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Abstract

As an important aspect of image analysis, texture identification has been pur-

sued by many t Among techni devell

d, the approach of modeling
texture images through a 2-D Autoregressive (AR) Model is of special interest. The
magor problem with the modeling methods is the estimation of parameters due to

the intensive amount of computation involved. From a parallel computing perspec-

tive, imation can be impl d by learning dure of & neural
network, and texture classification can be mapped into a neural computation. A
multilayer network is proposed which consists of three subnets, namely the input
subnet (ISN), the analysis subnet (ASN) and the classification subnet (CSN). The
network obtains the classification capability through an adaptive learning proce-

dure. In the processing phase, images proceed through the network without the

prep ing and feature ion required by many other techniques.
Ani d texture tation teck is proposed Lo segment textured
images. The technique is impl d by ing local region propertics, which

are represented by a 2D AR model, in a hicrarchical manner. It is able to grow
all regions in a textured image simultancously starting from initially decided in-
ternal regions until smooth boundaries are formed between all adjacent regions.

The of the classification and i hni are shown by

experiments on natural textured images.
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Chapter 1

Introduction

1.1 The Texture Analysis Problem

Texture is the term used to describe the organized area phenomena which exist on
the surfaces of objects. Textures can be easily observed from natural images, such
as images of grass lands, leaves of trees, a patch of sandy beach and many other
outdoor scenes. Further examples are the textures that can be found from satellite

hs of ores and minerals, electron micrographs

Limages,
and microscopic images in biological or medical studies.

A universal texture definition, however, is difficult to give because of the diver-
sity of natural and artificial textures. Generally, texture can be considered as “a
structure composed of a large number of more or less ordered similar elements or

patterns without one of these drawing special attention” [1]. In a uniform texture



image, gray values of pixels exhibit some kind of homogeneity. It is believed that
the variation of gray values in one subregion of a texture image will show a sinilar
pattern with those of other subregions of the image.

Texture image classification and segmentation arc the two main objectives in
texture analysis. Texture image classification identifics an input texture sample
as one of a set of possible texture classes, while the aim of texture segmentation
is to divide an image with different textures into subregions that have uniform
textures. For a texture analysis process, the first and the most important. step is
to extract texture features which can generalize the textural characteristics of the
original images. The requirement for this step is to choose the textural features to
be as compact as possible and as discriminating as possible. At the meanwhile, as
a texture analysis process tends to consume long computational time, an cflicient
feature extraction is very critical for a method to be applicd in real application.

Structural and the statistical features have been used for texture feature rep-
resentation. Structural approaches appear to be appropriate for periodic textures
with a low noise level and are not considered to be uscful in real application.
Most statistical features ate based on tonal properties or pattern propertics. They
usually strong in measuring textures from one aspect, but deficient in describing
others. Other statistical methods represent textures by stochastic models. These
methods build more complete statistical models for textured images, however, are

often limited in application due to the ional burden in model parameter




estimation.

In this thesis, the approaches of texture classification and texture
are explored with 2-D Autoregressive (AR) model representation and neural net-
work implementation. Special efforts are made in secking a natural combination
between 2-D Autoregressive (AR) model and neural network concepts to perform
a texture analysis task efficiently. The main idea is motivated by two important

1 istics of neural ion, namely the highly parallel execution and the

adaptive learning ability. With the neural ion, the process of establishi

a stochastic model for a given texture maps to a neural adaptive learning process.
Compared to models estimated by least square error (LSE) technique, which is

often used for

hastic model imation, models built by the neural
computation have proved to be more adaptive to gray level variation and more
tolerant to the possible noise contained in natural images.

A texture segmentation algorithm, which can be considered as an application
of the designed neural network, is also proposed. Current texture segmentation

algorithms can be classified to four categories, including algorithms based on es-

timation theory, clust detection, and region ion, The it
Yy Bl

edge

tion algorithm proposed in this thesis is an i d region

which combines the strengths of region splitting and merging and the region grow-

ing techni for texture i The algorithm is superior to a region

merging and splitting algorithm in its parallel nature. The regions produced do



not depended on the sequence in which regions are merged. Some drawbacks of
a region growing téchnique, such as, seed part is decided in a supervised manner
and a seed part only contains one pixel, are also overcome. To handle the situation

in which the types of textures appearing in an image under investigation are not

known beforehand determini h is designed to be used before

a type

the segmentation procedure to decide the textures included in the image.

1.2 Structure of the System

The proposed neural network consists of three subnets, namely the input subnet
(ISN), the analysis subnet (ASN), and the classification subnet (CSN) (Figure 1.1).
Each subnet consists of more than one layer of nodes. Every two adjacent subnets
have forward connections, in which the output of each subnet serves as input to
the next subnet in the network.

The input subnet accepts a texture pattern as input and distributes the nor-
malized input pattern to the analysis subnet. The analysis subnet consists of a set
of channels, each of which models a particular texture class by a 2-D AR modcl
and produces an error value that measures the difference between an input texture
pattern and the pattern gencrated by that channel using the AR model. The anal-
ysis subnet computes a set of total error values. The classification subnet decides,
using a competition mechanism, to which texture class the input pattern belongs.

An overview of the proposed segmentation algorithm is given as a flowchart in
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Figure 1.1: Overall structure of proposed neural classifier.



|

[ Pasition an input image into disjoint blocks ]

|
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Figure 1.2: Overview of the segmentation procedure.

Figure 1.2.

1.3 Organization of This Thesis

This thesis is organized into cight chapters. Chapter Two briclly surveys existing

texture classification and Igorith

Chapter Three reviews typical

neural networks and their application in image analysis and processing. Chapter

Four introduces how the 2-D AR model can represent a two-dimensional random

6



field defined on a textured image. The method of using neural computation to

perform 2-D AR model imation is also addressed in this chapter.

With the neural computation introduced in Chapter Four, the Chapter five de-

scribes the overall multilayer network and the ions for neurons
at each level during the application phase of the network. In order to deal with im-
ages in the orientations different from training samples, Chapter Six provides two
modified versions of the neural network to recognize textured images in arbitrary
orientation. As an application of the neural network in Chapter Five, a segmenta-

tion algorithm, which is an i d region is proposed in

Chapter Seven. The perfc of the Igorithm is also di

The conclusion and discussion are given in Chapter Eight.



Chapter 2

Survey Of Texture Analysis

Techniques

2.1 Introduction

This chapter gives a brief review of existing texture features and texture classifi-

cation i Texture hni including methods based on

estimation theory, edge detection, clustering, edge extraction and region extrac-

tion, are also discussed.

2.2 Texture Features

Pure structural viewpoint assumes that a texture is described by some primitives

following by a placement rule. In this view, a texture is considered to be generated



by primitives which occur dl ding to the pl rule. Such meth-

ods are greatly limited because the types of regular textures that can be described
by structural features are seldom encountered in the real world. Hence, structural
features have been of little interest to most rescarchers.

As a result, the major focus in texture analysis over the last twenty years
lias been on statistical approaches. From the statistical point of view, texture is
regarded as a sample of a probability distribution on the image space. Texture is
cither defined by statistic features or a stochastic model which is characterized by

a set of parameters.

2.2.1 Commonly Used Statistical Features

In the late 1970’ and early 1980's, most statistical approaches were based on the
extraction of statistical features such as spatial frequency and probability densities
of various local or co-occurrence properties. Some of those features have been

such as classification of geological terrain

successfully used in specific

images, satellite images of clouds, and some segmentation experiments.

In the following hs, seven types of ly adopted statistical fea-

tures, together with their ad ges and limitati are briefly discussed



2.2.1.1 Features from Digital Transform Techuiques

In the digital i an image is d into a new li

system, such as the sin-cosine basis set in the Fourier transform or the Walsh func-

tion basis set in the Hadamard transform. The coefficient values in the transformed

image relate to spatial frequency. Since fine textures are rich in high frequencies
and coarse textures are rich in low frequencies, the information from the trans-
formed image in the spatial space can be used to identify texturcs. Several types
of transforms, including Fourier, Hadamand and Slant transforms, have been used
in this manner to do texture analysis. It is reported that no big difference has
been found among the different transform methods [2].

The power spectrum can also be adopted to measure textures. In power spec-
trum method, three features are commonly used: (1) annular-ring geometry, which
gives a total contribution of light energy of one frequency component, independent
of direction; (2) wedge sampling geometry, which gives the total cnergy of one

direction ind, dent of fr

quency; and (3) parallel-slit sampling geometry, which

measures the energy transmitted through a slit of specificd length and width when
the Fourier plane is rotated to a specified angle.
2.2.1.2 Features from the Autocorrelation Function

The autocorrelation function can be used to describe textures because it indicates

the sizes of primitives. In a textured image, the autocorrelation function will drop



off and risc again periodically. If the primitives of the image are relatively large, its
autocorrelation will drop off slowly with the distance. If the primitives are small,
the autocorrelation will drop off quickly with distance. The spatial information

can therefore be cha ized by the lati fici

This approach is related to the Fourier transform technique in that the au-
tocorrelation function and the power spectral density function are the Fourier
transforms of each other. Experiments have also shown that both methods have

similar performance [8].

2.2.1.3 Features from Spatial Gray-Tone Dependence (Co-occurrence)

The spatial gray level dependence method is based on the estimation of the joint
condition probability density function, P(i, j|d,0). Each P(i,j|d,0) denotes the
probability of concurrence of a pair of gray levels (i, ) at distance d and angle
0. The estimated values can be written in a matrix forta, which is called the
concurrence matrix. As such matrices of gray level spatial dependence frequencies
depend on both the angular relationship and the distance between gray values in
an image, they can capture both the direction and the size information. A variety
of measures can be employed to extract useful textural information from those

matrices, such as energy, contrast, correlation, entropy and local homogeneity (3].



2.2.1.4 Features from Generalized Gray-Tone Spatial Dependence

This method is similar to the co-occurrence method in that both describe textures
by estimating the joint probability distribution. The co-occurrence method caleu-

lates the probability of two pixels with given grey values and distance, while this

method describes the local texture information by calculating the joint probability

distribution of a neighbor with eight dir

The generalized Grey Tone Spatial Dependence considers an of
gray values of a pixel neighborhood as a primitive. For example, a 3 x 3 neigh-
borhood with 4 gray levels for each gray value will have 4° different primitives.
Histogram statistics which indicates the frequency of the occurrence of all the
primitives in an image can then reveal the texture information. The problem with
this technique is the heavy computation due to the high dimensionality for the
probability distribution.

Recently, a texture spectrum approach was proposed which is a variation of
Grey Tone Spatial Dependence [28]. In this approach an cight clement neighbor-

hood £y, B, Ey...... 2y is defined as

0 Vi<V

Ei=q1 ifVi=V

2 ifVi>V
where V; is the grey value of a neighborhood element and Vj is the central cle-

ment. In this way, the number of primitives can be reduced but some of the detail

12



information is lost as well.

2.2.1.5 Features from Texture Edgeness

Textures can be described by the number of edges within per unit area [39] because
coarse textures have a small number of edges per unit area and fine textures have a
large number of edges per unit area. By using this approach, a gradient image can
be first obtained by using Robert’s gradient measure or other gradient extraction
techniques. The average value of the gradient in the image can then be calculated

to characterize a texture.

2.2.1.6 Features from Run Length

A grey level run is a set of consecutive pixels with the same grey level value. Given
the direction of the run, a matrix can be constructed in which each element P
indicates the number of runs with length j for grey value i. For a coarse texture,
relative long runs would occur relatively often. In contrast, short runs would occur
more frequently for fine textures. Several features can be defined, i.., long runs
emphasis, gray distribution, run length distribution and run percentage [8]. This

method is very sensitive to noise [2].

2.2.1.7 Features from Filter Masks

A set of masks can be used to characterize textures [9]. The approach consists of

two steps. In the first step, a zero sum mask is used to convolve a whole input

13



image. The convolution masks are designed to be sensitive to structures such as
edges and spots. In the second step, a measure called Lexture encrgy is evaluated
at each pixel in the convolved image over a large window by summing the values in
the window. For a particular texture, the texture cnergy s conjectured to be within

a certain range, so different texture energies can distinguish different textures.

2.2.2 A Comparison of Statistical Features

Many of the features described above have been used in special applications. A
wide class of images have been tested by using the gray level co-oceurrence method
and the gray level tone features [4, 5, 19, 8]. It was concluded that features based on
the gray level co-occurrence and the gray level tone perform much better than fea-
tures from Fourier transforms [1, 8]. Therefore it is believed that texture patterns
are more appropriately modeled in the space domain rather than the frequency
domain since both gray level co-occurrence and gray level tone characterize the
spatial relationships of gray levels in an image. One drawback for the co-occurrence
method is that it consumes a large amount of computation because many matrices
have to be computed. Another limitation is the lack of any theory to guide for
choosing a particular set of features. For gray level tone features, the computation
time can be extremely long because of the histogram technique adopted.
Features from texture edgeness are poorer than that of the concurrence method

but better than that of the frequency method [1, 8).



The gray level running length method is very sensitive to noise, so it is not
considered for gray value images. It is, however, suitable for binary images [2].

From the computational efficiency point of view, features from filtered masks
can be regard as low cost features. The limitation is that a single mask is normally
ideal in reflecting only one aspect of texture properties, e.g., edge detection or
spot detection. Since natural images are often complex, it is hard to distinguish

all textures by using one mask.

2.2.3 Describing Textures by Stochastic Models

Another statistical approach is to model a texture as a stochastic random field. In
this approach, a textured image is viewed as a realization of a stochastic process
which can be specified by a set of parameters. These parameters can then be

used to identify textures in classification and segmentation. Since 1980, many

hers have been i d in using stochastic models to represent textures.

