET85]
[MOKS86] [KIM95], in which the velocity of fire fronts depends on a mnstant comporent
(like Blum’s model) and a smoathing comporent propational to curvature, seeFig. 2.5.Let s
be the parameter of contour position then the @ntour representation s

C(s,t) =(x(s,1), y(s,t)) andthe arve esolutionis defined as:

P - (5 4 (9N

0 ot (2.9
HC(s.0) = Cy(9)

where t is the time duration (similar to scde), N is the inward namal to the aurve, the sub-

Initial Curve

Deformed Curve

Fig. 2.5.Curve evolution.
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script O denotes the initial curve prior to deformation, and k(s) is the airvature of the contour.

Gage et al. proved that in the cae of [, =0, the arrvature deformation d a shape, by Eq.

(2.6), isanonlinea Gausdgan smoothing processover the mntour [GAG86]. It gives an ani-
sotropic smoathing over the contour in the sense of Perona et al.”s work on anisotropic region
blurring [PER9(Q].

Kimiaet al. [KIM95] began with a boundary contour and propagated the contour inward
acording to Eq. (2.6). When oppaing boundries med, a “shock” occurs, the two sides form
a ommon midde and annihilate. The locus of paints at which shocks occur defines axes like

the MAT. The anourt of diffusionis determined by theratio, 8,/ 3, .

Tari et al. [TAR97] computed a blurred version d the distance transform of a wntour
using linea diffusion. The level curves of this blurred dstance transform are asmoacthed ver-
sion d the level curves of the origina distance transform and a smoothed analogue of the suc-
cesgve shape odtlines produced by prairie fire model. The medial axes are the loci of maxi-
mum curvature dong level curves. Because the propagating velocity of the points on the
blurred level curves was foundto be the sum of the arvature and a cnstant [TAR97], this

methodis closely related to the aurve evolution.

2.3.3 Region Blurring for Grey-L evel Shapes

Region Hurring invalves applying a blurring filter to the intensity of an image and then
obtaining a smoother boundary. Koenderink treaed a binary shape & a charaderistic function,
e.g. letting the function ke O ouside the shape and 1linside, then convdved it with an appro-
priate Gausdan [KOE86]. The result is a grey-scde representation. The contour of the
“blurred” shape is considered as an intensity level curve of thisimage. The level curve may be

chasen such that the aeaof the shape remains constant after ead resolution reduction. The
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main criticism on region Hurring is that topdogy is not preserved. However, Pizer et al. have
shown that it is unratural to insist that the topdogy be maintained under resolution reduction
[PIZ87].

It is argued that region Hurring provides a better representation than contour smoaothing
[KOES8#6]. In addition region Hurring is diredly applicable to grey-level images. On the con-
trary, the MAT pruning and contour smocthing approaches gart with a segmented shape. The
initial boundry contour, often measured at a small, fixed scde, gives an initial topdogy for
the shape that is maintained through the MAT pruning and contour smoothing processes.
Therefore, the result of the MAT pruning and contour smoathing is much influenced by the
initial fixed-scde measurement, which is at odds with the original motivation for using multi-
resolution analysis and a significance hierarchy. In addition, the seledion d theinitial scdeis
naot trivial, becaise the prior knowledge adou image scde is often na available and small-
scae measurement is not resistant to nase.

An example of region durring is the Intensity Axis of Symmetry (IAS) [GAUS8Y], in
which the symmetric axes are cdculated for ead intensity level curve of the blurred grey-
scdeimage. ThelASisaset of branching shedsin 3-D space(2-D for spatia domain and 1-
D for intensity levels). Under successve region Hurring, sheds of medial axes annihil ate into
other sheds of medial axes, resulting in a progressive smplificaion o the IAS description.

Borgefors et al. also considered a binary shape & a daraderistic function [BOR98]. He
computed a grey-level pyramid from a binary image. Each level of the pyramid is obtained by
applying a 3x3 blurring mask to the next higher resolution level and then sub-sampling the
blurred result. At ead resolution level, a distance transform is used to generate the skeletons

at that resolution level.
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The result of the @ove dgorithmsis a set of MAT branches (or sheds) at ead durring
level. Thisis an over complex representation d the shape properties. More serioudly it is not
clea how to determine an appropriate blurring level at which to compute the MAT for a spe-
cific shape. Nor is it clea what the relative significanceis for MAT branches when they are
computed at severa blurring levels. One solution to these isauesisto use amulti-scde medial
axis (MM A) representation. An MM A representation rovides a principled approac to com-
puting MAT branches aaoss €de from agrey-level image. An appropriate scde for a spedfic
shape property can be determined if the significance measure of the MAT is “optimal” across
scde.

An ealier work on multi-scde medial axis is Crowley’s graphicd representation d the
MAT in aresolution pyramid [CRO84]. Crowley et al. computed the diff erence of low-pass
transforms (DOLP), more commonly known as the Diff erence of Gausdan (DoG), at progres-
sively lower resolutions for a grey-level image. At positions where the radially symmetric
central lobe of aDOLP filter isabest fit to the form (shape plus intensity), the resporse of the
DOLP is high. This is analogous to the “maximal disk” definition o the MAT for binary
shapes. The pedks (ridges) in the DOLP resporse ae deteded and linked with adjacent pe&ks
(ridges) at neighbouing paositions and resolution levels. Thisresultsin atreelike MAT repre-
sentation in the resolution pyramid, which is insensitive to fine detail and nase. However, the
shortcoming of this method is that successvely resampling the image space means that the
result is not quantitatively reliable. In addition the DOLP computation and ridges detedion
procedure ae alhoc and rotation dependent. A more systematic goproach to multi-scde me-
dial axis computation is to use differential geometry to deted ridges in a scde-spacerepre-

sentation [P1Z94] [FRI93] [MOR94] [LIN9§] of an image. Thisisintroduced in Sedion 2.4.
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2.4 Multi-Scale Medial Axis

The multi-scde media axes (MMA) for an oljed in a 2-D image ae aset of 1-D curves
in 3D scde-space For eacy MMA point, the spatia coordinate, (X, y), indicaes the middie
pasition d the objed; the scde parameter, o, spedfies the gproximate width o the objed at
that pasition. The MMA curves are obtained by first computing a measure cdled “medial-
ness over scade-space ad then deteding scde-spaceridges in the medianessmanifold. The

medianessfunction, M (x,y,0), is defined as the degreeto which a position (x, y) resembles

an olgjea midde when examined at a particular scae, g. At a given scde o, the medialness
function gives the strongest resporse for thase objeds with a spedfic radius, r, in propation
to o. For variable width oljeds, the medialness values are relatively high along a tradk
through the middl e of the objed and going up and davn in scde propational to the locd ob-
jed width. This tradk of high medialness i.e. the ridges in medialness is the MM A (seeFig.
2.6). In the following sedion, the medialness and ridge definitions in scde-space ae re-

viewed.

scale-space curve
of the primary cove

e
e/ scale oc
medial width
G nested
subobject
ﬂ ﬂ e ___ medial
ﬂ ” pesition
¥ smaller-scale

detail

Fig. 2.6. The MM A curvesin scde-space (Courtesy of [MOR95])
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2.4.1 Medialness Computation

2.4.1.1Traditiond medialnessoperators

There ae many definitions for the medialness function, ead of which is aiitable for a
particular classof image or objed. A thorough review of traditional medialnessoperators can
be foundin [PIZ98]. To make medialnessresporses that are invariant to trandation, rotation
and zoom, these medialnessoperators are usually based on nomali sed Gaussan derivatives of
image intensity, c*D*L , where L(x,0) = G(x,0) 0l (x). Medianessoperators can be dther
locd or multi-locd.

(1) Locd medianessoperators

Locd operators depend orly on locd spatial derivatives of the blurred image intensity at
eat pdential axis paint. If the locd derivative operation is combined with the Gausgan blur-
ring to form a convdution kernel, it resembles Blum’s “maximal disk” definition for the
MAT of abinary shape. For a 2-D grey-level image, when the radially symmetric central |obe
of the cnvdution kernel of alocd operator is best fit to the objed (shape plus intensity), the
kernel centreisan axis paint.

A linea locd operator isthe normalised Lapladan of a Gausdan (LoG) [FRI9Z] [FRI9J]:

K(x,y,0) = -0*0%G(X,Y,0)

1 X2 + y? X2 + y? (2.7
=- - X
2110” % o’ % % 20° E

The profile of this operator in 1-D is sown in Fig. 2.74a). Ancther linea operator is the Dif-

ference of Low-Pass(DOLP) transforms or DoG (Difference of Gaussan) [CRO84], which is
adifferenceof two Gaussans with dfferent sizes and an approximation to the LoG operator.

In addition, some noninea, data-dependent operators have been used. This alows the
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\/\/

(@ b) (
Fig. 2.7.The 1-D profil es of medianessoperators: (a) the LoG and (b) HMAT.

choice of medialnessoperators that respond oty to involute pairs' and are seledive to image
properties at border involutes. For example, the orientation d the operator can be aljusted to
respond peferentially to perallel boundiries or the palarity of intensity change & boundhries.

A nonlinea (orientation dependent) locd medialness function is [ter91] [FRI9J]
[LIN9S]:

M(x,y,0) =-0’L (2.9

pp

where L, and L, are the maximal and minimal principal curvatures of L(x,y,0) with prin-

cipa diredions p and g, respedively. These principa curvatures and dredions correspondto
the e@genvaues and eigenvedors of the Hessan matrix of second cerivatives of L(X,y,0):

XX ny
g . E (2.9
Xy vy [

Therefore, urlike the isotropic convdution d the LoG (Eq. (2.7)), this medialnessfunc-
tion applies the LoG convdution orly in the diredion that maximizes the medialness func-

tion. It is particularly effedive for objeds with paralel sides and unform internal intensity. It

! The maximal disk of ead MAT poaint is often tangent to the boundry of a shape & two distinct

points. These two related pants are cdl ed invol utes.
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isless engitive to intensity variations along the objed axis than the linea, locd LoG media-
ness because these two kinds of medianess functions are related to Ly, (principal) and

L, +L,, =L, *+Ly (isotropic) measures, respedively. The isotropic LoG operator involves

applying seaond cerivatives along an oljea axisin drediong.
A shortcoming of the medialnessdefinitions in Egs. (2.7) and (2.8) is that they also give

strong resporses for “blob” structures, where L and L, are of large and roughly equal val-

ues. Lindeberg propaosed two blob-freemedialnessfunctions [LIN98]:
M(x,y,0) =0 (L2 - L;,)? (2.10
M(x,y,0) =0 (L,, —Ly)’ (2.1
which have high values only when the principal curvatures are significantly different, i.e. for
elongated structures.
A nontlinea (pdarity dependent), loca medialnessfunction, which ignores the diff erence

between a bright objed on a darker badgroundand a dark objed on a brighter badkground,

can be foundin [ter91] [FRI93] andis defined as:

M(x,y,0) = -a2(2, + 12, ) 2.12

(2) Multi-locd medialnessoperators

Multi-locd operators generate medialness by querying derivatives of the blurred image
intensity, e.g. the gradient magnitude, at a distance from ead pdentia axis point. They are
inspired by the observation that the maximal disk of ead MAT point is tangential to an ojed
boundry at two o more places. When they are gplied to a 2-D image, the edge responses
arounda drcle, where the gradient of the blurred image intensity is towards the drcle centre,

are acomulated. A medial axis point isalocd maximum of medianessresporse with resped
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to circle radius and pasition.

A linea multi-locd medianess function is the Hough-like Medial Axis Transform
(HMAT) [MOR91] [MOR95]. It is the integration d diredional boundrinessarounda drcle
with centre ainciding with the operator centre and radius propationa to scde. The direc-
tional boundrinessis defined as:

B(x,y,0,0) = -ou(@) IL(x, y,0) (2.13

where u(8) = (cos8,sing). The HMAT medialnessis defined by:

M(X,y,0) :J’:T B((x,y) +ru(@),o0,0)d6 (2.19

where r = ko for some @nstant radius-to-scde ratio k. Therefore, the HMAT medianessop-

erator is defined by:
K(X,y,0)=0 ﬁ"[— u(@) MG((x, y) +ru(®),0)k6 (2.15
The profil e of this operator in 1-D is shown in Fig. 2.7Db).
A nonlinea (orientation dependent), multi-loca medianess function was dudied in
[PUF95] and defined as:

M (x,y,0) =—-ou(0) OL((x,y) +ru(B);o0) + ou(@) IIL((x,y) —ru(@);o) (2.19
where the angle 6 is ®leded to maximize the medianessfunction over al possble angles.
This medialnessfunctionis espeaaly effedive for objeds with parallel boundries. A similar
medialness function can be foundin [KOL95] where 6 is sleded as the principal diredion
that maximizes the second derivative of the function L(x, y,0).

A nonlinea (pdarity dependent), multi-loca medialness function can be obtained by

integration d the @solute value of the boundrinessarounda darcle centred at eat puative

axis point [MOR94] [MOR95] using:
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M (X,Y,0) :J’02n|B((x, y) +ru(6),0,0)|de (2.17

This nonlinea functionis useful if an ojed’sintensity nea the boundxry is brighter in some
locations than the badkgroundand in some places darker than the badkground.Conwversely, the

linea HMAT kernel isuseful only for objeds with the same padarity of boundry transitions.

(3) Comparison ketween locd and multi-locd medialnessoperators

Multi-locd operators are suitable for a greaer variety of objed appeaances than locd
operators. The ratio between operator radius and the blurring scde, cdled radius-to-scde ra-
tio, k=r /o, can be tuned to suit image properties sich as noise and pre-existing blur. For
example, if the image is noisy one might deaease k and wse larger blurring scdes for a given
objed radius. In ndse-free evironments where one desires as much predsion as possble, a
larger value for k might be used. As a result, multi-locd operators usualy have low weights
(sometimes zero) around ogrator centres (seeFig. 2.7b)) and are less ensitive to variations
in image intensity, e.g. embedded oljeds and correlated ndse, within oljeds.

The aaptive nature of multi-locd medialness operators is also refleaed in the pairing
between boundry transitions of oppasite polarities. For example, they can pair boundxries
that are brighter than the badground on oe side and darker than the badkground onthe other,
seeEq. (2.17). Locd medialnessoperators can ony pair boundiries with the same transition
polarity, for either bright objeds on dark badkgrounds or dark oljeds on kright badgrounds.

Due to the aaptive nature of multi-locd operators, the elge-free medialness functions,
reviewed in Sedion 2.4.1.2,are based on multi-locd operators. However, the use of multi-
locd operators is computationally expensive. Multi-locd operators invalve the integration and
dot product operation over all the angles arounda “fuzzy” disk, which canna be decompased

into separable operators in x and y dimensions. On the @ntrary, locd operators based on
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Gausdan derivatives can do so and the mmputational cost can be reduced from O(M?) to
O(M), where M isthe width of the operator [HUES6].

A partial remedy for multi-loca operators, described by Bharath et al. [BHA99], used a
polar separable function to represent the radial and angular weightings for the HMAT opera
tor. The angular weighting for ead boundry point is approximated by the gplicaion o an-
gular steging tedniques [FRE91]. The boundxriness (gradient magnitude), B(x,Yy,0), is
multiplied pdntwise by the steeing weights computed from the gradient angle field,

0:(x,y,0), and the resulting scdar resporses are eat convdved with their correspondng

filter masks (bases). The output of these filters is the summation d a truncated series and
foundto be sufficient to approximate the HMAT medialness This sheme grealy reduces the

computational cost. [BHA99].

2.4.1.2Edge-freemedialnessoperators

One shortcoming of the traditional medialnessoperators is that they are nat only sensitive
to symmetries, bu also respondto edges. This can disturb the extradion d the MMA. The
edge resporses may be partialy distinguished from symmetry responses under an appropriate
scde-normali zation scheme. One such scheme is multi plicaion by the k-th power of scde for
medialnessoperators based onthe k-th derivative of a Gausgan, i.e. c“D*L . In this case the
resporse for an isolated step-edge can have a onstant pes&k amplitude & a range of scdes
[FRI93]. Such a medialnessresporse forms a “fuzzy shed” in scde-space extending from the
step edge to propationaly larger scdes (Fig. 2.8a)).

On the other hand, the respornse of a normalized operator to a symmetric structure varies
aaoss €de and hes its pe&k vaue & a scde propationa to the obed width. Fig. 2.8a)

shows the aosssedion d the medialnessfor two perallel edges of an oljed. This creaes two
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“fuzzy sheds’ of medianessthat intersed to produce an enhanced medialnessin the midde
of the objed. For paints on these sheds, the diredion, e (refer to Fig. 2.10, in which the
magnitude of the send drivative is greaest, is through the shed; the diredion, e3, in which
the magnitude of the second derivativeisleast, is paral e to the boundries and pantsinto the
picture. The diredion, athogonal to bah, is e,. The maximum medianessaaoss €de, as a
function d paosition,is shown in Fig. 2.8b). The resulting curve isrelatively flat urtil nea the
middle of the objed. The strong pe& in the midde of the objed is the desired symmetry re-
sporse. The MMA isreaily deteded as the pek of this curve.

Due to discrete spatial sampling and nase in the original image, there ae dways gnall
fluctuationsin the alge resporse pesk computed at ead scde, which is, theredter refleded as
small fluctuations along e, andin the aurve shown in Fig. 2.8b). These fluctuations satisfy the
definition d aridge (using either the optimal scde ridge or height ridge definition) in scde-

gpace ad can lea to the detedion d an MM A branch along the diredion e; [MOR95], see

(@
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Fig. 2.8. The medialness sde-space for two paralel edges. (a) a adosssedion and (b) the

maxima acoss €de s afunction d position (Courtesy of [MOR95]).
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Sedion 2.4.2.2.

It is clea that ridge detedion aone is not sufficient for multi-scde medial axis detedion;
some measure of ridge strength is desirable to dfferentiate asymmetry from artifads of dis-
crete sampling and nase. This is smilar to ore motivation for Canny’s edge detedor
[CANS8E], in which the anplitude of the alge resporse (gradient) at the maximum provides a
good estimate of edge strength and a hysteresis thresholding scheme can be used on those
edge candidates €leded by nonmaximum suppresson. This gives a better separation be-
tween signal and nase, or strong edges and wedker edges.

Because aridge strength measure is closely related to the medialnessoperator being used,
existing ridge strength measures can be dassfied as either locd or multi-locd measurement.

(1) Locd measurement of ridge strength

The etimation d ridge strength may be based on a locd measure & a potentia ridge
point. One obvious measure is the media nessresporseitself, M (X, y,0). Lindeberg defined a
ridge saliency measure & the integration d the medialness resporse dong ead ridge
[LIN9g]. Therefore, long conrneded medial axis branches arising from high contrast objeds

are dtributed a greaer ridge saliency. However, his medialness function, —aZLpp(x, y,0),

gives a strong emphasis to edges, which are prone to forming small creases from scde to
scde, espedaly at small scdes. Thus, some spurious medial axes, usually close and parall e
to boundries, can be generated.

Ancther locd measure of ridge strength is the aossridge second cerivative, M (X, y,0)
(ridge “sharpness’). It considers only locd properties close to the “top” of the ridge. There is

no sense of the overall height or breadth o the ridge & measured acossthe @ntributing re-

gion d boundxriness Therefore, it canna best differentiate small “hill s’ (fluctuations of edge
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resporses) and a large mourtain (symmetricd interadion d edge resporses) on a plateau
(edge resporses). It is clea that a global measure of ridge strength, which considers the rela
tive locd and medium range importance of theridge, is required.

(2) Multi-locd measurement of ridge strength

Multi-locd ridge strength measures are often based on multi-locd medialness operators.
There ae two types of multi-locd ridge strength measures. The first type is to compare the
medialnessresporse & a potential ridge with the edge resporses that contribute to the ridge
and are & adistancefrom the ridge.

For the HMAT operator, the medialnessat aridge point is the sum of the edge resporses
from contributing boundxry points. Therefore, any elevation in medialnessabove the edge re-
sporse of one boundry paint must be the result of interadion with ather boundxry points.
Morse defined a global ridge strength measure (GRSM) [MOR95] as the ratio o the total me-
dialness at a patentia ridge point (the dtitude of the mountain) to the maximum edge re-
sporse (the dtitude of the plateau) that contributes to the ridge point:

M(x,y,0)

R(x,y,0) = maXQ{B((X' y) + ru(G),U,e)}

(2.19

The GRSM value aising from the interadion d two boundries is greaer than that aris-
ing from an isolated boundry. Thus it can dfferentiate medial and edge responses. Because
this measure is invariant to intensity, it ignores the diff erence between right and dm objeds.
The sensitivity to dm objeds must be traded off against the sensitivity to small noise and
computational errors.

Morse dso suggested an iterative process cdled credit attribution [MOR95], to enhance
the HMAT medialnessresporse for structural symmetry and suppress edge resporses. In the

credit attribution algorithm, the initial medialness at t =0, is computed in the same way as
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the HMAT. At iteration t, for ead boundry paint at (X, y), the (circular) locus of all medial-
nesspoaints, at (x,y)—ru(@), that the boundary point (x, y) contributes to is examined and the
medianess on this locus is Immed. Then the medialness is re-acaumulated, with ead
boundiriness contribution keing weighted by the ratio of the medialness at the medial point

and the medialness sIm aroundead boundry point, i.e..

M, (X, y,0) =J’02" B((x, y) +ru(8),0,0)W,((x, y) + ru(8),o,0)d (2.19
1 t=0
V\/t(x’ y,o"e) = E Mt—l((X' y)—ru(e),a) t>0 (2_2(_’)

LM 4 (% Y) = u(@), 0)de

This processis repeaed urtil the desired level of sharpening is achieved or the maximum
computation is excealed. The aedit attribution algorithm asumes that ead boundry point
has a mnstant sum of contributions to the medialness pace If one of its surroundng loca-
tions, a (x,y)—ru(8), has a greaer initial medialnessthan the other surroundng locaions,
i.e. with an enhanced M _, ((X,y) —ru(8),0) , the boundirinesscontribution in that diredion 6
will obtain a greaer weight in the next iteration. In this way, the boundariness contribution
bemmes greaest when the @ntributions interad.

The second type of multi-locd ridge strength measures is to compare apair of edge
resporses contributing to a potential ridge [WAN82] [SUB93] [KOL95]. These measures
have been widely used in the detedion d ridgesin 1-D signals and curvili nea structuresin 2-
D images. Like using the medianessfunctionin Eq. (2.16), Koller computed a pair of shifted
edge resporses that were stegred in the principal diredion, 6, that maximizes the second

derivative of the blurred image L(x,y,0), i.e.
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R.(x,y,0) =-ou(8) IL((x, y) + ru(6);0)

(2.21)
Rz (X, y,0) = ou(0) TOL((x, y) —ru(8);0)

He nated that the final medialness resporse must be large, if both edge resporses are large,
and zero, if either edge resporse is zero. Therefore, rather than using the sum of the two edge
resporses to produce medialnessas in Eq. (2.16), either the minimum or geometric mean o
the two edge responses was used in computing the output resporse:

M (x,y,0) = min{R_(X, ¥,0), Ry (X, Y, 0)}
(2.22

M (XY, 0) =R.(X ¥,0)Re(x,¥,0)
As aresult, the medialnessresporse of asingle elge is suppressed and the remaining resporse

can be diredly used as a measure of ridge strength.

