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I heard a perfect echo die 

into an anonymous wall of digital sound 

somewhere deep inside 

of my soul 

A natural beauty should be 

preserved like a monument 

Don't judge yourself too harsh my friend 

or someday you might find your soul endangered 

-Neil Young 

11 



Abstract 

The presence of Ca2+ ions in the aqueous medium is known to influence the physi­

cal properties of bilayer membranes containing charged phospholipids such as dipalmi­

toylphosphatidylglycerol (DPPG). 2 H NMR has been used to study the effect of Ca2+ on 

the order, dynamics and phase behaviour of bilayers containing mixtures of the anionic 

DPPG and a neutral lipid with identical acyl chains, dipalmitoylphosphatidylcholine 

(DPPC), dispersed in aqueous solutions. The effect of bilayer surface charge in this 

system was investigated by varying the DPPG/DPPC ratio in the presence of excess 

Ca2+. It was found that Ca2+ alters the temperature and width of the liquid crystal 

to gel bilayer transition and the quadrupole echo relaxation times of chain deuterons in 

a way which depends on the proportion of negatively charged lipid in the bilayer. The 

observed effects are consistent with a Ca2+ -induced reduction in area per lipid of liquid 

crystal bilayers containing DPPG. The results do not support a preferential association 

of Ca2+ with the DPPG headgroup or segregation into DPPG or DPPC domains. The 

introduction of a negatively charged lipid component into DPPC membranes may alter 

the hydrogen bonding or modify the water layer, or both, resulting in changes in the 

adiabatic bilayer motions. 
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Introductory Remarks 

Nuclear magnetic resonance (NMR) is a spectroscopic technique which, in general, 

provides information on the molecular level. Deuterium NMR spectral frequencies depend 

on the orientation of the electric field gradient at the deuterium nucleus. Broadening 

of spectral lines is due to interactions which depend on molecular orientation and the 

separation of molecules and are thus influenced by molecular motion. This gives rise to 

the concept of a spectroscopic timescale. The spectroscopic timescale for 2H NMR, T 8 :::::::: 

10-6 s [1], is long enough that molecular motions often give rise to appreciable motional 

averaging, and thus NMR occupies a unique place among spectroscopic techniques. 

Motions can be divided into two classes. Slow motions which have correlation times 

Tc satisfying Tc ~ T 8 have negligible influence on the spectrum. Fast motions, i.e. those 

for which Tc ~ T 8 , give rise to motional averaging in which the rigid lattice spectrum is 

transformed into one that is an average over fast motions. Local structural information 

is obtained from the 2 H NMR spectrum, whereas information on molecular motions is 

provided by relaxation time measurements. 

This chapter is devoted to membranes, in particular model membranes. Membrane 

and lipid structure and dynamics are discussed and order of magnitude timescales are 

1 



Chapter 1. Introductory Remarks 2 

given for the array of motions. Lipid phase transitions are briefly reviewed and some 

results of studies on binary lipid mixtures in the aqueous environment are discussed. 

1.1 The Lipid Bilayer 

1.1.1 Lipid Bilayer Structure 

Biological membranes are comprised of aggregates of lipids and proteins that are associ­

ated with each other without covalent bonds. Lipids such as phospholipids, cholesterol, 

and glycolipids not only provide a matrix for the proteins (figure 1.1) and stabilise par­

ticular regions of the bilayer, but are almost certainly involved in protein function. The 

Figure 1.1: Schematic cross-section of a typical biological membrane. 

remarkable variety of lipids found in membranes and the ability of organisms to alter 

membrane composition in response to a perturbing stimulus lend support to this view. 

The self-assembly of lipid and protein components into specific macromolecular or­

ganisations when hydrated is governed largely by the hydrophobic effect. This is a 

solvent-induced effect which has been described in detail elsewhere [2] [3]. In short, the 
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magnitude of the hydrophobic effect is directly related to the exposed surface area of 

the lipid molecule that is unable to interact with the structure of water; i.e. unable to 

form hydrogen bonds. Methyl and methylene groups cannot donate or accept hydrogen 

bonds. For amphipathic molecules which have both hydrophilic and hydrophobic por­

tions, the optimum free energy is achieved with a molecular organisation that maximises 

the interaction of the polar regions with the water structure and minimises the exposure 

of the hydrocarbon regions to the aqueous phase. This leads to an area per headgroup 

at which the free energy is a minimum [4]. 

A very common type of lipid, the phospholipid, has a hydrophobic region composed 

of two acyl chains attached via a glycerol backbone to a phosphatidyl headgroup which 

often, but not always, has a polar character (figure 1.2). The two lipids under study 

have identicall6-carbon chains but differ in their headgroup structures. They are shown 

schematically in figure 1.2. Dipalmitoylphosphatidylcholine (DPPC) is zwitterionic with 

a temporary dipole as opposed to the dipalmitoylphosphatidylglycerol (DPPG) which 

carries one negative charge at neutral pH. These lipids tend to form membrane-like 

bilayers wherein the polar headgroups are exposed to the aqueous environment, while 

the hydrophobic acyl chains extend into the bilayer interior away from the water and are 

roughly aligned. This lends them the important characteristic of uniaxial symmetry. 

The acyl chains in the bilayer interior interact mainly through fairly well-understood 

van der Waals attractive and steric repulsive forces [5]. The hydrophilic headgroup region 

contains hydrated and/or ionised groups in contact with the aqueous medium. In addition 

to steric interactions, the headgroup region experiences dipolar and electrostatic forces 
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Figure 1.2: Schematic space-filling representation of dipalmitoylphosphatidylcholine (left) and dipalmi­
toylphosphatidylglycerol (right). DPPC is zwitterionic with a temporary dipole while DPPG carries one 
negative charge at neutral pH. 

involving bound and free counterions, strongly associated water and hydrogen bonds. 

It has been suggested that headgroup structure should be considered less an intrinsic 

property of a particular lipid than one that depends on the interactions with neighbouring 

headgroups [5]. An analogous conclusion should apply to lipid chains. 

Protons can be replaced by deuterons at specific locations on lipid molecules by means 

of chemical synthesis or biochemical incorporation. Virtually all regions of a phospholipid 

molecule, i.e. the polar headgroup, gycerol backbone or fatty acid chains, are accessible 

to these techniques. The replacement of a proton with a deuteron is not expected to 
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perturb the system appreciably and thus preserves, and reports on, the natural struc­

ture and dynamics of the membrane. Since the natural abundance of deuterium is low 

the deuterium NMR signal can immediately be assigned to the deuterium labelled site. 

Samples in this study contained lipids with perdeuterated chains, which require much 

less time for both sample preparation and NMR measurements. 

1.1.2 Lipid Bilayer Dynamics 

Figure 1.3: Chain isomerisation: trans-gauche isomerisation in dipalmitoylphosphatidylcholine. 

A highly dynamic state of the lipid bilayer is necessary for the function of biological mem­

branes, which usually are in a liquid crystalline state. Lipids in bilayers typically undergo 

a hierarchy of motions on quite different timescales. Measurement of 2 H NMR relaxation 

provides information on the correlation times characterising the relevant motional rates. 
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At this point, only the order of magnitude of timescales are accessible. A unique and 

quantitatively consistent picture of phospholipid dynamics has not yet emerged [6]. This 

is mainly due to the complexity of the system and the fact that, in general, models must 

be constructed to interpret the measurements of the dynamic properties. 

The molecular motions which lead to motional averaging of the quadrupolar interac-

tions are, by definition, short on the NMR timescale (i.e. rc < 10-6 s ). Of the motions 

accessible by NMR, trans-gauche isomerisation is the fastest, having a correlation time 

TJ < 1Q-10s [7]. As shown in 1.3, single bond rotations introduce kinks and jogs into a 

fully-ordered chain while still maintaining a net orientation parallel to the bilayer normal. 