The random models most commonly used are the Markov Random Field (MRF)
10, 11, 12], the Gibbs Random Field (GRF) [22, 24, 23] and the 2-D Autoregressive
(AR) [14, 15, 16, 30] models.

bast: b

for texture identification used MRFs

An carly study of
[10]. These are multidimensional generalizations of Markov Chains, which are

defined in terms of conditional probabilities based on spatial neighborhoods. There

are different orders of neighborhoods. Each neighborhood ds to a clique



class (a clique is a graph whose vertex set is composed of vertices such that each
one is a neighbor of all others). A set of parameters associated with the cliques of a

given neighborhood ion dt ine a MRF. These i a

feature space and thus can be used for texture classification and segmentation. The
major disadvantage with these models is that the estimation of these parameters
is very difficult.

Using an AR model, a textured image can be synthesized as a linear combi-
nation of the neighboring values with random noise values. The coefficients of
these linear combinations could be considered as a sel of features which explicitly
express the spatial relation of each pixel with its neighbors. The estimation of the
AR model is less difficult than that of MRF or GRF [14, 15, 16, 30].

In any stochastic model texture analysis approaches, three problems to be con-

sidered are: (1) choosing the model and the order of the model (or the appropriate

ighborhood); (2) estimating the of the model; and (3) choosing the

lassification or i hni The first two problems arc

closely related with each other. A higher order neighborhood certainly increases

the accuracy of the chosen model, but at the same time it also makes the stochastic

of the ly difficult. Different techniques are used to
make such computations possible.
Due to the complexity of these models, choosing an appropriate neighborhood

becomes very difficult. Some possible procedures, such as Akaike's information

16



criterion, are used to decide a neighborhood [26]. A very heavy computation is
involved in those procedures. Usually, a fixed size neighborhood is empirically
determined.

For model parameter estimation, an early used technique is the coding method
introduced by Besag in [20]. The coding method is basically a maximum likelihood

that yields i which imize the conditional joint

distribution. By using this approach, an image is divided as two subsets, such
that points of the two subsets are evenly intersected on the image. A maximum
likelihood estimation from one subset can be obtained by the condition that the
other subset is fixed; estimation of the other subset can then be achieved in the
same way. The result is given by combining the two procedures properly. This
method results in low efficiency because only a subset of the data is used.

An alternative parameter estimation was proposed for GRF [22] which con-
sists of the histogram technique and a standard linear least square estimation.
This approach expresses the sum of the potential functions by a set of compo-

nents di

p to all cliques contained in the neighborhood, and then using
a histogram to estimate the joint distribution and obtain the parameters. The
computation is easier than that of the coding method.

Least square estimation (LSE) and i likelihood estimation (MLE) are

commonly used methods for parameter estimation. The results obtained by LSE

and by MLE are nearly the same, however, the former is computationally easier.



Hence least square estimation is more fr ly used in

2.3 Classification Techniques

In most cases, a non-parametric classifier is used in texture classification since the
pattern class distributions are not known. The nearest neighbor (NN) approach is
frequently adopted. This decision rule assigns a pattern to the nearest class among
all possible neighbors, which are computed from training samples. Buclidean dis-
tance is commonly used as the distance metric.

There have been attempts to design orientation independ al-

gorithms by averaging features over different directions (18, 19]. For example, it
has been suggested that features defined on gray level co-occurrence matrix can
be averaged over four matrices computed from 0, 45°, 90° and 135”. Ilowever,
the performance of such features has not been tested in experiment which uses
differently oriented samples of textures. A stochastic texture model called the
circular symmetric autoregressive mode was proposed in [18], which utilizes a cir-
cular neighborhood. The elements of this circular neighborhood can be thought
of as symmetrical points located on a unit radius circle. Three rotation invariant

features can in turn be extracted from this circular neighborhood.



2.4 Segmentation Techniques

Segmentation is the partitioning of an image into regions that are homogeneous

with respect to some ch istics. Texture i iques can be cate-
gorized into four classes: (1) cstimation theory based ion; (2) edge based

tion; (3) clustering based jon; and (4) region based segmenta-
tion.

2.4.1 Based on Estimation Theory

Three jon techniques using Maximum A Posleriori (MAP) estimation

have been developed, namely dynamic programming, stochastic relaxation (simu-

lated ling) and di

When using MAP as the estimation criterion, the object is to have an estimation
rule which yields # so that maximizes a posteriori distribution P(X = ¢|V = y) for
a given 4. The difficulty in determining x is due to the fact that the maximization
NNz

is o be done over M possible configurations in an M-valued image of size

Ny x Ny. To make the ion possible, imations are adopted in each
technique from different viewpoints.
2.4.1.1 Dynamic Programming

MAP estimation techniques are used to develop suboptimal but computationally

tractable segmentation algorithms to segment binary textured images [21]. Such
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algorithms use two stages of dynamic programming. In the first step, a generalized
dynamic programming algorithm is applied to each row of the image, yielding a set
of candidate segmentations for each row. Ta the sccond step, a final segmentation

is formed from the partial results calculated in the first stage.

Dynamic ing can b ded to multilevel images by adopting Gibbs

Distribution (GD) [22]. A hi hical GD model is d of two levels. At

the higher level, a GD model is used to divide image pixels into regions with
similar features. That is, if a pixel is of a certain type, ils neighboring pixels
should also have a high probability of being the same type. At the lower level,
the features are modeled by another set of GD. Based on this hierarchical model,
the MAP estimates for the processed region are carricd out recursively. Because

of the ional lexity, the recursive algorithm is arranged as

follows: first, a D-row strip is processed and an estimation for the strip is obtain
by dynamic programming. Only keep the estimation for the first row and discard
the rest. Then the strip consisting of rows from 2 to /) +1 is processed in the same
way, and so on, until the estimation for the whole image is obtained.

However this method is computationally tractable only for small grey value
scales. For images more than four grey levels, hierarchical segmentation is con-
structed as a sequence of binary segmentation processes, i.c., an image is first
segmented into two region types, each region is then segmented into two subre-

gions, and so on. This algorithm is reported to be successful on images containing



2 or 3 texture types, where each texture type has 2 or 4 grey levels.

2.4.1.2 Stochastic Relaxation

A hierarchical stochastic model based on the Gibbs Distribution for texture image

was in [24]. Stochasti jon and simulated li

were used for ing the MAP estimation for

A Gibbs Distribution has the following representation

Ty = ———

where T stands for a computational analogue for “Temperature”. High tempera-
tures indicate a loose coupling between neighboring pixels and & chaotic appear-
ance. At low temperature the coupling is tighter and the image appeats more
regular. Simulated annealing is a process that slowly decreases the temperature T
and forces the system into a low energy state.

This algorithm can converge to a global maximum. However, convergence to a

global minimum is extremely slow and hence is not practically implementable. In

practice, it either converges 1o a local maximum or terminates before it g

at all.

2.4.1.3 Deterministic Relaxation

Another kind of relaxation, named d inistic relaxation, was introduced in [25].

Let y = {1i;) be the observed image and « be the segmentation of image y. The
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objective of segmentation is to maximize P(X = )" = y) with respect to
for a given y. In the deterministic relaxation problem, the scheme to maximize

P(X = 2|V = y) is: select a pixel (i,j) and assume all neighborhood pixels

(k1) # (i) are to be fixed at their optimum values; then update ;, by the value

that maximizes P(X = 2|}

= y). Then move to other pixels and update cach

one sequentially. After many iterations the algorithm converges to the maximum

of P(X Y =y). This d inistic relaxation is faster in but not

necessarily converges to a global one. In order to avoid to a local maximum, the
method of varying the neighborhood during each iteration of the relaxation was
used to make the convergence closer to the global maximum.

In a comparison described in [25], the results produced by deterministic relax-

ation, 1

and dynamic ing algorithms showed to be

ble. The deterministic relaxation with varying neighborhoods was demon-

strated to be faster than stochastic relaxation and appeas to be less possible Lo

1

converge to local maximum than the d is. From the exper-

iments presented in [21], [22], [24], and [25], segmentation techniques based on
estimation theories are mostly applied to images with only 2 to 4 gray levels and
containing two or three textures. Besides, they require a large number of passes

over the image and are extremely time consuming.



2.4.2 Based on Edge Detection

In object identification, edges can be extracted by identifying abrupt gray level
changes in an image. For a textured image, edges between texture regions can
be detected by identifying the changes in texture feature values. In extending
conventional edge detection methods to perform texture segmentation, the texture

features are d by using overlapping or lapping windows over the

image, and the texture features extracted from each window ave then transformed
into real values. An edge detection operator (such as the Roberts operator ) is
then applied to the transformed new image to obtain a gradient image. Finally, a
predefined threshold is used to decide texture edges.

Several edge based segmentation techniques exist [37, 36, 38]. The main differ-
ence between those edge based segmentation techniques is the choice of the texture
features.

Some drawbacks with this approach are: (1) at the place where the change of
feature images between two regions is not abrupt enough, a gap occurs and the
edge might be lost. Henve closed edges cannot be produced and linking procedure
is needed to connect the incomplete edges into closed boundaties; and (2) the
threshold value which is used to decide edges on gradient images is hard to be

defined because of the complex boundaries between various textures.
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2.4.3 Based on Clustering

In a textured image, each class of homogeneous regions is assumed o form a
distinct cluster in the space of features selected. A clustering technique extracts
texture features for each pixel in an image, and a clustering method is then used
to group the points in the feature space into clusters [34, 35].

Some limitations of this technique are: (1) large amounts of computation time
are required because features have to be extracted for each pixel in an image; (2)
such clustering produces noisy boundaries because the neighboring information is

not considered.

2.4.4 Based on Region Extraction

Region tion is perf d by ing local region propertics extracted over

an appropriate window. This type of method includes the splitting and merging
approach and the region growing approach.

A fundamental problem in a region based approach is the choice of an appropri-
ate window size over which the local properties are extracted. If a small window is
used, the properties are not reliable and it is difficult to accurately detect texture
boundaries. If a textured image is measured over a large window, it is hard to find
uniform texture regions.

A splitting and merging technique using a pyramid structurc was described in

[40]. In this approach, a block is determined as a uniform region if its contained
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blocks are considered to be similar in texture properties. Otherwise, the block is
split and the process is repeated for each of its contained blocks. The segmenta-
tion is completed when no undecided block is left on the image. The boundaries
produced by this method tend to be a sawtooth shape because of the difficulty of
deciding the region properties when blocks are very small.

In the region growing technique, regions are extended from some starting points
until the boundaries of regions are reached. A region growing technique was intro-
duced in [42], in which each region in an image is grown starting from a selected
position by using a modified random walk technique. In this walk, a move is made
from a pixel to its neighbor if the similarity between the two pixels satisfies a
predefined threshold. For each pixel in the image, a count is used to record how

many times that pixel is visited. Regions are then extracted by thresholding the

visit-count array. Some limitations of this h are: (1) long
time is required since features have to be computed for each pixel in the image; (2)
large memory is required because a counter has to be used for each pixel during
the random process; (3) some interior points in the regions are mislabeled because
of the random nature of pixel visiting.

Compared to the clustering and the edge detection methods, the results pro-
duced by region based methods tend to be more stable and less noisy. One difficulty
of region extraction methods is that there is no simple way to properly incorporate

the local feature information. Another common limitation is that a great deal of
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computation time is required because the procedures are performed in au ilerative

manner.
The principles of primary texture classif and tech
their strengths and weak as well as the performa have been reviewed in

this chapter. A general review of current neural networks will be given in the next

chapter.



Chapter 3

Neural Networks

3.1 Introduction

A review of important neural networks is presented in this chapter. In the past
decade, there have been increasing interest in artificial neural networks, due to the
learning capability and massive parallelism. A neural network is specified by a
net topology, node characteristics, and a training rule which specifies how node-
connection weights should be adapted during the learning process. Information is
encoded in a neural network in a distributed fashion, and the ability to give correct
output for cach input is learned by training on selected samples according to the
training rule.

Neural network systems have received extensive attention in the area of pattern

recognition in recent years and have been applied to many areas, such as character
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recognition, image analysis, natural language processing, and speech recognition.
The focus of this chapter is on those networks which have found their application

in image processing and image analysis.

3.2 Back Propagation Neural Network

The back tion algorithm provides a hanism for the develop of

networks of units with idal acti functions [54].
It assigns a strong discrimination power to multilayer networks. Theorctically,
multilayer networks can be considered as nonlincar maps with the clements of the
weight matrices as parameters. A typical multilayer nctwork includes an input
layer, an output layer and one or more hidden layers. The weights hetween two
layers are adjusted to minimize a suitable function of the error between the ontput
of the network and a desired output of the network. A discontinuous mapping
such as a nearest neighbor rule is used at the last stage to map the input set

into points in the range space corresponding Lo output classcs. In recent. years,

back tion networks have repeatedly shown their high discrimination ability.

These networks are capable of recognizing morc complex patierns than those that
can be recognized by the classical image analysis operations.

Multilager networks trained by the back-propagation algorithm have proved
to be extremely successful at solving pattern recognition problems [47, 49]. In

image analysis, back-propagation has been applicd to taret recognition, character
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recognition, image compression, and image coding [50, 51, 52, 53].

3.3 Competitive Neural Network

A competitive neural network consists of laterally interconnected nodes. The inter-
action in a compelitive neural network includes positive interaction from a node to
itsell and negative interaction between a node to other nodes. Typical competitive
networks are the Maximum network and Hopfield networks [55].