2.4.1.3Prevew of our medialnessfunction

In Sedion 3.2we propose a Concordance-based Medial Axis Transform (CMAT) to
compute edge-freemedialnessresporses. The initial medialnessis computed in the same way
as for the HMAT, using Eq. (2.14. At a seoond, noniterative stage, the medialnessiis re-
acwmulated using Eq. (2.19 but the dirediona boundirinessis weighted by a function, f, of

theratio of the boundrinessvalue to thetota initial medialnessi.e.:

a t=0
W,(x,%.0,6) = [} B((xy) +1u@).0.0)0 (2.23
E O M, (X, y,0) 0

Boundarinessis introduced in Sedion 3.1.The computation d the CMAT medialnessre-
sporse from the boundxrinessis described in Sedion 3.2.1.In Sedion 3.2.2the concordance
property, which expresses the symmetry of boundxriness s$rength, is discussd. In Sedion
3.2.3,dternative definitions for computing the CMAT, using different forms of the functionf,

are discus=d. In Sedion 4.1,we present quantitative performances of the CMAT agorithm
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and compare them with those of seleded traditional medialness operators. The results of the
applications of the CMAT to synthetic and medicd images are presented and compared in
Sedion 4.2.Findly, the relationship of the CMAT with existing edge-free medialhess algo-

rithmsisdiscussd in Sedion 5.1.

2.4.2 Detection of Medialness Ridges
2.4.2.1Ridge definitionsin 2-D space

Definitions of ridges can be foundin the mathematicd literature dating badk for more
than a century [KOE94]. Since eab ridge finder is corred in some sense but may fail in spe-
cific cases, the literature does not converge to a unique description o ridges. Instead, most of
the numerous definitions fall into ore of the following four categories.

(1) Water flow definition

This methodis based onthe global drainage pattern o rainfall on aterrain map [GAU93]
[KOE94] [GRI9]]. If the image intensity is viewed as height, the image gradient can be used
to predict the diredion d drainage in an image. By following the image gradient downhill
from ead pant in the image, the set of paints that drain to the same locd intensity minimum
can beidentified and is cdled a watershed region d the image. The lines that separate water-
shed regions correspondto intensity ridges and vall eys. From this the ridges can be identified.

The water flow definition has nat been widely used for a pradicd reason: thereisnolocd
operator to deted watershed ridges [EBE94a]. The ridges have to be determined by a non
locd process in which a ridge point may be relocated by the disturbance on the drainage
paths, even though no change in intensity has occurred around this ridge point [EBE944].
Therefore, it is more widesprea to regard the 2-D image intensity as a surfacein 3-D space

and extrad the ridges using differential geometry. These definitions are locd and invalve
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measurement of curvatures associated with surfaces in general.

(2) Leve curvature definition

This method dEfines aridge @ the locus of paositions that are locd maxima of the isophde
(level curve) curvature of a surface[EBE94a], seeFig. 2.9a). This definition arises from the
nation that a person walking at a mnstant atitude aounda mourtain terrain might label the
mountain ridges as those points where he experiences a maximal change in dredion. The iso-

phae airvature of afunction, f(x, y), may be written as:

—fofZ+2f f f, - f f?

K(Xy) = (f L fz)m (2.29

A pasition, (X, y), can be identified as a ridge paint, if k(x,y)is alocd maxima in the

tangent diredion d the level curves:

H fy - E
E’\/fxz + fyz ’ \/fx2 + fy2 E (2.2

Maintz et al. nated that the intensity profile dong a line perpendicular to aridge is rela
tively concave [MAI196]. They defined ridge poaints as those with minimum (negatively maxi-
mum) second derivative in the diredion namal to the gradient diredion. The second drec-
tional derivative they obtained is K (x, y)|/f,Z + f 7 . Thus this method is also besed oniso-
phae arvature.

The main limitation d isophde airvature definition is that it fals to deted horizontal
ridges. An exampleisthe function, f(x,y) =1-x?, which hastwo peral el isophde lines and

a horizontal ridge. Thisis also refleded in the level curvature expressonin Eg. (2.24), which

involves division by the gradient magnitude that is zero along a horizontal ridge.
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[

(a) (b)

(€)

Fig. 2.9.Ridge definitions on a 2-D surface ad associated sedion danes: (a) level curva

ture, (b) principal curvature, and (c) height ridge.

Thirion et al. extended the level curvature definition to 3-D images [THI9Z] to extrad
crest lines. For a 3-D image, the manifold with an iso-value is typicdly a 2-D surface
Thirion's crest lines are defined as those points on a level surface whase principal curvature
is alocd maximum in the crrespondng principa diredion (the definitions of the principal
curvature and dredion are given below in (3)). Fidrich further extended Thirion's work to 4-

D images (and 4D scde-spaces of 3-D images) [FID96].

(3) Principal curvature definition

At a paint on a surface the surfacemay bend in qute different ways for varying direc-
tions. This can be represented by the normal curvature, which is the arvature of the arve
formed by the intersedion d the surface ad ore norma sedion dane. The normal sedion
plane is ganned by the normal vedor and a tangent vedor of the surface The maximum and

minimum values of the normal curvature of the surface aapoint are the principal curvatures.
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The orrespondng tangent diredions of the surface ae the principal diredions [ONE66]. A
point is defined as the ridge point when ore of its two principal curvatures of the surface &
sumes a locd maximum in the crrespondng principa diredion [EBE94a] [KOE91]
[MON95], seeFig. 2.9(b).

For aridge with a flat top and stegp slopes, this definition hes the problem that the true
ridge may be lost and, insteal, two separate ridges of principal curvature, symmetricd to the

true ridge, will be found[EBE944a] [ STE9S]. These ae intuitively spurious ridges. For exam-

ple, the principal curvature ridge for the surface f(x,y) =1-x7, isa x=0; Those for the

surface f(x,y)=1-x*, are & x=+1//6.

(4) Height definition

A height ridge paint is defined as alocd maximum of the image intensity in the diredion
that minimizes (negatively maximizes) the second dredional derivative of the intensity
[HARS83] [EBE944a] [KOL9Y], seeFig. 2.9¢). The detedion d height ridge points can resort
to solving the egenvedors of the Hesgan matrix of second cerivatives of the intensity. For a

2-D function f(x,y), let A, <A, denate the égenvalues of the Hesdan matrix of second &

rivatives

fo T
Efw fwg 226
with correspondng eigenvedors e; and e, respedively. A point is defined to be on a ridge of
f, if thereisamaximum of finthediredion o (negatively) gredest curvature:

A <0

(2.27
e Of =0

For a3-D function f(x,y,2), let A, <A, <A, denote the @genvalues of the Hessan ma-
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trix of second dkrivatives:

fox fxy fsz
U L
DfXy f, T, C (2.28
O C
Dfxz fyz fzz C
with correspondng eigenvedors e, e,, and e;, respedively. A point is determined to be al-
D ridge paint, if A, <0 and e, (IIf =0 fori=1, 2,seeFig. 2.10.Also, apoaint is determined to

be al-D valey paintif A, >0 and e, [(IUf =0 fori=2, 3.

Eberly et al. showed that the height ridge definition gives an intuiti vely better result than
the level and principal curvature definitions [EBE94a]. However, this definition may lead to

the entire aeaof aradially symmetric surfacebeing classfied as ridge points [HAR92Z], asin
the cae of a wne defined by f(x,y) =+/x* +y?* . Hardlick has siggested a post-processng

step to eliminate these “ridge” points [HAR92].

/Ridge section plane

2(or 0) Isophote catours

X

Fig. 2.10.A 1-D height ridge in 3-D space(or 3-D scde-spacg with the three egen-
vedors of the Hessan matrix.
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2.4.2.2Ridge detedionin scale-space

There ae many reports of methods for the multi-scade detedion o ridges. The method
presented in this thesis is inspired by, and hes the dosest connedion with the foll owing algo-
rithms that deted ridgesin 2+1 dmensional scde-space adinvave aitomatic scde selection.

(1) Crowley’s pes andridge linking

A discrete definition o ridges in a multi-resolution pyramid (analogous to a scde-space
was given in [CRO84], where the underlying function is the image intensity convdved with
the difference of low-pass (DOLP) kernel. Ridges with major (P-paths) and minor (L-paths)
extensions in the scde dimension are extraded separately. P-paths are identified by locating
pe&ks (P-nodes) at ead resolution level and linking them with those P-nodes at adjacent posi-
tionsand in adjacent levels. L-paths are identified by locaing ridges (R-nodes) at ead resolu-
tion level. The R-nodes that have larger DOLP values than those R-nodes at neighbouing lo-
cdions and in adjacent resolution levels are seleded as L-nodes. These L-nodes are further
linked with the largest adjacent L-nodes with the same diredion in adjacent resolution levels
to form ridge paths (L-paths) in the 3-D pyramid space This processresultsin agraphicd rep-
resentation o scade-spaceridges. However, this ridge definition is nat rotation-invariant and
has mathematicd weakness[PIZ98] [EBE94a]. For example, the R-nodes are defined as locd
diredional maxima in any of the four diredions associated with the 8-neighbouhood d the
pixel. A more strict ridge detedor shoud depend on all the 8-neighbouhood, like in the

height ridge definition [HAR83].

(2)Maximum conwvexity ridges
The maximum conwvexity ridge definition interprets the joint contribution o spatial space
and scde to the identificaion o potential ridge points. It is an extension d the height ridge

definition to the 3-D scde-space[MOR94] [EBE94H]|, seeFig. 2.10.A 1-D ridge paint is de-
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fined as the locd maximum in bah the diredions, e; and e,, correspondng to the two nega-
tively greaest eigenvalues of the Hessan matrix. Therefore, the ridge point is a locd maxi-
mum in the plane spanned by the two eigenvedors, e; and e;, namal to the ridge; theridgeis
in the diredion d the third eigenvector, e;.

Because one dimension d a scde-spaceis the scde parameter, which needs to be spedfi-
cdly treaed, eat spatial and scde thange must be defined in terms of the relative scde. Dif-
ferentiation must be performed with resped to dx/o and do /o, respedively, undr Rie-
mannian geometry in scae-space[EBE94h]. A modified Hessan matrix that refleds the in-
terdependence of spatial space ad scde is required. The Riemannian geometry is hyperbadlic
when the radius-to-scde ratio is equal to 1. Under hyperbalic geometry, the shortest path
(distance) between two pantsin scde-spaceis not a straight line but a drcular arc. Due to the
complexity of the nonEuclidean geometry, the maximum convexity ridge definition has

foundlimited use.

(3) Optimal scde ridges

In the optimal scde ridge definition, the @ntributions of space ad scde to the identifi-
cdion d potential ridge points are wnsidered independently [FRI92][PIZ94]. The maximal
resporse over scade & ead pasition is located and projeded orto the image plane (i.e. the
scde dimension is determined as one distinguished dredion, vy in Fig. 2.11), forming an op-
timal scde resporsein 2-D spatial space Then scde-spaceridges are mnsidered as the spatial
ridges in the 2-D optimal scde resporse (i.e. the distinguished dredions, v, and v3, are nor-
mal to and consistent with the diredion d the spatia ridge, respedively, seeFig. 2.17. A
benefit of the optimal scde ridge definitionis that the search spacewhich must be mnsidered

is reduced by one dimension (the scde dimension) and ridges can be deteded in 2-D using
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u /

Horizontal plane

V3
Isophote contour

N Ridge

X
Fig. 2.11.A 1-D optimal scde (or optimal pasition) ridge in 3-D scde-spacewith the three
distinguished diredions.

Euclidean geometry and existing techniques as thase described in Sedion 2.4.2.1.

The original definition d optimal scde ridges locaes al |ocd maxima over scde & eah
pasition. These maxima in scde-space may then be partitioned into conneded subsets. For
eat conreded subset, the locdly maximal response forms a sub-image, whaose spatial ridges
constitute apart of the MM A. However, for compli cated images, determining the conredivity
of the subsets of maxima is problematic [FRI93J]. It is necessary to take acournt of when the
boundiries of a subset surface ae encourtered and when it is necessary to jump to ancther
subset surface Therefore, a procedure for computing ridges on dscontinuows sub-images has
not been developed [FRI93].

As an dternative, a simplified strategy for optima scde ridge detedion hes been pro-
posed [FRI93], in which orly the global maximum through scde & ead pasition is consid-
ered and the ridge seach is condwcted over a single image of the globally optimal scde re-
sporse. Although this method can cepture asignificant portion d the MMA, it can restrict
single points to belong to separate MM A branches at different scdes, asin the cae of embed-

ded oljeds. Despite this disadvantage, this smplified strategy of the optimal scae ridge de-
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tedion hes been widely used to deted blood vessels in medicd images [KOL95| [FEL97]
[KRI98] [SATI8] and roads in remotely sensed images [KOL95]. Indedl it is appropriate that

apoint shoud na be the cantre of several vessls or roads of diff erent sizes.

(4) Lindeberg’ s ridge surface

Lindeberg proposed a scde-spaceridge definition [LIN98], in which the contributions of
gpace ad scde to the identificaion d patentia ridge points are dso considered independ-
ently. In this method, the spatial ridges of the 2-D medialnessresporse & ead scde ae -
traded. Such ridges at arange of scdes constitute ridge surfacesin the 3-D scde-space Scde-
spaceridges are made up d those paints, onthe ridge surfaces, which are locd maximain a
scde-increasing diredion. A theoreticdly reasonable diredion is one in the tangent plane of
the ridge surface Such an approach was propased in [LIN98] but no implementation cetail s
and results were presented. Constructing conreded ridge surfaces and determining their tan-
gent planes in the scde-spaceis nat a trivia task, espedally for complex images. Alterna-
tively, the scde ais can be seleded as the scde-increasing diredion. In this way, constructing
ridge surfaces can be avoided by seaching for those paoints that are both spatial ridges at a
single scde (i.e. determining the distinguished dredions, v, and vs, in Fig. 2.11) and maxima
over scde (i.e. considering the scde &is as the distinguished dredion, vy in Fig. 2.1J
[LIN98]. However, this approac tends to merge many edges as ridges, becaise the media-
ness resporses of isolated edges, resulting from a traditional medialness operator, satisfy the

ridge definitionin this approac.

(5) Other developments based onmaximal convexity ridges
Because mmputing medialness everywhere can be computationaly very expensive and

generally the MM A curves are sparse in scde-space it is desirable to locdize cdculations to
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regions which contain MM A.. A fast ridge extradion algorithm, ridge flow andtraversal, was
propcsed in [PI1Z98§]. It finds an approximation to a ridge by user-interadion, moves to the
ridge by looking for the position at which the gradients in the first two eigenvedor diredions

vanish (i.e. e IUf =0 for i=1, 2), and then foll ows the ridge by approximating ridge tangent
in e, androot finding of e [f =0 for i=1, 2.By following the ridge diredion, it increases

the chance that the ridge will not be lost. Fritsch et al. used this technique to deted ridges in
2-D optimal scde resporses (“stimulated cores’) [FRI95]. Furst et al. used marching cores,
which combine this technique with the marching-cubes approach [LOR87], to deted ridgesin
higher dimensional scde-spaces [FUR96H [FUR9S].

Because the MM A, unlike the medial axis, is a disconreded colledion d curves withou
branching, Damon suggested the use of “connedor curves’ to continue the ridge and valley
curves and fill i n the gaps [DAM99]. These “conredor curves’ are obtained by relaxing one

of the condtions for the ridge-valley curves. Let f with the @genvalues A, and eigenvedors
e, of the Hessan matrix be & in Eq. (2.28. A paint is defined as an r-conredor point if
e [IOf =0 fori=1, 2 bu A, >0; andav-conredor point if e IUf =0 fori=2, 3 bu A, <0.

A ridge, valley, or conredor curve can only terminate when either the Hessan of fis sngular
(zero eigenvalue) or a partial umbili c point occurs (identicd eigenvalues). Therefore, when a
ridge ends, alocd seach for the beginning of a mwnredor curve can be mwndwcted to continue
the ridge. By filli ng in the gaps between ridges, small disturbances of an image may change
(e.g. split) the structure of a ridge but will not change the structure of ridge-vall ey-connedor
set. Furst et al. extended the “connedor curves’ to finding 1-D ridges in a 4-D scde-space

[FUR964].
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2.4.2.3Preview of our ridge detedion scheme

In Sedion 3.3we propose agliding window algorithm to extrad a complete set of optimal
scderidges. It differs from Fritsch’s smplified strategy of the optimal scde ridge detedionin
that it seaches for ead locd maximum over scde, rather than the global maximum, at ead
locaion. At ead scde in this agorithm, the “global” medialness maximum over scde (for
individua locaions), within a small scde range (sliding window), forms a “global” optimal
scde resporse for that scde. A pixel is determined as a scde-spaceridge point at the aurrent
scde, if it is bath aridge paint in the optimal scde resporse & the aurrent scde and a locd
maximum over scde. The implementation resented here avoids the nonttrivial task of con-
structing sub-surfaces of conneded maxima in the optimal scde ridge and Lindeberg’s ridge
definitions.

To ill ustrate how the globally optimal scde ridge definition (Fritsch’s smplified strategy)
falls in dstinguishing embedded oljeds and the importance of localy optimal scde ridges,
the behaviour of an embedded puse model in scde-spaceis analyzed in Sedion 3.3.2.Using
this pulse model, we dso show how scde sampling rate and the width of the sliding window
can be seleded. The dsliding window algorithm is described in Sedion 3.3.3.In Sedion 3.3.4,
the ridge detedion and linking procedures in ead 2-D optimal scde resporse, used in the
diding window agorithm, are introduced. The gplicaions of the sliding window algorithm
to bah synthetic and medicd images are demonstrated in Sedion 4.3.The relationship be-
tween the dliding window algorithm and existing scde-spaceridge definitions is discussed in

Sedion 5.2.
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Chapter 3 Theory and Computation

3.1 Boundariness
3.1.1 Scale-Space Boundariness
The scde-spacefor an ariginal image, 1(x) , isdefined as:
L(x,0) =1 (X)* G(X,0) (3.1
where x =(x,,...,X,) OR" denates gatial position in an n-dimensional superplane (R" rep-
resents an ndimensional red domain); G is the n-dimensional Gaussan kernel with unt vol-

ume:

G(x,0) =Wex%%% (3.2

and o R’ is the scde and the standard deviation d the Gaussian (R" represents a one-
dimensional pasitive red domain).

Because this CMAT medianess computation depends on the acamulation o boundri-
ness resporses in the scde-spacefor an image, some operators must applied to find pants
with boundry-like properties in the scde-space However, it is not necessary to generate the
image scde-space eplicitly and then apply boundary-detedion operation to this cde-space
If the boundry-detedion operationis linea and shift invariant, e.g. differentiation in the gra-
dient diredion, considering that convdution is associative, the scade-space boundriness re-
sporse can be written as:

B,(x,0) =001 (x) UG(x,0)] = 1 (x) HOG(x,0) (3.3
The formulation 1 (x) OOG(x,0) avoids the regularization problem involved in computing

derivatives of a discrete function, and is necessary to compute the derivatives of the image
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[ter91]. The wrrespondng scde-spaceboundirinessresporse in the 1-D spatial domainis:
B,(x,0) =1(x) OG, (x,0) (3.9
3.1.2 Size-Invariant Boundariness
Let a1-D unit step function, U(x), be defined as:

x>0

U(X) =10 _ 3.9
ED otherwise

The scde-spaceboundrinessresporse for U(X) is:

vy 0G(x,0)
dx (3.6)

=90(X) 0G(x,0) = G(x,0)

Bou (x,0) =U(X) G, (x,0) =

asillustrated in Fig. 3.1(a). The magnitude of this resporse is de-dependent. Therefore ay
medialnessresporse, arising from the acamulation d such boundvriness resporses, may be
also scde-dependent. As a result, when the medialness resporse is tracked through scde-
space an enhancement of medialness may result from either the interadion between
boundxriness resporses, due to structural symmetry, or a dange in the magnitude of
boundriness resporses themselves, due to scde danges. Therefore, the scde-space
boundrinessresponse must be scde-normalised to maintain a anstant pesk magnitude for a
single step edge. In the 1-D spatial domain, the scde-spaceboundrinessresporse for the in-
put signal, 1(x), becomes:

B(x,0) =1 (x) UoG, (x,0) (3.7

The scde-spaceboundrinessresporse for a unit step edge becomes:

B, (x,0) =0G(x,0) = %ex%—%%
(3.9
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Fig. 3.1.Boundarinessat several scdes for the unit step function, (a) before and (b) after scde-

normali sation.

as fwown in Fig. 3.1(b), where X =x/o is the dimensionless “natura spatial coordinate”
[ter91]. The new boundiriness resporse for a step edge has a @nstant pesk magnitude
through scde. The boundrinessresporse is aso size-invariant, in the sense that, if we intro-
ducethe scding transformations x - Ax and 0 - Ao, then:

B, (Ax,A0) = B, (x,0) 39
A position Ax from the step edge will obtain the same boundrinessvaue & a scde Ag, as a

pasition x from the edge & ascde o.
The size-invariant boundrinessresporse for the n-dimensional spatial domain is:
B(x,0) = 1 (x) DoJG(x,0) (3.10

It can bejointly represented by the gradient magnitude:

b(x,0) =[B(x,0)| (3.11)
and aunit gradient vedor:

. _ B(x,0)

" o) o

This definition d boundrinessresporse is used in the foll owing text.
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3.2 Concordance-based M edial Axis Transform

3.2.1 The Definition
3.2.1.1The definition for continuous co-ordinates
For eadh pant x in boundriness gace the initia contribution, b(x,o0), to medialness
spaceis made d&:
y =X +rA(X,0) (3.13
where y OR" isthe n-dimensional spatia positionin medialness gace and r =ko ( kisthe

ratio of radiusto scade, seeFig. 3.2.
The integration d initial contributions in medialness pace provides the initial medial-

nessresporse. Written as a Radon Transform [GEL66], thisis:

m,(y,o) :J’Rn b(x,0)d(y —x —rA(x,0))dx (3.19

where the Diracfunction &(x) is defined by IR” d(x)dx =1 and d(x) =0 when x#0. In 2D

Original Image I )
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Boundariness Spa

B(X o)
X Z{.(-
glipmie
~G
Medialness Spacen(x o )
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Fig. 3.2.Medialnessisthe integration d boundrinesscontributions.
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gpace theinitial medialnessat y is the integration d diredional boundrinessarounda drcle
centred at y with radius r; the orientation d the boundrinessbeing towards the centre of the
circle, see Fig. 3.2. This definition is close to Blum's MAT [BLU67] and the HMAT
[MOR94].
The initial medialnesshas high values for symmetric structures but also responds to edge
structures, because the boundrinessresporse, b(x,o), for an isolated edge results in the me-
dialnessresporse, m,(y,o0) =b(x,0) . To oltain a medialnessresporse that is ensitive only
to symmetric edges, the cntribution to medialness from boundxriness is constrained by a
weighting function, p(x,o), cdled contribution confidence The requirements for contribu-
tion confidence ae:
(1) The medialness resporse shoud na be greaer than the initial medialness resporse,
i.e. 0< p(x,0)<1.

(2) A single boundary point produces no medialnessresporee, i.e..
p(x,0) =0 if my(y,o) =b(x,0).

(3) Given the boundxriness contribution, b(x,o0), the greaer the initial medianess
m,(y,o), the more passble it is for x to contribute to a true symmetric structure.
Therefore p(x,0) increases with m,(y,o) , or deaeases with b(x,o0) / m,(y,o).