Another motion on approximately the same timescale is rotational diffusion where the 

Figure 1.4: Chain reorientation: libration and rotational diffusion in dipalmitoylphosphatidylcholine 
corresponding to the correlation times discussed in the text for the phospholipid molecule in a bilayer. 



Chapter 1. Introductory Remarks 7 

individual lipid molecules rotate very rapidly about their long axes. It is characterised 

by the correlation time 7lb following the notation of Yeagle [8]. These fast motions con­

tribute to transverse relaxation, but slow motions also make important contributions [9] 

[10]. 

(a) 

(b) 

Figure 1.5: Examples of bilayer collective undulation modes: splay mode (a) and twist mode (b). 

Of course the definition of slow motions depends on the measurement technique and 

what the technique is sensitive to. Motions which are slow on the NMR timescale (i.e. 

adiabatic motions) include lateral diffusion of the phospholipids as well as collective 

motions and undulations of the bilayer. Bloom et al. [1] describe slow motions associated 

with molecular diffusion on a spherical surface. Lipid molecules readily exchange places 

with their neighbours within a bilayer c~ 107 times per second) and this gives rise to a 

lateral diffusion constant D ~ 4 x 10-12 m 2s-1 [9] for multilamellar vesicles. 

It has recently been argued that collective lipid motions constitute the dominant 
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transverse relaxation process (10] in lipid bilayers. The time-dependent fluctuation of the 

orientation of the director for axial diffusion is often called chain libration or wobble. It 

is convenient to think of this motion as one in which the axis for axial diffusion randomly 

samples a cone of finite dimension, with extreme angular deflections of individual lipids 

limited by the presence of neighbouring lipids. Chain tilting is likely to be at least 

locally cooperative since one phospholipid cannot wobble into space occupied by another 

phospholipid unless the latter leaves that same space on the same timescale. Director 

fluctuations are characterised by the correlation time TJ. = lo-s to 10-4 s (11]. The 

collective undulations occur over a very wide timescale ranging from 10-6 s to 101 s (12]. 

1.1.3 Phase Transitions in Anionic and Mixed Bilayers 

The lipid chains possess a tendency to go from a fully ordered gel state to a fluid or 

liquid crystalline state. The transition between these phases is often called the chain-

melting transition and occurs at a characteristic temperature T m determined by the 

thermodynamic parameters of the system. It is accompanied by changes in both the 

angular amplitude of chain motion and the rates of motion. By convention the liquid 

crystalline state is designated Lex and the condensed gel phase is called Lf3. 

Bilayers may also undergo transitions to non-lamellar phases in a manner which is 

particularly sensitive to the local environment. Both thermotropic1 and lyotropic phase 

transitions can be induced by varying such factors as lipid concentration, temperature, 

1The term thermotropic is derived from the Greek roots thermo, denoting heat, and tropikos, which 
means of a turn (originally of the sun at the solstices). Hence the term refers to a change in phase 
induced by heat. 
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and ionic composition of the aqueous environment. Often DSC, DTA, and NMR mea­

surements are taken at temperature intervals, and so one "follows" the sample through 

the phase transition. 

A fully cooperative transition would manifest itself in an infinitely sharp discontinuity 

in going from La to L{3. The effect of increased surface charge on broadening the chain 

phase transitions in anionic lipids has been interpreted by Forsythe [13] as a consequence 

of domain formation: near the transition temperature it is favourable for the system to 

break up into fluid and gel domains in order to maintain the energy balance referred to 

in section 1.1.1. Gel and fluid domains will be discussed further in chapter 3 in relation 

to interpreting 2H NMR spectra exhibiting two-phase coexistence. 

The chemical nature and charge of the lipid headgroup can affect the melting point, 

but not always in a manner based on simple electrostatic considerations. The chain 

melting transition for pure DPPC-d62 and pure DPPG-d62 multilamellar vesicles occurs 

at 37°C. This similarity is striking considering the difference in headgroups between the 

two species. In contrast, doubly ionised DPPA has a Tm l6°C higher [14], and electrically 

neutral DMPE melts at 48°, 25° higher than DMPC [15]. 

When calcium ions are present in the hydrating buffer, pure DPPG exhibits a very 

complex phase behaviour. This seems to indicate a great flexibility in the interactions 

of the phosphoglycerol headgroup at the bilayer surface. In aqueous systems containing 

calcium the transition temperature of pure DPPG-d62 occurs at 86°C [16] while that 

for pure DPPC-d62 remains largely unchanged. This is an extreme temperature for the 

experimental apparatus used in this study, making examination of compositions above 
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80% DPPG impractical. 

1.1.4 Anionic and Mixed Bilayers in the Aqueous Environment 

Bilayer hydration depends mainly on the type and state of the headgroup. Hydration of 

the chains is a much smaller effect and exists mainly as interactions between water and the 

carbonyl groups on the acyl chains. While acyl chain and headgroup interactions are often 

discussed separately, they are of course interdependent. Ions in the aqueous phase can 

alter the stereochemistry of the headgroup region and influence the packing requirements 

of the lipid molecule. Similarly the degree of hydration of the interfacial region and the 

depth of water penetration into the bilayer can influence the conformational freedom of 

the lipid acyl chains. 

Numerous attempts such as those by Marcelja [4] and Finer and Darke [17] have 

been made to model the electrostatic interactions of polar headgroups with ions, water 

molecules and with each other. Marsh and Cevc maintain that coulombic forces play a 

rather minor role in bilayer hydration [18]. What we refer to as hydration forces are a 

subgroup of solvent-induced forces (SIF's) and are poorly understood. Their subtle origin 

lies in the response of the system to perturbations imposed by the presence of solutes on 

the structure and dynamics of the solvent. This response acts to drive the system towards 

the attainment of mutual distances and orientations of solutes which minimise the total 

free energy of the system. The free energy involves opposing contributions from the 

interaction energy per lipid and the conformational entropy of the chains. Electrostatic 

forces act through the solvent and with the contribution of the solvent, but the water 
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affects their size only, not their existence. This is at variance with SIF's, whose very 

existence for a given configuration of solutes has its origin in the presence and structure 

of the solvent. While much is known statistically about these forces, time and space 

resolutions down to single molecular events are being sought [2]. 

The degree of hydration and the nature of hydrogen bonding interactions in the 

headgroup and interfacial regions of PG bilayers differ significantly from what is observed 

in all other phospholipid bilayers studied by McElhaney et al. [19]. In their recent FTIR 

and 31 P NMR study of pure anionic PG phase behaviour it is proposed that the glycerol 

backbone of the phosphatidylglycerol headgroup helps shield the negative charges at the 

surface of the bilayer by means of hydration-like hydrogen bonding interactions with the 

phosphate on the headgroup. It is suggested that the exposed hydroxyl groups on the 

glycerol headgroup enable the lipid to mimic some of the solvation properties of water and 

compete with water molecules for hydration sites. This may confer to phosphoglycerols 

an important structural role in addition to the negative charge they impart to the bilayer 

surface. 

1.1.5 Previous Results 

The important previous experimental results may be summarised as follows. A number 

of calorimetric (20] [21] (14] and light scattering [20] studies have been concerned with 

the miscibility of binary phospholipid systems. A DSC study by Jacobson and Papa­

hadjopoulos [14] has shown that in phosphatidylcholine bilayers containing either of the 

anionic lipids phosphatidylserine (PS) or phosphatidic acid (PA) with exactly similar 
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chains, addition of Ca2+ induces a lateral phase separation. The absence of such be­

haviour in aqueous mixtures of PG and PC lipids with exactly similar chains indicates a 

high degree of mixing of the two lipids. 