In a discrete Hopfield Network, all nodes in the net are connected to all others.
A number of state vectors can be stored in such a net. If a distorted pattern is pre-
sented to the net, the net has the ability to recall the original pattern (64, 65]. The
continuous Hopfield network is well suited to class optimization problems which
can be described in terms of a energy function [65]. In this type of application,
a problem is represented as a set of constraints, and energy function is designed
according to those constraints. A weighted matrix is then constructed according
to this energy function, and a differential equation that describes the dynamics of
cach neuron in the network is derived from this weighted matrix. The best solu-
tion can be derived by using the differential equation to minimize the configuration
energy until the network converges to the lowest energy configuration.

Hopfield networks provide an alternative approach to pattern recognition, and

have been used in object ition [67), image ion (6] and the cor-

respondence problem in stereo vision [68]. Limitations of the Hopfield networks
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include: (1) in discrete Hopfield net, the number of patterns that can be stored
and recalled is severely limited by the number of nodes required; and (2) for con-
tinuous Hopfield networks, it is often very difficult to define a weight matrix to

well represent constrains of an application [55].

3.4 Kohonen Self-Organizing Network

Kohonen's self-organizing network [60] consists of a single layer of ncurons. Those
neurons are highly interconnected within the layer as well as to the outside world.
The Kohonen network can be considered a mapping in which points in N-dimensional
patiern space are mapped into a smaller number of points in an output space. This
mapping is achieved in a self-organized manner. The network has been used in

object segmentation [69].

3.5 Adaptive Resonance Theory

Adaptive resonance theory (ART) [59, 47] is an extension of competitive learning
schemes in which the learning of new information does not destroy old information.
A feedback mechanism exists between the competitive layer and the input layer of
a network. This feedback mechanism automatically switches between the stable
and the plastic modes. If the network has learned previously to recognize an input

vector, then a resonant state will be achieved quickly when that input vectors is
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presented. If no match is found, the network will enter a resonant state in which
the new pattern will be stored for the first time.
Two architectures named ART1 and ART2 have been developed for binary

input vectors and for gray-scale patterns respectively [48].

3.6 Other Networks

Several multilayer networks have been built for special purposes. Neocognitron
is one such network which was designed for character recognition [57, 58]. The
model is a hierarchical network consisting of many layers of cells, and variable
connections between the cells in adjoining layers. At low stages, simple features
such as horizontal and vertical short line segments are extracted and at high stages
more complicated features are obtained based on the result of carly stages. By
supervised learning or unsupervised learning, the network can obtain the ability
{o recognize input patterns according to the differences in their shapes.

Other multilayer networks designed for image analysis include a five stage net-
work designed for invariant object recognition of binary images [61], mutilayer

Gabor-based Networks for image ion 62, and a hierarchical neural net-

work for edge enhancement [63].
Typically, multilayer networks have the following limitations: (1) leatning is
slow when complex decision regions are required; and (2) a very large number

of nodes can be required by a complex recognition task. In this case, it may be
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impossible to reliably estimate weights from the training data.

3.7 Learning Methods

There are two types of learning procedures, namely supervised learning and unsu-
pervised learning. In supervised learning, a network is provided with a number of
training sets in which each set consists of an input pattern and a desired output.
The neural network updates its internal weights according to both the input and
output data so as to produce the correct output for cach input pattern [54, 55, 56].
Unsupervised learning assumes no correct responses arc provided to a learning
procedure. A network updates its weight according to the input patterns under
certain assumptions about the nature of the data. Unsupervised learning usually
refers to the learning procedure in self-organizing nets, for instance, the Adaptive
Resonance Theory (ART) [59] and the Kohonen feature map [60]. The limitation
of unsupervised learning is that it cannot learn arbitrary functions.

Most multilayer networks adopt supervised training [54, 56, 57]. In supervised
learning, a network is provided with input-output pattern pairs. For cach pair,
the network updates its internal weights to decrease the difference between the
actual network’s output and the desired output. The weights are iteratively ad-
justed until the network can produce the desired output in response to each input
pattern. Usually, in order to respond correctly to a sct of input patterns which

require different outputs, all pairs of input patterns and outputs will be alternately
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presented many times to a network.

The supervised training of a multilayer network typically involves a forward
propagation phase followed by a backward propagation phase. The forward prop-
agation phase starts by providing an input pattern to the input of a network,
propagating the input forward through the hidden layers, and obtaining an output

at the output layer. In the backward ion phase, the diffe between the

output produced by the network and the desired output is calculated. A weight
changing rule is then applied backward through the layers to change the internal
weights of the network according to the amount of the difference value.

The square of error is usually utilized to measure how close a newwork is to

obtaining the desired output. This value is d as the learning p.
proceeds. A learning procedure eventually stops at the state of convergence when
the value of the square of error is equal to or less than a predefined value.

A general survey of important neural networks, the learning algorithms, and
the application of neural networks on pattern recognition and image analysis has
been given in this chapter. The principle of using neural computation in texture
discrimination, the structure of the proposed neural network, its learning delta

and i dure will be d from the

rule, and the

next chapter.
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Chapter 4

The 2-D AR Model
Representation And Its
Parameter Estimation through

Neural Computation

4.1 Introduction

In the previous chapter, 2-D AR model has been proposed in texturc representation
for the purpose of texture classification or segmentation (14, 15, 16, 30]. Howcver,

due to the difficulty and ion burden of imation, low cf-

ficiency is often produced and the accuracy of discrimination is also affected. In



this chapter, a method of performing 2-D AR model imation through

a neural ion is impl d. Tt d that, with the adaptive ca-

pability of the neural network, the 2-D AR model parameter estimation can be
carried out in a natural way. The corresponding neural structure and a detail

derivation of the neural computation formulas are also presented.

4.2 The 2-D AR Model Representation

Let {y(i,j)li € 1,..., M,j € 1,...,N} be the sct of gray values of a given M x N

image. As a 2-D random field, (i, j) can be described by the following equation:
Y(ind) = X 0ry((is5) @ ra) + Bl 4), (a1)
rogh

where ¢ denotes the associated neighborhood, 0, is a set of parameters of the AR
model which characterizes the dependence of a pixel on its neighbors. Each 0,,
is related to the gray value of a neighboring pixel at position ((i,) @ r,), where
“))" is an operation which displaces position (i,j) to a position in the neighborhood
of (i, j) according to displacement 7. 4(i,j) is an independent Gaussian random
variable with zero mean and unit variance, and 4 is the coefficient of 4 (i, ).

The above equation can be interpreted as follows: in a textured image, the
gray level y(i, j) at location (i, ) is related to the linear combination of the gray
values of its neighboring pixels through the set of parameters 0,,. In other words,

the gray value of a pixel in a textured image can be represented by a combination
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Figure 4.1: The neighborhood in 2-D AR model.

of gray values of its neighboring pixels which is specificd by 0,,. In this sensc,
the parameters 0,, can be used as a feature vector to distinguish different types
of textures. The model parameters 0, can be estimated from a given window.
Compared to MRF models, a 2-D AR model has the advantage that the cstimation
of parameters is more direct. The least square estimation (LSE) and the maximum

likelihood estimation (MLE) methods are ly employed for the paramete

estimation of AR model. In this thesis, neural computation is used to cstablish
2-D AR model for textures and o further identify textures by using the model.
One of the major difficulties of modeling textures by a stochastic model is sc-
lecting an appropriate neighborhood. Usually, a model with a large neighborhood
fits textures better than a model with a small neighborhood. However, a small
neighborhood can reduce the burden of computation. Details regarding the deci-

sion rules for choosing appropriate size and shape of a neighborhood can be found
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Figure 4.2: The neighborhood with 24 elemeats.

in [26, 27]. For computational simplicity, the 3 x 3 neighborhood (Figure 4.1(a)) is
chosen by most techniques. In this thesis, a 3 x 3 neighborhood with four additional
diagonal neighbors (Figure 4.1(b)) was chosen in order to represent more neigh-
boring information within a reasonable amount of computation. For comparison,
a 24 clement neighborhood (Figure 4.2) was also utilized in an experiment. Re-
sults indicated that the 2-D AR model with this large neighborhood shows stzong
discrimination ability in the classification of some test texture samples. However
the parameter estimation process for such a model is much more computationally

expensive than a model with neighborhood shown in Figure 4.1(b).



4.3 Estimating AR Model Parameters by Neu-
ral Computation

The computation of a neural network used in pattern recognition usually consists
of two phases: the learning phase and the recognition phase. In the learning
process of a neural network, for each training sample, an input and a corresponding
output are provided. The network first uses the input pattern together with its
current weights (possibly incorrect) to produce an output, and this output is then
compared with the desired output. If there is no difference, or the difference is
within an allowable range, no training is necessary. Otherwise, the learning process
is carried out to reduce the difference. A method of using an adaptive lcarning

process to estimate the 2-D model parameters is proposed in this section.

4.3.1 Parameter Estimation by Using the Neural Net-
work with Linear Activation Units

Assume that 2-D AR Model parameters 0,, for a given texture are initially as-
signed to random values. For position (i, ), the difference between the gray value
generated through parameter sct 0,, and the real gray value y(i, j) can be written

as

y(ivg) = (Zdﬂr,,y((i,i)ru 74) + Ay ))- (12)
b
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The mean square error for a given image can then be defined by

1B = [({0,)) = SH, SN0 5) = B(Srpes 0rgy((i15) @ 1) + (i, )P

=S8, S d) - Tryes 0r((is3) @ )%, (43)

where /2 computes the mean value [18]. Here, /2 can be considered as the measure
of the total error between a real image and its estimated image in which each gray
value is obtained from the gray values of its neighbors and the parameter set 0.

Equation 4.3 can be successfully represented as a network structure composed
of linear activation units, in which each activation unit performs the function

specified by
Jie(ind)) = e(irj) = y(isj) = 3 0ru((i,5) @ 14)s (4.4)
rq€d

where «(/, j) is the total input of a linear activation unit and fi(c(7, /) is the output
of the unit (Figure 4.3).

The AR model parameters 0,, are considered as weights of input connections
of the linear unit. The neighborhood of position (i, ) in the original image is
{((7,4) D 70)s ey ((i1J) D n)}. Each input y((i,j) @ r,) is connected to the unit by
a link with weight 0,,. The central pixel (7, ) itself is connected to the unit by
a fixed weight of -1. The total unit input e(i, j) is the summation of all weighted
inputs which is calculated by equation 4.4.

With this linear unit, a network structure corresponding to equation 4.3 can
be designed as a two layer structure (Figure 4.4). The input texture sample of size
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Figure 4.4: A two layer neural structuse.



M % N is presented in the first layer. The second layer is a M x NV two dimensional
array of the lincar units shown in Figure 4.3. All linear units in the second layer

have the same set of weights for their input i The

of 2 2-D AR model can then be mapped to the adaptive learning process for this
three layer neural network. In the adaptive learning process, the weight set is
modified according 1o a delta rule to minimize the difference between an actual
result and the desired output. When this learning process terminates, the weight

set 0, will specify the AR model for the sample presented to the neural network.

The weight sets 0,,, constitute an error space where each single set of 0, cor-
responds to one point in the error space. To find the weight set which minimizes
the total system error [, the method of steepest slope is used to look for this
minimum in the downward direction along the steepest slope in the error space.

The gradient of the error space can be written as

oL
0.,

M N
= ZZ:Z‘:([?/(V'J) = govqy((i~j) & ro)ly((i, 1) @ 79)}, (4.5)
i=ti= e

which is the partial derivative of the total error /7 with respect to each weight.
Since this derivative should be proportional to the weight change, the rule for

changing weight can be written as:
O+ 1) =0, () + A0, (1), A0, = —nFE, )

where  and  + 1 refer to the current and previous weight modification cycles and

iis a constant called the learning rate. On each iteration,  is applied to maintain
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the change of parameter set such that the minimal point at the crror space can be
reached in a comparatively small amount of computation. The value of i has to
be empirically determined. If 5 is too large, the updating of the parameler set will
never reach the minimum, while if 1 is too small, the procedure takes too many
iterations to converge.

Theoretically, a global minimal point should be found in the error space at the

position where the gradient is zero. To reach this point by the learning process, 0,

are initially assigned to random values and then updated to be further “down” the
error space by using the delta rule (equation 4.6). With an appropriately chosen
value of 7, the delta rule can find a set of weights approximately minimizing the

error function.

4.3.2 Using Sigmoidal Activation Units

So far it has been shown that the network composed of lincar activation units
can be used to perform gradient descent in error space through a delta rule. This
gradient descent is guaranteed to find the set of weights for a provided training
sample so that the weight set corresponds to the minimum error when the training
sample is presented to the network. However, it should be noticed that the set of
weights produced by the learning process of the neural network with lincar units
is not necessarily the most accurate weight set for the given type of texture,

Let 02, denote the weight set for a given type of texture. For a pixel of an



arbitrary sample of this texture, the real gray value should be within a reasonable
range of the value estimated by the weight set 02,. However, noise and distortion
may occur in different places of any samples. For a pixel with a large random
noise, the interrelation of the noise pixel with its neighbors would not share the
same function with most of pixels in the image. In this case, the differences between
the real gray value of the noise pixel and the gray values estimated through 07,
will be quite significant. A lincar unit, by its nature, provides no mechanism to
suppress the eflect of such noise. Therefore, the accumulated effect caused by such
noise will affect the weight training during the learning process. As a result, the
weight adaptation in the learning process will depart to some extent from the best
set of parameters of a given texture. A mechanism to suppress the effect of noise
is therefore necessary to improve the accuracy of the weight adaptation.