The natural definition o contribution confidence, used here, is:

(3.19

A discusdon d dternative definitions of contribution confidence can be foundin Sedion
3.2.3.The measure of contribution confidence can be mnsidered to be an estimate of the e-

tent to which ore boundiriness point contributes to existing evidence of medialness Using



CHAPTER3: THEORY AND COMPUTATION 54

this confidence measure the boundirinesscontribution to true medialnessis:
C(x,0) =B(x,0) p(x,0) (3.19
The magnitude of such contributionis:
c(x,0) =[C(x,0) (3.17
The medialnessresporse is the integration d boundriness contributions to true medial-

ness
m(y,o) :J’Rn c(x,0)d(y - x — ri(x,0))dx (3.18
The estimation d confidence in Eq. (3.195 provides the “concordance” property of the
Concordance-based Medial Axis Transform (CMAT), by which the medial resporse is high
only when multi ple boundry points jointly provide esidence of a symmetric structure. With
this formulation an isolated boundry canna produce amedial resporse. This concordance
property is analysed in Sedion 3.2.2.
The formula of A(x,0), defined in Eq. (3.12 and wsed in Egs. (3.13), (3.14) and (3.18,
determines the medialnessresporses for dark oljeds (low grey-level vaue) on a light badk-
ground (high grey-level value). The same eguations can be used to compute the medialness

resporse for the inverse phase (light objed on a dark badkground by inverting the sign of the

unit vedor fi(x,o0) such that:

n(x,o) = -

(3.19

It is relatively simple to combine the mmputation d both sets of medialness either by sum-

ming absolute or signed values of medialness
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3.2.1.2Computationin discrete space

For a discretely sampled space boundriness contributions to medialness pace ae typi-
cdly distributed between grids. In order to improve the locdisation d the media axis, the
red-values of the m-ordinates of boundriness contributions are preserved throughou the
computation o medialness

Let mOI" and n 01" be the discrete m-ordinates of points in n-dimensional boundhri-
ness and medialness paces, respedively (1" represents n-dimensiona integer domain). Let

Y =(Yy---,Yy) OR" be the mntinuows co-ordinates of paints in medialness pace Now we

define apseudo version d the discrete Delta function with red argument componrents:

o, -Y2<y <¥Y2, i=1..,n

%) = %) otherwise (3.20

To estimate the @ntribution confidence of ead boundrinesspoint m, the initial medial-
ness at the @rrespondng pasition, y, in Fig. 3.2 must be known. This contribution is the

summation o initial boundarinesscontributions over the unit volume centred at vy, i.e. :
my(y,0) = ) b(m,0)3,(y -m - rfi(m,o)) (3.21)

Likewise the boundiriness contribution, b(m,o), can be thought of as the acamulation o
boundrinessover a unit volume centred at m. The contribution confidence, p(m,o), and the
boundrinesscontribution, c(m,o) , are mwmputed using Egs. (3.15 and (3.17), respedively.
With dscrete sampling, there ae few boundrinesspoints that contribute to medialnessvalue

at exadly the same position. To compensate for the sparseness of these wntributions, a

weighted summation owver avolume is used in the computation d the medialnessresporse:

M(n,0) = > ¢(m,0)G(n—m -rfi(m,o),s) (3.22

m
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Here G is the Gaussan kernel with the standard deviation s. Thisis smilar to the procedure
adopted in ather medialnessalgorithms [MOR94]. To construct the scde-spaceof the original
image we can either solve the diffusion equation a apply Gaussan filter kernels of increasing
size. The Gausdan filter is alinea diffusion processby which the resporse & a point in the
original image is distributed over an areg the size of which changes linealy with scde. The
standard deviation, s, of the Gaussan weighting functionin Eq. (3.22 ischosen as s= Ao (A
is apropationality constant). The anplitude of the Gausgan functionis 1% of the peg value
at a displacanent of more than threetimes its dandard deviation. Therefore the radius of the
volume influenced by a paoint is limited to 3s. This is ill ustrated for the 2-D case in Fig. 3.3.
Point B in boundriness pace ontributes to a drcular area catred a A in medialness gace
If we consider the weighted acaumulation over an angular range 6, we have:

0 =2sin""(3A / k) (3.23
and 6 is kept constant aadoss €de. The value of A can be chosen to suit image properties
such as noise. One may use alarge A for noisy images and a small A for noise-freeimages.
Currently A is st to 0.5in ou implementation.

The position argument in the Gausgan function d Eq. (3.22 isred-vaued thereforeit is

Fig. 3.3.Boundariness pace(point B) contributes to medialness pace cetred at point A.

All similar contributions within a radius of 3s of A are summed using a Gaussan weight-

ing.
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not pradicd to construct a Gausdan look-up table indexed by paosition to accéerate mmputa
tion. Instead, ead boundriness contribution is distributed linealy between the four nearest

neighbouing gid pants, in propationto the distanceto ead neighbour, using:

m(n,o) = 5 c(m,o)W(|n-m -ri(m,o)|) (3.29

Where the distance weighting function W is defined as W(d) = max{1-d,0}, d >0. This
definition means that, if d <1, W(d)=1-d; otherwise W(d)=0. Other weighting functions, such
as a smal Gaussan, are possble. The Gausdan weighting kernel is then applied to compute
the final medialnessresporse:

M(n,o) =m(n,o) * G(n,s) (3.2

3.2.1.3Algorithmic description d CMAT

In the omputation o the CMAT alook uptable (LUT) is used to identify the crrespon-
dence between medialnessand boundrinesspoints. An ottline description o the CMAT al-
gorithm is given in Fig. 3.4and the computation d the LUT is described in the following sec-
tion. The LUT contains groups of boundrinesspoints. The groups are identified in a seaond

LUT.
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1. For eath scdeo

1.1.For ead dscrete boundrinesspoint compute the boundrinessvalue using
Eq. (3.10.
1.2.For ead dscrete point in boundriness pace ompute the locaion o its
contribution in medialness paceusing Eq. (3.13.
1.3. Generate the LUT asciation between ead dscrete medialnesspoint and
the group d contributing discrete boundrinesspoints (Fig. 3.6).
1.4.For ead dscrete boundrinesspoint
1.4.1 Acacumulate the initial boundriness contributions at the locaion o
its contribution wsing the LUT (Fig. 3.7) and Eq. (3.2]).
1.4.2Compute the @ntribution confidence and “true” contribution for ead
boundrinesspoint using Egs. (3.15 and (3.17).
1.5. For eath dscrete medialness point acawmulate the dosest boundariness
“true” contributions, using the LUT (Fig. 3.7) and Eq. (3.24).
1.6. Convdve the result of step 1.5with the Gaussan smoothing kernel, Eq.

(3.25.

Fig. 3.4.0utline of CMAT algorithm
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L: Index List LUT: Look Up Table

Boundariness Space e
my m, ] O
| L[n] —~
/\/M
mi
\ / C: Count List m2
/\/
n
n > C[n] __d/
/_\/
Medialness Space o~

Fig. 3.5.The LUT for associating medialnessand bound@rinesspoints.

Although medialnessresporse is the acamulation d co-ordinated boundriness contri-
butions, only a few boundriness points are relevant to the cmmputation d ead medialness
value. A look-up table (LUT) is used to identify the boundiriness points that satisfy

&, (n—m-rn(m,o)) =1, andare therefore relevant at ead scde.

Suppcee that there ae N points in boundriness and medialness pace Then an N-
element LUT (seeFig. 3.9, organised into N groups and indexed by medialness position n
(n=1,...N) will describe the aciation between medianess and boundriness points. A
group, n,is the set of the boundriness points whose ntributions are dosest to medialness
grid pant n. The mntent of the LUT is the position, m, of the boundrinesspoaints. The start
pasition and court of ead group are recorded in arrays L and C, respedively. If group nis
empty, its gart position coincides with that of the next medialnesspoint. The aedion d the
LUT isdescribed in Fig. 3.6and adetail ed description d how the LUT isread isgiven in Fig.

3.7.The CMAT medialnessresporses for 2-D images are shown in Sedion 4.2.1.
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m the grid pant co-ordinatesin boundriness pace m=1, ...,N
n the grid pant co-ordinatesin medialness pace n=1, ...,N
L[n] the start addressof group ninthe LUT

C[n]  the courter of group ninthe LUT

LUT[i] the content of LUT indexed by i; i=0,... N-1

Y[m] the m-ordinates of medialnesspoint associated with boundrinesspoint m

1. For eat discrete point, n (n=1,...N), in medialness pace set group courter
C[n]=0.
2. For ead dscrete paint, m, in boundriness gace
2.1 Compute the red-valued pasition, y, of its contribution in medialness gace
using Eq. (3.13.
2.2 Findthegrid padnt, n,in medialness pacethat isclosest toy.
2.3 Y[m]=n;
2.4 C[n]=C[n]+1.
3. L[1]=0.
4. For successve discrete paints, n,in medialness pace n=2, ..., N,
L[n]=L[n-1]+C[n-1].
5. For ead dscrete paint, m, in boundriness gace
5.1 reY[m].
5.2 Fill in boundrinessposition, m, into the LUT: LUT[L[n]+C[n]-1]=m.
5.3 C[n]=C[n]-1.

Fig. 3.6.Algorithm for creaion d LUT asciation between medialnessand boundriness

points.
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1. For ead dscrete point, n,in the suppating region d medialness pace
1.1.Compute the size of group n wing C[n]=L[n+1]-L[n],
1.2.Reped
1.2.1Rea the boundxrinessco-ordinates, m, of amember of group nfrom the
LUT as. m=LUT[L[n]+C[n]-1].
1.2.2 Accumulate the boundrinesscontribution from m.
Instep 1.4.1 é the CMAT algorithm (Fig. 3.4) use Eq. (3.21).
Instep 1.5 d the CMAT agorithm (Fig. 3.4) use Eqg. (3.29).
1.2.3C[n]=C[n]-1.

Until C[n]=0.

Fig. 3.7.Reading the LUT.

3.2.1.4The HMAT-2 transform

This transform is an adaptation o the HMAT. It is the same & the CMAT with the con-
cordance citeria omitted and dffers from the HMAT in using a drcular region for distribut-
ing boundirinesscontributions, rather than an arc [ XU98]. It is presented here to demonstrate
the role of the mncordance aiteria The HMAT-2 medialness resporse is computed as a

weighted summation o initial boundarinesscontributions over aregion, that is:

Mo(n,0) = H b(m,0)G(n -m -rfA(m,0),s) (3.26

The dgorithm for the HMAT-2 is the same & that for the CMAT when step 1.4is ex-
cluded and the contribution confidence, in step 1.5,is st to 1. The principle of the HMAT-2

algorithm is the same & that in the initial medialnesscomputation. However, HMAT-2 is de-
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fined on dscrete @-ordinates, while initial medialnessis defined on continuous co-ordinates.
Also, HMAT-2 includes a smoathing operation nd present in the initial medialnesscomputa-
tion. These differences all arise from the shift from continuous to dscrete space The HMAT-

2 medialnessresporses for 2-D images are shown in Sedion 4.2.1.

3.2.2 The Concordance Property
3.2.2.1Concordarcefactor

Suppce N paints contribute to a medial point A; that the boundirinessresporses at these
pantsare b ,i =1,..., N ; the sum of these boundrinessvalues is Sand the averageis b . The
medialness estimate & point A, withou considering the relation among b, (as computed in
the HMAT) is:

M par (Xa 1= S (3.27
For the CMAT, the onfidence of contributions to a true media structure is 1—b—S', for

ead pant b, . Therefore the medialnessresporseis:

N

M cpar (Xa .01 = Z b(1- %)

:s—§2b|2 (3.29

N
Examining § b? , we have,
i=1

N

S bF = (0 -0)° + Nb*

1=1

N _— SZ
=3 (b -B7+ (3.29

1=1
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N
Becaise Z(bI -b)? =0,
1=1

N SZ
Zb'ZZW (3.30
1=1
S b h ini a s h
I:Zlh aS a minimum value, W’W en:
- S
b =b=7, i=L..,N (3.3)

On the other handwhen b 20, i =1,...,N, it isobvioudly true that:

ib,zsszzﬁibﬁ (3.32

N
> h? has a maximum value, S*, when there is one and orly one non-zero boundriness con-
1=1

tribution, i.e.
& =S
B . _ (3.33
=0, i=1...,Nandizk
N
Therefore > h? isconstrained to the range:
=1
SZ N
N ;blz <g (3.39
Combining Egs. (3.29 and (3.34), we have:
s R 2 2 1
0< Z(bl -b)?<sS E{—NQ (3.35

Let:
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0
0
-5 g V! (3.39
C Ep S3-

Then the medialnessresporse of the CMAT in Eq. (3.28 can be written as:

1 — 2L
M cuar (X .00 = S_gi(b. _b)z +WE

NN 6

Note that ¢ can aso be written as:

> (0 —5)2/(N—1)

0

c= %L— =1 N>1 (3.39
0
EY

S?/N
N=1

N
Theitem Z (b - b)z/(N —1) isthe sample variance a measure of the dispersion, d the
1=1

N observations, b, namalised by S?/N, the largest value of the dispersion (seeEq. (3.39).

Therefore ¢ measures the dispersion a variability of the cntributions. The smaller the
amourt of variability, the greder the value of ¢ and the more cncordance there is among the
contributions. Thus c is cdled the mncordance oefficient. We note that 0<c<1. When
c=0 Eq. (3.33 is stisfied, which is equivalent to there being only one boundiry point cast-
ing its contribution to pant A and there being no concordance When ¢ =1 Eq. (3.3)) is stis-
fied, which corresponds to N equal-valued contributions combining to give the maximal de-
greeof concordance

The CMAT medianessresporse in Eq. (3.37) is propationa to the sum of boundxriness

resporses and to the ancordance ®efficient among the boundiriness resporses. In addition
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when c¢=1 the medianess resporses of the CMAT are smaller than those of HMAT by a

fador 1-(1/ N). This fador is related to the number of boundry points involved in a sym-

metry. Therefore the CMAT medialnessresporse & end pants and kranch pdntsis enhanced.
A similar behaviour is present in the HMAT medialnessresponse. Morse [MOR91] pointed
out that such enhancement is beneficial becaise it more dealy identifies the end and kranch

points that best define the ais.

3.2.2.2Boundainess lesporse vesus concordarnce

The medianessresporse of the CMAT is propational to bah the sum of boundiriness
resporses and the mncordance between boundriness resporses. It is therefore important to
consider the interadion d these two fadors. Consider the idedised situation, shown in Fig.
3.8, d boundrinessresporses for two step edges that differ in magnitude. A scde-invariant

boundrinessoperator, ol1G(x,0), isused, andits resporse for asingle step edge has a Gaus-
sian-like profile with a cnstant pesk magnitude through scae (see size-invariant boundhri-
nessin Sedion 3.1.2. The boundrinessresporses at A and B are the locd maxima with the
magnitudes of V and U respedively (U>V). C is the pasition at which the boundary resporse
due to the alge & B is equal to the maximum resporse of the alge & A. Suppcse that posi-
tions E and D are the midpants of AC and AB respedively, and that the half distances of AC
and AB are ko, and ko, , respedively. Herek istheratio of radiusto scde.

Since M uar Xe,07) = B(X,,0;) + B(X¢,0,) =2V

Mynr (X0:0,) = B(X,,0,) + B(X4,0,) =U +V
Then: Mo (Xp10%) > M (Xe ,07)

By inspedionit is clea that the HMAT will produce amaximal medialnessresporse & posi-
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A E D cC B

ko, ko,

A

L

ko, ko,

Fig. 3.8.Interadion o boundriness srength and concordance in estimating medialness re-

Sponse.

tion D, the media position between the peaks of boundrinessresporse, and give an acarate
identification d media pasition and ohed width. For the CMAT the ancordance between
the boundirinessresporses at positions A and B (which determine the medialnessresporse &
D) is wedker than the concordance between the boundrinessresporses at positions A and C
(which determine the medialnessresporse & E). However, the boundriness simsat D and E
bea the inverse relationship therefore it is difficult to compare, in a simple manner, the rela
tionship between the medialnessresporsesat D and E.

In order to estimate how concordance influences the way in which boundriness contrib-
utes to medialnesswe analyze incremental changes in CMAT medialness Suppcse, as in the
previous fdion, that N pants in boundriness gace ontribute to a media point; that the

boundirinessresporse & these pointsis b,i =1,..., N ; and that the sum of these resporsesis

S Then the CMAT medialnessresporse is defined by Eq. (3.29.

If any one boundiriness resporse, b, , is increased by Ab,, then the summation is in-
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creased to S+ Ab, andthe increment in the CMAT medialnessresporseis:

N

>bP-2sh +S8*
—i=1 k
AM gyar (L= S DS+Abk (3.39
N
> b’ -2sh +§?
. — 1=1
Let; T= S (3.40
N N
usin 2=p?+) b?, then:
g i:zlb b i:zlb
izk
N
zhz +(S-b,)?
=T
T=" (3.4)

S

Note that item T is not related to the increment Ab, . If we trea all initial boundary resporses

as constant then T is aso a mnstant. Note dso that T=0 ony when
b =0,i=1...,Nandi #k, this corresponds to ore boundriness point contributing to the
medianessvalue. In this case, NnoCMAT media nessresponse will be produced. In the case of
multiple boundxriness elements, T >0, will there be an incresse of boundriness resporse
resulting in an increase in medianessresponrse.

With the HMAT, the medialnessincrement due to increased bound@rinessresporse, Ab, ,

AM yyar (H)= A, (342

If the original boundirinessresporses are treaed as constants (and so is their sum S), the

increment of the HMAT and CMAT medialnessresponses change with the ratio:

B="k (3.43

Here B may be mnsidered as the relative increment in boundriness With this definition, the
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HMAT and CMAT medialnessincrement can be written as:;

AM pyar (D= SB (3.49
AM gyar (=T 1_{_3[3 (3.49

Therefore the medialnessincrements for the HMAT and CMAT depend onthe behaviour of

the wefficients f and % respedively. The relationship between 3 and % is srown

inFig. 3.9.In summary:

1. The medianess of the CMAT, like that of the HMAT, increases monaonicdly with
boundirinessincrement. The CMAT forms a maximal resporse & positions midway
between peaks of boundriness resporses and the magnitude of the medialness pegk
changes monaonicdly with the magnitude of the cntributing boundriness pe&ks.
Therefore medial position and oljed width can be identified as acarately using the
CMAT agorithm asthe HMAT agorithm.

2. While the HMAT medianessincreases linealy with boundriness increment, the in-
crease in CMAT medianessis lessthan that for the HMAT and approades the limit-

ingvalueof T as B — . For example, when 3 =1, acwording to the definitionin EQ.
(3.43, Ab, =S; In this case one boundrinessresporse, b, , becomes much larger than
any other and therefore violates the previously computed concordance level; When
B =1 the wefficient B/(1+ ), in the CMAT medialnessincrement of Eq. (3.45 is
deaeased to half the value of the wefficient, 3, used in the equation for the increase in

HMAT medialness This means that wea concordance anong boundarinessresporses

restrains the increase in the CMAT medialnessresporse.
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B P
| BI(1+B) —

Fig. 3.9.Increment of HMAT and CMAT medialnessrelated to bound@rinessincrement:
B and B/(1+f) versus S.

3.2.3 Alternative Definitions of Contribution Confidence

In EqQ. (3.19, we defined the ontribution confidence function, p(x,o), in the form of
f (x) =1-x, where x =b(x,0)/my(y,0). In genera, p(x,o) isdefined as afunction d the
ratio b(x,o) / my(y,o0),1.e.:
p(x,0) = f[b(x,0) / my(y,0)] (3.49
The requirements for the function f (x) are:

@D O0sf(x)<l O<x<1

2 f@®=o0 (3.47)

3 f'(x<0
Condtion (1) means that the medialness resporse shoud na be greaer than the initial me-
dialnessresporse. Condtion (2) means that a single boundary point produces no medialness
resporse. Condtion (3) means that given a boundiriness contribution, the greaer the initial

medianess the more possbleit is for this boundrinesspoint to contribute to a true symmet-
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0 1/2 1
Fig. 3.10. Contribution confidence functions that strictly satisfy requirements of EQ.

(3.47.

ric structure. These cndtions constrain the values of x and f (x) to the aeabetween the -

ordinate axes and the dotted lines, shown in Fig. 3.10.This area ca be divided into threere-
gions acmrding to the value of x:

Region A (x <<1): Thisregion corresponds to situations in which boundry points clus-
ter around an end-point, or a week boundariness resporse that con-
tributes to the initial medialness jointly with ather much stronger
boundirinessresporses.

RegionC (x - 1): Thisregion corresponds to the situation in which a strong boundri-
nessresporse @ntributes to the initial medialnessjointly with ather
much wegker boundirinessresporses.

Region B: Thisregion, centred at x =1/2, corresponds to the situation in which
two compatible boundxries, paralel to eat ather, contribute to the
initial medialness

The @ntribution confidence function dfined in Eq. (3.195 corresponds to the function

f (x) =1-x represented by curve | in Fig. 3.10.Varying the shape of this function, withou
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violating the requirements of Eq. (3.47), will emphasise (or de-emphasise) end-point medial-
nesswith resped to the medialnessarising from parallel boundxries. Curve Il suppresses and
curve lll enhances the relative medialnessarising from parall el boundhries.

If the last requirement of Eq. (3.47), f'(X) <0, iswedened areationship for f(x) can

be defined to give greaer emphasis to the medialnessarising from parallel boundiries and less
emphasis to the medialnessarising from endpants. Curve IV in Fig. 3.11isone such function.

The function d curvelV is;

X ifO<x<1/2
f(x)=0 _
R@A-x) if1/2<x<1

(3.48

To understand haw this arises, consider the medialnessfor the “tube @wntour” shown in
Fig. 3.12.In this figure the boundriness at eat pant on the mntouwr is b and there ae N
points on the haf-circular arc (N >>2). Thus the mediainessat points O (N contributions)

and B (2 contributions, letting N=2), using Eq. (3.15), are:

N e N
M,(xo,[ﬂ—NbEL N@ (N-1Db

(3.49
M, (xg,)=b

f(x)
A

1 ,,,,,,,,,,,,,,,,,,,

v
A B C
» X
0 1/2 1

Fig. 3.11.A contribution confidence function that satisfies the weakened requirements of EQ.
(3.47).
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Fig. 3.12.Medianessacawmulation from end-points and perall el boundries.

Using Eq. (3.48 the medianessat points O and B becomes:

2
M, (Xo,00= Nbﬁ =2b (350
M, (Xg,00=2b

The resulti ng uniform-response medialnessis no longer related to the number of contributions
and the medialnessaong the middle line of paralel boundiries is grealy enhanced. The dif-
ference in the medialnessresulting from curves | and IV is gmilar in neture to the difference
between the “mean deviation from flatness' and the “principle deviation from flatness
[FRI93][ter91], computation d medialness The “mean deviation from flatness' is based on
the use of an isotropic convdution d a Lapladan with the image and the “principal deviation
from flatness’ is based onthe gplicaion o a Lapladan convdution in the diredion which
maximises the resporse.