While investigators have emphasised the ability of Ca2+ to segregate acidic and neu­

tral lipids [14] [22], PG/PC mixed bilayers with exactly similar chains appear to be­

have differently. Findlay and Barton [20] could observe Ca2+ -induced phase separation 

in the bilayer by variation of the fatty acid composition of mixed phosphatidylglyc­

erol/phosphatidylcholine bilayers [20]. However, they could not detect a Ca2+ -induced 

phase separation for DPPG/DPPC mixtures. van Dijck et al. [21] found that Ca2+ only 

shifts the transition peak to higher temperatures but no phase separation occurs for up 

to 80% DPPG composition. That phase separation did not occur was evident in the 

single thermal transition which progressively increased with increasing proportion of the 

PG component. At these compositions none of the complex behaviour characteristic of 

pure DPPG regions [16] was observed. This suggests that the behaviour of acidic/neutral 

lipid systems in the presence of Ca2+ is much more complicated than can be explained 

on the basis of simple electrostatic considerations. 

In a recent Fourier transform infrared (FTIR) study of the thermotropic behaviour 

of phospholipid bilayers interacting with metal ions [23], Kwon et al. argue on the basis 

of CH2 stretching modes that DPPG exists in a more disordered state than DPPC in 

vesicles in the La phase. With the addition of Ca2+ to the aqueous phase, the DPPG acyl 

chains change to a more highly-ordered form by Ca2+ -induced isothermal crystallization. 

Their results also suggest that the carbonyl groups in the interfacial region of hydrated 
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phospholipids take part in hydrogen bonding and are dehydrated by metal ions. The 

dehydration ability of metal ions should also be a contributing factor to shifting the 

phase transition temperature. 

1.2 Motivation and Thesis Outline 

1.2.1 Motivation 

Lipid bilayers are fascinating to physicists and chemists because they represent a mech­

anism of self-assembly into partially ordered systems. The phase transitions of these 

systems are also of interest because they are usually highly cooperative first-order tran­

sitions. In addition to the purely academic interest in such macromolecular organisation, 

these bilayers play crucial biological roles. Part of the initial motivation for this work 

was the interesting behaviour of lung surfactant. Lung surfactant is comprised of the 

proteins SP-B and SP-C, calcium ion and phosphatidylcholine containing a large amount 

of anionic lipid. In recent studies by Morrow et al., mixed DPPG/DPPC bilayers con­

taining SP-B showed evidence for the formation of freely reorienting bilayer fragments or 

discs [24], while SP-C displayed a tendency towards non-random lateral distribution in 

the mixed bilayers [25]. 

The ability of phospholipids to segregate into domains is of considerable interest in 

light of the recent evidence that the functions of some membrane-associated enzymes 

appear to require the presence of anionic lipids for their function [26] [27] (28]. Ca2+­

induced phase separations may play an important role in modulating enzyme activity. It 

seems clear that aside from their role in regulating bilayer surface charge density, anionic 
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lipids must have more specific functions in biological membranes. These functions are 

poorly understood at present, and much more work needs to be done before the general 

and specific roles of anionic lipids in biological membranes are fully understood. 

Most of the information about lipid bilayers has come from model membrane sys­

tems. They can be prepared from a small number of well-defined components, allowing 

for a better characterisation of the underlying physical principles which should com­

plement the interpretation of more complex systems. 2 H NMR studies of mixed lipid 

bilayers that contain trans-membrane proteins, for example, must be interpreted with 

caution. Straightforward conclusions may be complicated and masked by the effects 

caused by different phospholipid types interacting with each other. The goal of this the­

sis is to characterise the role of the anionic lipid in the structure and dynamics of binary 

DPPG/DPPC mixtures under varying ionic conditions, and for a range of temperatures 

including the physiological. 

1.2.2 Thesis Outline 

The degree of perturbation of the phospholipid acyl side chains under varying physiolog­

ical conditions is investigated in order to relate physical properties to biological function. 

Specific questions addressed in the present work include: 

1. The extent to which the interaction of DPPC/DPPG mixed bilayers is selective. 

From purely electrostatic considerations we should expect that effects of the divalent 

cation would be more prominent for negatively-charged DPPG than for neutral DPPC. 
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In addition however, a Ca2+-induced change in headgroup orientation of the anionic lipid 

and expulsion of some of the surrounding water molecules in its hydration layer could 

introduce steric constraints on both headgroups and side chains of neighbouring lipids 

via a reduced area per lipid. This would be consistent with previously published results 

by Sixl et al. and Zidovetski et al. in which increased ordering is observed upon addition 

of Ca2+ to binary mixtures of DPPG and DPPC deuterated in the headgroup (29] and 

in the acyl chains [30], respectively. Information concerning molecular conformation and 

orientational order is obtained from lineshape analysis, providing clues to how lipids pack 

within the common bilayer. 

2. How the thermotropic behaviour is affected by such induced changes in the surface 

charge density, both in the presence and absence of calcium. Regulation of the ionic 

component in this binary system allows the experimenter to manipulate the surface 

charge density of the model membrane. The thermotropic behaviour was studied by 

following the order-disorder transition for each of the samples. 

3. The extent to which bilayer slow motions are sensitive to changes in bilayer surface 

charge. Collective order fluctuations usually occur at extremely low frequencies (kHz 

range) while molecular reorientation and rotational diffusion invariably take place on the 

MHz scale. These fast and slow motions are probed via relaxation measurements. Again 

the question arises as to whether the DPPC and DPPG are reporting on the same slow 

motions in the mixture, and to what extent the motional rates depend on the sample 

preparation. 
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The general outline of the thesis is as follows. Experimental techniques are presented 

below. In chapter 2 the fundamental theory behind deuterium NMR spectroscopy is 

reviewed. The Hamiltonian for the system is discussed, as are the resulting quadrupolar 

splittings in the absence and presence of motions which are fast on the NMR timescale. 

The phenomenon of relaxation is introduced and the timescales for transverse relaxation 

are discussed. Consideration is given to the quadrupolar echo and techniques for extract­

ing structural and dynamic properties. Appendix A is associated with chapter 2 and 

provides a detailed picture of the evolution of the spin system during and following a 

pulse sequence. In appendix B useful information for the general theory calculation is 

provided. Chapters 3 and 4 contain the experimental results and discussion. Experimen­

tal results concerning ordering of the systems under study are presented and discussed 

in chapter 3. Chapter 4 deals with further results of our investigations as they pertain 

to lipid dynamics. A discussion of typical rates for the motions under consideration will 

be followed by experimental results for this study. In chapter 5 concluding remarks are 

advanced. 

1.3 Apparatus 

The 2 H NMR experiments were performed on a spectrometer constructed by Michael 

Morrow based on the design of Davis et al. [31), and using a superconducting magnet 

with a field strength of 3.55 Tesla, corresponding to a Larmor frequency of w0 /27r = 23.215 

MHz. Spectra were acquired using the quadrupolar echo pulse sequence described in sec­

tion 2.4. The deuterium probe and the pulse programmer controlling the experiments 
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were also locally-constructed. Upon instruction by the computer the rf transmitter pro­

duces the short 1r /2 pulses which are channelled to the probe tank circuit. The probe 

resonantly excites the nuclei. Once the transmitter pulse has been removed the nuclear 

signal is free to pass to a low noise preamplifier and high gain receiver. The voltage gen­

erated by the receiver is then digitised and sent to the computer to be stored as the time 

domain signal. Quadrature detection and phase cycling were used to minimise errors due 

to instrumental imperfections [32]. The spectroscopic bandwidth was 250 kHz for liquid 

crystalline lipids and 500 kHz for gel phase lipids. Typical 1r /2 pulse width was 3.6 ,_,s. 

The number of scans varied between 4000 and 70 000 depending on the particular sample. 

Data were collected on a 386 PC and transferred to a Digital Equipment Corporation 

Alpha workstation for analysis. 

A temperature controller was used to maintain constant temperature around the sam­

ple using thermocouples placed in the bore of the magnet. Cold nitrogen gas from the 

evaporation of liquid N 2 was blown over the sample where cooling below room tempera­

ture was desired. The accessible range was between 70°C and -20°C. 