A similar problem will also occur when a multilayer network, which has the
linear unit layer as a part of configuration, is used to perform texture classification
after learning. Since a test sample generally contains noise, suppression of those
noise is needed to increase the classification accuracy of the neural network.

For these reasons, sigmoidal activation units are employed in the network. The

characteristic of the units can be described by a sigmoidal activation function

Helii) =a (ﬁ . 1)4 “n

where a is the maximum value of the output of the sigmoidal activation function.
In this expression, the effect of ) is to modify the shape of the sigmoidal function.
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Figure 4.5: The sigmoidal activation function used.

A high value of A results in a more gently varying function than a low value of A.
The shape of the function is illustrated in Figure 4.5. The choice of parameters o
and A in the function will be discussed later.

Correspondingly, the total error of the system with sigmoidal neural cell should

be written as:

M N
E=J({0,)) = ;Z_%U’-(ﬂ("-i))l’ (4.8)

M N

SN Ualwind) = 3 O ul(ird) eI

i=1j=1 ry€b

The partial derivative of the total error /7 with respect to each weight can then he

written as:

g _M %ﬂlf.(e(i.j))]’ﬂdi,;‘).

= =< 4.9
@, = L% odi) oo, v
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By equation 4.4, it is easy to see that

BOI) < iy o) (&10)
and
ALl )P N IACOT)))
ALLIDF. — oo 2t (@)

By the sigmoidal function 4.7, we have

BRI — (el + e )= ), (e12)

giving

ANLuleCN _ f.(C(hJ))
HE(,»']-J) = = (fe(i ) + @)(fuleliy 1) — @) (4.13)

Substituting 4.10 and 4.13 in equation 4.9, we have

o MN

g = S EEGRAl05) + 60 ~ (6 B (14)

Correspondingly, the delta rule is written as

Oyt + 1) = Ory(t) + D0r, (1),

- —u)ZZ[” LI ot ) + @) lelin ) - (i) ® ) (115)

i=l j=

In the application of this delta rule, a predefined threshold value e is used as
the termination condition. Each iteration involves two phases. In the first phase
the total error £ and the partial derivatives of the total error with respect to each
weight 0, are computed. In the second phase, the appropriate weight changes are
made according to equation 4.15. When all partial derivatives are reduced to be
within the range defined by ¢, the process terminates.
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4.3.3 The Selection of the Par t of the Sigmoidal

Activation Function

As stated previously, the sigmoidal activation function is used to suppress the noise
effect 5o as to increase the accuracy of a weight set for a texture and to strengthen
the stability of the classification process. The selection of the sigmoidal function
parameters a and ) is very critical for the sigmoidal activation units to make their

expected contribution to the performance of the network.

4.3.3.1 Selecting the value of o

Parameter a gives the saturation value of the sigmoidal function. If « is too large,
the output of a sigmoidal activation unit can never reach the saturation value
and the noise effect will not be suppressed. When it is too small, the output of
a sigmoidal activation unit is very easily to be brought to the saturation value.
In this case, sigmoidal units with different weight sets will tend to give the same
level of output values such that the discriminating ability of the network will be
reduced and different textures will be mis-classified. In our application, the value
of a has been empirically determined. As the total input of a sigmoidal unit is
the difference between the real gray value of a pixel and its estimated gray value,
the value of a is chosen to give the expected maximum difference value. When an
input value of a sigmoidal unit is bigger than the maximum different value, the

output is idered to be d and maintained at the value of o.
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4.3.3.2 Selecting the value of A

As mentioned ahove, when input to a sigmoidal unit input e(i, ) is equal to or
bigger then a, the the unit output f,(c(i, j)) yields the value of a. However, for
the sigmoidal activation function given by equation 4.7, a unit cannot actually
reach its extreme value without infinitely large weights. Therefore, the values of
0.9 and 0.1a are typically used as target output values. Here, we assume when
«(i,5) = o and fy((i,§)) = o By equation 4.7, we have

9 2

po=oliz sy (4.16)
which yields
=2 (4.17)
" log19° i

Therefore the sigmoidal activation function in the network is given as

s 2
Jle(ird)) = G(W zw — 1) (4.18)

4.4 Using Total Error E as the Measurement

The parameters of an AR model provide a good set of features for texture iden-

tification. However in real appli

an efficient jon is also strongly

d led. Many hastic model algorithms directly use of stochas-

tic models as texture features so that the estimation process has to be performed
for each textured image to be classified. In the proposed method the total error
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[ is used to measure the difference between an input test ssmple and a trained
pattern.

During the training process of a texture, the updating of the parameter sct 0,
continues until the total error reaches its global minimum. When this optimum
set 0, is applied to images of the same type of texture, the total produced errors
should be within a reasonable range of the global minimum. On the other hand,
total errors should be fairly large when this parameter set 0, is applied to images
of any other textures. Hence, the differences in total crrors can be used in the

classification process to distinguish different types of textures.



Chapter 5

The Network Structure And Its

Performance for Classification

5.1 Introduction

In the last chapter, the principle of 2-D model parameter estimation through a
neural computation and the appropriate neural structure are given. This chapter
describes the overall structure of the proposed neural network, which is composed
of three subnets: the input subnet (ISN), the analysis subnet (ASN) and the
classification subnet (CSN). For each of subnets in the network, the design prin-
ciple, configuration and behavior are introduced. In addition, this chapter gives
the training algorithm of the network, as well as the performance of this network

applied in natural texture image classification.
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5.2 An Outline of the Architecture

The proposed network consists of three subnets: the input subuet (ISN), the anal-
ysis subnet (ASN) and the classification subnet (CSN) as shown in Figure L1 As
mentioned earlier, the input subnet accepts an input texture pattern and outputs
the normalized input pattern to the analysis subnet. The analysis subnet consists
of a set of channels, where each channel models a particular texture class. During

a classification, each channel calculates a total crror under the assumption that the

input pattern can be classified into the texture type corresponding to this channel.
This total error indicates the difference between the input pattern and the esti-
mated pattern generated in the channel. All channels take the input pattern from
the input subnet and process it separately. The outputs of all channels participate
in the competition at the classification subnet which selects one with the smallest
total error as the winner. The input image is then classified to the class whose

corresponding channel gives the smallest total error among all channcls.

5.3 The Input Subnet

During both the training and the testing processes, input images are supplicd to
the input submet. The input subnet consists of a two-dimensional array of size
M x M, where M x M is the size of an input pattern {/(i,j)li,j € 1,.., M}. The

output of the subnet is a normalized version of the original input pattern (Figure
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Figure 5.1: The input subnet

5.1).

Variations in lighting, lens, films and digiti

usually i
transformations of the image gray values. In order to make input patterns in-
dependent of the intensity of the original image, normalization is performed to
guarantee that images which are monotonic transformations of one another pro-
duce the same input to the analysis subnet.

There are different ways to do normalization for an input vector. Considering
aninput image of size M x M as a vector of M x M elements, one way to normalize
is to divide each element of the input vector by the total length of the input vector.
This method is utilized in this network because it shortens the length of an input

vector to unit length without changing the direction of an input vector. In this
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case, the total length of the input vector is calculated by

At )
PID LA (5.1)
et

Therefore Yy(;, the output value of node /(i. j) in the input subnet, is defined as

(5:2)

5.4 The Analysis Subnet

The analysis subnet consists of a set of channels which work in parallel. Bach
channel has the three layer structure described in Chapter Three. Here, the first
layer, the second layer and the third layer are called as the bufler layer (L),
the estimation layer (EL) and the the summation layer (SL) respectively. The
structure of one such channel is shown in Figure 5.2. Each node of the buffer layer
receives its normalized input from the corresponding node of the input subnet.
Each node in the estimation layer is connected to the nodes of its corresponding
window in the buffer layer. The summation layer in a channel has only one node
which calculates the sum of the output values of all nodes in the estimation layer.
All channels have the same input from the input subnet but work independently.
The results of all channels, which form a one-dimensional array of sizc N, arc input
into the classification subnet.

As shown in Figure 5.2, the node at position (i, j) of the estimation layer hax
its input connections linked to a small neighborhood ¢ centered at position (i,7) in
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ZSummation
Layer(SL)

Figure 5.2: The structure of a channel in the analysis subnet.

the bufler layer, where ¢ = {r,}, q € {1,...,Q} and @ is the number of components
of the neighborhood. All nodes in the estimation layer of a channel share the same
set of input connection weights 0F,, where 0f, is the weight of the connection from
node ((i,7) t r,) in the buffer layer to node (i,j) in the estimation layer and
superscript k denotes channel k.

The output value of node (7, ) in the estimation layer is calculated by

Vi) = L0 = T 09YING ) @), (5.3)
Te€S

idal activati fesciibs

where [, is the si function d in equation 4.7.

Let 14§ be the output value of the node at the summation layer of channel k.

14 is the summation of outputs of all nodes in the estimation layer. The equation

(k]
Y .SEL,

M M ) 2
YV (5.4)
Sa
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specifies the total error between the input pattern and the pattern generated by

channel k.

5.5 The Classification Subnet

The output of the summation layer {V{| € 1,.... N} is the input to the classifica-
tion subnet. The classification subnet selects the input with the smallest value as
the winner in competition. This subnet is composed of two layers: the inverse layer
(IL) and the competitive layer (CL). Each of the two layers is & one-dimensional
array of N nodes. The competitive layer is a MAXNET which sclects the node
with the largest input value as the winner in competition. The inverse layer is
inserted ahead of the competitive layer to transform the input with the smallest

value into the largest value.

5.5.1 The Inverse Layer

The purpose of the inverse layer is to invert the input values of the competition
subnet so that the smallest input value turns out to be the largest valuc after
passing through this layer.

The output of the jon layer is a limensional array: {V'|l &

1,..., N}. The summation of all values of this one dimension array is written is

S=vi e+ GV v vl (5.5)



1 2 (1) (~N-1)  y (V)
v v Vi, Vi Vi

Figure 5.3: The inverse layer.

Now we write another array in which the kth entry is the result of subtracting

value Y} from the summation S

Yo = {(8 = VD (8 = Vi), s (S = VD). (56)

164 is the smallest output of the analysis subnet, then value (s — V{f’) must be

the biggest value in array V.
The structure of the inverse layer is as follows: all node are fully connected to

the output of the summation layer. Let Y{}! denote node k in this layer. For each

node V;{f?, the weights of connections to all nodes in the summation layer are fixed
at 1, except for the connection between nodes V' and V<’ which is fixed to -1

(Figure 5.3). Given such connections, the output value of each node in the layer



is equal to

Y B BYC BRI

&

v i (5.7)

k=1

i

5.5.2 Tha Competition Layer

Nodes in the competition layer are connected to the nodes in the inverse layer.
In this competition layer, an iterative procedure finally produces one winner node

with positive output and drives all remaining nodes Lo zero output.

Figure 5.4 shows the of the ition layer where the activati
values are denoted as {V{})|k € 1,..., N}. The initial activation values of nodes ¥,

are the input values from nodes V{f). The strength of the inhibitory connection

sent from a node to every other nodes in this layer is proportional to the current

activation value of the node. When a node receives inhibiticu from other nodes,
its current activation value is reduced.
Each node also has an excitatory connection to itself. The strength of the
excitatory connection is proportional to the previous activation value of that node.
Let w;y, be the connection weight from node j to node k in this layer,
+1 forj=k,
W=
—c forjtke<y =12,
The output value of node Yg; at discrete time (L -+ 1) is computed as

k) k) (
Youfihy = 1Yorls ¢ ; Yeuf)- (5.8)
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Figure 5.4: The competition layer.

where

o >0
Jw) =
0 <0

During processing, the activation value of each node is updated in cach step uc-
cording to equation 5.8. The first term in the right hand of the equation is the
previous activation value of unit k. The second term denotes the sum of inhibition
from all other nodes. In each step, the node which initially has the highest value
gets the greatest excitation and the lowest inhibition. Let u represent the total in-
put (the excitatory connection subtracted by the inhibitory connection) of a node.
If o is posttive, fi(j1) is positive and the output of the node is positive. All nodes

whose /1 values are negative will be forced to zero.



The process of activation value updating is iteratively carried out until all nodes
except one have output value zero. The remaining node with positive output is
the node which has the smallest subnet input to the classification subuet. The
original input image should be classified to the class corresponding to this node.
One problem occurs in the competition layer when two nodes have the largest
initial activation value. In this case, the two nodes with the largest valuc will be
driven to zero simultaneously because they receive the same amount of excitation
from themselves and inhibition from each other, and no node will be declared to
be a winner node. However, this is not likely to happen becanse it is impossible for
two channels to produce the same amount of total error. Small difference always

exists between output values produced by different channcls.

5.6 The Learning Procedure

From the archi

and the ional d described above, it is clear
that proper sets of weights 0f%) are critical for ensuring accurate classification.
The set of weights for a class of textured images should characterize, with the
highest degree of possibility, the most frequently appearing gray value distribution
in images of that class. In Chapter Four, we have already presented the principle
of how a weight set can be trained to fit a texture pattern as a 2-I AR model. This
section describes the training procedure used to enable the multilayer network to

classify textures under investigation.



Supervised learning is employed in the learning procedure of this network. In
order to increase the probability of correct classification, a group of training sam-
ples are needed for each type of texture for the network to be sufficiently adapted
to the variance between samples of that type of texture. For each of subnets in
the network, the design principle, configuration and behavior are introduced.

Suppose the number of samples for a type of texture is . Two methods
can be used in supervised training. In the first method, each sample is provided
to the network respectively and the average of the resulting M sets of weights
resulling from the training process is taken as the weight set for the cotresponding
texture. This method is simple and quick, but it does not ensure the accuracy of
the resulting weight set.