The analyses and results presented in this thesis are based onthe contribution confidence
p(x,o) defined in EQ. (3.19), in the form of f(x) =1-x(curvel in Fig. 3.10. The CMAT
medianessresporses using other definitions of contribution confidence ae shown in Sedion

4.2.3.
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3.3 Sliding Window Algorithm for Ridge Detection
3.3.1 Introduction tothe MMA for single objects
A symmetric pulse can be denoted by:

[ <wW/2

P(x) =
) Ep otherwise

(3.51)

as $own in Fig. 3.13.This profile mrresponds to a bright “objed” on a darker badground.
W2 is the pulse half-width. Note that:
P(x)=U(x+W/2)-U(x-W/2) (3.52

where U(x) isaunit step function defined in Eq. (3.5).

P(x)

Fig. 3.13.A 1-D perfedly symmetric pulse.

The LoG medialnessresporse of P(x), through scde-space is.

M, (x,0) =-0°G, (x,0) OP(X)
(3.53
=-0°[G, (x+W/2,0) -G (x-W/2,0)]
as fvownin Fig. 3.14.The scde parameter is replaceal by the operator radius, r=0 (seeSedion
4.1.1for reasons), and the medialness resporse is normalised by its global maximum value.
The LoG medialnessforms a global maximum at the paosition d the pulse celtre and at the

operator radius of the pulse half-width [FRI9J], which refleds the symmetry of the pulse.

Therefore the locaion and size of the pulse (objed) can be identified by seaching for the
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Fig. 3.14.The LoG medialness resporse through scae for the symmetric pulse shown in
Fig. 3.13.

global maximum in the medialness €de-space

Given the medialnessresporse over scde and space there ae severa efficient schemes
that can determine the pulse centre and width. The optimal scde definition [FRI93] considers
the locd maxima with resped to scde & ead pasition. The operator radii (scades) and re-
sporses of these maxima, as afunction d pasition, are cdled optimal radii (scales) and opti-
mal radius (scale) resporse, as fiown in Fig. 3.15a) and (b), respedively. The pulse ceatre
always appeas as a spatial maximum of the optimal radius resporse (Fig. 3.15b)). The &2-
ciated optimal radius of the pulse centre aincides with the pulse half-width (Fig. 3.158a)).

The optimal paosition dfinition considers the locd maxima with resped to pasition at
eat scde. The positions and resporses of these maxima, as a function d operator radius
(scde), are cdled optimal paositions and optimal position resporse, as $iown in Fig. 3.15¢)
and (d), respedively. At the operator radius equal to the pulse half-width, there dways is a

maximum in the optimal paosition resporse (Fig. 3.15d)). The as<ciated ogimal position d
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Fig. 3.15.The loci of medialness maxima for the symmetric pulse: (a) The optimal radii and (b)
optimal radius resporse, as afunction d pasition, (c) the optimal pasitions and (d) optimal posi-

tionresporse, as afunction d operator radius.
this operator radius coincides with the position d the pulse centre (Fig. 3.15c)).

It is noted that the loci of optimal scdes and ogimal pasitions are digoint curves. Thisis
because the summation d two approadhing boundrinesslobes may result in a single lobe of
medianess even when the boundrinesslobes peak away from ead ather at a large distance
Numericd seach techniques are required to locae the optimal-scde maxima and ogimal-
pasition maxima for the pulse. They canna be determined analyticdly due to the presence of
transcendental functions [FRI93)].

For a 2-D elongated oljed, there ae arange of locd objed centres and radii, corre-
spondng to the ceatres and radii of locdly maxima inscribed dsks, cdled media axis

[BLUG7]. For the optimal (radius) scde definition, the optimal radius response becomes a 2-D
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surface The locations and associated optimal radii of the ridge points in such aresporse indi-
cde the locations of the medial axes and the locd widths [FRI9J]. For the optimal pasition
definition, ead medial axis point is both a spatial ridge point of the medialnessresporse & a

scde and alocd maximum over scae [LIN9g].

3.3.2 The MMA of Embedded Objects
3.3.2.1The embedded oljed model

Both the paosition and width of an isolated oljed can be crredly identified in the MM A
representation. However, in the cae of multiple objeds existing within a dose distance the
medianessresporse of one objed begins to interfere with those of the other objeds. This can
ater the behaviour and locdisation acairracy of the MM A and make ridge extradion using
Fritsch’s smplified version d the optimal scde definition dfficult.

The interference between multi ple objeds can occur for embedded oljeds. In this case,
some locaions may have an ogimal scde for ead ohjed in the enbedded groupgng. The
ability of the MM A to distinguish the resporse of ead embedded oljeds has not been dem-
onstrated [FRI93]. To ill ustrate how relative size, height, and pasition d an embedded ohjed
affed medialness resporse and MM A representations, an embedded puse model is con-
structed using two owerlapping pulses with adjustable relative width, height, and bas, as

shown in Fig. 3.16,and defined as.
E(x) = P() +hPS _bW/ZE (3.54
e

Where P(x) is a unit pulse of width W and centred at x=0, as defined in Eq. (3.51); Parameter
eistheratio of the width of the enbedded puse to that of the outer pulse( 0<e<1); e - 0

corresponds to orly the outer pulse eisting; when e=1 the enbedded puse wincides with the
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Fig. 3.16.An embedded oljed model.

outer pulse and the groupis equivalent to a single pulse. The parameter h is the ratio of the
height of the enbedded puse to that of the outer pulse (0 < h< o). Setting the parameter, h,
to h=0 corresponds to orly the outer pulse eisting and, as h — o, corresponds to orly the
embedded puse eisting. The parameter b is the ratio of the offset of the pulse centres with
resped to the width of the outer pulse (-1+e<b<1-e). The value, b=0, corresponds to

two concentric pulses and when b=+(1-¢€) the right (left) edges of the enbedded and ouer

pulses coincide.

To compute the LoG medialness resporse of this embedded puse model, the function
E(X) can be decomposed into unt step functions, U(X), defined in Eqg. (3.5). Considering
dU(x)/dx=9d(x), we have:

E(X) =U(Xx+W/2)-U(x-W/2)+hU[x-(b-eW/2]-hU[x—(b+eW /2] (3.55

M (x,0) =-0°G,,(x,0) OE(X)
=-0°G, (x,0) OE,(X)
= -02G, (x,0)*{S(x+W/2) - 5(x—W/2) + hd[x - (b — &)W / 2] 356
—ha[x— (b+ &)W/ 2]}
=-0*{G (x+W/2,0)-G,(x-W/2,0)+hG [x—(b-eW/20]

~hG,[x- (b+eW/2,0T}
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2
where G, (x,0) = —ﬁex%%% (3.57

The medialnessresporse of an embedded puse group (e=0.2, h=1, and b=0) is siown in
Fig. 3.17.Operator radius is substituted for scde, r=0, and the resporse is normalised by the
global maximum value of the medialness resporse for an isolated, symmetric pulse, of unit
height. Because of the lineaity of the LoG operator, the medianessresporse of overlapping
pulses is equivalent to the overlapping resporses of the individual pulses. There ae dealy
two resporse peds, ore & asmall radius and the other at alarge radius, and two peirs of edge
resporses, ore dose to and the other relatively far from the pulse centre. Intuiti vely, the pe&k
at the small er value of radius and the elge responrses closer to the pulse centre ae dtributed to
the embedded puse. The pe&k at the larger value of radius and the edge resporses relatively

far from the pulse centre ae due to the outer pulse. In the following sedions, we examine how
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Fig. 3.17.The medialnessresporse through radius for an embedded puse.
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the relative width, height, and pasition d an embedded puse, with resped to the outer pulse,

can influence medialnessresporses and the MM A representation.

3.3.2.2Effed of relativeobjed width

Fig. 3.18shows the optimal radii and ogimal radius resporses, as a function d position,
for embedded puses of varying width. Each embedded puse has an equal height contrast with
the outer pulse (h=1), and their centres coincide (b=0). Fig. 3.19shows the optimal pasitions
and opimal paosition resporses, as a function d operator radius, for the same set of pulses.
The resporse traces through scde, at the centre of the enbedded and ouer pulses (x=0), when
both puses exist in isolation, are dso ill ustrated in the right column of Fig. 3.19and labelled
as “Embedded (isolated)” and “Outer (isolated)”, respedively.

The LoG medianessresporse for aunit step edgeis:

R, (x,0) =-0°G,,(x,0) U (X) = -0°G (x,0) 05(X)

o7 X %2 (3.58
=-0 X(x,a)—maexr%FE

Then the LoG resporse tracethrough scde a adistance, d, from the unit step edgeis:

_d d?
R,(d,0) = oo ex%FE (3.59

The LoG medialnessresporse & the ceitre of a symmetric pulse is the linea summation
of the LoG resporses for bath edges of the pulse. The resporse trace &the centre of the outer
pulse is doule that at a distanced =W/2 from a unit step edge; The resporse trace & the cen-
tre of the embedded puse is doulde that at a distance d=eW/2 from a step edge of height h.
Therefore, at the midde paosition, x=0, d the enbedded and ouer pulses, when they exist in

isolation, the two resporse traces can be expres=d as:
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My(Or)=2R,(W/2,r) = w ex%%%

vam (3.60
M (0,r) = 2hR, (eW/2,) = 3:_VV ex%%%
TTr

Due to the size-invariance of the LoG resporse to a step edge, the LoG resporse tracein
the centre of a pulse is also size-invariant: M, (0,r) and M, (0,r) have the same maximum
value (when h=1) at radii, r=\W/2 and r=eW/2, respedively. Becaise of the lineaity of the
LoG operator, the resporse tracefor the grouping of the two puses, at x=0, is:

Ma(0.r) = Mo (0,r) +M(0,r)

W W20 hew N (3.61)
= ——eXp — Ht— ex% — E
N 2 8r N 2mr 8r

Despite the presence of edge resporses at small radii, the optimal paosition resporse @incides

with M (O,r) . It isaso naed that M (0,r) (also for the LoG resporse tracefor any pulse)

increases at 0.25 d itsoptimal radius, i.e. r>W/8.

When the embedded puse is much narrower than the outer pulse, e=0.125in Fig. 3.184a)-
(b), theloci of optimal radii and ogimal radius resporses are dmost the union d those for the
embedded and ouer pulses in isolation, except for the enhanced resporse of the outer pulse.
In Fig. 3.19b), the pe&k of the respornse tracefor the enbedded puseis not influenced by the
resporse tracefor the outer pulse, because e<0.25 (the resporse traceof the outer pulse g-
peas at aradius, r>W/8, larger than the optimal radius of the enbedded puse, r=eW/2=\W/16).
Therefore the enbedded puse forms a separate pedk, at a radius of r=e\W/2 and with unt
magnitude, in the optimal position resporse, for the pulse groupng. At a radius, r>W/8, the
optimal pasition resporse for the pulse groupng overlaps the resporse trace for the outer
pulse and the long tail of the resporse tracefor the enbedded puse. Therefore, the outer pulse

forms ancther separate pe, at aradius of r<W/2 and with a greaer magnitude, in the optimal
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pasition resporse for the pulse grouping. Although bah the enbedded and ouer pulses are
distinguishable in scde-space the outer pulse is always measured with a narrow width, con-
trary to the acarate representation o the embedded puse. In addition, even with the same
height contrast (h=1), the outer pulse dways corresponds to a higher peak than the enbedded
pulse does in the optimal position resporse for the grouping (see 4so Fig. 3.18b)). If the sim-
plified strategy of the optimal scde definition is followed, ony the outer pulse will be re-
fleded in the MM A representation.

As the anbedded puse beaomes wider, its response tracewill be shifted closer to that of
the outer pulse. When e=0.25,as sown in Fig. 3.19d), the pe& of the resporse for the em-
bedded puse begins to interfere with the resporse of the outer pulse, and becomes amost in-
distinguishable (see &so the shortened loci in Fig. 3.18c)(d)). Therefore the aility of scde-
gpace aalysis to dscan embedded oljeds is surprisingly limited: it can ony identify those
embedded ojeds with at most 1/4 the width of an ouer objed, provided that h=1 (applied for

h{[1/4, 2]). Thisaso implies that, for ead pasition, notwo pegks of resporse trace ca ex-

ist at similar radii. For an ojed of width W, either embedded in a larger objed or embedding
a smaler obed, no seoond & in the caitral resporse trace is formed at radii,
r 0(wW/8, 2W), for h=1.

When e=0.5, as shown in Fig. 3.19f), the resporse tracefor the anbedded puse s closer
to that of the outer pulse, and the summation d both resporse traces results in a single lobe.
The loci and resporses look like thase for a single pulse (Fig. 3.18(e)(f) and Fig. 3.19¢€)(f)).
In this case (€>0.25), scde-space aaysis tends to consider the groupng of the pulses as a
single pulse, rather than as one pulse anbedded in awider pulse. This “new” pulse has an in-
termediate half-width between e/2 and W/2, and an equivaent height contrast between 1and

h+1, bah o which depend onthe value of e and h. In general, a wider embedded puse
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(greder €) increases both the equivalent radius and height of the new pulse; A greaer magni-
tude embedded puse (greaer h) increases the equivalent height but deaeases the equivalent
half-width.

Due to the perfed symmetry of the pulse groupwhen b=0, the location o the MM A coin-
cides with the pulse cantre. However, the anbedding relation aff eds the half-width estimate
asociated with the MM A. Fig. 3.20shows the radii of the resporse tracepes, at the centre
of the pulse group, as a function d the relative width, e, of the enbedded puse. The locus of
the anbedded puse disappeas at e=0.25,whil e that of the outer pulse is continuous through e
(this may be reversed when h is of large value). In effed the resporse of the anbedded puse
is absorbed in that of the outer pulse, rather than bah being combined into a “new” pulse.
Note that the loci of the anbedded puse when grouped or in isolation coincide, and thus the
width of the enbedded puse is corredly refleded in the MM A representation. However, the
outer pulse tends to be underestimated. Only at e=0 and e=1, correspondng to a single pulse,
can the size of the outer pulse be @rredly identified. In Fig. 3.20(h=1), the smallest radius
for the outer pulse (r=0.4W) occurs at e=0.4. It is also nded that, for the same location, no

two locd maximaover radius (scde) exist at asimilar radius (scde dimension).
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Fig. 3.18.The optimal scde maxima for embedded puses of varying width: the radii (left column)

and resporses (right column), as afunction d position.
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3.3.2.3Effed of relativeobjed height

Fig. 3.21shows the optimal radii and ogimal radius resporses, as a function d pasition,
for embedded puses of varying relatively height, h. Each embedded puse has a relative
width, e=0.2, and its centre incides with that of the outer pulse (b=0). Fig. 3.22shows the
optimal paositions and ogdimal paosition resporses, as a function d operator radius, for the
same set of embedded puses.

Because our seledion d e<0.25,the pek of the resporse tracefor the anbedded puseis
naot influenced by the resporse of the outer pulse (right column in Fig. 3.29. The loci and re-
sporses due to the anbedded puse show no structural change: the pe&k in the optimal posi-
tion resporse is at aradius of r=0.2M2, and the pe&k resporse increases linealy with relative
pulse height, h. The optimal paosition resporse, due to the outer pulse, is the summation d the
resporses for both the outer and embedded puses. The resporse pe&k due to the outer pulseis
shifted to a smaller radius and dsappeas when the relative height, h=3, as $own in Fig.
3.2f). As aresult, the locus of optimal radii for the outer pulse breks up at the pulse centre
(Fig. 3.21€)). This behaviour indicaes the poa performance of scde-space aalysis in ds

cerning the presence of an embedded oljed group only those outer objeds with at least 1/3
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the height contrast of an embedded oljea are deteded. If the simplified ogimal scade defini-
tion [FRI9J] is used, the MM A representation d embedded puses becmes even worse: at a
relative height, h=1, oy a resporse for the outer pulse is refleded in the globally optimal
scade resporse. At relative height of h=2 and h=3 ony the resporse for the anbedded puseis
refleced in the globally optimal scde resporse.

Because Fritsch’s £heme [FRI93] seeks only the global maximum over scde & ead lo-
cdion, its MMA representation switches between the locd maxima, over scade, generated by
the embedded and ouer pulses. At arelative pulse height of h=1.6, the locd maximum of the
embedded puse dominates that of the outer pulse. When the relative pulse height his dightly
higher or lower than 1.6,the pulse groupng behaves as a single pulse with a width of 0.2W or
0.778N. This is problematic since similar pulses can produce dramatic changes in the MM A
representation.

Due to the perfed symmetry of the pulse grouping (b=0), the locaion d the MMA is kept
at the pulse centre. Fig. 3.23shows the radii of the locd maxima of the resporse trace at the
pulse group centre, as afunction d therelative height of the enbedded puse. The locus of the
embedded puse is continuots through h, while that of the outer pulse disappeas at arelative
height of h=2.7 when the estimated radius, r=0.572M?2, is at its snallest. The width of the
embedded puse is corredly refleded as the relative height of the enbedded puse varies (it
coincides with the locus of the embedded puse eisting in isolation). However, the outer
pulse width is underestimated. Only at a relative pulse height, h=0, correspondng to a single
pulse, isthe size of the outer pulse mrredly estimated. It is noted again that, for ead locaion,
the locd maxima over radius (scae) exist far away from ead aher in radius (scde dimen-

sion).
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3.3.2.4Effed of relative pasition

Fig. 3.24shows the optimal radii and ogimal radius resporses, as a function d position,
for embedded puses of varying positional bias, b. Each embedded puse has a relative width,
e=0.125,and arelative height contrast, h=1. Fig. 3.25shows the optimal positions and ogimal
pasition resporses, as afunction d operator radius, for the same set of pulses. In the right col-
umn of Fig. 3.25,the airve, labelled as “Embedded (isolated)”, represents the resporse trace
a the centre, x=bW/2, o the embedded puse eisting in isolation. The arve, labelled as
“Outer (isolated)”, represents the resporse trace athe ceitre, x=0, o the outer pulse eisting
in isolation. The arve labelled as “Spurious (isolated)”, if present, represents the respornse
trace athe cantre, x=(b-e+1)W/4, o a putative unit pulse bounded by the left edge of the em-
bedded puse and the right edge of the outer pulse. Becaiuse these resporse traces are for dif-
ferent positions, the optimal pasition resporse is no longer the simple summation d these re-
sporee traces.

When the pulse off set, b=0.25, bah the loci and resporses for the outer pulse ae shifted
to those for the embedded puse by the asymmetry of the groupng. The outer pulseis foundat

a position right of its centre and with a smaller radius. On the other hand, bdh the location
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and radius of the enbedded puse can be crredly identified (Fig. 3.24(b) and Fig. 3.25b)).
In Fig. 3.24b), the maximum of the optimal radius resporse for the anbedded puseis lower
in magnitude than the resporse & the same locaion for the outer pulse, athough the two
pulses have the same height contrast. Therefore the medialnessresporse & the cantre of a nar-
rower pulse (or a smaller objed in 2D case) can be weder than the medialness resporse
away from the centre of a wider pulse (or a larger objed in 2-D case). If we deted only the
globally optimal radius for eadh location, as in Fritsch’s grategy, the MM A representation o
narrower pulses (smaller objeds) will be lost. Thus, large scde fedures tend to daminate
small scde fedures, unessthe smaller scde feaures have amuch higher contrast, as shown
in Sedion 3.3.2.2.

When the relative pulse offset, b=0.5, an additional locus and resporse lobe, similar to
those for an intermediate size pulse, appea. In Fig. 3.25(d), the midde pe& of the optimal
pasition resporse is fit to the resporse trace & the centre of a putative “pulse” formed by the
left edge of the anbedded puse and the right edge of the outer pulse. Intuitively, thisis a spu-
rious pulse. It looks as though the embedded puseis first embedded in the spurious pulse and
then bah are further embedded in the outer pulse. For the enbedded puse, the maximum of
the optimal radius resporse remains at a position d x=bW/2 and the maximum of the optimal
pasition resporse remains at aradius of r=eW/2. For the outer pulse, spatial |ocdisation devi-
ates further from the pulse cantre.

When the relative offset of the pulse centre, b=0.75,the width o the enbedded puse go-
proximates that of the spurious pulse and their resporse traces are dose to ead aher, as
shown in Fig. 3.25f). The resporse of the anbedded puse is absorbed into that of the spuri-
ous pulse and dsappeas. Because the right edge of the spurious pulse has become the combi-

nation d the right edges of both the enbedded and ouer pulses, the spurious pulse has an en-
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hanced resporse and is considered to have agreaer equivaent height contrast. This happens
in Sedion 3.3.2.2when e=0.5.

Fig. 3.26shows the estimated pasitions and radii, for arange of off set pasitions, b, for the
embedded, outer, and spurious pulses. The loci for the outer pulse is continuous through b,
while that for the enbedded puse seans to be replacal by the anerging loci of the spurious
pulse & b>0.5. For the enbedded puse, bah the paosition and radius are crredly identified,
fit to the positions, x=bW/2, and the radii, r=eW/2. For the outer pulse, the deteded pasitionis
aways difted to the side with the anbedded puse and the bias increases with puse centre
off set, b; The deteded radius also increases with puse offset b and is underestimated (overes-
timated) when b<0.6 (b>0.6), respedively. For the spurious pulse, the deteded radius is smi-
lar to the radius, r=(1-b+e)\W/4, o the putative pulse bounded by the left edge (at x=(b-€)\W/2)
of the embedded puse and the right edge (at x=W/2) of the outer pulse (Fig. 3.26b)). How-
ever, the deteded pasition d the spurious pulse is much closer to the centre (at x=bW/2) of the
embedded puse, rather than the cantre (at x=(1+b-e)W/4) of the putative pulse (Fig. 3.264)).
If the locus for the spurious pulse is considered as the continuation d that for the enbedded
pulse with puse offset b increasing, the location d the enbedded puse can be measured more

acarately than the radius when the offset, b>0.5.
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3.3.2.5The distinguishahlity of embedded ojeds

In Sedion 3.3.2.2jt was dhown that, as the width of the embedded puse increases, the
pe&k of the resporse tracefor the embedded puse is lost at some distance from that for the
outer pulse. In Seaion 3.3.2.3jt was aso shown that as the height of the enbedded puse in-
creases, the resporse pe&k for the outer pulseislost at some distancefrom that for the embed-
ded puse. The distance between peks of the resporse trace & the pulse centre, which we
term the Distance of Pesks (DoP)?, has been examined for a range of values of relative pulse
width, e, and relative pulse height, h. Fig. 3.27 shows the isophde @ntours of the DoP
through e and h. Let the radius of the enbedded puse ber,, and then:

r, =ew/2

For those e and h values to the right of the contour for DoP=0.1re, there is only one pegk
in the resporse tracefor the pulse group and thus DoP=0. In Fig. 3.27,the isophde wntours
for DoP=0.1r,, 0.5, and re coincide, except at the tips of the these contours, around e=0.3

and h=2.5. Therefore, for almost the full range of e and h values, DoP>0.5r¢ or even DoP>re.

>DoP=0if only one pe& isfound.
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Fig. 3.27. Theisophde antours of the DoP, as afunction d e and h,correspondng to the DoP
values of 0.1re~8re.

This DoP minima ae cmparable to the radius of the anbedded puse, re. It seems that, as
long as two peaks exist in a antinuows resporse trace ad the anbedded puse in isolation can
be identified, that the DoP and bdh the pulsesin a grouping are distinguishable.