1.4 Methods and Materials 

A number of model membrane systems were used. In each case, the amount of calcium 

was kept constant and in excess to the presumed stoichiometry of one Ca2+ to every two 

anionic lipids. The buffer was maintained at 10 mM Ca2+ and the volume of buffer used 

was varied depending on the total lipid weight. The negatively-charged lipid component 

never exceeded 50%. Chain perdeuterated DPPC-d62 was synthesised using the acylation 
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reaction of Gupta et al. [Proc. Natl. Acad. Sci. USA 74, 4315 (1977)]. Synthetic chain 

perdeuterated DPPG-d62 was purchased from Sigma (St. Louis, MO). Samples were 

prepared by dissolving each of the lipids in a 3:1 mixture of chloroform and redistilled 

ethanol before mixing in a flask. The solvents were removed using a rotary evaporator, 

and residual traces were removed under high vacuum overnight. Multilamellar vesicles 

(MLV's) were formed by hydrating the mixed lipid with a buffer containing either no 

calcium (150 mM N aCl, 130 mM HEPES) or the desired concentration of calcium (150 

mM NaCl, 130 mM HEPES, 10 mM CaCl2 ). In this study two hydration protocols 

were adopted. One involved scraping the dried lipids from the walls of the flask and 

adding the buffer with gentle stirring. The other involved hydrating the lipids in the 

flask which was rotated in a hot water bath kept above Tm. The former method was used 

in all samples unless stated otherwise. The buffer was at pH 7, well above the pKa of 

DPPG for maximum ionization of the DPPG. The samples were centrifuged to obtain a 

pellet which was then transferred to a sample tube for NMR studies. All lipid mixtures 

contained less than 10% lipid by weight with respect to water. 



2 

2H NMR Theory 

This chapter treats the fundamental theory behind deuterium NMR spectroscopy. 

The theory underlying the splitting of the Zeeman energy levels by the quadrupolar 

interaction is first developed in the absence of molecular motions. The expression for 

the quadrupolar splitting is then expanded to account for motions which modulate the 

spectrum. The phenomenon of relaxation is introduced and relaxation theory for spin 1 

is given here. A discussion of the density matrix will be limited to its utility in treatment 

of spin I = 1 systems. The quadrupolar echo and techniques for extracting structural 

and dynamic properties are briefly reviewed. Examples using density matrix and density 

operator formalism to follow the evolution of a spin system are provided in appendix A. 

2.1 2H Quadrupolar Hamiltonian 

The two main contributions to the energy of a deuterium nucleus in a static magnetic 

field are the Zeeman energy and the quadrupole energy. The Hamiltonian may be written 

as 

1i = 1iz + 1iq (2.1) 

19 
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where 1-lz is the Zeeman Hamiltonian and 1-lQ is the quadrupolar Hamiltonian. 1-lz 

describes the interaction of the nuclear magnetic moment J-L: with the magnetic field B. 

where 1 is the gyromagnetic ratio of the nucleus in question and f is the nuclear spin 

operator. Taking the field to be B 0 along the z-direction, the Zeeman Hamiltonian is 

and the Larmor frequency w 0 is given by 

Wo = 27rvo = {Bo. 

The quadrupolar Hamiltonian 1-lQ arises from an electrostatic interaction of the nu-

clear quadrupole moment Q with the electric field gradient at the position of the nucleus, 

V' E = VJk· Vjk is a symmetric second rank tensor: 

Vii Vi2 Vl3 

Vjk= 
8 2V 

8xj8Xk Vi2 l-'22 l-'23 
r=o 

Vl3 l-'23 V33 

It is convenient to define 1-lQ in the lab frame. Q like any operator can be recast in 

terms of irreducible tensor operators. For I= 1 only tensors of rank n < 2 are required 

by virtue of the Wigner-Eckart theorem [33] and in the case of quadrupolar interaction 

only the second rank irreducible tensor survives [34], so that 1-lQ can be written 

+2 
1-lQ = CQ I: ( -l)=T~2>V~~- (2.2) 

==-2 
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The five components of T(2) in terms of the spin operators 1z and 1± = 1x ± i1y are 

rJ2
> ~ (31;- 1(1 + 1)) 

Tl~ =t=~ (1z1± + 1±1z) 

T (2) 11 I 
±2 - 2 ± ±· 

Examination of the matrix elements Qjk [35] provides 

eQ 
CQ = 21(21- 1) 

21 

where eQ is the electric quadrupole moment of the nucleus. The deuterium nucleus spin 

operators 1x, 1y, 1z are given by 

0 1 0 0 -1 0 1 0 0 

1 z 
1z = 1x=- 1 0 1 1y=- 1 0 -1 0 0 0 y'2 y'2 

0 1 0 0 1 0 0 0 -1 

Because these operators are defined with respect to the magnetic field fixed in the labo-

ratory, T(2 ) is defined in the laboratory coordinate system. 

The electric field gradient tensor is usually known in a coordinate system defined along 

the axis of the C-D bond vector. A transformation can be carried out to the coordinate 

system in which the EFG tensor is diagonalised. In this principal axis system (PAS) of 

the potential Vxx + Vyy + Vzz = 0 where Vxx, Vyy and Vzz are electric field gradients along 

the three cartesian axes. The asymmetry parameter is defined as 
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By convention the axes are chosen such that Vzz > Vxx > Vyy and 0 < "' < 1. The 

quadrupole Hamiltonian in this system is 

(2.3) 

To express the electric field gradient tensor in the laboratory coordinate system it is 

necessary to transform from the molecular-based reference frame. The EFG is first ex-

pressed in a spherical basis set in terms of its irreducible components V~2), m = 0, ±1, ±2 

( v,(2)) 
0 PAS 

- Vzz = eq 

( y(2)) 
±l PAS 

0 (2.4) 

(v<2>) 
±2 PAS II (Vxx - V,y) · 

The transformation from one frame to another involves successive rotations through Euler 

angles</>, 0, ((see figure B.1) using the Wigner rotation matrices D~~~(¢>,0,() (34] as 

defined in appendix B. This gives 

2 

v~~> = L: n~~, ( ¢>, o, () v,i2> (2.5) 
m=-2 

where D~~' ( </>, 0, () is expressed in terms of the reduced rotation matrix, 

(2.6) 

To first order all but TJ2
> of the components of T(2) can be neglected [36]. Equation 2.2 

becomes 

~ - C T.(2)u(2) 
I 1-Q - Q 0 Vo 
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where 

+2 
~ n<2> ( ..+. 0 ~") (v:(2>) 
L.J mO 'f/' '':. m PAS 

m=-2 

using equations 2.4 - 2.6 and 

d (2) - d(2) - 0. . 2 0 
-20 - 20 - v S Sill ' [34]. 

This yields an expression for the quadrupole Hamiltonian in the lab frame, 

23 

(2.7) 

In the presence of an applied magnetic field and an electric field gradient, the perturbation 

of the energy levels of a spin 1 nucleus by the quadrupolar interaction with the applied 

EFG is small and can be considered a first-order perturbation. The three spin 1 Zeeman 

energy levels are shifted by this quadrupolar interaction to 

with allowed transitions governed by the selection rule .b..m = ±1. As shown in figure 2.1 

two distinctly different transitions result. The quadrupolar splitting between the resulting 

two peaks in the spectrum is, in the absence of motion, 

A (O ..+.) wq 3 e
2
qQ (3 cos

2 
0 - 1 1 . 20 2 ,~...) 

LJ.VQ 'f/ =- = --- + -TJ Sill COS 'f/ • 
' 27r 2 h 2 2 

(2.9) 

e 2qQ / h is called the quadrupolar coupling constant. For deuterons in C-D bonds it is 

roughly 169 kHz [37]. Thus the separation between the two lines is much larger than 
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9fz 9fz+% 

m=-1 

t ---- t 
Vo 1 

V0+ -/:iv 

f 
2 

m=O ~ ~ 
t 1 

Vo v 0- -/:iv 

t ! 2 

m= 1 ------Figure 2.1: Splitting of the Zeeman energy levels by the quadrupolar interaction. 

either the dipolar interaction or the chemical shift anisotropy, which are typically a few 

kHz. Note that 

~vQ(O) = ~ e2
qQ (3cos

2 
(}- 1) 

2 h 2 

for the special case of an axially symmetric field gradient which has TJ 0. This IS 

approximately true of the C-D bonds in lipid acyl chains. 