In the second method, the M samples of the texture are provided to the net-
work alternately in the training process. Training process stops when the network
is convergent on all A samples of the texture. This process starts by initially
providing one sample to the network. After the total error value for that sample
is calculated, the weights are modified according to the delta rule. In the next
weight updating cycle, instead of using the same input sample, another texture
sample is provided to the input layer of the network. All samples of the texture
are alternately used in this manner until the total error value of each sample is
reduced below the predefined threshold value. This method has a drawback in that

the speed of convergence is slower compared to first training method. In order to
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make the learning process more cfficient, two stages of training are adopted. In the
first stage, one sample is presented to the input layer and the weight set is updated

according to the delta rule. This process terminates when the weight change for

each weight is reduced below a predefined value 7}. In the sccond stage, all M/
samples are used alternately to refine the weight set formed in the first stage. As
the weight set has already been initially trained on one sample of the texture, con-
vergence is fast in the second stage for the sel of training samples which contain
only small variations from the sample presented at the first stage.

Only weights in the analysis subnet need to he built during the training pro-
cedure; all other internal connections in both the input and classification subnets
can be set up before the training. For a classifier which can distinguish N types
of textures, N channels are needed, each of which is trained individually using the
patterns from the corresponding texture.

The training algorithm could be organized as: for each texture

The first stage:

Step 1: Choose a sample from training sample of the texturc. Decide a

channel index k for this texture.
Step 2: Initialize weight set 0{* to small random values.
Step 3: Provide the selected sample to the network.

Step 4: For each element of set 0{*)
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1. Compute the derivative 7—;{’5 according to equation 4.14.
bra

2. Update 0{*) by equation 4.15.
Step 5: Repeat step 4 until the derivative -2f5; for each 0{}) satisfies
o

L .

il <. (5.9)
]
The second stage:
Step 6: Select a group of training samples of the texture.
Step 7:
1. (a) Provide a sample to the network.
(b) Update weight set {0{%)} according to equation 4.15.
(c) Determine if the terminating condition
ol
2, (5.10)
< T2
0%

is satisfied for each 0{).

2. Check if all samples have been presented to the network and if the
convergence condition is satisfied in the presentation of each sample. If

50, go Lo the Step 8. If not, back to Step 7.

Step 8: Repeat Steps 1 through 7 until all textures arc learned.



5.7 The Network in Texture Classification

The performance of the proposed neural network was examined on the classifica-
tion problem of thirty-cight natural textures. In comparing with other algorithms,
textures used for the training and testing of the system were digitized from the
Brodatz album [70], which is commonly used by researchers in texture identifi-
cation. These thirty-eight textures are shown in Appendix Figure A.l. Pictures
are digitized on sizes from a 300 x 300 to 350 x 350 pixel grid with a gray level
resolution of 256 levels. Fourteen samples, each with a 64 x 64 pixel grid, were
arbitrarily selected from the digitized image of each texture, in which four of them
were randomly selected to be used in the training stage and the remaining ten

saved as test samples.

5.7.1 Training

Several parameters have to be decided before the training stage. The parameter v,

which is the extreme value of the sigmoidal function, was i lly

chosen as a = 0.03. Correspondingly, according to equation 4.17, A was caleulated

as

A= —— = —— =0.01018870. (5.11)

The experiment shows that when « is greater than 0.03, the sigmoidal activation

function does not suppress the noise effectively and tends to behave like a lincar
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activation function. A value smaller than 0.03 will improve the performance in
some cases; however in other cases, it can result in a wrong classification by mixing
up two textures. The reason for this is that some of the discrimination information
is suppressed by the low value of a.

1 1

These two aand ) are i of the texture images under

cxamination and were used throughout both the training and the testing processes.
It should be noted that the two values were decided on the basis of the size of the
input subnet, which is also the size of all training and testing samples. Since the
data provided to the analysis subnet is normalized, if the size of an input pattern is
changed, the average value of a normalized sample in the buffer layer of the analysis
subnet is also changed. The value of & should then be modified accordingly.
Values of 7} and 73, which are used in the first and the second stages of the
training process to decide convergence, also need to be predefined. In the exper-
iment, we selected 7} = 0.001 and 7, = 0.00025, which means that in the first
stage, the initial training is declared to be convergent when the derivatives ﬁ%

for each 0{*) are less than or equal to 0.001, and in the second stage, the training

converges when -365 with respect to each 0%) for all presented samples are less
than or equal to 0.00025.

For some images, e.g., those containing large primitives, the con-

dition has to be somehow different from that for fine textures. When trying to

simultaneously fit a weight set to several training samples of a texture with large
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primitives, it is difficult for the weight set to be as precise as that for a fine tex-
ture. In those cases, the training process often becomes stable in the state in
which most but not all values of 0,, are less than the predefined 7. There arc
two ways to handle this situation: (1) scaling down the original texture images
to give fine resolution pictures, or (2) increasing the size of the neighborhood to

fit large primitives. In our experi a generally satisfactory classification can

still be achieved in the current window size for these reasonably large primitive
textures in their original resolution. Therefore, in practice, we sct a maximum
iteration number M. During the weight updating, if the convergence condition
defined using T} has not been satisfied when the maximum itetation number A1 is
reached, the current weight is considered to be the best for the texture cxamined
and the training procedure stops.

The learning rate was defined as y = 0.3 during the weight modification. Table
5.1 shows the resulting weight sets of six natural textures from the Brodatz album,
which are Loose Burlap (D103), Handmade Paper (D109), Plastic Bubbles (D111),
Woolen Cloth (D19), Beach Sand (D28), Grass Lawn (D9) respectively.

For different textures, a different number of iterations is required to ranch
convergence during the learning phase. For most of the textures in the experiment,

learning terminated after a bl

amount of ion. In Figure 5.5, the
percentage of the number of convergent textures over the total number of textures

is shown as a function of the aumber of iterations. For fine textures, such as Woolen
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(a) ) (c) (d) (c) /)

—0.1928380 | —0.0199287 | —0.1029087 | 0.1025216 | —0.1351613 | —0.0055586
0.4674090 | 0.3457456 0. E
—0.2539033 11343 | —C
04799422 | 01702416 0.1161405
0.4788981 03572567

; | —0.2563388 | —0

6 0.4732172 0.3423978 0.2224699

0.3560610

7 | —0.1971821 | —0,0201352 1003185 032193

Ty | —0.0085986 | 0.0084499 108847 56830

T 0.0075197 0.0134750 —0.02138411 | —0.0212406 0.0151671

| 0006158 | 0.0145237 0205692 0217451 | 0.0107174
1 | —0.0067542 | 0.0035249 | —0.0069352 | —0.0033976 | —0.0043165 | 0.0096820

* (a) Loose Butlap (D103), (b)Handmade Paper (D109), (c) Plastic Bubbles (D111), (d)
Waolen Cloth (D19), (e)Beach Sand (D28), (f) Grass Lawn (D9).

Table 5.1: Weight sets established in the training process.

The Percentage OF Textures Reaching Convengence
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Figure 5.5: The number of iterations needed to reach convergence.



Cloth (D19) and Water (D37), the convergence was around in 650 iterations on
average, which is much less than that required by coarse textures, such as Plastic
Pellets (D66) and Coffee Beans (D75), which often required in excess of 3000
iterations to satisfy the convergence condition.

The computational burden of the learning stage is not a drawback of this ap-
proach because the learning procedure is applied only once for cach type of texture
and the learning result is not affected by adding new types of textures to he classi-
fied by the network. Moreover, in the classification phase, images proceed through

the network without the preprocessing and featurc extraction required by many

iderabl

other techni Hence, overall jon time has been reduced.

5.7.2 Classification Testing

A classification testing of thirty-cight textures was conducted after the training.
For each texture under investigation, a total number of ten test samples were
provided to the network. The performance of the network is quite encouraging. As
shown in Table 5.2, for twenty-three out of the thirty-cight textures, all samples

were properly classified. Satisfactory results were also obtained for seven other

textures, in which eight or nine samples out of ten samples were correctly clas

for each texture class. For the remaining eight textures, five to seven samples were
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Table 5.2: Result of classification.
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Tabel 5.2: (Continue)

(38 textures in total, 10 test samples for cach texture).

1. Pressed cork (D4); 2. Grass lawn (D9); 3. Woven aluminum wire (D14) ;
4. Straw (D15); 5. Herringbone weave (D17); 6. Woolen cloth (D19);

7. French canvas (D20); 8. French canvas (D21); 9. Pressed calf leather (D24);
10. Beach sand (D28); 11. Beach sand (D29); 12. Pressed cork (D33);

13. Netting (D34); 14. Water (D37); 15. Straw screening (D49);
16. Raffia with threads (D51); 17. Oriental cloth (D52); 18. Oriental cloth (D53);

19. Straw matting (D55); 20. Straw matting (D56); 21. Handmade paper (D57);
22. Oriental rattan (D64); 23. Oriental rattan (D65); 24. Plastic pellets (D60),

25. Wood grain (D68); 26. Coffee beans (D74); 27. Coffee beans (D75);

28, Grass fiber cloth (D76);  29. Cotton canvas (D77); 30. Grass fiber cloth (D79);
31, Oriental straw cloth (D81); 32. Raffia looped to pile (D84); 33. Sea fan (D87);

34. Brick wall (D94); 35. Loose burlap (D104); 36. Cheesecloth (D105);

37. Handmade paper (D109); 38, Plastic bubbles (D111).
* The index beginning as Capital letter I is used in the Brodatz album.

propesly classified. Reasons for the mis-classification are: (1) the serious distortion
in some test samples as well as the learning texture samples; and (2) the resolution
of some texture images. For instance, as the original pictures for Raflin Woven
With Cotton Threads (D51) and Coffee Bean (D75) in the Brodatz allum were
digitized to around the size of 300 x 300 images, primitives tend Lo he quite lrge.
In those cases, the classification accuracy will be increased after scaling down the
digitized images used in the testing.

1t should be noted that the number of textures in the test is much bigger than
that of many experiments reported in the literature. They often use less than ten
textures in the demonstration of their particular methods. The large number of
textures in this test certainly increases the difficulty of recognition.

In order to compare the performance, the least square estimation (LSE) was
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lawn (D9);
4. Plastic bubbles (D111);

7. Beach sand (D28);
10. liandmade paper (D110);

2. Loose burlap (D104);
5. Woolen cloth (D19);
8. Plastic pellets (D66);

3. Handmade paper (D109);
6. Oriental straw cloth (D81);
9. Coffee beans (D74);

implemented in the estimation of 2-D AR model parameters for several textures.

The same st of training samples and testing samples were used. The results

showed that this network does give a better classification performance. For exam-

ple, using parameters from the LSE method, three out of ten testing samples of

Plastic Bubbles (D111) were mis-classified as textures Beach Sand (D28), Plastic

Pellets (D66) or Coffee Beans (D74). In contrast, these same three samples were

correctly classified to D111 by using the network method, resulting in a 30% clas-

sification accuracy increase. A 30% classification increase was also achieved for

texture Grass Lawn (D).
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Chapter 6

Rotation Invariant Classification

6.1 Introduction

The neural network described in the last chapter requires that the testing samples
of a texture provided to the network have the same oricutation as that of the
training samples. However, in some application, it might be difficult to maintain
the orientation of the test samples to be the same as that of the training sumples.
A texture classification architecture which is inscnsitive Lo rotation is desirable in
those cases.

Attempts at building a texture rotation invariant classificr to classify testing

samples with arbitrary rotation angles are described in this chapter. Two types
of a rotation classifier are proposed in which the neighborhoods of the 2-D AR

model and the structure of the ncural network are modificd accordingly. In the



first type, AR modds arc established on eight directions and testing samples with
arbitrary rotation can be approximately modeled by one of the eight models. A
multi-circular AR model is used in the second type to extract the rotation invariant
features such that samples of one texture in any rotation can be characterized by
one feature set. Experiments of identifying natural texture images which are taken
from real objects are then conducted for testing the two types of rotation invariant

classifiers.

6.2 Model Based on Multi-Directions

For a given texture, when a testing sample is rotated, the relation between a
center pixel and its neighboring pixels is also changed and the 2-D AR model
established from the training samples observed in a fixed orientation no longer
fits. Tn the multi-direction approach, 2-D AR models based on eight directions are
used. Testing samples with arbitrary rotation can then be approximately modeled
by one of the eight models which has the smallest angle difference to the testing
sample.

As shown in Figure 6.1, a neighborhood with 24 clements is used and eight
parameter sels of the model are estimated to fit texture samples corresponding
to cight directions. The eight parameter sets can be divided as two groups, one
for the parameter sels on directio.ns 90°, 0°, —90° and 180°, and the other one

for the parameter sels on directions 45°, —45°, —135° and 135°. For each of the
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Figure 6.1: Neighborhood in the rotation invariant classificr based on multi-
directions

two groups, elements in one parameter set correspond to the same set of positions
on images as clements of another parameter set, but are denoted by different
notations. Therefore, one parameter sct can be obtained from any of the other
parameter sets in the same group. For example, assume 07, denote parameter r, of

the parameter set on direction o (@ € {907,457, 0%, ~45°, —90°, — 135", 180", 135"} ).

The parameter set on direction 0” can then be obtained from the parameter sct

on direction 90° by assigning 0r" to Orl, 05 Lo 01", ..oy D" Lo 045" As

a result, the training process for a type of texturc only needs to be performed
twice and the computation time of the training phase is not greatly incrensed by

increasing number of models in the rotation invariant classifier.
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Figure 6.2: The modified network structure for model based on multi-directions.
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The multilayer network structure is modified as shown in Figure 6.2. For cach
type of texture, eight channels are needed, each corresponding Lo one direction. All
outputs from the eight channels of one texture participate in the competition in
the classification subnet. An input sample will be classified to the type of texture

such that one of its eight channels is the winner in the competition.