However, under a discrete sampling of radius (scde dimension), either the enbedded o
outer pulse can be lost, even if both the pegks are distinguishable in a @ntinuows resporse
trace ad the crrespondng DoP is of high value. Fig. 3.28a) and (b) show the undersampling
cases for the resporse traces when e— 0.25and when h-, 2.7, respedively. Let ra be the op-
erator radius at the peek of the weaker resporse lobe and rg be the operator radius at which the
stronger resporse lobe has the same resporse @ that at ra. When the sampling interval in ra-
dius, Ar, isnat sufficiently small in comparisonwith | ra- rg|, the pe& of either the enbedded
pulse (Fig. 3.28a)) or the outer pulse (Fig. 3.28b)) can be lost in the discrete representation
of the medialness gde-space The distance, | ra - rg |, is criticd to the distinguishability of
embedded oljeds in a discrete representation and is here named the Distance of Distinguish-

ability (DoD).
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Fig. 3.28. The undersampling cases of the resporse traces (a) when e- 0.25 and (b) when
h-2.7.

We now turn to the seledion d an appropriate sampling interval, Ar, with resped to the
DoD. From the Shannon Sampling Theorem [OPE83], the resporse traceshoud be sampled
at arate:

Ar<DoD/2 (3.62
to avoid diasing. EQ. (3.62 simply means that the sampling interval for radius shoud be do-
sen to belessthan half the size of the small est detail of interest in the resporse trace

Unfortunately, the losdess ampling condtion in Eqg. (3.62 canna be dways stisfied
because the DoD can approach zero with the variation d the relative width, e, and relative
height, h, of the eanbedded puse. Fig. 3.29 shows the isophde cntours of the DoD for a
range of values of e and h. Unlike the isophde @ntours of the DoP, thase of the DoD do nd
coincide. Insteal, the DoD value dhanges gradually and approacdhes zero.

There is awell established theory for spatial sampling that can be used to determine the
minimum sampling rate required for a band-limited signal. To find the scde-space guivalent
of the Nyquist Rate is an important, uranswered question in scae-spacetheory [MOR95]. In
the cae of the medialness sde-spacefor embedded ohjeds, we find that 1/DoD in scde
sampling plays the same role & the highest frequency, Frax, in Nyquist sampling, and that the

sampling interval, Ar, shoud satisfy Ar < DoD/2 for a losdess discrete representation. In
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Fig. 3.29.The isophde @ntours of the DoD, as a function d e and h, correspondng to the
DoD values of 0.1r~8re.

spatial sampling, we can usually spedfy the sampling rate acording to some prior knowledge
of the signal domain, e.g. Frax=3KHz for a speet and Fx=5MHz for television video. How-
ever, similar prior knowledge is not available in scde sampling. It is known that the DoD is
determined by the relative size, e, and contrast, h, of the objeds in an embedded group (Fig.
3.29. The relative size and contrast are not known in a general analysis. Therefore from the
viewpoint of embedded oljed analysis, it is difficult to find the minimum sampling rate for
scde dimension. Instead, we have to dscretely represent an embedded oljed group at some
lossof information. The denser the scde sampling, the lessthe loss

To identify an embedded oljea with radiusre, at a scade resolution, DoD, the scae sam-
pling rate, Ar, must satisfy EqQ. (3.62). For a scde range AR, the number of scde dlices that

must be omputed is: AR/Ar = 2AR/DoD . For an NxN pixel image, the size of memory re-

quired to record the floating point values of medialness sde-spaceis SN’AR/DoD bytes.
Therefore bath the computational cost and memory requirement is inversely propational to

the given scde resolution, DoD. If we try to capture the embedded puse with the “small est”
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DoD (correspondng to the “highest” resolution), the sampling interval must be very small and
the requirement for memory and procesor spee is high®. For example, if we try to identify an
embedded oljed with aradius, re=2 pixels (a width of 4 pixels), at a high scde resolution,
DoD=0.1r, in a 256x256 pxel image & radii from 1 to 64 pxels, we neal to compute 640
scde dlices and save the data into a memory of at least 160 megabytes.

An dternative strategy for seleding the sampling interval is to make a ompromise be-
tween the scde resolution, DoD, and the data volume that is inversely propational to the
DoD. If ascde resolution, DoD=r, is used, the memory required for the scde-spacedata now
bemmes 16 megabytes and orly 64 scde dlices neal to be omputed. What does the seledion,
DoD=r,, mean in pradice? Using a sampling interval, Ar=1 pixel, as in [FRI93], from EQ.
(3.62, we have r, = DoD = 2Ar =2 pixels, and we can identify embedded oljeds with a

width of at least 4 pixels andignore tiny embedded abjeds.

% The mmputational cost for the mnvolution o an image with a Gaussan-based operator increases

linealy with scde by utili zing the separable nature of Gaussan-based operators.
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3.3.3 Sliding Window Algorithm

3.3.3.1The necessty for using asmall er range of scales

Though the definition d the globally optimal scde ridge [FRI9J] can refled alarge por-

tion d optimal scde ridges, there ae strong reasons to consider the scd e-spacewithin small er

ranges of scaes, rather than afull scde range:

Ridge extradionisalocd operation to ched the geometry arounda pixel. In the de-
tedion d scde-spaceridges, thisis refleded by the reliance on spatial and scde lo-
cdity. In existing ridge detedion agorithms, orly the 3x3 neighbahoodin 2-D spa-
tial spaces [HAR83] [FRI93] and the 3x3x3 neighbouhoods in 3-D spatial spaces
(or 2+1 dmensional scde-spaces) [MOR93] [MOR95] around eat pdential ridge
point were examined.

From the discusgon in Sedion 3.3.2.5,we know that considering a smaller scde
range eab time can improve scde distinguishability. If the scde range used is greaer
than the Distance of Pegs (DoP), then the global maximum within this cderangeis
the greaer magnitude pe& (Fig. 3.30a)), and the objed correspondng to the wesk
ped islost in the MM A representation. Even if the scde range used is lessthan the
DoP but greder than the Distance of Distinguishability (DoD), the resulting dobal
maximum within this sde range may occur at one end d the scde range, rather than
the resporse peek due to an ojed (Fig. 3.3(b)). This objead may till be excluded
from the MM A representation. Therefore using a smaller scde range eab time can
more reaily avoid interference between the medialness resporses of different sized

objedsandalossof MM A representations.
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Fig. 3.30.An oljea (the smaller pe&) islost in the MM A representation, when the scde range (dot
line) is (a) greaer than the DoP or (b) greaer than the DoD. The bladk circles represent the global
maximawithin the scde range.

Suppcee that Q is the scde range being considered, and R is the set of globally optimal

scde ridge points within Q; Q; isasmaller scderange, Q. 0 Q; and R; is the set of globally

optimal scde ridge points within Q;. From the discusson abowe, it is intuitively true that, if

Q=UQ;, then ROUR . A set of conseattive, smaller scae ranges would be an advantage

in extrading a complete set of ridges. If the small est range of scdeisused (i.e. 3 samples), the
resporse tracetakes one of the following forms* (Fig. 3.31):
1) The resporse traceincreases monaonicdly with scde. The global maximum occurs
at the end scde (Fig. 3.31a)).
2) The resporse tracedeaeases monaonicaly with scde. The global maximum occurs
at the start scde (Fig. 3.31(b)).
3) The resporse tracehas a locd minimum. The global maximum occurs at either the
start or the end scde (Fig. 3.31(C)).
4) The resporse tracehas alocd maximum (the global maximum too) at neither the start

nor the end scde (Fig. 3.31d)).

* The scde sampling rate is assumed to be sufficiently dense enough to represent the resporse traceby

Shannoris sampling criteria.
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Fig. 3.31.The four types of resporse traces within a 3-sample sliding window: (&) increasing

mondaonicdly, (b) deaeasing monaonicaly, (c) locd minimum, and (d) locd maximum.

It isobvious that the pointsin case (4) are candidates for the scde-spaceridge and shoud
be further examined to find whether they are ridge points of the globally optimal scde re-

sporse (maximum projedion orto the image plane) within that scde range.

3.3.3.2 8dingwindow algorithm

Suppce that § and Sy are the smallest and largest scde indices, respedively, and
S, =S, +2;Ead didingwindow containsL scde-slices,and 3<L<S, -S +1.Adliding
window corresponds to a small scde range. To improve the scde distinguishability, at eat
iteration (also indexed by scde), the diding windows are moved by one scde index along
scde dimension. Therefore, the sliding windows at two successve iterations partly overlap. In
this way, we can identify the Distance of Distinguishability (DoD) as long as the discrete
sampling of scade can reflea the DoD.

The index range of the sliding window isgiven by S +i to § +i+L-1 at iterationi. At eah
iteration the global maximum of the L scde dlices, at ead spatial position, forms a 2-D opti-
mal scae resporse. The ridge points of this optimal scde resporse ae identified as sde-
spaceridge points as long as the global maxima occur at neither the start nor the end scde of
the dliding window. A detailed description d ridge detedion in a 2-D spaceis given in Sec-

tion 3.3.4.1.
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Fig. 3.32.The dliding windows extraded from scde glices.

In pradice it is not necessary to store medialnessresporses at eat scade. Only L floating
point arrays and ore integer array are needed. The integer array, Sopt(x, y), reards the opti-
mal scde. The L floating point arrays, A(X, Y, K), marked with a sequence number k[J[O, L-1],
record the most recent L scde dices, i.e. the L scde slices within the arrent sliding window.
To avoid shifting the slice sequence within the L arrays, at a new iteration, the arays, A(x, Y,
k), are treded as a drcular buffer, seeFig. 3.32.The medialnessresporse & scde sis aways
stored in array A(Xx, y, K) a k=(s-§) moduo L. A detailed description d the Sliding Windowv
algorithm is given in Fig. 3.33. The buffer, Mopt(x, y), in Fig. 3.33can be diminated by
writing the maximum medialness resporse into array A(X, y, k) a k=(s-S-L+1) moduo L,
because the content of this array is the medialnessresporse & the least recent scde and this
resporse is not used in subsequent computations. The medianessresporse & the new scdeis

substituted at the next iteration.
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S the lower limit of scde.

Sy the upper limit of scde.

M(x,y;s) themedianessresporse & scdes.

A(x,y; k) thefloating point array, k, recording medialnessat scae s; k=(s-S)%lL.
Mopt(X,y)  themaximum of A(x, y; k) aaossk, within asliding window.

Sopt(X,y)  the scde of the maximum of A(X, y; k) aaossk, within a sliding win-

dow.

1 For s=S, to S +L-2
AX,y; (5S)%L)=M(X, y; s)
2 For s=S +L-1to Sy
2.1 A(X,Y; (sS)%L)=M(X, y; 5)
2.2 For eat scde, sg][s-L+1, 5], inadliding window
2.2.1 Mop(X, y)=max ss{ A(X, y; (s5S.)%L)}
2.2.2 Sop(X, y)=arg max ss{ A(X, y; (ssS.)%L)}
2.3 If (x, y) isaridge point of Mgux(X, Y)
2.3.1If Sou(X, y)O(sL+1,9)

2.3.1.1 (X, Y, Sopt(X, y)) islabeled as an MM A paint.

Fig. 3.33.The description d the sliding window algorithm. % denotes the moduo opera-
tion.
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Fig. 3.34.Theinfluence of alarge sliding window onridge extradion.

The seledion d alarge scde range, L, for ead sliding window has a negative influence
ontheridge extradion process It might result in some ridge points being missed in the initial
scde dlices. However, this negative influence does not spread to the remaining scde slices due
to the dliding nature of the scde window. This is illustrated in Fig. 3.34,in which there ae
threepedks in the resporse trace Py, P,, and Ps, correspondng to threedifferent-sized ohjeds
in an embedded group. When the sliding window is at the initial scde, =S, the pe&k Py isnot
the global maximum within the dliding windowv and then is lost in the MM A representation.
The pe&k P; is deteded when the dliding window is at the scde, s=S,, though the pegk P, may
be lost when the scde window is at the scde, s=S,. Finadly, the pe&k P; is deteded when the
diding window is at the scde, s=S;. In pradice a small scde range, L=3, is used for eah
diding window.

The gpli cations of the sliding window algorithm to 2-D images are shownin 4.3.1.
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3.3.4 Ridge Segmentation in 2-D Space

3.3.4.1Detedion d ridge points

Here the height ridge definition [HAR83] [EBE944] has been used, which considers a
ridge point as a locd maximum (of the underlying function) in the diredion that maximizes
the magnitude of the second derivative. This diredion can be determined by cdculating the
eigenvedors and eigenvalues of the Hessan matrix of second derivatives [EBE944], see Sec-
tion 2.4.2.Xfor detail s.

For 2-D space solving the agenvedors and eigenvalues of the Hessan matrix can be
avoided and an analyticad solution wsed [HAR83]®. The polar to Cartesian coordinate trans-
form defined by:

X=pcosa, Yy=psina (3.63
is used to generate paar invariants for ridge detedion.

Thefirst derivative of function f in the diredion a is dencted hy:

0x ay
f(xy)="f(xYy)—+f (X y)-—2
, (X% y) = f.(%Y) o , (X, Y) o

(3.69
= f, (x,y)cosa + f (X y)sina
The second cerivative of function f inthediredionais:
f,(xy)=f(xy)cosa+2f (xy)sinacosa + f (x y)sin’a
(3.6H

1 1 ,
:E(fxx +f.) +§(fXX - f,,)cos2a + f, sin2a

The diredion a that maximizes f,, can be determined by differentiating f,, with resped

to a, setting the derivative to zero, and solving for a:

®HARS82] used an unusual definition o polar coordinates and dd na give an explicit solution for a
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fopa (6 Y) = =(f, = f,,)sin20 + 2, cos2a (3.69

Setting f,,, (% y) =0, we can find the two principal diredions, one maximizing and an-

other minimizing f :

tan2ar = 2, /(f, ~f,) (3.67)

ant(2f I(f —-f N+2m |f —-f |>0
m:% (2T w) s (o) (3.6%)
Hr/2+2m, otherwise
or
an*(2f /(f, - f )+m+2m |f -f [>0
2a==§ (@l w) ) (01) (3.68h
Brr/2+2m, otherwise
Thus
1/2)tan™(2f, /(f, - f ) +Im [f, —f [>0
a:§ ytan (2t w) s (o) (3.6%)
Hr/4+1m, otherwise
or
1/2)tan™(2f, /(f, - f ) +m/2+Im, |f —-f [>0
azz% ytan (2t w) s (o) (3.69H
Brr/4+1m, otherwise

It is noted that deteding loca maxima dong diredion a and a+|tis the same. Therefore:

1/2)tan™(2f, /(f, - ), |f,—f,/>0
o = /2R @1, (= 1) ] (o 370
gt/ 4, otherwise
or
1/2)tan™(2f, /(f, - f N+m/2, |f —f [>0
a:§ ytan (2t i w) s (ol (3.70H
BB/ 4, otherwise

The two solutions of a in Egs. (3.68-(3.70), which dffer from ead ather by 772, give the

diredions that maximize (a is the normal of a potential valley or the tangent of a potential
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ridge) and minimize (a is the normal of a potentia ridge or the tangent of a potential valley)
the diredional second cerivative fy, , respedively. We need orly to seled the one diredion
that has smaller value (adually the small est value) of fy, . If for such avalue of a we have:

fro(%y)<0 and f, (xy)=0 (3.71
then aridge point is deteded at (X, ).

In dscretely sampled space the differentiation o f is performed numericdly. Suppase
o(x,y) andf(x,y) arethe optimal scde and the optimal scde resporse & (X, y), within a
diding window. Because the resporses, f(X,Y), for different paositions are obtained at diff er-
ent scades and ore of the properties of ascde dange is that the unit of measurement changes
[ter91] [MOR93], all first derivatives computed using numericd diff erentiation between adja
cent pixels are scded by o(x,y), and all second cerivatives are scaed by g®(x,y). The first
and second partial derivatives of f are:

f(x+h,y)-f(x=h,y)

f.(xy)=a(xy)

2h
f,(xy) =0(x,Y) f(X’Y+h)z—hf(x,y—h)
(0 y) =02 (x, y) - Y _Zfﬁ:z(’ y)+ f(x=hy) (3.72
f,,(%Y) =0%(x,Y) f(x,y+h)—2fﬁ]>:, y)+ f(x,y—h)
£, (% Y)=0%(%Y) f(x+hy+h)- f(x+h,y—h)4;2f (x=h,y+h)+ f(x=h,y-h)

wherewe set h=1.
The ridge definition given in Eq. (3.71) is based onthe gradient at diredion a being zero.
However, because the gradient changes rapidly at or nea aridge, it is rarely exadly zero at a

spedfic pixel but instead changes rapidly from a paositive to a negative vaue. In a discretely
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sampled function, such as the medialnessresporsg, it is better to test for a relative maximum
in the diredion, a, namal to the potential ridge. Fig. 3.35a) ill ustrates aridge and its normal.
Three methods have been used to find a pair of appropriate paints, in the diredion a, to be
compared with the central pixe (X, y).
(1) Neaest diredionfrom the 8 neighbous
This method ses two of the 8-conreded neighbous of the central pixel to approxi-
mate the candidates (Fig. 3.35b)). Because a and a+ rrcorrespondto the dfedively same
diredionfor deteding diredional maxima, we consider the diredionin therange [0, 74 as
a. The pair of candidates are:
(x+1y) and (x-1), if O<sa<m/8 or 7Tm/8<a<m
(x+Ly+1) and (x-1Ly-1), if m/8<a<3m/8
(x,y+1) and (x,y-D, if 3m/8<a <5m/8
(x-Ly+1) and (x+1Ly-1), if 5m/8<a<7m/8
In 3D space this method corresponds to seleding two pants, in oppaite diredions,
from 26 reighbours of the central voxel.
(2) Bili nea interpaation amongst 4 neighbous
This method assumes that the pair of points are ejui-distant from the central pixel
and that the function is locdly linea, see Fig. 3.35c). Therefore a
(x+cosa, y +sina)theinterpolated value of the functionis:

| =round(x +cosa), a=x+cosa -|

k =round(y +sina), b=y+sina -k .
f(x+cosa,y+sina) =(1-a)l-b)f(l,k) +al-b) f (I +1k) 579

+(1-a)bf(I,k +1) +abf(l +Lk +1)

Ancther point can also be obtained by substituting a+ rrfor a in the dowve ejuation.
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Fig. 3.35.Diredional maximum detedion: (a) apotential ridge and its normal, and the a@ui-

sition d apair of points using (b) neaest diredionin 8neighbous, (¢) bili nea interpadation

in 4 reighbous and (d) linea interpdation in 2 reighbous. Bladk and white drcles repre-

sent pixel grids and seleded pdnts, respectively.
When this method is extended to 3-D space it corresponds to hlinea interpoation
amongst the 8 vertices of a aube.
(3) Linea interpdationin 2 reighbous

This method assumes that the pair of paints are in the diredion a and the functionis

linea between neighbouing pixels. The locaion d the candidate point is found ly pro-
jeding aray thorough the central pixel (X, y) in the diredion a urtil the ray interseds an
edge of the square formed by the central pixel and its 8-conreded neighbous (Fig.
3.35d)). The value of this point can be linealy interpoated using the two end pxels of
the line segment.

The seand pont can also be given by substituting a+ rrfor a in above eyuations.
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When this method is extended to 3-D space it corresponds to projeding a ray from the
central voxe until the ray interseds the faceof the abe formed by the central voxel and
its immediate neighbous. The value of the function is bilinealy interpolated using the 4
vertices of the square.

Generdly, the neaest diredion methodis smplest to implement, whilst the interpaation
methodsin (2) and (3) more acarately refled the ridge definitionin Eq. (3.77).

The result of applying the éowve ridge detedion to the optimal scde resporses in the dlid-
ing window agorithm is a set of ridge pointsin 3-D scde-space The position o ead pant is
recorded with the scae (o), locd orientation (a), and medialnessresporse f(x, y, 0), etc.’. The
pasition (X, y) indicaes the locaion d the MMA, o is propational to the locd width o the
objed, a refleds the locd orientation d the objed, f(X, y, 0) is propational to the intensity
contrast of the objed and, if the CMAT agorithm was used, also indicates the significance of
aridge point. It is patential for this rich set of attributes to be used by higher level processes

for ridge linking and the like.

3.3.4.2Linking ridge points

A ridge linking processis required to colled conreded ridge points into a line, like the
peals of a nedklace Ridge points caused by noise and small disturbances, which correspond
to short, and separate ridge lines (points), can also be removed at the same time.

We asdgn eat pixel (%, y) a ourt, C(X, y), to record hov many ridge points exist at this

point through scade. Eadh element of the second matrix, correspondng to a pixel in the image

® For medialness sde-spaceproduced by linea operators, ancther attribute can be added to refled
the significance of a ridge point. Some patential options are the second cerivative in the diredion a
(fop) andthe global ridge strength measure [MOR95].
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plane, contains C(x, y) structures ead recording the dtributes (such as the paosition, scde, ori-
entation and resporse) of aridge point and a status flag. A status flag set to zero marks that
the asociated ridge point has been “processed” and that no further chedking is needed.

The linking processfirst seaches for the start of ead ridge branch using a mask, shown
in Fig. 3.36.Here the cnvention described in [GON92] is used. Py is the cantral pixel in the
3x3 mask and the potentia start point of aridge. Po=1 (grey) if thereisaridge point at Py, i.e.
C(Py)>0. P, is the 8-neighbous of P, i=1,...,.8. P=1 (grey), if C(P)>0 and

o(R)-2<0(P)<0o(R,)+2. Py is determined as the start of a ridge line if the following
condtions are satisfied: (1) P, =1; (2) 1< N(R,) < 2; (3) S(R,) =1, where N(R,) = %R and
i=1

S(PR,) isthe number of O-1 transitions in the ordered sequence of Py, P,, Ps, Ps, Ps, Ps, P7, Ps,

P1. Therefore astart point has one nonzero neighbou or two neighbous that are 4-conneded
to ead ather. Once astart point of aridge branch is found,a new list for this ridge branch is
creaed and the start point is dored as the first element of thislist. The flag of Py is then set to
zero to avoid it being re-chedked. The only neighbou (N(Po)=1) or one of the two adjacent
neighbous (N(Py)=2), which has gronger medialnessresporse, is €leded as the succeswor of
the start paint Py and forwarded to ridge foll owing sub-process On the other hand, if P=1 and
N(Po)=0, then Py is an isolated ridge paint; it shoud be excluded from the linking processand
itsflagis st to zero.

In the ridge foll owing sub-process the ridge point seleded as a successor is added to the
list of the ridge branch being traded. The ridge diredion at this ridge point is either
B=a+m/2 or B=a-rm/2.thisambiguity can be removed by seleding a value for g that
satisfies:

Ax[tosf +Ay$inB >0
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P8 P1 PZ
P, | P | P

€) b)( c)(
Fig. 3.36. Ridge starting point detedion: (a) neighbouhood labelling, (b) a start point
(marked by x) when N(Py)=1 and (c) a start point when N(P)=2.
where Ax and Ay are the relative wordinate increments of the aurrent ridge point from its
predecessor (AXx, Ay D{—l 0, 1}). The patential successor of the aurrent ridge paint is one of
its 8-conneded ridge points that satisfy:
(1) flag(Roentar) =1,
(2) Beurent = T/ 4= Brotentiar < Beurent * 77/ 4,
(3) T(Peirend) =2 = T (Prgtentia) < I (Peyren) 2.