-150 -100 -50 0 50 100 150 
Frequency (kHz) 

Figure 2.2: Model powder spectrum for phospholipids deuterated in a single acyl chain position. The 
sharp shoulders and peaks of the spectrum are broadened in real systems. 

In a crystal powder all orientations of the individual crystallites, and thus of the 
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EFG tensor with respect to the magnetic field, are possible. Statistically we expect to 

find many more molecules perpendicular rather than parallel to the applied field, giving 

rise to a characteristic powder pattern [38]. The resulting spectrum will be the sum 

of two overlapping powder patterns similar in shape but opposite in sign (figure 2.2). 

A perpendicular orientation of the C-D bond with the magnetic field, corresponding to 

() = 90°, gives 

3e2qQ 
b,.vq .L = 4 -h- ~ 125 kHz, 

which we identify with the separation of the two inner intense peaks in the rigid lat-

tice spectrum. Likewise we assign the separation of the outer edges of the rigid lattice 

spectrum to the parallel orientation with () = 0 and 

3e2 qQ 
b,.vq 11 = "2 -h- ~ 250 kHz. 

The angle Om corresponding to the point where the two curves cross is called the "magic 

angle", and is equal to 54.7° as required by the condition 3cos20m - 1 = 0. 

2.2 2H NMR in the Presence of Molecular Motion 

In general molecules are dynamic and, depending on the timescale of the motion, the 

dynamics can affect the spectrum. While rapid isotropic motion gives rise to a single 

collapsed line in the NMR spectrum, for anisotropic motion each deuteron contributes 

a doublet due to the residual quadrupolar moment of the nucleus. The reduced spacing 

b,.vq between the peaks of the doublet is a measure of the anisotropy of the motion at that 

nucleus (39] and is called the quadrupole splitting. If cylindrical symmetry is assumed 
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for the averaged motion of a chain segment, f:::..vQ can be written [39] 

3 e2 qQ (3cos
2 e- 1 1 . 2 ) 

f:::..vQ (8, ¢>) = 2-h-IScnl 
2 

+ 27Jstn 8 cos 2¢> , (2.10) 

label where 

is the deuterium order parameter for the molecular motion1
. !Sen I = 1/2 when a chain 

is in the all-trans state and (Sen) = 0 for a fully disordered (isotropically tumbling) 

segment. {3 is the angle between the C-D bond and the direction of the magnetic field. 

The angular brackets indicate an average over those motions which satisfy M 2 r; ~ 1 

where M 2 is the second moment characterising the distribution of spectral frequencies in 

the absence of molecular motion, and Tc is the correlation time for the motion. Molecular 

reorientation thus transforms the spectrum into one which is an average over the fast 

motions. 

2.3 Density Operator Formalism 

Since the aim of the theoretical analysis of NMR spectroscopy is prediction of the outcome 

of experiments, the solution of the Schrodinger equation should prove a fruitful approach. 

However, a typical NMR experiment involves on the order of 1020 particles which has the 

significant consequence that we never have a complete and deterministic specification of 

1 Separate order parameters can be written for the motion of the molecular frame and segmental 
motion with respect to that frame, but NMR always measures the product of the two; they cannot be 
measured independently. Petersen and Chan [7] report that a comparison of proton and deuterium order 
parameters can lead to an estimate of the relative importance of these two order paramaters, but in this 
thesis no attempt will be made to attribute changes in {Sen) to variations in chain reorientation or 
chain isomerisation. 



Chapter 2. 2 H NMR Theory 27 

the quantum mechanical system. Instead the quantum mechanical observables involve 

statistical averages over the ensemble. The standard density matrix formalism [40] [41] is 

used to provide reasonable solutions for the two basic problems faced by the experimenter: 

what does a pulse do to the spin system, and how does the spin system evolve in the 

absence of rf pulses? 

The Liouville - von Neumann equation of motion for the density matrix p, in the 

presence of a Hamiltonian 'H, is 

dp i 
dt = - n ['H, p(t)] (2.11) 

and the measured value of an observable represented by the operator Q is 

(Q) = Tr{Qp}. (2.12) 

p( t) is the density matrix in a frame which rotates at the frequency of the applied field 

w1 . Although this formalism provides a rigorous description of the time evolution of a 

nuclear spin system, for anything but the simplest case the matrix calculations quickly 

become unwieldy. 

An operator formalism is constructed to make the calculations tractable. For a general 

isolated spin system p( t) can be written in terms of the unit operator and a set of n 

orthonormal Hermitian operators denoted by p where p takes on the values 1, 2, 3, ... , n . 

n 

p(t) =lop+ L ep(t)p (2.13) 
p 

such that the trace of any two of these operators Tr{p q} = bpq· For a spin 1 system 

n = 8 and we must choose a set of eight Hermitian operators based on the Hamiltonians 
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of interest. Given that 

during pulses applied along the x and y axes in the rotating frame, and 

in the absence of rf pulses, it is reasonable to choose a basis set in terms of the spin 

operators rr;, 1y and 1z 

- 1x - 1y - 1z 
1=- 2=- 3=-

V2 V2 V2 
- 1 ( 2 ) 4 =- 31 -2 vf6z 

5 = ~ (1x1z + 1z1x) 

7 = _1 (12 - 12) V2 X y 
(2.14) 

following the notation of Bloom (42]. The equation of motion 2.11 in terms of the operator 

pis 

dep i - -
---;It = 1i ~ cq(t) Tr{p [?-l, q]}. (2.15) 

The coefficients cP ( t) contain all of the information necessary to describe the time evo-

lution of the physical observable Q. They can be represented as the vector C(t) = 

The Zeeman Hamiltonian and the axially symmetric part of the quadrupolar Hamil-

tonian (eq. 2.8) can be written using the operator pas follows 

1iz = -1iw1z = -V21iwo 3 (2.16) 
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(2.17) 

Using table A.l in appendix A the commutators for these operators can be written down 

by inspection. It is immediately apparent which operators are invariants of the motion 

and which are coupled. For the Zeeman Hamiltonian 1-lz, 3 and 4 are invariants and 

the remaining six operators are coupled in pairs: 1 and 2; 5 and 6; and 7 and 8. The 

solutions can be represented by the precession diagrams in figure A. For the axially 

symmetric quadrupolar interaction 1-lQ, 3, 4, 7 and 8 are invariants leaving only two sets 

of precessing pairs: 1 and 6; and 2 and 5. 

In pulsed NMR it is necessary to solve the equation of motion during the perturbation 

as well as during the evolution of the spin system. For a pulse applied along the x axis, 

1-lx = -0 nw1 I and thus the invariants are 1 and ~4 - '(!7. The coupled operators 

are shown in the precession diagrams. Similarly for a pulse applied along the y axis, 

1-ly = -0 nw1 2 in the rotating and the invariants of the pulse are 2 and !4 + Y/-7. 

Again the coupled pairs can be seen in the precession diagrams. In appendix A it is shown 

how this formalism may be used to follow the role of the rf pulses and the quadrupolar 

interaction during a particular pulse sequence. 

2.4 Quadrupole Echo 

With well-designed pulse sequences it is possible to manipulate the nulear spin system 

Hamiltonian at will almost without restriction. One use of such control is in producing a 

spin echo to overcome the dead time associated with the receiver of the spectrometer (43]. 
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In solids the 2 H NMR spectrum can be quite broad so that much of the information is lost 

before the receiver is ready to detect it after an rf pulse. This prevents the experimenter 

from obtaining valuable information in the initial part of the signal. The information 

can be recovered via application of a second pulse 90° out of phase with the first at time 

t = T. This reverses the depha.sing of magnetisation and gives rise to an echo at t = 2T. 