6.3 Model Based on the Extraction of the Ro-

tation Invariant Features

A circular symmetric AR model was suggested in 18] for extracting the rotation
invariant feature of a textured image. The neighborhood in the circular model is
composed of eight pixels which are evenly located on a unit radius circle. The
summation of eight neighboring pixels is considered as a single variable in the
random field, and the intensity of a center pixel is related to the summation through
a parameter, which is taken as a rotation invariant feature.

In this section, the circular symmetric AR model is extended to create a multi-
circular AR model. The circular neighborhood consists of 36 clements distributed
on three circles with radii of one unit, two units and threc units (Figure 6.3). The
numbers of elements on the three circles are 8, 12 and 16 respectively. The average

of the intensity values of pixels on each of those circles is computed and considered
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Figure 6.3: Neighborhood for multi-circular AR model.



as one variable, resulting in the following AR model equation

s 1 . [
y(i,J) = Oox o 30 w0 D r) 4+ 00> = 30 wl((iag) )
8 it 12,58

+0y x Ilé 3 ul(d) ) + Bu(i ). 6.1)
Ty€ds

where @g € 0, ..., 77, @1 € s, ey 19 AN 3 € 120,00y ras. When a texture sample is
rotated, the sum of gray values of pixels on a circle around y(i. j) remain the same.
Therefore, the sum of gray values of pixels on each circle in the neighborhood can
be considered as a rotation invariant variable. The three parameters specifying the
circular AR model can be used as the rotation invariant features such that sample
on arbitrary rotation can be modeled.

Note that the coordinates of most elements in this neighborhood are not integ

and thus the gray values of those elements cannol be dircetly obtained from a
digitized image. Interpolation should be performed to estimate the values of those
elements from their neighboring digitized pixel values. The interpolated value of a
pixel can be obtained via a weighted combination of gray values of its four nearest
neighboring pixels, in which the coefficient of the value of cach neighboring pixel
should be inversely proportional to the distance between the neighboring pixel
and the pixel to he estimated. Therefore, for a pixel zy(wy, ), its gray value can

be estimated by a combination of values of its four neighboring pixel z(,y1),

,s) by equation:

(22, y2), 23(3,y3) and =
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where

o).

According to the coordinates of interpolated pixels and their nearest digitized

pixels, the coefficients which specify the contribution of digitize * pixels can be
caleulated using cquation 6.2. Since the summation of all pixel values on a cir-
cle is of interest, the contributions of each digitized pixel on all interpolated and

non-interpolated clements are summed to obtain a coefficient for the pixel. Table

Since these ients are sy ic with respect

6.1 shows those
to the center pixel, only the coefficients for half of the pixels in the neighborhood
are listed. The summation of intensity values corresponding to each circle is cal-
culated by accumulating the intensity value of each associated pixel weighted by

its coeflicient.

6.4 The Rotation Invariant Experiment

The abilitics of the two types of rotation invariant classifier in classifying texture
samples with arhitrary rotation angle were tested in cxperiments. The textured
images were digitized from natural objects by using a camera. The natural ob-
jects include the cover of a paper box, three patterns of woolen sweaters and four
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Circle 1 Gircle 2 circle 3
dinate Cofficient | Coordinate _Cofficient | Coordinate _Coflicient )
0.6636 L1 0.3890 1.2) 0.1530
14334 (©,2) 1.2834
14334 2,0 1.2834
0.4006 1,2 0.5300
2,1 0.5300
2,3] 0.2834

Table 6.1: Cocfficients for pixels in a multi-circular model.

patterns of clothes. In order to test rotation invariance, cach object was rotated
with relative angles of rotation 90%,60%,30%, as well as two other arhitrary rela-
tive angles, resulting in five images for each texture. One 64 x 64 window of 90"
orientation for each texture is shown in Appendix Figure A.2. A 64 x 64 window
of texture Paper Box Cover for the five orientations is shown in Appendix Figure
A3.

Five textures, including Sweater (1), Cloth (1), Cloth (2), Cloth (3

vd Pape

Box Cover, were used to test the rotation invariant classification abilitics of the
multi-direction model. Training samples were arbitrarily chosen from the image of
relative orientation of 90° and 45 for cach type of texture. The training parameters
were selected as 7 = 0.2 and 7} = 0.0005. After the weight sets were produced for
the texture in orientation of 90 and 45, the weight sets for models at the other six

orientations were then obtained by reassigning parameters of the model on 90° or



Assigned Texture
Input. Texture
[

Cloth(1) | Cloth(2) | Cloth(3) | Sweater(1)| Box Cover
Cloth(1) 11 5 9
Cloth(2) 10 8 7
Cloth(3) 3 14 8
Sweater(1) 3 22
Box Cover 25

Table 6.2: Testing results for multi-direction model.

45" Lo different notati ding to each orientation. In this way, weights

for all channels were obtained.

Tor each texture, five testing samples were selected from each of the images
with different relative orientation including the one used in the training phase.
This resulted in a total of twenty-five testing samples per texture class. The

testing result is presented in Table 6.2.

The perf of the multi-circular model was examined on a set of eight
textures, including the textures used in the testing of the multi-directional model
and three other textures Sweater (2), Sweater (3), and Cloth (4). Similarly, samples
chosen from the images in the orientation of 90° were used in the training phase.
Since only one model parameter set is needed for each texture in the multi-circular
model, the weight set extracted for each texture was directly used as the weight for
channel of the texture. The parameters of the training phase are chosen as 7 = 3
and 7 = 0.000001. The results are given at Table 6.3.
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Input Testure Assigned Testure
¥
Cloth_l | Cloth-2 | Cloth-3 | Clothot | Sweater-l | Sweater-2 | Sweater.3 | Box Cover
Clotli.1 16 3 i
Cloth.2 20
Cloth.3 17 3 5
Cloth-t 2 1
Sweater.] 2%
Sweater2 25
Sweater.3 4 2 5 1
Box Cover 4 21
Table 6.3: Testing results for multi-circular model.
The show that both multi-direction model and multi-circular model

can be used to classify texture samples which have different rotations from the orig-

inal training samples. From the test results, the performance of the multi

ircular

model is seems better than that of the multi-direction model, which yiclds a lower

classification accurate rate for some of the textures used in the experiments. The

reason should be due to the ability of the multi-circular model in catching the

rotation invariant features of textures.



Chapter 7

A Texture Segmentation

Technique

7.1 Introduction

The structure and performance of the proposed neural network for texture classi-
fication has been presented in Chapter Five. The modified versions of the network
for invariant texture classification are described in Chapter Six. As we have men-
tioned in the introduction chapter of this thesis, texture segmentation is the other
important task of texture discrimination by which an input image of more than
on uniform region is partitioned into several homogeneous subimages. The seg-
mentation algorithm described in this chapter is an integrated region extraction

techuique, which can be considered as an application of the system given in Chap-



ter Five. Please note that, because, by common understanding, regions of the same
texture but in different orientation are generally considered us different regions in
an image, the rotation invariant classification networks introdrced in Chapter Six
are not used in this segmentation algorithm.

Region extraction methods for texture ion are generally ived

into regions splitting and merging techniques and region growing techniques [10,

42], Tn a region splitting and merging technique, an image is divided into blocks

and each of the blocks is described in terms of certain region propertics. Adj
blocks which have similar tegion properties are merged and blocks which have
large property differences from their neighboring adjacent blocks arc split. One
disadvantage of the region splitting and merging technique is its scquential nature.
The regions produced sometime depend on the order in which regions arc merged
together. In a region growing technique, regions are expanded from some starting
seed points until the boundaries of texture regions are reached. A pixel (or o
group of pixels) can be included into an adjacent determined ncighboring region
if their region properties are sufficiently similar. The major drawback of a region
growing technique is tha. the starting seed points are often selected in a supervised
manner. A common problem for region extraction techniques in gencral is that the

local information, which has to be used heavily in the segmentation, is difficult to

extract and incorp intoa ion proced

The region extraction technique presented in this chapter is an integrated tex-
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ture segmentation technique which combines the strengths of region splitting and
merging techniques and the region growing techniques. This segmentation tech-
nique is implemented by comparing local region properties, which are represented
by the 2-D AR model, in a hierarchical manner. The details of the segmentation
procedure, its performance in natural texture segmentation, as well as the perfor-

mance evaluation are given in the following sections. For the situation that texture

classes in an image can not be known beforehand, a type d ining algorithm is

proposed to decide the texture types in an image.

7.2 A Few Concerns in the Designing of Seg-
mentation Technique

The objective of texture segmentation is to segment an image which consists of
different textures into uniform texture regions. In addition, precise and clear
boundaries of texture regions are desired. When designing a texture segmenta-
tion algorithm, three fundamental issues which should be considered are: (1) the

texture property representation; (2) the frame size over which the local texture

| istics are observed; and (3) the i d

The proposed segmentation algorithm uses the 2-D AR model to represent the

texture ies. As we have ioned, for a region extracti hni the

computation time is usually expensive since the algorithms have to be performed
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in an iterative manner. In the case of using 2-D AR model for texture representa-

tion, the efficiency of a segmentation procedure strongly depends on the efliciency

of texture feature extraction in each observed window. If the parameter estimation

of 2-D AR model has to be done for each window in all iterations, the computa-
tion time needed will be large. To make the algorithm practical, in our approach,
instead of estimating parameters for each observed window, the total crror math-
ematically described by equation 3.4 is used as a measurement to compare texture
properties of different regions.

The selection of an appropriate window size over which Lexture propertis are

s the

observed usually depends on the coarseness of the textures of intorcs

P ofa in a certain manner. On the one hand,

the size should be large cnough so that an enclosed region can cxhibil texture

properties of the surroundings, while on the other hand, the window size should he

small enough to allow the accurate d ination of h daries. Our integrated

approach uses a fixed size frame in combination with varying size blocks to ensure

both accurate texture feature jon and boundary determination. The fixed

size frame is chosen to be big enough to allow the common texture pictures Lo

exhibit their properties. All texture propertics are extracted using this fame

hroughout the i d On the other hand, blocks with varying

size are used as the basic elements for segmentation to form accurate boundaries.

For a block smaller than a frame, texture propertics are obtained through the fixed



size frame in which the undetermined block is placed as the center.

A segmentation procedute which combines the region splitting and merging
and region growing techniques operates as follows. Initially, an underlying image
is partitioned into blocks with equal size as a splitting and merging technique.
Then, for each texture region, an internal area is determined which is considered
as the seed part for region growing. There are two differences between the in-
“ograted technique and a region growing technique in the determination of these
seed parts. Firstly, in a region growing technique, seed parts are often decided in a
supervised manner, while in the integrated approach the seed parts are decided in

an unsupervised manner. Secondly, a seed part often only contains one pixel in a

region growing technique. For the integrated approach, a sced part, may contain &
large internal area (one or more frames) so that the computational burden for the

following regicn growing procedure is greatly reduced. Dusing the region growing

dure of the i d approach, adjacent blocks of those determined internal

regions are examined in each iteration. A block is merged into its adjacent internal

region if its texture property is the same as that of the internal region. Otherwise

the block is partitioned into smaller blocks and then further examined in next

iteration.

One further concern is related to the texture types which cxist in an image. In
general cases, we assume that some prior knowledge about the types of textures

which may appear in images of a particular application is available, such that



samples for cach possible texture can be provided to the neural network and trained
through the learning process for use in the segmentation procedure. In the case
that the types of textures appearing in an image to be segmented are not known
beforchand, a texture type determining mechanism is proposed at the end of this

chapter to decide the texture classes in an image.

7.3 The Integrated Region Extraction Proce-

dure

The integrated procedure consists of two stages, namely the initial stage and the
refining stage. In the initial stage, large internal areas of texture regions are
segmented and the types of textures and the number of texture regions in the
examined image are also determined. In the refining stage, the internal regions
resulting from the initial stage are extended using blocks with decreasing size in a
hicrarchical manner until accurate boundaries are formed between texture regions.

In the resulting image, all pixels in each homogeneous region are expected to be
labcled by the same label. Clear boundaries will then be shown by the difference
in labels of two adjacent regions. Note that, regions with the same texture in

different positions of an image are labeled by an identical label.
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7.3.1 The Initial Stage

Let G = {g(m.n)[m € 1,... AMl.n € 1,.... N} reprosent an image of size M\ N The
image is partitioned into disjoint blocks of the frame size 87 x 8. Let { B (p.)]
0<p<.0<q< ) denote the set of disjoint blocks. The identification
procedure is applied to all those blocks. Since the texture types of all blocks inside

a homogeneous texture region should be identical, a block in the internal part of a

texture region should have the same texture type as all of its ncighboring blocks.

While a block located at the boundary part of a texture region should have a
different texture type than those of its the neighboring blocks belonging to other
texture regions. In the initial stage, a block is considered to be part of the internal
area of a texture region when it has the same texture class as its four neighboring
blocks in the horizontal and vertical dircctions; otherwise, it is considered as an
undetermined block that will be divided and further examined at the refining stage.
The algorithm in the initial stage is given as Figure 7.1.