It is possble that more than ore 8-neighbou of the airrent ridge point satisfy the dowve
condtions. However, only the one with the greaest medialnessresporse is considered as the
succesor of the aurrent ridge point, because aridge point is the maximum in its normal direc-
tion. This succesor is forwarded to the next iteration d ridge foll owing as the new current
ridge point. The flag of the aurrent ridge point is st to zero. Those ridge paints in the 8-
neighbouhood d the aurrent ridge point, which are not seleded as the successor, arise mainly
from the multiple resporses when the ridge is 2-3 pixels wide, see Fig. 3.31a). Therefore,
their flags are set to zero if they have similar orientations to the seleded successor. If no po-
tential succesor exists, the aurrent ridge point is determined as the terminal point of the air-
rent ridge branch and the ridge following sub-process $ops. The list of the ridge paints is

stored in a dhain list if it contains at least 5 conneded ridge paints; otherwise it is deleted. In
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this way, short ridge lines due to ndse and aher disturbances are suppressed. The ridge link-
ing processwill resume scanning for the start point of a new ridge branch at the start point of
the previousridge.

In order to overcome small breaks (1 pixel width) in a ridge, the ridge following sub-
processdescribed above can be extended to consider a 5x5 neighbouhood d the aurrent ridge
pixel, if nosuccesor can be foundin the 3x3 neighbouhood. The successor is €leded using
the same aiteria & that for a 3x3 neighbouhood. Once asuccesor at agap o 1 pixd is
found,a new ridge paint is creaed to fill in the gap between the airrent ridge point and its
succesr, see Fig. 3.31b). The dtributes of this ridge point are linealy interpoated from
those of the aurrent ridge point and its successor, and are then added to the list of the arrent
ridge branch. The succesor at a gap is forwarded to the next iteration d ridge following as a
new current ridge point. If no pdential succesor exists in the 5x5 neighbouhood, then the
current ridge point is made aterminal point of the aurrent ridge branch and the ridge foll owing
for this ridge stops.

The method d seleding a ridge successor, described abowe, treds junctions in a similar
way to namal ridge points. At ajunction, it will seled the branch with the greaest resporse

' '
= d
' '

e
e /

e s

(a b) (
Fig. 3.37.(a) Elimination o multipleridgesin parallel and (b) filli ng ridge bre&ks.
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to follow withou deteding the junction. The remaining branches will be followed in subse-
guent seaches, after the main branch has been foll owed and labeled as “processed”. Junctions
can be deteded as a post-processng task of ridge linking, in which a body paoint in ore ridge
line can be dedared as a junction pant if it is a 8-neighbou of the start or termina point of
ancther ridge line. If both the start and terminal points of one ridge line ae 8-neighbous of
two bod/ points of ancther ridge line, then the ridge has lit i nto two branches and re-joined.
If the start and terminal points of aridge line ae 8-neighbous, then theridge isa dosed loop.
At the post-processng stage, it is possble to conned adjacent ridge lines and to bridge
large bresks in along ridge line. If the terminal point of aridge lineis roughly in the diredion
of the start point of ancther ridge line but spatially separated, the two ridge lines may be mm-
bined and a set of new ridge points may be aeaed to fill the gap between these two ridges.
The results of ridge linking for a variety of 2-D images are shown in Sedions 4.3.1and

4.3.2.
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Chapter 4 Results

4.1 Performance Evaluation of the CMAT for 1-D Signals

4.1.1 Symmetric Pulses

To oltain quantitative estimates of the performance of the CMAT agorithm we have g-
plied the LoG, HMAT and CMAT medialnessagorithms to a variety of 1-D objed profil es,
such as the symmetric pulse shown in Fig. 3.13.The medialnessresporses for 2-D objeds are
not quantitatively analyzed here, because they can be influenced by more aspeds of shape
properties, such as the narrowing, flaring, bending, and limited length of shapes.

To give an ofjedive and effedive comparison among agorithms, bah the resporse and
scde have been namalised. The medialnessfunction d ead algorithm is normalised by the
relevant global maximum, through scde and space for a symmetric pulse with urit height.
Eadch medialnessresporse is ensitiveto bah pdarities of boundxry transition. For the HMAT
and CMAT agorithms, the simple summation d signed medialnessfunctions for baoth pdari-
ties of boundry transitionis used, contrary to the summation o absolute valuesin [XU99].

The LoG medialnessoperator can be expressed as.

a2 _ 1 _Xx'X X" X
K(x,0) =-0°0°G(X,0) (27102)”’2%‘ e %x% ZUZE 4.

where n is the number of dimensions and x is an n-dimensional vedor for representing the

spatial coordinates. Setting K(x,0) =0, we obtain |x| = Jno . The pasitive lobe of the LoG

operator is within a distance of vno from the centre of this operator. At a given scde, o, the

LoG operator gives the strongest resporse for objeds with aradius of Jno , becaise the posi-

tive central lobe matches the size of these objeds; The HMAT and CMAT give the strongest
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resporse for objeds with aradius of ko . To compare these responses over scde, the radius of

the operator is used as a base parameter. The radius of the LoG operator is defined as

r =+/no . The radius of the HMAT and CMAT operators is defined as r = ko. These me-
dialness operators may respond opimally to an oljed at different scdes (the standard devia-
tion d the Gaussan o its derivatives), g, bu shoud respond opimally at the same operator
radius, r. In the foll owing analysis the radius-to-scae ratio that determines the operator radius
in the HMAT and CMAT, k, is ¢t a 2. The Gaussan weighting for the CMAT in Eq. (3.22
and the equivalent distance weighting for the HMAT are not used, because the sampling in-
terval of operator radiusis st to be amultiple of the paositional sampling interval and there-
fore, in the 1-D case eab boundrinesscontributionis locaed at discrete paositions in medial-

ness pace

4.1.1.1Medialnessthroughscale

Figs. 4.1(a)-(c) show the LoG, HMAT and CMAT medialness resporses through scde-
spacefor the 1-D objed profile of Fig. 3.13.Ead medialnessresporse forms a global maxi-
mum at the position d the pulse celtre and at the operator radius of the pulse half-width,
which refleds the symmetry of the pulse. However, for this sngle symmetricd structure, only
the CMAT outputs a single resporse. The medialness sirfaces of the LoG and HMAT are

mixtures of boundrinessand medialnessproperties and thus give alessclea description.
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Fig. 4.1.Medialnessresporses through scde, for a symmetric pulse and generated from (@)
LoG, (b) HMAT, and (c) CMAT.
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4.1.1.2Medialnessat seleded scales
The LoG, HMAT and CMAT medianessresporses for a symmetric pulse & several radii

are shown in Fig. 4.2.Fig. 4.2a) shows that at a small radius of r=W/8, far from the pulse
half-width, the medialness resporses of the LoG and HMAT are drealy strong. These re-
sporses are caused by the alges. There is no interadion ketween the pair of edge resporses
for this operator radius, therefore, the CMAT produces no resporse. As the operator radius
increases, r=W/4 in Fig. 4.2b), there exists aminor interadion ketween the aelge responses of
the LoG and HMAT, and the CMAT begins to produce asmall medialnessresporse. At an
operator radius of r=W/3, the interadion ketween edge resporses of the LoG and HMAT be-
comes sgnificant and the summation d edge resporses combines into a single paositive lobe,
as swown in Fig. 4.2c). The CMAT medialnessresponse mntinues to increase & the operator
radius increases the degree of interadion between edge resporses. When the operator radius
matches the pulse half-width, r=W/2 in Fig. 4.2d), eat algorithm produwces its globally
maximal resporse & the objed centre and the aurve of the CMAT resporse mincides with the
main lobe of the HMAT resporse. The LoG and HMAT resporses have two additional side-
lobes. When the operator radius is larger than the pulse half-width, r=W in Fig. 4.2¢e), the
medianessresporse of ead algorithm begins to collapse. At r=2Win Fig. 4.2f), the HMAT
resporse splits into two individual peks again, violating an important premise of scde-space
resporses, that locd extrema shoud na be generated as sde increases [LIN94]. The CMAT
resporse is always equal to the HMAT resporse & the objed centre. Thisis a property of the
symmetric pulse used in this evaluation. Responses for more generic pulses are provided in

Section 4.1.2.
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Fig. 4.2. Medialnessresporses at several scdes, for a symmetric pulse and generated from the

LoG, HMAT, and CMAT.
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4.1.1.3Medialnessat seleded pasitions

The optimal scde ridge definition [FRI9J] is a method for determining the pulse ceantre
and width from the medialness sde-space which considers the medialness maxima with re-
sped to scde & ead pasition aong an ohjed. Fig. 4.3shows the LoG, HMAT, and CMAT
medialness resporses over scde & severa paositions. Each pot represents a different dis-
placement from the cantre of the pulse.

Each agorithm produwces its global maximal resporse & the objed centre, x=0, and at an
operator radius of r=W/2. For pasitions away from the pulse centre, eat resporse llapses
and exhibits a maximum at a larger radius than the pulse half-width. Such a radius for the
CMAT is much closer to the pulse haf-width than those for the LoG and HMAT. For posi-
tions nea to the edge of the pulse, x=0.4W, the LoG and HMAT responses exhibit two peeks.
The pe&k at smaller radius, which is negative & paositions beyond the objea (X>W/2), is not
related to symmetry but edgeness The CMAT resporse has only a single pe&k, which, like the
send ek (at alarger radius) of the LoG and HMAT, corredly refleds the symmetry.

At arange of radii, r>W/2, the airves of the LoG and CMAT are dways enveloped in
those for paositions closer to the pulse cantre. This indicaes that, for the LoG and CMAT, at
r>W/2, the pulse centre mntinues to be the locaion d the only spatial maximum of the me-
dialnessresporse & a single radius. This is nat the cae for the HMAT. At r>W/2, the re-
sporse may dominate thase for positions closer to the pulse cantre. This refleds from ancother
asped that the single spatial maximum at r=W/2 splits into two spatial maxima & larger op-

erator radii (seeFig. 4.2f)).
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4.1.1.40ptimal scale maxima

Fig. 4.4@) shows the optimal radii, as a function d pasition, for the symmetric pulse of
Fig. 3.13and generated from the LoG, HMAT and CMAT. The loci of the optimal radii for
the LoG and HMAT contain three separate arves, two straight lines, which, at small radii,
arise mostly from the resporse of a single edge. The loci of the CMAT is a single airve
equivaent to those of the LoG and HMAT at larger radii, respondng to the symmetry. At po-
sitions away from the pulse ceantre, ead locus of symmetry occurs at a larger radius than the
pulse half-width. The acaracy with which the half-width is estimated is, best first: CMAT,
LoG, and HMAT. The estimation error of the CMAT is abou one half that of the HMAT for

most pasitions within the pulse.

W2 - o =

Medialness

Operator Radius

-W/2 0 Wi/2 -W/2 0 Wi2
Position Position

(a) b) (

Fig. 4.4.The optimal scde maxima for the symmetric pulse: (a) the radii and (b) resporses, as a
function d pasiti on, generated from the LoG, HMAT and CMAT.

Despite the diff erences between the dgorithms, the loci of optimal radii for ead operator
converge & threepaints: x=0 and r=W/2, and x=2W/2 and r=W (seeFig. 4.4a)). The locus of
the optimal radii at x=0 arises from the evenly-weighted contributions of bath edges, for ara
dius of r=W/2. At x=WI2, the LoG medialnessis the linea summation d their response from

both edges, seeFig. 4.5a):
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(%)

MW/2r) =M (W/2r)+ M W/2r)
The LoG resporse to the right edge is aways a zero-crossng at x=-W2,i.e. M;(W/2,r) =0,
while M (W/2,r) has a maximum at radius r=W, see Fig 4.5a). Therefore the LoG has a

maximum over radius at r=W. The analysis for the HMAT isthe same & that for the LoG.
The CMAT medialness at x=W/2 is the concordant summation d the boundiriness re-
sporse for the pulse, B(X,r) , at x=W/24r, i.€

2BW/2-r,r)(B(WW/2+r,r1)
BW/2-r,r)+BW/2+r,r)

MW/2,r) =

The boundarinessresporse for the pulse, B(x,r), isthe linear summation d the boundariness
resporses for the left and right step edges, B.(x, r) and Br(x, r) (seeFig. 4.9Db)), i.e.:

BW/2-r,r) =B, W/2=r,r)+ B (W/2~r,r)
BW/2+r,r) =B (W/2+r,r)+ B (W/2+r1,r)|

Because of the zoom-invarianceto a step edge (seeSedion 3.1.3, the boundarinessresporses

due to the right edge, at a distancer from the edge & x=W/2, Bg(W/2-r, r) and Bg(W/2+r, 1),

Medialness Boundariness
ML(W/Z, r) B|_(W/2-I'Y I’)
Mg(X, T)
A
)/ 1 My (x, 1) Bi(x.7) \ BL(W/2+r, 1) -0
w2 / o w2 0\ X
| P el
x 4 W2 W2
sizeinvariant Br(W/2+1, 1)
Mg(W/2, 1)=0 boundariness g_/o.r. 1) Br(x. )

r r

Pl N B
w w

(@ b) (
Fig. 4.5 The generation d an opimal scde maximum at the pulse border: (a) The LoG medialness
and (b) the CMAT boundxriness due to the left (subscript L) and ridge (subscript R) edges of the
pulse, at operator radius W (thick lines) andr (thin lines).
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areinvariant to r (short thick linesin Fig. 4.9b)). At aradius close to r=W, B (W/2+r, r) falls
to zero because & adisplacement of 3r/2 (i.e. 3o dueto r=20), the boundxrinessresporse, due
to the | eft edge, is negligible. On the other hand, B (W/2-r, r) has its maximum at radius r=W.
Therefore d a radius r=W, B(W/2-r, r) has its locd maximum and B(W/2+r, r) has a small,
constant value. At x=W/2 and r=W, the summation d the boundrinesscontributions, B(W/2-r,
r) and B(W/2+r, r), are maximal but the degree of concordance is minimal. According to the
conclusion in Sedion 3.2.2.2the CMAT medianess M(W/2, r) is a maximum at r=W, be-
cause it is boundxriness $rength, rather than concordance degree that dominates the CMAT
medianess

The optimal radius resporses, for the LoG, HMAT and CMAT, are shown in Fig. 4.4b).
For eat agorithm the objed centre gpeas as a spatial maximum of the optimal radius re-
sporse. The assciated optimal radius, r=W/2 from Fig. 4.4a), at the objed centre indicates
the pulse haf-width. Therefore pulse cantre and width can be dficiently identified from the 2-
D medialnessfunction for a 1-D symmetric pulse. The sequence of the seledivity to spatial
pasition (best first) is: CMAT, HMAT and LoG. The sharp optimal radius resporse of the

CMAT isan advantage for spatial maximum (ridge) detedion.

4.1.1.50ptimal position maxima

The optimal pasitions for the LoG, HMAT, and CMAT, as afunction o operator radius,
for the symmetric pulse ae shown in Fig. 4.6a). Unlike the loci of optimal radii, the locus of
optimal positions is nat continuows. Each algorithm exhibits a locus of optimal paositions at
the pulse center and at a range of radii, refleding the symmetry of the pulse. For the LoG and
HMAT there eist two additional branches at radii r<W/2, correspondng to edge responses.

The optimal position resporses, as a function d operator radius, for the symmetric pulse
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Fig. 4.6. The optimal paosition maxima for the symmetric pulse: (a) the positions and (b) re-
sporses, as afunction d operator radius, generated from the LoG, HMAT and CMAT.

are shown in Fig. 4.6b). Each agorithm exhibits a maximum at the operator radius of pulse
half-width. The asciated ogimal position, x=0 from Fig. 4.6a), indicates the pulse centre.
Therefore, the pulse center and width can be identified from the 2-D medialnessfunction for a
1-D symmetric pulse using the optimal position dfinition.

Despite the separation d the optimal pasition loci for the LoG and HMAT (Fig. 4.63a)),
there is a continuows optima position resporse for eat algorithm. The CMAT resporse
matches the HMAT’s when boundriness resporses have a mgjor interadion. This results
from a spedfic case: a symmetric pulse. Provided that more than ore boundxry respornse @n-

tributes to the medialnessresporse, then Eq. (3.37):
M cpar (X, 00= B-_i%c
O NO

may be gplied. At the objed centre, c=1 for a symmetric pulse. Therefore, the CMAT re-

sporsg, likethe HMAT’ s, depends only on the sum of boundrinessresporses, S
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4.1.2 Asymmetric Pulses

In the previous dion the medianessresponse for a symmetric pulse was considered. To
observe the more general behaviour of these dgorithms, we can all ow the symmetry of apulse
to be lessided. Because the medialnessfrom any algorithm is diredly related to boundriness
resporses, the ratio of the height contrast for the right edge to that for the left edge, a, is con-

sidered as an index for degreeof symmetry. An asymmetric pulse is defined as (Fig. 4.7):

0 X<-W/2
pa(x):H -W/2<x<W/2 (4.2
H-a x>w/2 (0=ac<))

which is the difference of two step functions, P,(x) =U(x+W/2)-aU(x-W/2). Setting

a=1 corresponds to a symmetric pulse and a=0 corresponds to a step function.

P()

1

Fig. 4.7.A 1-D asymmetricd objed.
4.1.2.1Medialnessthroughscale

Figs. 4.8a)-(c) show the LoG, HMAT, and CMAT medialness resporses through scde-
spacefor an asymmetricd pulse, Py(x), with a=0.5. Each medialness resporse still forms a
global maximum aroundthe position d the objed centre and at the operator radius of the ob-
jed haf-width, bu the peak resporse beaomes snaller than those, shown in Figs. 4.1(a)-(c),
for asymmetric pulse, P(x). The LoG and HMAT resporses are obvioudly shifted towards the

more prominent edge.
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4.1.2.2Medialnessat seleded scales

The LoG, HMAT, and CMAT medianess resporses at several operator radii for the
asymmetric pulse (a=0.5) are shown in Fig. 4.9. At radii, r=W/4 and r=W/3 (Figs. 4.9b)-(c)),
the alge resporses of the LoG and HMAT combine into a single positive lobe which pe&ks
away from the pulse cantre; The peek of the CMAT response is much closer to the pulse cen-
tre. When the operator radius matches the pulse haf-width, r=W/2 in Fig. 4.9d), the pe&ks of
the alge resporses for the LoG and the HMAT are overlaid at the pulse ceitre, produwcing a
globa maximum of medialness This maximum value is 75% that in Fig. 4.2d) for a symmet-
ric pulse, becaise the magnitude of one alge resporse is halved (seeFig. 4.9a@)). At r=W/2,
the CMAT resporse & the pulse catre comes from the pedk values of the boundarinessre-
sporses at both edges. Becaise the CMAT medialnessis dominated by boundiriness $rength
(seeSedion 3.2.2.2, agloba maximum isformed at the pulse centre, though the cncordance
degree between boundrinessresporses is not perfed (c<1). This gnaller concordance fador
has deaeased the CMAT resporse alittl e, compared to the LoG and HMAT resporses (Fig.
4.9(d)). At radii larger than the pulse half-width, r=W and r=2W in Figs. 4.9¢)-(f), ead me-
dialness resporse llapses and forms a maximum away the pulse centre. The pe&k of the
CMAT resporse is much closer to the pulse centre than those of the others, which indicates
that the CMAT has the best estimation d the pulse ceitre & a single operator radii.

From Figs. 4.2 and 4.9,the resporse of the CMAT is aways enveloped in that of the
HMAT, and they coincide with eat ather only at the radius equal to the half-width of a sym-
metric pulse (Fig. 4.2d)). In effed the mncordance face of the CMAT seleds that part of the

HMAT resporse which arises from the interadion o boundary responses.
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4.1.2.30ptimal scale maxima

Figs. 4.1Qa)-(f) show the optimal radii and ogimal radius resporses, as afunction d po-
sition, for asymmetric pulses with varying degrees of symmetry. For the LoG and HMAT, the
loci of optimal radii and associated resporses, at a=0.75and a=0.5, are similar to those for a
symmetric pulse (a=1, seeFig. 4.4). They are only shifted lower on the left and hgher on the
right by the asymmetry of the pulse. A magjor change in the LoG and HMAT loci of optimal
radii occurs at a=0.25,when the locus at large radii bregs up and combines with an edge re-
sporse locus at small radii. The CMAT locus of optimal radii has no structural change with
the variation in degree of symmetry. It is only distorted by the asymmetry. As a result, con-
trary to the cae for the symmetric pulse, eat agorithm may exhibit an ogtimal radius small er
than the pulse half-width, for positions away from the pulse ceantre. From Fig. 4.10,for ead
algorithm, nomatter how the degreeof symmetry changes, the locus of optimal radii still con-
verges at the threepoints: x=0 and r=W/2, and x=tW/2 and r=W.

As the degreeof symmetry worsens, the LoG and HMAT resporses coll apse becaise one
of the boundariness resporses wegkens, The CMAT resporse ll apses faster due to the re-
duced concordance. Once no concordance «ists between boundrinessresporses, that is the
asymmetric pulse evolves into a step edge (a=0), the CMAT resporse and ogimal radius lo-
cus will disappea. The spatial maximum of ead ogimal radius resporse dways appeas at
the pulse cantre and the asociated optimal radius matches the pulse half-width. Therefore, for
eat medialness algorithm, the representation o the pulse, i.e. the locaion o centre and

width, isindependent of asymmetry using the optimal radius definition.
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4.1.2.40ptimal position maxima

Figs. 4.11a)-(f) show the optimal positions and ofimal position resporses, as a function
of operator radius, for pulses with varying degrees of symmetry. For the LoG and HMAT, the
loci of optimal pasitions have amagjor structural change, compared with those for a perfedly
symmetric pulse. The principal locus at the pulse cantre combines with an edge response locus
to form a cntinuows locus through radius, when the pulse symmetry is perturbed. The CMAT
loci show no structural change, compared with the resporse to a symmetric pulse. The asym-
metry shifts the verticd locusin an oppaite diredionto the that of the LoG and HMAT.

At aradius other than the pulse half-width, the sequence of the acaracy with which the
pasition d the pulse centre is foundis (best first): CMAT, LoG, and HMAT. For a=0.5asin
the previous example (Figs. 4.8and 4.9, the estimation kas of the pulse catre & r=Wis 36%
of the pulse haf-width for the LoG, 72% of the pulse haf-width for the HMAT, and 16% of
the pulse half-width for the CMAT. The HMAT medialnessresponse more realily moves to
one side, due to dfferences in boundry strength, than the LoG medialness This result is
contrary to the observation in [MOR94] concerning the behaviour of locd (LoG) and muilti-
locd (HMAT) medialnessoperators.

From Fig. 4.11,for ead algorithm, no matter how the degree of symmetry of the pulse
changes, the maximum of the optimal position resporse dways appeas at an operator radius
equal to the pulse half-width, and the assciated optimal paosition is kept at the pulse centre.
Therefore, for eaty medialness algorithm, the representation o a pulse, i.e. the pulse caitre
and width, isindependent of asymmetry using the optimal pasition ridge definition. It is noted
that, unlike the cae for the symmetric pulse, the optimal paosition resporse of the CMAT no
longer matches that of the HMAT, due to alesened degreeof concordance between edge re-

SPONsEsS.
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umn) the positions and (right column) resporses, as a function o operator radius, generated from

the LoG, HMAT and CMAT.

4.1.3 Noisy Pulses

One motivation for scde-space aaysis is to separate the representation d large-scde

structures from that of fine-scde detail, such as noise. To investigate how noise can affed the
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CMAT medianessresporse and consequently the representation d an ohjed, we ald zero-
mean, Gaussan dstributed ndse to asymmetric pulse. The naise level is defined by the ratio,
u, of the standard deviation d the noise to the pulse height. Fig. 4.12shows a naisy pulse with

u=0.5.