Almost all modern pulse and multidimensional NMR experiments involve echoes. 

Figure 2.3: The quadrupolar echo pulse sequence. The trailing half of the echo at t = 2r is equivalent 
to the free induction decay signal but for some irretrievable loss of phase memory due to transverse 
relaxation. 

For spin 1/2 systems the pulse sequence ( 1r /2)x- T- ( 1r )y- tis used. It is commonly 

called a Hahn echo and has a simple vector description. The quadrupolar echo pulse 

sequence (7r/2)x- T- (7r/2)y- tis used for spin 1 systems [43]. It is not immediately 

obvious how this pulse sequence inverts the plane in which the state evolves due to the 

quadrupolar interaction. In appendix A the quadrupolar echo is explained using the 

density operator formalism described above. 

The quadrupolar echo sequence is often used simply to obtain a spectrum in situations 

where the spectrum is broad. It is more powerful, however, in that it can be used in 

combination with other pulse sequences to refocus specific coherences. The technique 
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also lends itself to the measurement relaxation times. The trailing half of the echo at 

t = 2r as calculated in equation A.18 is equivalent to the free induction decay signal [35] 

but for some irretrievable loss of phase memory due to motions which reorient the C-D 

bond during the pulse sequence. 

2.5 2H Quadrupolar Relaxation 

The static Hamiltonian of equation 2.1 should more precisely be written 

1io = 1iz + (1iQ(t)) (2.18) 

where 1iz is the Zeeman Hamiltonian and 1iQ(t) is the time-dependent quadrupolar 

Hamiltonian. The quadrupolar relaxation Hamiltonian for a spin 1 system, namely the 

deuteron's interaction with the electric field gradient of the nucleus under the influence 

of molecular motion, is of the form [40] [35] 

1iqlax(t) = 1iQ(t) _ (HQ(t)). (2.19) 

1i(Jlax(t) is the time-dependent part of the thermally driven quadrupolar Hamiltonian 

1iQ(t) with respect to the average value (1iQ(t)). 1iQ(t) is a randomly fluctuating function 

whose time-dependence is in the random functions O(t) and ¢(t), the polar and azimuthal 

angles of the symmetry axis of the EFG in a magnetic field along the z-axis. The 

fluctuations of the field at the site of the nucleus are the result of motions which change 

the orientation of the C-D bond. 

These motions have associated with them a correlation function Gmm'(t) expressed 

in terms of a scalar product of the local field F m ( t) and the same local field at some 



Chapter 2. 2 H NMR Theory 32 

later time Fm'(t'). Gmm'(t) is thus a measure of how rapidly the EFG (and wQ) is being 

modulated. For random motions the correlation function 

(2.20) 

is exponential and independent of the time origin. Tc is called the correlation time for 

the motion. The Fourier transform of the correlation function 

(2.21) 

is called the spectral density. Because of the inverse relationship between Gmm'(t) and 

Jmm'(w), slow motions with long correlation times will have large spectral densities at 

low frequencies. 

Relaxation times are normally written in terms of spectral densities. The relation­

ships can be derived through time-dependent perturbation theory [44] or equivalently by 

using the density matrix [35]. Table A.2 lists the relaxation times associated with the 

various spin 1 basis operators p. T2 describes the decay of the transverse single-quantum 

coherences, and thus the quadrupolar echo amplitude, resulting from modulation of WQ 

by these motions. T2 is written in terms of the spectral densities J0 (0), J 1 (w0 ) and 

J2(2wo), and is thus sensitive to motions which randomly vary the EFG at frequencies 

w 0 and 2w0 , as well as very slow motions. 2 H NMR relaxation measurements provide an 

ideal means of observing slow motions in lipid bilayers. 

The fluctuations of the quadrupolar interaction give rise to a random accumulation 

of phase which results in a decay of the quadrupolar echo. To account for relaxation, 
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Figure 2.4: Quadrupolar echoes for a typical sample at 57°C. Time shown is for signal collected following 
removal of the second pulse. Note the deadtime associated with the receiver. 

expression A.l6 for c1 (t) should be written 

(2.22) 

where T2 e is the effective transverse relaxation time describing the decay of the echo 

amplitude. The echo amplitude is measured for various values of r as shown in figure 2.4 

and fit to an exponential decay to extract T2e. 

2.6 Molecular Motion and Second Moments 

A motion which modulates WQ is expected to modulate a portion, !::1M2 , of the second 

moment of the spectrum [9]. Hence T2e may be interpreted in terms of the change in M 2 

[40]. For fast motions which contribute to motional narrowing, T2e ~ T2 and the change 
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in the observed second moment is 

(2.23) 

the mean square fluctuation in the quadrupolar splitting. Adiabatic motions are too 

slow to contribute to motional averaging and only gradually modulate the orientation-

dependent quadrupolar splittings. For slow motions, 1/T2e is the effective quadrupolar 

echo decay rate and the observed second moment is M 2r, the residual second moment of 

the spectrum [45]: 

(2.24) 

Pauls et al. [46] have defined the relationships between T 2e, 6.M2 and the correlation 

time, Tc, for the limiting cases of fast and slow motions. For fast motions which contribute 

to motional narrowing, 

while for slow motions which do not contribute to motional narrowing, 

1 1 
-<X-. 
T2e Tc 

(2.25) 

(2.26) 

Since 1/T2e ex Tc for fast motions while 1/T2e ex 1/rc for slow motions, the value of T2e 

must go through a minimum for intermediate values of Tc. 
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Acyl Chain Order in DPPG /DPPC l\1ixtures 

3.1 2H-NMR Spectra 

A 2H-NMR spectrum of the fully-hydrated chain-perdeuterated phospholipid is a super-

position of axially averaged powder patterns arising from the different deuterons for the 

various CD2 segments along the acyl chains and the terminal CD3 segment. For fluid 

membranes the molecular motions are axially symmetric and the normal to the bilayer 

is the axis of symmetry. The quadrupolar splitting of each powder pattern is given by 

equation 2.10 

~ (0 A-) = ~ e2qQ IS I (3cos2 ()- 1) 
VQ '"f' 2 h CD 2 ' 

where <P describes the orientation of the C-D bond with respect to the bilayer normal and() 

is the angle between the bilayer normal and the static magnetic field. The deuteron order 

parameter Sen reports on the average conformation of the phospholipid molecule and the 

amplitude of the motions of the corresponding CD bond. The order parameter (Sen) 

averaged over all the deuterons in the sample thus provides time-averaged structural 

information about the membrane system. 

A deuterium spectrum typical of a liquid crystal bilayer conformation is shown in 

figure 3.1. Figure 3.1 also shows the spectrum corresponding to an oriented sample where 

35 
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80kHz 
Figure 3.1: 2 H-NMR spectrum of DPPC-d62 at 60°C. The powder spectrum is shown on top and the 
corresponding dePaked spectrum, calculated from the powder spectrum, is shown on the bottom. 

the bilayer normal is parallel to the field (0 = 0). Analytical dePakeing of spectra [47] 

[48] was used to separate the superimposed peaks and obtain oriented spectra. Near the 

outer edges of the dePaked spectrum there is an overlapping of the quadrupolar splittings 

corresponding to roughly seven C D 2 segments closest to the glycerol backbone. Further 

away from the glycerol backbone the acyl chains experience progressively more motional 

freedom, giving rise to well-resolved peaks. The terminal methyl groups experience the 

greatest degree of motional freedom and thus correspond to the smallest quadrupolar 

splittings. 

The first moment of the spectrum M 1 is directly related to (Sen) and so is used as a 
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measure of chain order: 

M 1 represents a sum over the quadrupolar splittings (49] 

laoo f(v) v dv 

Mt = 1~ f(v)dv 
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(3.1) 

(3.2) 

and can be calculated directly from the spectrum. Because the odd moments of a sym-

metric spectrum will be zero, it is customary to take the moments of the half-spectrum. 