Figure 7.2 shows the initial segmentation result for an image with two texture
regions A and B. The two areas marked by dashed lines are internal regions
decided in the initial stage. For example, block / is assigned to be a part of
internal area of texture A since the block itself, as well as all of its ncighboring
blocks /i;, As, and Ag, ate also identified as texture /. Blocks located beside or
across the texture boundary parts will be considered as undetermined blacks. For

example, though block A is identified as texture type A, as the major portion of
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Scan all blocks from left to right and top to bottom:

if 1 p.q) 3 A and
R 1,q)) € A and
RO (p, g 1)) € A

then  label block #")(p,q) to region A

olse R(p,q) stays undetermined

Figure 7.1: The algorithm of the initial stage.

fexture segion A texture region B

Figure 7.2: An example of initial stage.
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this block belongs to texture .1, this block canniot be segmented to the internal part
of region /| because it has a different type than that of the two neighboring blocks
Uy and Uy, whose major parts are in region /3. In this case, a mis-segmentation
would oceur if block -1 was to be segmented to the internl area of region A siuce
a small portion of this block belongs to region /.

During the initial stage, the number of the regions and the texture types in-
cluded in the image are also computed. To improve the accuracy, the texture types

of the blocks considered in the suk refining lure are ined to

the sct of texture types identified in the iniiial stage. Therefore, in the multilayer
network, the output of channels corresponding to those textures which are not
included in the texture types of the image will be suppressed in the refining stage

so that the competition is only conducted among the outputs of channels of the

textures decided in the initial stage.

7.3.2 The Refining Stage

In the first iteration of the refining stage, undetermined blocks of frame iz 8 /57

are divided into four smaller blocks of size 3 % 2. Each of the internal regions

produced by the initial stage is then extended by merging adjacent blocks of size

ol

x % from the boundaries of internal regions toward boundaries of the texture

3 5, all undetermined

regions. When no more changes occur to blocks of sizc =

blocks will be divided to smaller blocks of size 3 # 3. This procedure is recursively
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performed until no more undetermined blocks are left in the image or the block
size of 17 1is reached. In each iteration, two issues to be considered are: (1)
determining the neighboring blocks of internal region; and (2) determining the
texture type for a neighboring block of an internal region.

Let /#¥)(p.q) denote a block at the stage when the block size is reduced to

i . . ;
3 » 3t in the refining procedure, where 0 < p < ZeM and 0 < g < ?‘;I".

size
“This block is considered to be adjacent to an internal region A if any three of its
neighboring adjacent blocks have already been determined to belong to the internal
region.

To determine the texture type of block (*)(p,q), a frame containing this block
as its center is examined. If the identification process shows that block R*)(p.q)
and its neighboring internal region have identical texture, the block can possibly
be included to the texture region. However, in order to ensure segmentation accu-
racy, this result has to be justified by examining other neighboring blocks of block
H™(p,q). For each of the undetermined neighboring blocks, a frame is located in
the same manner as that of block R*)(p,q) to examine the texture type of the
undermined block. When the neighboring blocks other than the three neighboring
blocks included in the internal region also show the same texture as the internal
region, block R*)(p,q) can be merged into the internal region. Otherwise, the
refining procedure continues to investigate whether the block can be segmented

into other adjacent internal texture regions, if there are any.



1t should be noted that the examination of the texture types of neigibuting
blocks is very critical in forming smooth region boundarics on the resulting images.
In most cases, a block across the boundary of two texture regions contains different
portions of two textures. The texture type of the block is likely to be decided as
the texture type of the major portion when the block is examined. If the block
is included into the internal region corresponding to the major portion, the small
portion of the other region will be mis-segmented. As a consequence, a boundary

with a sawtooth shape will be produced, as is often observed in images derived using

existing algorithms, instead of a smooth one. This problem is avoided effectively
in the segmentation procedure described here.

Let #(:, ) denote a frame starting at position (r,y) on image (/. The algo-
rithm of the refining stage is shown as Figure 7.3.

An example of the refining stage is given as Figurc 7.4. The center block in
this figure is denoted as @o. The neighboring blocks a;, ay, ay have alrcady been
determined as texture /. By using a frame positioned at the center of g, the
texture type of ay is identified as type A which is the same as its neighboring
internal region. To verify this result, the neighbor blocks ay, ws, ag, a7 and ay are
examined. In this case, the texture type of a3 and ay; have already been decided as
type A. The remaining blank blocks «s, 7 and uy are then also identified as type
A through the network computation. Therefore block ay is merged to the internal

area of texture /. However, when the same procedure is applied Lo block ay, ax
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ke

do {
do {
scan all blocks from left to right and top to bottom;
{
i (#°%)(p,q) is undetermined)
then {
if (three adjacent neighboring blocks of i)(p, ¢) € A)
locate a frame (2, y) so that block R%)(p,q) is
at the center of F7(x,y)
where
St % (F + iy — 1)

if (F(z.y) € )

then {
locate frames for all undetermined neighboring

blocks of R¥)(p,q);
if (all neighboring frames € A)
then label BY) (5. q) to region A;
clse R%)(p, ) stays undetermined;
)
clse R®)(p,q) stays undetermined;
)
i

} while (no block is newly labeled in this iteration)

+ 1
} while (3£ >= 1 and there are undetermined blocks)

Figure 7.3: The algorithm of the refining stage.
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texture region A texture mgin%
di o Ay y

Figure 7.4: The example of refining stage

stays undetermined since its neighboring block dy cannot be considered to have the
same texture as region A. Thus ay will be divided into four smaller blocks which
will be examined individually in the next iteration.

To examine the performance, images from the Brodatz album [70] were used
to form collaged images since they are frequently used by researchers for the com-
parison of algorithms. Two considerations in the creating of these collaged images

are: (1) visually similar textured regions were applicd to demonstrate the robust

f of the algorithm; and (2) boundaries between two textured regions
include straight lines in different directions and circles. Hence, the segmentation
results from the images can be used to show the performance on all possible bound-

ed cork

ary sceneries. Fifteen textures from the album were used, including Pi



(D 1), Herringhone weave (D 16) and Herringbone weave (D 17), French canves
(D 20), Pressed calf leather (D 24), Beach sand and pebbles (D 27), Beach sand
(D 28) and Beach sand (D 29), Water (D 37), Straw matting (D 56), Handmade
paper (D 57), Wood grain (D 68), Cotton canvas (D 77), Oriental straw cloth (D
81) and Raffin looped 1o a high pile (D 84).

The frame size was selected as 32 x 32. A frame smaller than this size was
considered as not big enough Lo exhibit texture characteristics. Therefore, the
block size in the initial stage was 32 x 32 and it could be reduced to 16 x 16,
8 <8, ... ,and 1% 1in the refining procedure. Figure 7.5 shows the segmenta-
tion result for the image containing two similar textures Pressed cork (D 4) and
Cotton canvas(D77) (Figure 7.5(a)). The situation after the initial segmentation
stage is shown in Figure. 7.5(b), in which two internal regions are formed and an
undetermined area is left on the image. Figure. 7.5(c) - (e) are the intermediate
results when the decreasing block size is used in the refining procedure; note that
in Figure 7.5(c), which is the result after the first iteration of the refining stage,
the major arcas on the image have been determined. Figure 7.5(f) is the final
scgmentation result, in which two textures are successfully discriminated and a
smooth boundary is formed. For comparison between the resulted boundary and
the expected boundary, a bright circle as an idea boundary for the textured image
is superimposed on the Figure 7.5(b)~(f).

Anothier example in which the original image contains three textures, Pressed



cork (D), Beach sand (D28) and Water (D37), is

given as Figure 7.6, The original

image is in Figure 7.6(a). Its final scgmentation is shown in Figure 7.6(0), in
which the improvement of the boundary part is clearly shown. The remaining
experimental results arc listed in the Appendix Figure A.d.

The experiments show that the detected texture regions have a good agrecment
with the the actual ones. Nearly no mis-segmented pixcls appear in the interior
parts of texture regions. Smooth boundaries are formed not only for regions with
straight line boundaries but also for regions of circular boundarics, which arc gen-

ach as narrow

erally believed to be difficult to segment. Some parts of imag
corners) cannot be segmented accurately since their arcas are 1ot large cnough to

contain a frame.



(a)
(c)
(e)

Figure 7.5: A segmentation result. (a) the original image; (b) the result of the
initial stage; (c)-(e) the intermediate results of the refining stage; (f) the final
result.

96



(a)

(e)

(b)
(d)
(0]

Figure 7.6: A segmentation result. (a) the original image; (b) the result of the
initial stage; (c)-(e) the intermediate results of the refining stage; (f) the final
result.
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7.3.3 Result Evaluation

A segmentation method is usually evaluated according to both the amount of mis-
labeled subregions in interior parts of texture regions and the accuracy in locating
region houndarics. However, it is difficult to judge and compare among various
segmentation techniques in part because of the lack of commonly appropriate quan-
titative measures, and the different ways or sources in construction and selection

of the testing images. A simple and common criterion applied in segmentation

is the p of mi d pixels, which is calculated by di-
viding the number of all mis-segmented pixels in an image by the total number
of pixels. Tlowever, we should notice that this measure cannot accurately reflect
the boundary accuracy. Besides, it also varies with the percentage of boundary
area in a testing image because the mis-segmented pixels mostly occur around the
bounday parts.

A sct of quantitative error measures, namely the mean boundary error, the
waximum error over the length of a boundaty and the root-mean-square boundary

error, suggested in [46] are more jute in evaluating the ion of

boundary areas. As these three quantitative error measures are linearly related
with cach other, only the mean boundary error is used in this thesis to evaluate
the quality of boundary parts. The mean boundary error is defined by averaging
the line-by-line difference between the boundary in the original test image and the

boundary in the segmentation image [46].



Testing Image Size No. of | Boundaty | Mis-segme Mean Boundary
Regions Error(pixels)
Diz.sasito_| 256 x 256 Straight line 5.0
Dagar.a.on__| 256 x 256 Straight line
D 300 x 287 Gircle 2
300 x 278 Gircle 1.98
319x202 | 2 Circle 457
300x281 | 2 Circle 348
350 x 305 2 Circle 286 o
340x275 | 2 Circle 130
340x275 |2 Circle 125
350%289 | 2 Circle 130
Dos20 300x278 | 2 Circle 439
Daia 350x280 | 2 Circle 1.65
Table 7.1: The itati luation of the ion results.

Table 7.1 shows the evaluation results of using both criterion on twelve result-

ing images in the segmentation experiments. The first two images were selected

because they contain four texture regions. The remaining ten images consist of

regions with circle k daries. For the of mi: d pixels, a range
from 1.30% to 5.92% of mis-segmentation rates were obtained. Promising results
were also shown by the calculation of the mean boundary error, in which signifi-
cant small errors were yielded in those testing images of two regions with circular
boundaries.

The results given in Table 7.1 are comparable with those presented in [46],

in which the perf of texture ion using different Lexture features

were compared. Eighteen testing images, cach of which was composed by simply

connecting two texture images of square shape, were used in that paper to evaluate



the ion per R ding the mean boundary error, a range of 2 to

8 pixel errors was reported in testing using the Haralick (co-occurrence matrix) and
Laws methods, which were considered to be good results among all testing results
given in that paper. In Table 7.1, the mean boundary errors for the two images
of four regions are comparatively larger (5.13 pixel and 8.73 pixel) than that of
other images in the table, since more sophisticated situations (four types of texture
joining in one arca) appear on both images. However, these two results should still

be considered as satisfactory results when ing with those reported in [46).

7.4 A Type Determining Mechanism

“The segmentation procedure introduced above assumes the types of textures which
inay appear in an image to be segmented belong to a fixed set of textures and that
samples of textures have already been provided to the network for training before
the network is used in the segmentation. However, in some circumstances, the
Lypes of textures that appear in an image may not be known beforehand. A type
determining mechanism must be used beforehand to decide the texture classes in
such images. For this procedure, the user needs to provide the number of textures
(N) in an image.

We first define an average difference value, called the range difference, which
measutes the variance in relative total error values of a neighborhood. Assume

0, is the AR model parameter set of a center block in an image and Fp is the
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corresponding total error value of the block. Let denote the total values

of its eight neighboring blocks which are obtained by applying f,, to cach of these

blocks respectively. The range difference can be defined as:

PR g:-;\ ok o=

(7.1)

When the center block in the original image is an intcrior part of a texture rogion,
the total error values of adjacent blocks are on one level, so the value of the range
difference is small. When the center block is on a texture boundary, the value of
the range difference will be large.

A procedure can then be designed to decide the types of textures. The first
step is to label disjoint blocks of frame size in an image to be segmented according
to the range difference value. For each block in the underlying image, if all of its
examined neighboring blocks are not labeled, the block is presented to the network,

resulting in a set of A range diffc value is then calculated. If the

range difference value is less than a threshold value 7%, a new label is

to the block. If not, this block stays unlabeled. On the other hand, if one of the
neighbor blocks has already been labeled, a range difference value is computed by

applying the set of the ding labeled ncighboring region to the

center block and all its neighboring blocks. If this value is less than 77, the block
is assigned the same label with the labeled neighboring block.

The second step is to combine the adjacent regions into onc region. After
the second step, a number of disconnected labeled regions arc obtained. Assume
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that the number of disconnected regions is M. On the principle that the distance
between any two parameter sets in a cluster is less than the distance between two
sets in two cluster, these M sets of parameters can be clustered to N categories
(N is the number of textures in the image provided by user). In each category, the
2-D AR model can be obtained by averaging the parameter sets included. In this
way, the AR models for textures in an image can be obtained.