Fig. 4.12.A symmetric pulse with zero-mean Gaussan ndse alded (u=0.5).

4.1.3.1Medialnessthroughscale

The medialness resporses through radii, for the noisy pulse in Fig. 4.12 and generated
from the LoG, HMAT, and CMAT, are shown in Figs. 4.13a)-(c). Despite the noise resporse
being concentrated at a fine scde, ead agorithm continued to form a global maximum, for
the symmetry of the pulse, nea the position d the pulse cantre and at a radius close to puse
half-width. To corredly extrad the representation d a pulse, the response must be separated
from that of noise & an operator radius equal to the pulse half-width. Both increasing the sig-
nal-to-noise ratio and increasing the pulse width can enlarge the separation ketween the re-

sporse for the pulse and that for the noise.
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4.1.3.2Localisation d medialnessmaxima

A Monte Carlo simulation was performed to analyse the quantitative influence of noise
on medialnessresporse. The noise level, u, was increased from 0 to 50% in steps of 5%. At
eath ndse level, ore thousand nasy sample pulses were generated and input to the LoG ,
HMAT, and CMAT agorithms. The global maximum of medialness at a position between [-
W4, W/4] and at a radius between [W/3, 3WV/2], was taken as the estimated puse cetre and
half-width. The estimated puse ceitre, width, and resporse for noisy pulses are cmpared
with those for anoise-freepulse.

It was foundthat the mean pasition, radius, and maximum resporse of the deteded puse
centre were nat changed by the aldition d zero-mean Gaussan ndse. However, the standard
deviation d these quantities ead increased linealy with ndse level (seeFigs. 4.14a)-(c)).
The arves for the CMAT aways coincided with those for the HMAT, which implies again
that these dgorithms perform similarly in determining the position and helf-width of a sym-
metric pulse. The HMAT and CMAT produce a27% lessestimation error, for pulse centre,
and 1%% less estimation error, for pulse haf-width, than the LoG. This is consistent with
Morse's conclusion [MOR94] that locd operators, like the LoG, are sensitive to variations
within an oljed because they require integration ower the entire width of the objed.

It isnot surprising that the standard deviations of the maximum resporses, of the HMAT
and CMAT, are greder than that of the LoG. The LoG is a Gausdan (with standard deviation
of c=r/vJn=r, for 1-D space convdved with a sesoond-derivative operator. The HMAT
and CMAT invalve the combination d boundiriness respornses which computation is based
on a Gausdan (with a standard deviation d o =r/k,i.e. r/2 in ou test) convdved with a

first-derivative operator. Thus, at a given operator radius, r, the degree of smoathing (o) for
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the LoG doules that for the HMAT and CMAT. However, the variation d the medialness
maximum resporse, in the presence of noise, differs by only 6%. The performance of the LoG
is compromised by the seacond-derivative operator that is more sensitive to ndse than the first-

derivative operator.

4.1.4 Koller Line Detector

Koller et al. [KOL95] analyzed a symmetric pulse, like that shown in Fig. 3.13,and
showed that the shift of edge resporse is determined by s=o and that a global medialness

maximum appeas at a scde of 0=0.83356M/2. To give a1 ojedive and efficient comparison
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with the CMAT, the operator radius, r, is taken to be equivalent to the scde parameter, g,
with arelation, r=1.1996% and the medialnessresponse normalised by the global maximum

value for a symmetric pulse with urit height.

4.1.4.1KLD minimum operator (s=0)

Figs. 4.15a) and (b) show the optimal radii and ogdimal radius resporses, as afunction o
pasition, generated from the KLD minimum operator (s=0) and for pulses with varying de-
grees of symmetry. For ead puse, there is only one locus refleding the symmetry and edge
resporses are completely suppressed, as with the CMAT. As the degree of symmetry de-

creases the resporse bemmes smaler, which is smilar to that observed with the CMAT.
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Fig. 4.15.Medialness maxima for the KLD minimum operator (s=0): (a) optimal radii and (b)
optimal radius resporses, as a function d position; (¢) optimal positions and (d) optimal position

resporses, as afunction d operator radius, for pulses with varying degrees of symmetry.
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However, for the KLD, the spatial maximum of the optimal radius resporse shift to emphasise
the right side of the pulse centre, which means that the KLD minimum operator (s=0) does
not acarately locdise the cantre of an oljea with imperfed symmetry. In addition, the “sharp
pe&ks’ of the optimal radius resporse described by Koller [KOL95] occur only for a symmet-
ric pulse (a=1).

Figs. 4.15c) and (d) show the optimal positions and ogimal position resporses, as a
function d radius, for pulses with varying degrees of symmetry. Again orly one locus for
eat puseis present. When the degreeof symmetry is reduced, the locus of optimal pasitions
is difted towards the weger boundry and the maximum of the optima position resporse
appeas at an operator radius snaler than the pulse half-width. This means that the KLD
minimum operator (S=0) canna acarately identify the width of an ojed with imperfed
symmetry. The sudden turnings in the loci of optimal paositions result from seleding the

small est edge resporse and abruptly switch of emphasis from one to the other.

4.1.4.2KLD geometric mean operator (S=0)

If we replacethe minimum operation for shifted edge responses with the geometric mean
(s=0), the optimal radius maxima and the optimal position maxima ae & iownin Fig. 4.16.
These results are simil ar to those obtained using the minimum operation: the spatial maximum
of the optimal radius resporse is shifted to the weser boundxry (Fig. 4.16b)), and the maxi-
mum of the optimal position resporse is difted to an operator radius snaller than the pulse
half-width (Fig. 4.16d)). Though the biases are smaller than those observed using the mini-
mum operation, the KLD geometric mean (s=0) canna acarrately identify the centre and

width of apulse with imperfed symmetry.
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(b) optimal radius resporses, as a function d pasition; (c) optimal pasitions and (d) optimal posi-
tion resporses, as afunction d operator radius, for pulses with varying degrees of symmetry.

4.1.4.3KLD minimum operator (s=20)

If we increase the shift of edge resporses, relative to scde, to s=20, the results for the
KLD minimum and geometric mean operators are & shown in Figs. 4.17and Fig. 4.18,re-
spedively.

In Fig. 4.17,the change in the shift-to-scde ratio grealy alters both the loci of optimal ra-
dii and ogimal positions. The change in shape results from the repeaed change (of the mini-
mum operation) between the alge resporses used to compute “medialness’. It is noted that
both the loci converge & the pulse caentre and at an operator radius equal to the pulse half-

width. This comes close to the result of the CMAT, LoG, and HMAT, shown in Figs. 4.10and
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Fig. 4.17.Medianess maxima for the KLD minimum operator (s=20): (a) optimal radii, and (b)
optimal radius resporses, as a function d position; (c) optimal pasitions and (d) optimal position
resporses, as afunction d operator radius, for pulses with varying degrees of symmetry.
4.11 and might be cnsidered to imply that the locdisation acaracy of pulse centre and half-
width estimation is not affeded by degree of symmetry. However, bah the optimal radius re-
sporse (Fig. 4.114b)) and ogimal pasition resporse (Fig. 4.11d)) have wide flat tops, which
makes the identificaion d pulse centre and half-width impradicd for asymmetric pulses. On
the other hand, the optimal radii for a symmetric pulse dmost stay at an operator radius of

r=W2 (a=1in Fig. 4.14a)), which means the estimation d the width of a symmetric pulseis

lesscriticd for the KLD minimum operator (S=20), at positions off the pulse cantre.
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4.1.4.4KLD geometric mean operator (s=20)

In Fig. 4.184a), the loci of optimal radii coincide, which indicates that the KLD geometric
mean operator (s=20) isrobust to the variationsin degreeof symmetry. Thisis aso reinforced
by the balanced strength on bdh the sides of ead oggimal radius resporse (Fig. 4.18b)). Each
optimal radius resporse has its gatial maxima & the pulse ceitre and the associated optimal
radius is equal to the pulse half-width. Therefore, we can acarately identify the pulse ceantre
and helf-width, using the optimal scde (radius) definition onthe medialnesscomputed by the
KLD geometric mean operator (s=20). In Fig. 4.18§c), the optimal position maxima ae dis-
placel further from the pulse catre & degree of symmetry deaeases. However, they still
converge & the position d the pulse centre and the operator radius of the pulse haf-width.
The spatial displacaments at large scdes are much smaller than those of the CMAT, LoG, and
HMAT (seeFig. 4.11). Therefore the KLD geometric mean operator (S=20) has the best esti-
mation d the pulse cantre & any single scde.

This property has a potential and wseful applicaion on eaeasing the sampling rate of
scde (radius). If the width of a line being deteded has a limited range and we had prior
knowledge of scde (e.g. roads in remote-sensing images), it would be possble to approxi-
mately locdi se the objed centre or medial axis by computing medialnessat one scde (radius).
In Fig. 4.18d), the maximum of the optimal pasition resporse occurs at an operator radius
equal to the pulse half-width, and the mrrespondng positionis the pulse centre. Therefore we

can acaurately identify the pulse centre and helf-width using the optimal pasition definition.
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Fig. 4.18.Medialnessmaxima for the KLD geometric mean operator (s=20): (a) optimal radii and
(b) optimal radius resporses, as a function d pasition; (c) optimal pasitions and (d) optimal posi-
tionresporses, as afunction d operator radius, for pulses with varying degrees of symmetry.

4.2 Applications of the CMAT to 2-D Images

4.2.1 The CMAT Medialness Responses

To asEss the significance of the theories presented in Sedion 3.2,we evaluated the
CMAT dgorithm using synthetic and retural images. We cmpared these results with those
obtained using our own implementations of the LoG, HMAT and credit attribution algorithms.
Thelinea HMAT was used for comparison throughou this thesis. The results for the HMAT-

2, the initial medialness resporse of the CMAT, are provided here to demonstrate how the
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improved CMAT resporses arise. The size of ead image is 128x128 pxels, except those in
Figs. 4.25and 4.26which are 256x256 pxels. Each medianessalgorithm was implemented
to be sengitive to bah pdarities of boundary transition. The medialnessimages sow the &-
solute value of medianessresporse. Therefore, in the medialnessresults for the LoG operator
the zero-crosdngs, which reflead boundary information, are replaced by minima with zero
value. Asin the 1-D case, we use operator radius as a mmmon parameter of scde for al the
operators. Here the radius-to-scde ratio that determines operator radius, k, is st at 2 and the
constant, which determines the distribution extent of boundriness contributions for over-
coming the sparsenessin discrete sampling, A, is st at 0.5.

In the cae of a 2-D image, the medialnessresporse can be thought of as the density at
eat pdnt in a2+1 dmensiona scde-space However, no graphica visualisation is possble
to display such a resporse completely using a single 2-D view. The medianess sde-space
hasto be visualised at aseleded scde or in aseleded sedion danein 3-D scde-space.

Fig. 4.19shows the medialnessresporse, for a redangle with a sawtocth edge, at three
seleded scdes. For the LoG (first row) and HMAT (second row) operators, edge resporses
appea as lines framing the shape; the brightest regions correspond to medialness resporses
due to symmetry. At small operator radii of 5 and 10pixels, the linea operators refled more
edgenessthan symmetry. At an operator radius of 20 pixels, the linea operators produce of a
central resporse for symmetry, the ridge of which provides a predse description d the overall
shape, and an outer edge resporse. The resporse of the aedit attribution algorithm (third row)
makes the medialnessresponse for symmetry more prominent; The outer edge resporses pres-
ent in Figs. 4.19d) and (g) are diminated. However, the aedit attribution algorithm has lim-
ited impad on the way that isolated edges generate a ‘medialness’ resporse (at radii of 5 and

10 pxels). Thisisnat surprising becaise the enhancement of the aedit attribution depends on
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the competition d the boundarinesscontributions on bdh the sides of eat edge (the parall e
linesin Figs. 4.19e) and (h)); for an isolated edge or at an operator radius much smaller than
the locd width, the boundxrinesscontributions on bdh sides of an edge have the same initia
strength (HMAT medialnesg and become two “winners’. The resporse of the HMAT-2 ago-
rithm (fourth row) is smilar to that of the HMAT (secondrow) but the resporses for symme-
try are more strongly emphasised. This is due to the angular range for weighting, 6 in Eq.
(3.23), being smaller than the dfedive angle (6 = ) of the drcular arc used in the HMAT
algorithm [MOR91]. In the resporse of the CMAT agorithm (fifth row), only responses for
symmetry are generated at al radii. The hierarchy and robustness of multi-scde analysis are
demonstrated in the CMAT results: the triangular sawteeh and end corners are refleded at
small radii (Fig. 4.19n)), the redangular shape is refleded at medium radii (Fig. 4.190)), and
the dongated shape is refleded at large radii (Fig. 4.19p)). The medianess of larger scde
feauresislittle dfeded by fine detail .

Fig. 4.20shows two sedions through the medialness resporse for the redangle with a
sawtoath edge (shown in Fig. 4.2(0a)) to give an impresson d the 3-D nature of medialness
in scde-space Fig. 4.2Qb) is a diagrammatic representation o the 3-D medialness sde-
gpace as a stack of 2-D dlices at progressvely larger scdes. Fig. 4.2(c) shows a sedion
through the 3-D scde space aplane C and Fig. 4.2(qd) shows a sedion at plane D. Operator

radius (scde) islinealy sampled from 1 to 64 pxelsin stepsof 1 pixel.
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Fig. 4.19.The medianessresporse & seleded scades for a redangle with a sawtoath edge: (a)
Origina image; (b)-(d), LoG ; (e)-(g), HMAT; (h)-(j), credit attribution algorithm after 5 itera
tions; (k)-(m), HMAT-2; (n)-(0), CMAT. The olumns from left to right are & operator radii of
5, 10and 20 pxels, respedively. The half-width of the shapeis 20 pixels.
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Fig. 4.20.Sedions of the CMAT medialnessin scde-spacefor a redangle with a saw-
toath edge: (a) original image, (b) diagrammetic representation o scae-space (c) sedion
on fdane C, and (d) sedion on pane D.

Note that the shape in Fig. 4.20a) is symmetric dong both the verticd and haizontal
axes, that isrefleded in Figs. 4.20c) and (d) by the strong medialnessresporse. The medial-
nessresporse in pane C is influenced by the extent of the shape. The branching of the me-
dialnessresporse in Fig. 4.2(0c) corresponds to the symmetry of the ends of the shape in Fig.
4.20@). This appeas as two highlightsin Fig. 4.19p). For the plane D, Fig. 4.2Qd), there s,
in effed, noend region to modify the medialnessresporse. The resporse in Fig. 4.2Qd) can
be regarded as a grey-level visuaisation d the resporse shown in Fig. 4.1(c). At the bottom of
Fig. 4.2Qd) (small scde) there is a small “highlight” which arises from the midde sawtocth
ontheright of the shapein Fig. 4.20a).

Fig. 4.21shows the medialness resporses, for a teadrop shape, at three seleded scdes.

The radius of the drcular arc & the bottom of the teardrop is 24 pixels. Therefore the radius at
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which the strongest medialnessresporse shoud occur for this circular arc is 24 pxels. How-
ever, we find that the LoG (first row), HMAT (second row) and credit attribution algorithms
(third row) begin to produce medianessresporses for the drcular arc, in the lower part of the
teadrop shape, at the small est radius used, 6 pxels, seeFigs. 4.21b)(e)(h). Further, these re-
sporses are displacal from the centre of the drcular arc by a relatively large distance and re-
semble boundry resporses. With the CMAT algorithm, the medialnessresponse for the dr-
cular arc gopeas at an operator radius greaer than 9 pxels and at a position close to the cen-
tre (fifth row). This is consistent with the medianess performance demonstrated in Sedion
4.1.1whereby the CMAT produced a medialnessresporse only at positions nea to the pulse
centre and at radii close to the pulse half-width.

Fig. 4.22shows two sedions through the medialness resporse for the teardrop shape of
Fig. 4.24a), to give an impresson d the scde-spacemedialnessfor this dape. Fig. 4.23b) is
a diagrammatic representation d the 3-D medialness €de-space as a stadk of 2-D dlices at
successve scdes. Fig. 4.24¢) shows a sedion through the 3-D scde-space aplane C and Fig.
4.22d) shows a sedion at plane D. The shape in Fig. 4.24a) displays svera symmetries

which vary in scde dong they axis. This can clealy be seen in Figs. 4.24c) and (d).
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Fig. 4.21.The medianessresporse & seleded scdes for a teadrop shape: (@) Original im-
age; (b)-(d), LoG; (e)-(g), HMAT; (h)-(j), credit attribution algorithm after 5 iterations; (k)-
(m), HMAT-2; (n)-(p), CMAT. The olumns from left to right are & operator radii of 6, 12
and 24 pxels, respedively. The radius of the drcular arc & the bottom of the shapeis 24 px-
els.



CHAPTER4: RESULTS 15C

y —» X —>

(©) d) (
Fig. 4.22.Sedions of the CMAT medialnessin scde-spacefor the teadrop shape: (a)
original image, (b) diagrammatic representation o scae-space (c) sedion on pane C and

(d) sedion on pane D.

Fig. 4.23shows the medialnessresporse, for alongitudinal MR image of a pair of legs
(an image from the Visible Human Projeq), at threeseleded scdes. Thisimage was chosen as
an example of natural image, in which the amplitude of the grey-level boundry varies, the
shapes are relatively complex and multiple “objeds’ are in close proximity. The medialness
resporses for the LoG (first row) and HMAT (secondrow) can be seen to be amixture of me-
dial and bouna@ry resporses. The aedit attribution algorithm grealy refines the result of the
HMAT, bu the omntour of bath legs is gill visible (third row). In the results of the CMAT
(fifth row), orly those resporses for symmetry are retained. The CMAT medialnessrefleds
the bores and the fat layers (bright regionsin the inner side of legs) at a small radius, at a me-
dium operator radius the knees are emphasised, and at a large operator radius only the major
structure of the limbs is maintained. Note that the CMAT resporse between the legs corredly

refleds the medial axisfor atriangular shape.
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Fig. 4.23.The medialnessresporses at seleded scdes for an MR leg image: (@) Original im-
age; (b)-(d), LoG; (e)-(g), HMAT; (h)-(j), credit attribution algorithm after 5 iterations; (K)-
(m), HMAT-2; (n)-(p), CMAT. The mlumns from left to right are & operator radii of 3, 6and
12 pixels, respectively.
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4.2.2 Computational Cost of the CMAT

For ead medialness operator, the computational cost at a single scde increases linealy
with operator radius, r, and the image size, N°. Therefore the mmputational complexity at a
single scde is O(r, N?). The times taken to compute the medialnessresporse for a 128x128
pixel image & an operator radius of 20 @xels ona SUN Ultra-2 workstation are shown in Ta
ble 4.1. Five iterations were used in the aedit attribution (CA) algorithm. We used LUTs to
compute the Gaussan and its derivatives in ead algorithm, and the weighting function in the

HMAT and credit attribution algorithms.

Algorithms LoG HMAT CA HMAT-2 CMAT

Time (seconds) 10 40 365 11 13

Table 4.1. Time taken to compute medialnessfor several medialnessalgorithms at a seleded
operator radius.

To compute amedialness sde-space & operator radii from 1 to Sy pixels and in steps of

1 pixel, the cmmputation cost isin propationto:

s 5 S,(Sy +1)
N er—N 5

where S, >>1. Therefore the mrrespondng computational complexity is O(S,i N 2).

4.2.3 Alternative Definitions of Contribution Confidence

In Sedion 3.2.3,we presented aternative definitions of contribution confidence for the
CMAT agorithm. Compared to the definition d contribution confidence f(x) =1-x (Sec-
tion 3.2.), used in the precaling experiments, these definitions may emphasise (or de-
emphasise) end-point medialness with resped to the medialness of parallel boundiries. Fig.

4.24shows the CMAT medialnessresporses of a bar shape & a seleded scde, using diff erent
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Fig. 4.24.Different definitions of contribution confidence (@) the origina image of

(%)

a bar shape, and its CMAT medialnessresporses, at a operator radius equal to ob-

jed half-width, using curve functions: (b) I, (c) II, (d) lll, and (e) IV.
definitions for contribution confidence Function | is the definition d contribution confidence
f (X) =1-x used in the precaling experiments and the CMAT medianessresporse is siown

in Fig. 4.24b). Function Il is f(x) = (1-x)* and suppresses the relative CMAT medialness

1/2

for parallel boundries as srown in Fig. 4.24c). Function Ill is f(x) =(1-x)"“, which en-

hances the relative CMAT medialnessfor parallel boundries as shown in Fig. 4.24d). Func-
tion IV is triangular in shape, as defined in Eq. 3.48, poduwing CMAT medialness evenly

distributed along the middle line, as shownin Fig. 4.24e).

4.2.4 Ridgesof CMAT Medialness Using Existing Algorithms

Fig. 4.25shows the results of the ridge extradion onthe medialnessresponses, computed
using the LoG, HMAT, and CMAT, for the redangle with a sawtooth edge. These ridges were
obtained using the optimal scae ridge definition at operator radii of 1-15 pxels (top row) and

1-60 pxels (midde row), and the height ridge definition at operator radii of 1-60 pxels (bot-
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tom row). The medialness resporse, for a large-sized fedure (at large scdes), at paositions
away from the medial axis may dominate the resporse, for a small-sized feaure (at small
scdes), at positions on the media axis as discussed in Sedion 3.3.2.21n addition, the optimal
scde ridge definition orly considers the global medialnessmaximum over scde & ead pixel.
To avoid the media axes for small-sized feaures (here including the spurious MMA arising
from edge resporses) being hidden or shortened by large-sized feaures (compare the top and
middle rows), the operator radius was first limited to 1-15 gxels (first row).

The ridge extradion results shown here ae dter a thresholding operation, in which the
ridge points that have medialnessresporses lessthan 13% of the globally maximum through
scde-space ae ignored. For the height ridge definition, an additional thresholding operation,
based onthe asolute value of the second greaest eigenvalue (i.e. the seaond derivative in the
diredion e, of Fig. 2.10, was used. This value was required to be & least 10% of the greaest
eigenvalue (the seond derivative in the diredion e, of Fig. 2.10. This removed some of spu-
rious ridges caused by the fluctuation o edge resporses for the linea LoG and HMAT algo-
rithms. In the results of the LoG (Figs. 4.25a) and (g)) and HMAT (Figs. 4.25b) and (h)), the
remaining spurious ridges exist in parallel with boundries. On the other hand, the results of
the CMAT (Figs. 4.25c) and (i)) contain nospurious ridge poaints, only the symmetric points.

The results of the ridge extradion for an MR image of a pair of legs are shown in Fig.
4.26. These ridges were obtained using both the optimal scde ridge and height ridge defini-
tions. The operator radius was limited to 1-10 pxels. In the results of the LoG (Figs. 4.26b)
and (e)) and HMAT (Figs. 4.26c) and (f)), spurious MMA branches appea in paraléd with
bores and fat layers. The CMAT results (Figs. 4.26d) and (g)) give amore gpropriate repre-

sentation.
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Fig. 4.25.The medialnessridges for a redangle with a sawtooth edge: optimal scde ridges at op-

erator radii of 1-15 [xels (top row) and 1-60 pxels (midde row), and height ridges at operator ra-
dii of 1-60 pxels (bottom row). The medianess was computed using the LoG (left column),
HMAT (middle column), and CMAT (right column). The ridges are overlaid onthe original image.
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Fig. 4.26.The medialnessridges for an MR leg image: (top row) the original image, (midde row)
optimal scde ridges and (bottom row) height ridges at operator radii of 1-10 pixels. The medialness
was computed using the LoG (left column), HMAT (middle column), and CMAT(right column).