The nature of the data collection dictates that the spectrum obtained from a fast Fourier 

transform (FFT) of the time series data will be a discrete rather than continuous func-

tion. Equation 3.2 then becomes the weighted harmonic average over the N points of 

the half-spectrum; 
N 

LF(vj)Vj 
(MI) = _i=-~---­

LF(vj) 
j=l 

(3.3) 

The temperature dependence of M 1 can also provide information about phase be-

haviour. When phospholipids undergo a phase transition from liquid crystalline to gel 

there is a dramatic change in the spectrum, as demonstrated in figure 3.2 for pure DPPC-

d62 • The molecular motions which determine the shape of the spectrum in the fluid phase 

are rapid axially symmetric motions, while the gel phase spectrum is dominated by slow, 

axially asymmetric motions (31] [50]. 
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Figure 3.2: Temperature dependence of pure DPPC-d6 2. 

3.2 Results and Discussion 

The first question addressed is how calcium affects the phase transition and chain order 

of pure DPPC-d62 • As demonstrated in figure 3.3 for pure DPPC-d62 Ca2+ induces a 

slight shift in the transition temperature. The presence of calcium has little effect on 

chain order in either the liquid crystal or the gel phase of chain-perdeuterated DPPC. 

The effect of DPPG on the thermotropic behaviour and chain order of DPPC in the 

absence of calcium was also investigated. In figure 3.4 each of the samples exhibits a 

sharp phase transition and there is no evidence of two-phase coexistence. There is a 

slight shift in transition temperature and the small difference in spectral moments in 
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Figure 3.3: M 1 order parameter temperature profiles for pure DPPC-d62 samples prepared in the absence 
(e) and presence ( o) of Ca2+. 

the liquid crystal regime is indicative of some limited effect on chain order above T m for 

these samples. Interestingly, the observed spectral moments for the pure DPPC sample 

are higher than those for samples containing 30% and 50% DPPG. This reflects a tighter 

packing of the phosphocholine moiety despite its larger steric size compared with that 

of the glycerol residue. A possible explanation is that a headgroup carrying a negative 

charge can more easily form hydrogen bonds, as proposed by Sixl and Watts (29]. It would 

presumably have many water molecules associated with it, resulting in a larger effective 

area per lipid. The perturbing effect of one lipid headgroup on the other in this case 

may arise from direct molecular interactions or be mediated through hydrogen bonding 

or structural changes in the water layer at the membrane surface, or quite possibly both. 
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Figure 3.4: M 1 order parameter temperature profiles for mixtures of chain perdeuterated DPPC and 
DPPG in the absence of Ca2+. The negatively charged DPPG-d62 component in the samples is 0% ( o ), 

30% (.6), 50% (.A) and 100% (e). 

A different behaviour is observed for corresponding mixtures of chain perdeuterated 

DPPC and DPPG with Ca2+ present in the hydrating buffer. In this series of samples 

the mole fraction of the DPPG moiety was varied while the total number of available 

Ca2+ ions was kept constant. The results in figure 3.5 show an increasing shift to higher 

transition temperatures with increasing proportion of the negatively charged lipid. This 

suggests that in the presence of calcium ion DPPG has an ordering effect on the acyl 

chains of both lipids in the liquid crystal phase. The interaction of Ca2+ may interrupt 

the network of hydrogen bonding that most probably occurs through water molecules 

across the bilayer surface. Such molecular disruption at the membrane surface may also 
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Figure 3.5: Order parameter temperature profiles for 0% (D), 7% (~), 15% (0), 25% (•), 30% (A), 35% 
(+) and 50% (e) DPPG in DPPC in the presence of calcium ion. 

increase the density in the hydrocarbon chain region and contribute to the shift of the 

bilayer gel to liquid-crystalline phase transition to higher temperatures. 

For temperatures straddling the broadened transition region these samples exhibit 

coexistence of liquid crystal and gel phases. For example, between 45°C and 42°C the 

spectra for 35% DPPG-d62 in DPPC-d62 are superpositions of components from lipids in 

gel and fluid domains, as shown in figure 3.6. The narrowness of the transitions indicates 

that the lipids are melting together and are randomly mixed. 

As the temperature is lowered in this two-phase region, gel phase domains grow at the 

expense of fluid phase domains [51]. The fraction of the lipids in the gel phase thus in-

creases while the fluid phase fraction decreases. If lipids are not rapidly diffusing between 
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Figure 3.6: Spectra for 35% DPPG-d62 in DPPC-d62 for temperatures spanning the phase transition. 
These spectra exhibit coexistence of gel and fluid phases. 

gel and fluid domains, the relative size of the domains should be accurately reflected in 

the relative intensities of the gel and fluid phase contributions to the spectrum. The 

two-component spectra were used to obtain a partial phase diagram for DPPC/DPPG 

in Ca 2+, shown in figure 3. 7. This estimation of phase boundaries by inspection of the 

spectra is less rigorous than the technique used by Huschilt et al. [52] to derive phase 

diagrams. The assumption is made that the process of exchange between domains has 

negligible effect on the spectrum. Since the phase transition for pure DPPG occurs at 

86°C, it is not possible to extrapolate the phase diagram to significantly higher DPPG 

concentrations. 
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Figure 3.7: Partial phase diagram for DPPC/DPPG in 10 mM Ca2+. Gel and liquid crystal coexist in 
the region between the two boundaries. The region above the two-phase region is liquid crystal and that 
below is gel. 

Given the charged nature of the anionic headgroups and the divalent cations, the 

question arises as to whether Ca2+ is interacting with both DPPC and DPPG, or pref-

erentially with DPPG so that the effect observed on DPPC is an indirect result of the 

subsequent altered environment it experiences. In the latter case a Ca2+ -induced change 

in headgroup orientation of the anionic lipid and expulsion of some of the surrounding wa-

ter molecules in its hydration layer could conceivably introduce further steric constraints 

on both headgroups and side chains of neighbouring lipids via a reduced area per lipid. 

While DPPC may not form a specific complex with Ca2+, Seelig et al. have shown that 

its headgroup orientation is sensitive to the bilayer surface charge [53] [16]. A change 

in its orientation might also result in a smaller area per headgroup and tighter packing 
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of the lipid chains. However, in figure 3.3 it was observed that the order parameters for 

pure DPPC with Ca2+ are almost exactly superimposed on those for the sample without 

calcium in the La region. This is striking since, if Ca2+ is perturbing the headgroup 

orientation of DPPC, it is not perturbing the acyl chains, or at least not altering the 

amplitude of their motions. 

-32 0 
Frequency (kHz) 

32 -32 0 
Frequency (kHz) 

32 

Figure 3.8: 2 H NMR spectra of DPPC-d62/DPPC-d62/Ca2+ multilamellar dispersions at 60°C as a 
function of the negatively-charged component. The powder spectra are shown on the left with the 
corresponding dePaked spectra, calculated from the powder spectra, shown on the right. The mole 
fraction of the anionic lipid is indicated. 

If Ca2+ associates preferentially with the anionic lipid then we might expect DPPC 

and DPPG to behave differently in the mixtures. 2 H NMR spectra for mixtures with 

both lipids deuterated are shown in figure 3.8. The powder spectra on the left are 

characteristic of axially symmetric motion in liquid crystalline environments. There 
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IS no observable separation of liquid crystalline DPPG-Ca2+ domains which would be 

expected to contribute a broad signal. The dePaked spectra display the same number 

of resolvable splittings as would be seen for DPPC-d62 • This indicates that the DPPC-

d6 2 and DPPG-d62 chains are effectively indistinguishable in the mixture and suggests 

that there is no Ca2+ -induced phase separation for these concentrations. The complete 

miscibilty of DPPG-d62 and DPPC-d62 witnessed in the samples under study leads us to 

assume that the membrane charges are uniformly distributed over the surface. 
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Figure 3.9: Isotopic substitution effects for samples containing 30% DPPG in DPPC with cal­
cium ion present. M 1 order parameter temperature profiles are shown for DPPG/DPPC-d62 (e), 
DPPG-d62/DPPC {.&), and DPPG-d62/DPPC-d62 (•) mixed bilayers. 