The type determining mechanism was tested on four images which contain
two, three, or four types of textures respectively. For each image, parameter sets
were first estimated using the type determining mechanism and consequently, the
integrated scgmentation procedure was applied to perform the segmentation. The
threshold value 7}, was selected as 0.04. These four images and their results are

shown al Appendix Figure A.5.
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Chapter 8

Conclusions and Future Research

8.1 Summary of Contributions

In this thesis, hes of texture ci and tion which use

the 2-D AR model for texture property jon are studied. A mullilayer

neural network has been developed to perform texture feature extraction for lexture
classification and segmentation. The network consists of three subnets, i.c., the
input subnet, the analysis subnet and the classification subnet. The input subnet
receives an input and distributes the normalized input pattcrn to the analysis net.
The analysis subnet consists of a set of channels, cach of which models a type of
texture by its weighted connections and producing a total error which measures

the difference between an input texture and the texture modeled by the channel.

The classification subnet is a petiti hanism which decides the texture
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class to which the input pattern belongs.

The learning procedure of the network maps the process of establishing an AR
model for a textured image into a neural computation so that a weight set pro-
duced by the neural computation is the 2-D AR model parameter set of the input
texture. A generalized delta rule is designed by which the weight set is computed
according to the gradient of the error space using an iterative process. The use

of the sigmoidal activation function 1l} the ibution of the

random noise in a uniform texture region and increases the accuracy of a weight
set resulting from the learning process. It also improves the system stability during
the classification and the segmentation phases.

For the situation in which a testing image has a different orientation from the
training samples, two types of rotation invariant classifier have been proposed. In
the first type, models established for the same texture related to eight directions
arc considered. A testing sample with unknown rotation can be approximately
modeled by the one of the eight models which has the smallest angle difference
to the testing sample. For the second type, a circular neighborhood of thirty-
six pixels is expanded from the circular autoregressive model proposed in [18].
The AR model using this circular neighborhood is able to extract the rotation
invariant features of a texture so that a testing sample with arbitrary orientation
can be classified.

Tor textured image jon, ani d region on technique has
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been designed. This technique is impl d by ing local region proper-

ties, which are computed by use of the neural network, in a hicrarchical manuer.
This technique grows all regions in a textured image simultancously starting from

internal regions to the boundaries of textures using blocks of decreasing

The
internal regions, as well as the number and the type of the textures included in an
image are decided in the initial stage of the procedure. In the refining stage, the
properties of neighboring blocks are used to determine the local texture property of
a underlying block. To handle the situation in which the types of textures appear-
ing in an image under investigation are not known beforchand, a type determining

mechanism is designed Lo be used before the segmentation procedure to deci

s the

textures included in the image.

A series of i were conducted to test the perfe of tie proposed

texture classification and i hni on natural textured images. A
classification problem of thirty-eight natural textures provided by the the Brodats
album was considered to demonstrate the ability of the artificial neural network
in classification. Highly satisfactory results were achieved for most of the textures
participating in the testing. The abilities of the two types of rotation invariant
classifiers in classifying test snmples of unknown rotation were tested on images of
six natural objects. Samples on chosen directions were provided to the networks
for training, and then testing samples of arbitrary directions were presented to

be recognized. For the multi-circular model, 60% to 100% correct classification
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rates were reached. The result from the multi-direction model is poorer than
that of the multi-circular model, however for most of the textures, 80% to 90%
classification rates were still obtained. The texture segmentation algorithm was
tested on a number of images composed of natural textures from Brodatz Album.

it can be luded that the

Based on the performance
procedure performs very well. The type determining mechanism was also tested
on several images which contain two to four types of textures respectively. When
the number of types of textures is provided, the type determining mechanism can
successfully locate the internal parts of texture regions and subsequently provide a
st of AR model parameters corresponding to all textures in the image. Generally,
satisfactory segmentation is shown iu the resulting images from using the type
determining mechanism followed by the segmentation procedure, though some of
the boundaries are not sufficiently smooth due to the less accurate location of
some internal regions when a unique threshold value is required to apply to all
underlying images.

There are several advantages to the neural network texture classifier proposed
in this thesis. Tirst of all, the adaptive learning process accurately estimates
an AR model for a texture by using the sigmoidal activation function and the
gencralized delta rule. This gives the system a stroug stability in producing good
texture features which have small differences to variances inside a texture and large

differences to variances between different textures. Second of all, the network
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is easy to extend because of its modular structure in which all channels work
independently. Only one more channel and its corresponding training procedure
are needed to enable the system to distinguish a new type of lexture; morcover,
such an extension does not affect existing channels. Finally, a high computation
rate is provided by the network in response to the input testing samples presented
to the input layer. Unlike traditional classificrs, which tend to process competing
hypotheses sequentially, the neural network classifier lests competing hypotheses

in parallel.

R ding the i d as a [rame is input and forwarded di-
rectly through the layers in the network, the computation time for texture feature
extraction on each examined frame in every itcration of the segmentation proce-
dure is dramatically reduced. Other important advantages of the segmentation
algorithm are that the number and the locations of the regions, as well as the ma-
jor internal areas of large regions can be efficiently determined in the initial stage.
Unlike some other texture segmentation techniques such as clustering or edge detec-
tion methods, the number or location of regions and the approximate segmentation

may not be produced until the whole jon procedure is completed. Using

this algorithm, an i ion is typically reached after one or two

iterations in the refining stage.

An additional imp I of the jon procedure is that the

neighboring texture properties are used to determine texture type for each block
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and ensurc an accurate segmentation. This results in two improvements: (1) the

of smooth boundaries; and (2) the elimination of mis-labeled interior

pixels. Due to variances in a lexture, it frequently happens that some interior

points in a region are mis-labeled using ion techniques. An additional
smoothing step should be taken to eliminate such mis-labeled points in those tech-
niques. However, very few mis-labeled interior points occur in our results for this
segmentation procedure. Taking a block instead of a pixel as a basic unit for seg-
mentation seems to be another reason for the strong ability to overcome a small

area of nonuniformity in a texture region.

8.2 Future Research

8.2.1 Improving the Learning Speed

The speed of learning tends to be slow when a presented image contains large
primitives. A way to improve the speed is to add a momentum term to the weight
modification equation 4.15. This momentum term is proportional to the amount
of the weight change in the last cycle of the weight adaptation. This term indicates
that the change in a weight in the current step should be related to the change
in the last step. The coefficient of the momentum term can be varied according
to th= total error change during the weight modification to speed up the learning

process. As the total energy of the system is d d, the value of the coeffici
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of the momentum term is increased adaptively.

8.2.2 Improving the Accuracy of the Segmentation on
Narrow Parts of Textures

An accurate segmentation cannot be achieved for narrow parts of textures such

as small corners since these areas are not large cnough to contain a frame. One

possible way of improving the p

in this casc is to duplicate a block under
examination to form a bigger arca and then apply the scgmentation procedure to
the formed area to decide the texture type for the block. The existence of the
narrow parts on texture images can then be detected by the neighboring situation

of the block.

8.2.3 The Automatic Determination of the Number of
Textures

In the current algorithm, when no prior knowledge about the types of different
textures in a underlying image is available, the type determination mechanism is
performed based on the number of the textures supplicd by the uscr. Determining
the number of texture categories in an image is a very difficult problem and no
single method has provided a satisfactory solution so far. Related methods arc
developed by comparing the results when different number of textures are supposed

and selecting the one which shows the best result. A frequently used method is
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the modificd Hubert (MII) index [43], which is a measure of correlation between
the matrix of paltern distances and the matrix of class distance when mapping
back the patterns into cluster solution. The true number of texture categories

is estimated by identifying a signil knee in the curve of MH with different

numbers of textures.

One possible method that can be used for the segmentation technique proposed
in this thesis is to compare the value of the total variance when different numbers
of textures are assumed. Given a texture number M, a corresponding number of M

scts of AR parameters can be obtained by using the type determination mechanism.

By suk ly applying the sets back to the image, the value of total
variance can be calculated by accumulating the total error values when classifying
cach disjoint frame of the original image based on estimated parameters sets. When
the given texture number A/ is less than the real number of textures, the value of
the total variance is large. As M is increased from the minimum of two textures
to the real number of textures, the total variance should be decreased. After the
number of textures is equal to the real number of textures, the total variance should
be maintained at a constant level, Therefore the true number of textures can be

by hing for the signil knee of the curve of the total variance.
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8.2.4 Incorporating Scale Changes

Another desirable property for a texture classifir is the invariance to changes in
scale of an image from the zooming of a camera. Effective and computationally

reasonable methods of scale changes invariant classificalion have not heen seen in

the literature because of the difficulty of extracting the common features of sealed
textures. The choice of the feature, the size of the neighborhood and the window
all have to be adapted as the scales of images are changed. Therefore in practice,
instead of developing a scale invariant classifier which could accept arbitrary scales

of testing images, methods based on multiscale are developed in [44, 45]. For the

network in this thesis, expanding the current neural network to distinguishing
textured images of multiscale can be another direction of future rescarch. One

implementable method is training each type of texture using testing samples on

different scales respectively. More sophisticated features which incorporate

changes should also be studied in future research.
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(6)
Figure A.1:Textures from the Brodatz album for classification experiments.
(1) Pressed cork (D4); (2) Grass lawn (D9);
(3) Woven aluminum wire (D14); (4) Straw (D15);
(5) Herringbone weave (D17); (6) Woolen cloth (D19);
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9

(11)

Figure A.1 (Continue):

(7) French canvas (D20); (8) French canvs (D21);
(9) Herringbone weave (D16); (10) Beach sand (D28);
(11) Beach sand (D29); (12) Pressed cork (D33);
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(13)

(17) (18)
Figure A.1 (Continue):

(13) Netting (D34); (14) Water (D37);
(15) Straw screening (D49); (16) Raffia with threads (D51);
(17) Oriental cloth (D52); (18) Oriental cloth (D53);

121



RRAE A LAY

(23) (24)
Figure A.1 (Continue):

(19) Oriental Straw cloth (D80); (20) Straw matting (D56);
(21) Handmade paper (D57); (22) Oriental rattan (D64);
(23) Oriental rattan (D65); (24) Plastic pellets (D66);
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(29)

Figure A.1 (Continue):
(25) Wood grain (D68);
(27) Coffen beans (D75);
(29) Cotton canvas (D77);
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(28)

(&) A B.00: (ox (e,

(30)

(26) Coffee beans (D74);
(28) Grass fiber cloth (D76);
(30) Grass fiber cloth (D79);



(32)
LU LCNUUEe_Hp/s 1 1oy

(35)
Figure A.1 (Continue):
(31) Oriental straw cloth (D81); (32) Loose burlap (D103);
(33) Sea fan (D87); (34) Handmade paper (D110)
(35) Loose burlap (D104); (36) Cheesecloth (D105);
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(37)
Figure A.1 (Continue):
(37) Handmade paper (d109); (38) Plastic bubbles (D111).

(1) (2)

Figure A.2: Textures used in rotation invariant classification experiments.
(1) Sweater (1); (2) Sweater (2);
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(7) ®)
Figure A.2: (Continue)
(3) Sweater(3); (4) Paper Box Cover;
(5) Cloth (1); (6) Cloth (2);
(7) Cloth (3); (8) Cloth (4).
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(2) (3)
@ s (5)

Figure A.3: Images of texture Paper Box Cover on five orientations.
(1) 90% (2) 60%
(3) 30% (4) (5) two arbitrary angles.
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(1)

(2)b
(3)a (3)b
Figure A.4:The results of segmentation experiments.
1).a image composed of Beach sand (D28) and Pressed cork (D4);
)-b segmentation result of (1)a;

(

(1

(2)-a image composed of Herringbone weave (D17) and water (D37);
(2)-b segmentation result of (2).a;
(3
(

)-a image composed of Straw matting (D56), Wood grain (D68), Water (D37)
and Pressed cork‘&lD4)‘;
3)_b segmentation result of (3).a;
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(6)-a (6)-b
Figure A.4 (Continue)
(4)-a image composed of Pressed calf leather (D24) and Pressed cork (D4);
(4)-b segmentation result of (4).a;
(5)-a image composed of Water (D37) and Pressed cork (D4);
(5)-b segmentation result of (5)-a;
(6)-a image composed Herringbone weave (D17) and Pressed calf leather (D24);
(6)-b segmentation result of (6)-a;
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(9)-a
Figure A.4 (Continue)

(7)-a image composed of Cotton canvs (D77) and Pressed cork (D4);

(7)-b segmentation result of (7).a;

(8)-a image composed of Raffia looped to pile (D84) and Calf leather (D24);

(8)-b segmentation result of (8).a;

(9)-a image composed of Beach sand (D28) and Calf leather (D24);

(9)-b segmentation result of (9).a;

O
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(11)a (11)b

Figure A.4 (Continue)
(10).a image composed of Handmade paper (D57) and Beach sand (D29);
(10)-b segmentation result of (10).a;
(11)-a image composed of Herringbone weave (D17), Calf leath (D24), Oriental
t loth (D81 Herringb: D16);
(11) b epmentatiod rer (T apebone eare (016)
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] (12)a (12)b
Figure A.4 (Continue)
(12)-a image of Oriental rattan (D65) and French canvas (D20);
(12)-b segmentation result of (12).a.

%

A

L e

(1) (1)b

Figure A.5: Segmentation results when using type determining mechanism;
(1)-a image composed of Pressed cork (D4), Beach sand (D28) and Water (D37);
(1)-b segmentation result of (1).a;
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(2)a (2)b

(3)b

(4)2 (9)-
Figure A.5 (Continue)
(2)-a image composed of Herringbone weave (D17), Calf leather (D24),

Oriental straw lath (DB[) and Herringbone weave (D16);
(2 )bscgmentmon result of (2).a

(3)-a image composed of Beach sand (D28) and Pressed cork (D4);
(3)-b segmentation result of (3).a;

(4)-a image composed of French canvas (D20) and Beach sand (D28);
(4)-b segmentation result of (4).a.
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