Theridges are overlaid onthe original image.
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4.3 Sliding Window Ridges

4.3.1 Ridges of LoG Medialness Using Sliding Windows

To assessthe significance of the sliding window agorithm for deteding locdly optimal
scde ridges, we have gplied this agorithm to bah synthetic and retural images. The results
were dso compared with those produced using other scde-spaceridge definitions, such as the
globally optimal scde ridge and height ridge. The LoG mediahess operator, rather than the
CMAT agorithm, was used initially in the demonstration d the formation and effea of lo-
cdly optimal scde ridges (for the hand image in Figs. 4.27%4.30. This distinguishes the im-
provement in performance of the CMAT medianess agorithm from that due to the sliding
window agorithm for ridge detedion. The CMAT medialnessalgorithm was used throughou
the foll owing experiments (Figs. 4.3%:4.33 to demonstrate of the improvement in perform-
ance due to the cmmbination d both the dgorithms. Each image is 256x256 pxels, except the
hand image which is 216x282 pxels. For ead image, only the MM A branches for bright ob-
jeds on darker badkgrounds are presented to simplify the visual interpretation d the results.

Fig. 4.27shows the globally optimal scde resporses (top) and ridges (bottom), computed
for different ranges of optimal radius, for an X-ray hand image. The left column shows the
results for a full radius range of 4-72 pxels. Note that the ais for the palm is complete, but
the axes for the fingers are shortened (Fig. 4.271b)). From the correspondng optimal scde re-
sporse (Fig. 4.21Q)), it can be seen that the “off-axis’ resporse & large scdes, due to the
palm, may be stronger than the “on-axis’ resporse & small scdes due to the fingers. Conse-
guently, the medialness resporse of large dimension comporents dominates that of smaller

comporents and the ridges for small objeds adjacent to or embedded in a large objed are
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(f)

Fig. 4.27.The globally optimal scde resporses (top) and ridges (bottom), under different ranges of
operator radius, for an X-ray image of the hand: 4-72 pxels (lIeft), 4-30 pxels (midde), and 3172

pixels (right). On the bottom row the extraded ridges are shown overlaid onthe original image.

shortened. This observationin a 2-D image is consistent with the behavior of the 1-D embed-
ded pusein scae-spacepresented in Section 3.3.2.2.

The interference between globally optimal scde resporses at large and small scaes can
be avoided by separately computing resporses at small and large scdes. Thisisill ustrated in
the midde and right columns of Fig. 4.27,which are the globally optimal scde resporses and

ridges computed at small (4-30 pxels) and large (30-72 pxels) operator radii, respedively. At
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Fig. 4.28.Ridge paints for the hand image, extraded using diff erent definitions: (@) the globally op-
timal scde, (b) the locdly optimal scde, and (c) height ridge definitions, at operator radii of of 4-72
pixels.

the operator radii of 4-30 pxels, Fig. 4.21c), the optimal scde resporse for the fingers is
stronger than that for the palm, and the aes for the fingers are fully extended along the fin-
gers, seeFig. 4.271d). There exist some ridges in the optimal scde resporse due to the palm
(seethe dongated highlight in the lower part of Fig. 4.271c)). However, their correspondng
“optimal scdes’ are & the largest scde (operator radius) of the scae range, 30 pxels, and they
canna be determined as maximawith resped to scae & this sde range. At the operator radii
of 30-72 pxels, the optimal scae resporse for the fingers aimost disappeas ( Fig. 4.271¢e)),
and orly the ais for the pam is presented (Fig. 4.27f)). Thus, the extradion d ridges for
small and large objed comporents is sparated and there is littl e interference. The union d
the two set of ridges, extraded at two segmented scade ranges, constitutes a omplete MM A
representation for the hand image.

The seledion d the scde used above was, in this case, based on a judgement of image
structure. However, such prior knowledge is not always avail able. In this case the sliding win-

dow algorithm is beneficial for complete ridge extradion.
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The MM A representation d the hand image, oltained using the sliding window algorithm
for locdly optimal scde ridges, is s1own in Fig. 4.28b). It isamost the same & the union d
the MM A branches extraded at two segmented scae ranges using the globally optimal scde
ridge procedure, except that some short MM A segments emerge in the palm, seeFig. 4.27d)
and (f). Compared with the globally optimal scde ridges computed over a scde (operator ra-
dius) range of 4-72 pixels, Fig. 4.28a), use of a diding window results in complete axes for
the fingers and along axis for the palm. Thisis gmilar to the result achieved using the height
ridge definition, shown in Fig. 4.28c), even with resped to the short MM A segments that
emerge in the pam. The use of too coarse asegmentation d the scade dimension, see Figs.
4.27d) and (f), can cause MMA branches to be lost, as concluded in the analysis of scde
distinguishibility, in Sedion 3.3.2.5In Fig. 4.28,it is interesting to nae that eat finger and
its bore does not produce separate MM A branches. This is becaise the widths of ead finger
and its bore ae too close for scde-space aaysis to distinguish them. The width ratio of the
finger bones (embedded oljeds) to the fingers (outer objeds) is much greaer than the aiticd
ratio of 1:4 identified in Sedion 3.3.2.2.

In Figs. 4.27and 4.28,the ridge points are overlaid on the origina image to show the
gpatia locaion d the MMA. This visuaisation daes nat refled the richnessof the MM A rep-
resentations that is hown in Fig. 4.29.Figs. 4.29a)-(d) show the locaions, namal orienta-
tions, medialnessresporses, and asciated scaes of the ridge points, respedively. The &2-
ciated (optimal) scdes are represented in gray levels, with a brighter region correspondng to a
larger scde and oljed width. Using these dtributes, the ridge points can be linked into MM A
branches.

The linked MM A branches, longer than 10 pxels, for the hand image ae shown owerlaid

on the original image in Fig. 4.30Q@). A 3-D visudisation, in scde-space of these aes is
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shown in Fig. 4.3qb). The MM A branch for the palm is at a higher level of scde than those of
the fingers, refleding the fad that the palm is wider than the fingers. In computing the me-
dialnessresporse, the operator kernel can extend keyondthe limits of the image. To ded with
the dfedsof alimited field of view, eadrimage in the experimentsis treaed as periodic. This
can cause false wraparound symmetries between adua boundxries that lie on oppaite sides
of the original image. For example, the left border in Fig. 4.30a) is brighter than the right
border, which can be interpreted as “ridges’ and the MM A under the wraparound d the im-

age.
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Fig. 4.29.The richnessof ridge point attributes: (a) the ridge points, (b) the normals to the ridges,
(c) the medialness resporse & the ridges (optimal scde resporse), and (d) the scdes (objed
widths) associated with the ridges (the optimal scdes). In (d) a brighter region corresponds to a
larger scde and ohjed width.
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Fig. 4.30.Media axes (longer than 10 pxels), oltained using the LoG and sliding window algo-
rithm, for an X-ray hand image: (a) axes superimpaosed on aiginal image, (b) 3-D visualization.



CHAPTER4: RESULTS 164

4.3.2 Ridges of CMAT Medialness Using Sliding Windows

In Fig. 4.31(b) the linked MM A branches, longer than 5 pxels, for a redangle with ore
“sawtoath” edge ae shown owerlaid on the origina image. At small scdes, there ae five
short, digoint MMA branches representing the “sawtegh” of the objed. The redangular
property is also represented by the central branch and the four diagonal branches biseding the
corners. The representation d the aarse scade properties, such as the redangle, is littl e influ-
enced by those of fine details such as the “sawteeh”. A 3-D visualisation, in scde-space of
these aesis fhownin Fig. 4.31(c).

In Fig. 4.32b) the linked MM A branches, longer than 5 pxels, for a teadrop shape ae
shown owerlaid onthe origina image. A 3-D visudlisation, in scde-space of these aes is
shown in Fig. 4.3Zc). Note that the scde of the ais appeas to increase linealy along the bi-
sedor of the shape, except nea the large radius end d the teardrop.

In Fig. 4.33b) the linked MM A branches, longer than 25 pxels, for the MR leg image ae
shown owerlaid onthe original image. A 3-D view, in scde-space of these aes are shown in
Fig. 4.33c). Note that eacr MM A branch for a bore structure increases in scde nea the joints
between the upper and lower legs, refleding the widening of locd structures. The MMA

branches change in scde a the width of the fat layers changes.
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(b)

Column

(©)

Fig. 4.31.Media axes, oltained using the CMAT and sliding window algorithm, for a redan-
gle with a sawtooth edge: (&) the original image overlaid with axes before linking and (b) after
linking (longer than 5 pxels), and (c) 3-D visuaization.



CHAPTER4: RESULTS 16€

(b)
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Fig. 4.32.Media axes, oltained using the CMAT and dliding window algorithm, for a teardrop
shape: (a) the original image overlaid with axes before linking and (b) after linking (longer than &
pixels), and (c) 3-D visualization.
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(b)
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0
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Fig. 4.33.Media axes, oltained using the CMAT and dliding window algorithm, for an MR image
of a pair of legs: (@) the original image overlaid with axes before linking and (b) after linking
(longer than 25 pxels), and (c) 3-D visualization.
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4.3.3 Computational Cost of Sliding Windows

Suppcee that O is a functional expresson d the order of the mmplexity, and that § and
S, are the small est and largest scdes being considered. The mmputational cost for computing
globally optimal scde ridgesis O(N?) ; that for computing locdly optimal scde ridges and
height ridges is O(S, —S,,N?). We have tested the three dgorithms for multi-scae ridge
extradion ona 128x128 image, over a scde range of 1-30 pixels, using a SUN Ultra-5/10

workstation. The cmmputation d the LoG medialness sde-spacetakes 115 semnds. The time

to extrad ridges of the medialnessresporse and the MM As, for ead scde-spaceridge dgo-

rithm, isprovided in Table 4.2.

Algorithms Globally Optimal Scde | Locdly Optimal Scde Height
Ridge Extraction 0.2 5.0 10.0
(semnds) ' ' '
MMA Total 115.2 120.0 125
(secondk)

Table 4.2. Time taken to compute ridges and the MM As for several scde-spaceridge dgo-

rithms.

Therefore, the sliding window agorithm is gill efficient, compared with the large portion

of time used in the momputation d medialnessresporses.
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Chapter 5 Discussion

5.1 TheCMAT with Other Edge-Free Medialness Algorithms

5.1.1 Credit Attribution

The aedit attribution (CA) algorithm is an iterative processto enhance medianess re-
sporses for symmetry and suppress edge resporses. It asaumes that eady boundry point
makes a mnstant contribution to the medialness resporse on bdh sides of the boundiry, as
shown in Fig. 5.1. For ead boundry point, the cntribution is weighted by the ratio o the
medianess in the previous iteration, to the total medialnesson bdh sides. When a boundary
contribution interads with those from other boundxriesit is enhanced, and the cntribution to
medialnesswill it eratively grows on ore (interaded) side of the boundary with respea to the
other side, as shownin Fig. 5.1.

The CMAT is smilar to the aedit attribution in that both use an additional voting proc-
ess in which boundvry contribution is weighted acarding to the result of the previous voting
phase. However, the aedit attribution is iterative and therefore computationally expensive. In
the aedit attribution, the suppresson d the edge responses on ore side of a boundary depends
on interadion with ather boundary contributions. For an isolated edge (or a symmetric objed
examined at a small scde, compared to the objed width), there is littl e or no interadion be-
tween the boundary contributions. Therefore, the medialnessresporse due to an isolated edge
is drong, seeFig. 5.1(a). In addition, the aedit attribution canna be used when orly one po-
larity of boundary transition is considered, such as looking only for a bright objed on darker
badgroundas in for X-ray images. In this case dl the @ntributions of a boundxry point are

cast on ore side of the boundxry. Therefore there is no enhancement of the resporses for
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Input signals

/\ Boundariness

Initial medialness

j Medialness after i-th iteration

(@ b) (

Fig. 5.1.The cmpetition for boundriness contributions between the two sides of ead edge,

in the presenceof (a) an isolated edge and (b) a pair of symmetric edges.

symmetry and nosuppresson d edge resporses.

5.1.2 Global Ridge Strength Measure

The global ridge strength measure (GRSM) can dfferentiate the HMAT medianessre-
sporses for symmetric and isolated edges. It is defined as the ratio of the total medialnessat a
point to the maximum boundxrinessthat contributes to it. The CMAT is gmilar to the GRSM
in using the ratio between boundrinessand medianessresporses. However, the cntribution
confidence of the CMAT is attributed to eat boundry point while the GRSM is defined for
eat media poaint. Also contribution confidence is combined into the final medialness re-
sporse while the GRSM s treaed as an independent fador of the HMAT medialness re-
sporse. These differences leal to the distinctive behaviour of the CMAT. First, the GRSM is
an enhancing process that differentiates between structural symmetries and edges, while the

CMAT inhibits the medialnessresporse of single alges. Seaondy, the GRSM is intensity in-
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variant but the CMAT is nat. The invarianceto linea transforms of intensity can be agued to
be important but ignores the diff erence between a high-contrast objea with strong boundri-
nessand a low-contrast objed (posshbly noise or computational errors) with weak boundri-
ness Intensity information is important in identifying medial axes, and it is a mistake to ds-
cad such information. The am of intensity invariance ca be partly readed by an adaptive
MMA branch seledion, e.g. seleding “the ten most salient axes” as in [LIN98] or “the aes

whose sali ency measures are dove 20% of the greaest one”.

5.1.3Koller Line Detector

The Koller line detedor (KLD) belongs to ancther approac to the suppresson d edge
resporses in medialness[WANS82] [SUB93|[KOL95]. For eat paential media point, a pair
of boundrinesscontributions (shifted edge resporses), R. and Rg, are computed in adiredion
that maximises the second drivative of the blurred intensity. To suppressthe medialnessre-
sporse to a single alge, Koller noted that the final respornse must be large, if both R. and Ry

arelarge and zero, if either R_ or Rris zero. Therefore the minimum operation, min{R_, R} is
used and the geometric mean, /R Ry , isalso considered [KOL95].

The CMAT is smilar to the KLD in that both prevent edge resporses from contaminating
medialness In the cae of 1-D pulses or 2-D line structures, the CMAT is also computed as

the nonlinea combination d a pair of boundrinesscontributions using 2R R, /(R +Rg) .

However in the KLD, the assumption that a pair of boundry contributions is deeed to ore
diredion implies that this method is designed for the detedion d line structures, rather than
for genera objeds which may be awedge, bent and kranched (multiple boundry points in-
volved). In addition, even for a 1-D pulse or 2-D line structures, the KLD is foundto be eaily

biased by disturbances of the symmetry, unlike the CMAT, LoG, and HMAT.



CHAPTERS: DISCUSSONS 172

5.2 Sliding Window Algorithm with Other Ridge Definitions

5.2.1 Globally Optimal Scale Ridges

The dliding window agorithm is an efficient way to implement the original definition o
the optimal scde ridge [PIZ92)[FRI9Z]. The dosest related method is Fritsch’s smplified
strategy, which uses globally optima scde ridges to approximate optimal scde ridges. At
eat pixe, this sSmplified strategy projeds the global media nessmaximum over the full scde
range onto the image plane and the ridge seach is condwted ower this sngle image. The
diding window algorithm is smilar to the simplified strategy in that it extrads globally opti-
mal scde ridges within ead dliding window on scde dimension. If the length of the sliding
window, L, is €t to S-S (where Sy and S are the largest and small est scdes being consid-
ered), then the dliding window algorithm becomes Fritsch’s smplified strategy. The dliding
window agorithm considers a small scde segment at ead iteration, rather than the whole
scde range & in Fritsch’s method. The analyses in Sedions 3.3.2.5and 3.3.3.1showed that
such a small scde segment has an improved ability to dstinguish embedded oljeds in scde-
spaceby separating the ridge detedion for small and large objeds. Therefore, the sliding win-
dow algorithm can be used to extrad locdly optimal scde ridges and alows ead pdnt to

belong to MM A segments at diff erent scdes, as required for an embedded ohed.

5.2.2 Optimal Position Ridges

A dired extension d the optimal paosition ridge definitionfrom 1-D signalsto 2-D images
has been proposed and implemented by Lindeberg [LIN98]. This method extrads gatial
ridges of 2-D medialnessresporse & ead scade. The scde-spaceridges are thase 2-D spatial
ridge points that are locad maxima with resped to scde. The diding window algorithm is

similar to Lindeberg’s optimal pasition ridge definition in that it also extrads atial ridge
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points from 2-D medialnessresponses and seleds those that are locd maxima over scde. If
we set the length of ead sliding window, L, to 1, then the sliding window algorithm beawmmes
Lindeberg’'s optimal position ridge definition. However, the medialness resporse used in the
diding window agorithm is the projedion d the global maxima over ead sliding window
onto the image plane, rather than the medialnessresporse & a single scde. This diff erence of
the dliding window algorithm is advantageous in avoiding spurious MMA branches caused by
the medialnessresporse for isolated edges. The medialnessresporse for an isolated edge, re-
sulting from a traditional operator, is ainclined fuzzy shed in scde-space(Fig. 2.8a)). Each
point on the wre of this fuzzy shed is a ridge paint in the medialnessat a single scde and
tendsto be alocd maximum over scde. Therefore the medialnessresponses for isolated edges
satisfy the optimal position ridge definition. On the other hand, die to the size invariance of
the medialnessresporse for a step edge (SeeSedion 3.1.3, the projedion d the maxima over
scde onto the image plane, over a scae range, tends to be flat and daes nat readily produce

spurious ridges.

5.2.3 Height Ridges

In the height ridge method aridge point is defined as alocd maximum of the underlying
function in the diredion that (negatively) maximises the sewnd drediona derivative
[HARS83]. This definition has been extended to 3-D space [EBE94a] and 2+1 dmensional
scde-space[MOR94]. The height ridge definition is also used in the diding window ago-
rithm to extrad spatial ridges of the 2-D optimal scae resporse with Euclidean geometry.
However, this differs from dired ridge extradion in a 2+1 dmensional scde-spaceusing a
Riemanian geometry, which is required by the incommensurability between spatial and scde

dimensions.
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Chapter 6 Conclusions and Future Work

6.1 Conclusions

The mnclusions of thisthesis are:

(1) CMAT medianesscomputation

* An edge-freemedialnessfunction (CMAT) can be cmputed by adding a second stage
of boundrinessacamulation, in which the weight for eady boundvry point is a func-
tion d theratio between the boundrinessand total medialnessat the first stage.

* The CMAT medianessobtained as abowve increases with the increasing sum and de-
creasing sample variance of the ntributing boundriness resporses. Therefore, it
prohibitsisolated boundries from generating “medialness’ responses.

* The CMAT medianessdepends more on the sum of contributing boundriness while
its rate of increese is determined by the sample variance of the @ntributing boundary
resporses.

» Alternative definitions for boundarinessweights emphasizes or suppresss the CMAT

medialnessat end pants with resped to that along midde of parallel boundhries.

(2) The dliding window agorithm for scde-spaceridge extradion
* The diding window agorithm can efficiently extrad locdly optimal scde ridges and
thus deted a complete set of MM A branches for assemblies of objeds, e.g. embedded

or adjacent objeds.

(3) Comparison d medialnessfunctions
» The locdization acaracy for the position and width of an ojed, as well as the ro-

bustnessunder noisy condtions, in the CMAT is as good as that for other medialness
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functions.

* Compared with linea medialness operators, the CMAT resporse is more seledive to
the position and width of an ojed, which fadlit ates maximum (or ridge) detection.

» For an asymmetric objed, the traceof the CMAT medialnessmaxima (ridges) in scade-
gpacehas no structural change and is dhifted lessfrom the objed centre than for other
medianessfunctions. Thus, the CMAT agorithm has better spatial |ocdization at any

single scde.

(4) The behaviour of embedded oljedsin scde-space

* The aility of scde-space aalysisto dscern oljeds in an embedded groupng is lim-
ited. It can orly identify embedded oljeds with at most 1/4 the width of the outer ob-
jed, andthe outer objeds with at least 1/3 the height contrast of the eanbedded ohjed.

* The paosition and width o the anbedded oljed can be arredly identified. For the
outer objed, its position is biased to the enbedded oljed and its width is often under-

estimated.

6.2 Future Work

(1) Detedion d ridgesin the scde diredion
There ae occasionaly some placesin medialness €de-spacewhere ridges running almost
in the diredion d scde «is, e.g. at branching points and centres of round“blobs’. The me-
dialnessresporse dong such aridge is snocoth over scae, bu appeas as alocd spatial maxi-
mum (rather than a ridge) in the medialness resporse & a single scde or even the optimal
scde resporse over multiple scdes. The scde-spaceridge definitions, which consider the spa-

tial and scde dimensions sparately, such as the optimal scde ad Lindeberg's ridge defini-
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tions, may lose MM A at these places. A potential solution to this problem is to consider these
points as ridge points. The dtention d focus would be on those points whose medialnessre-
sporses are locd maxima & ead of successve scdes and the maximum values are smoath
over scde. Thisapproadh is, in spirit, similar to Crowley’s sheme of linking pesks [CRO84].

(2) Extensions of the sliding window algorithm to 3-D images

Because the dliding window agorithm can reaily separate the scde dimension from the
seach space it simplifies ridge detedionin higher dimensional spaces. For a 3-D image, the
medianess sde-spaceis 4 dmensional. We can first compute the 3-D maximal resporse
over eat dliding window in the scde dimension. The paints, which are both 2-D spatial
ridges (cores of fuzzy sheds) in the 3-D maximal resporse and locd maxima over scde, are
determined as on 2D medial surfaces. The points, which are both 1-D spatia ridges in the 3-
D maximal resporse and locd maxima over scde, are determined as on 1-D medial axes. The
2-D medial surface ca be used to identify the skullsin 3-D CT images. The medial axes can

be used to identify blood vesslsin 3-D MR angiogram images.

(3) Conredorsin dliding window algorithm

Connredor curves [DAM99] can fill i n the gaps between ridges (and the MM A). The com-
bination d the MM A with conredor curves provides a more robust representation for image
structures. Because extrading ridges (the MM A) from an image diredly applies to the extrac-
tion d conredors, conredor curves are an inexpensive and uwseful addition to the set of
ridges. However, the aurrent definition d connedor curvesis based onthe agenvalue anaysis
of the Hesdan of second cerivatives (i.e. maximal convexity ridges), it canna be diredly ap-
plied to the optimal scde ridge definition including sliding window agorithm. Considering

the simplicity of the diding window algorithm, the extension o conredor curves into the
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diding window agorithm has promising appli cations.

(4) Sparse scde sampling in line detedion

In Sedion 4.1.4.4jt was foundthat, in 1-D, the optimal pasition maxima of the medial-
nessresporse, computed using the KLD geometric mean operator (S=20), give the best esti-
mation d the pulse cantre & a single scde. For 2-D images, this means that the ridges of the
medialnessat a single scae gproximate the medial axes. This has a useful applicationin de-
creasing the scde sampling rate. If the width o the lines of interest has a limited range (e.g.
roads in remote-sensing images or blood wessls in medicd images), it would be possble to
locae the line centres, with negligible eror, by computing the KLD medialnessresporse &
only one scde. This is beneficia in pradice becaise mmputing medialness sde-space @ a

full scderangeistime-consuming.
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