Since the timescale of 2H NMR is ~ 10-6 s, the quadrupole splittings are mainly 
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determined by the average conformations of the phospholipid molecules and the ampli­

tudes of the motions of the individual segments. There are contributions to the 2 H NMR 

spectrum from all deuterated lipids. The experimenter is thus prevented from observing 

Ca2+ -induced effects on individual lipids. It is possible, however, to obtain information 

about the average environment sampled by lipids of one type by selecting the component 

to be isotopically substituted. In figure 3.9 the first spectral moments are plotted for 

lipid mixtures containing 30% DPPG component with one or both lipids deuterated. 

The result that the phase transition of the sample with both lipids deuterated is lower 

than that with either the anionic lipid or the zwitterionic lipid deuterated, and is not an 

average of the two, can be explained by the shift in transition temperature introduced by 

isotopic substitution. The transition temperature is 41 oc for the nondeuterated forms 

of DPPC and DPPG as opposed to 37°C for the deuterated species [54]. The differences 

in T rn observed here can be attributed to the amount of isotopically substituted probe 

molecule present, and not to different environments sampled by the DPPC and DPPG. 

The samples exhibit similar chain order in the liquid crystalline and gel phases. These 

results do not support a preferential association of Ca2+ with the DPPG headgroup or 

segregation into domains rich in DPPG or DPPC. 

Figure 3.10 shows the first spectral moments for successive heating and cooling cycles 

of 30% DPPG-d62 in DPPC-d62 in calcium. The order parameters exhibit no dependence 

on the thermal history of the sample. Cycling the temperature does not appear to affect 

the packing of the lipids in the mixed bilayers. In figure 3.11 the order parameters are 

compared for mixtures containing 30% DPPG-d62 in DPPC-d62 in calcium, prepared 
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Figure 3.10: M 1 order parameters for the first cooling run (e) of 30% DPPG-d62 in DPPC-d62 mixed 
bilayers hydrated in the presence of Ca2+; (£) indicate the effect of successive heating and cooling. 

using the two different hydration protocols. There was no appreciable difference in acyl 

chain order in either the La or the Lf3 phase for the two samples. The results shown 

in figures 3.10 and 3.11 indicate that ordering of the acyl chains in the mixtures is 

independent of the thermal history and method of preparation of the sample. This will 

be contrasted with the results for the quadrupole echo decay in chapter 4. 

3.2.1 Summary 

The presence of calcium causes the main transition of DPPG-d62 /DPPC-d62 mixed bi-

layers to shift upward and broaden. The effect is increasingly manifest with increasing 
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Figure 3.11: Order parameters for 30% DPPG-d62 in DPPC-d62 prepared via gentle stirring lipids in 
buffer (e) and rotating buffer in flask above Tm (.A.). Both samples contained Ca2+. 

proportion of the glycerol component in the mixtures. The acyl chains are thus sensitive 

to the bilayer surface charge. When calcium is absent from the hydrating buffer the 

chains are insensitive to the bilayer surface charge. The mode of interaction of DPPG 

with DPPC in the absence of calcium may be predominantly a headgroup interaction, 

while in the presence of calcium the acyl chains are also affected. This may be due to 

a Ca2+ -induced change in the headgroup orientation, or to the exclusion or extrusion 

of water molecules resulting in increased order of the acyl chains. DPPG and DPPC 

behave similarly in the mixtures. There is no evidence of phase separation into pure 

DPPG or DPPC domains. The observed effects are consistent with previous results . In 
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a 2 H NMR study of the effects of divalent cations on acyl chain ordering in 5 : 1 mixtures 

of DPPC-d62 :DPPG and DPPC:DPPG-d62 by Zidovetski et al. [30], the lipids were ob­

served to be well-mixed and no phase separation was detected. The acyl chains of both 

lipids experienced ordering effects in the presence of Ca2+. 



4 

Acyl Chain Dynamics in DPPG/DPPC :M:ixtures 

Interactions in the headgroup region might be expected to influence not only the acyl 

chain order, but also the motions of the acyl chains at the 2 H NMR timescale. When the 

timescale of the motion is comparable to the inverse spectral width it is possible to get 

information on how different motions depend on the physical state of the bilayer. 

Transverse 2 H spin relaxation measurements were carried out by applying quadrupo­

lar echo pulse sequences. Quadrupolar echo decay rates were measured as a function of 

temperature. All the quadrupolar echo decays were adequately fitted by a single expo­

nential function of the pulse spacing r. In determining rates using the initial slopes of the 

decay curves, we are implicitly averaging the relaxation behaviour over orientation and 

position along the chain. The deuteron transverse relaxation times in the liquid crystal 

bilayers exhibited some dependence on sample preparation. 

4.1 Results and Interpretation of the T2e Measurements 

Motions are characterised by correlation times. The lipid acyl chains undergo an array of 

motions as discussed in section 1.1.2. The calculation of correlation times from deuteron 

T2 e values is not always straightforward [55] because the different motional modes and 

50 
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their relative contribution to the modulation of WQ are not well-understood. 

In section 2.6 it was noted that 1/T2e ex Tc for fast motions and 1/T2e ex 1/rc for 

adiabatic motions. The rates of motion are additive and the measured value of T2 e really 

reflects a combination of contributions from motions of the acyl chains covering a range of 

timescales. A single relaxation time is insufficient to determine a molecular motion. For 

a given temperature some motions are much more effective than others in modulating 

the quadrupolar interaction, and are said to dominate T2e. The correlation times for 

thermally activated motions increase as the sample temperature is decreased. Variation 

of the sample temperature can be used to separate the various types of motions [49]. 

As the temperature of the sample is decreased, the correlation time for some motions 

may become long enough that 6.M2r; ~ 1. At the transition they suddenly become 

effective in modulating the quadrupolar interaction. This results in a large increase 

in the echo decay rate which often accompanies the chain-melting transition. Upon 

further cooling below the transition temperature the correlation times for most relevant 

motions pass into the regime where 1/T2e ex 1/rc and the decay rate now decreases as 

the temperature is reduced. Thus T2e passes through a minimum as the lipid molecules 

pass through the liquid crystal-to-gel transition temperature. 

In the gel phase, if faster motions are slowed down sufficiently that they become im­

portant for transverse relaxation, T2e may tend towards a second minimum. Motions 

which are the most likely candidates for an observed second T2e minimum are rotational 

diffusion and rapid trans-gauche isomerisation in the hydrocarbon chains. Upon cool­

ing below Tm, the values of TJ, the correlation time for isomerisation, remain largely 
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independent of temperature [8]. This implies that they are not frozen out at the main 

transition. 

4.2 Results and Discussion 
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Figure 4.1: Temperature dependence of T2e for DPPC-d62 in the absence of calcium. Values of T2e were 
calculated from decay curves of the quadrupolar echo amplitude. 

Figure 4.1 shows the deuteron transverse relaxation times for pure DPPC-d62 in the 

absence of calcium. The temperature profile of T 2e is typical of pure DPPC. A plateau 

is observed for T2e in the liquid crystalline phase which may mean that this phase is 

dominated by at least two motions with correlation times Tt and T2 such that f),.M2rf ~ 1 

and M 2rri ~ 1, i.e. fast and slow motions which have opposite contributions to 1/T2e· 

The adiabatic motions which dominate T2 e in this phase freeze out when the lipid bilayer 
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undergoes a transition to the gel phase. These motions are most likely motions which 

occur over large length scales, such as translational diffusion around vesicle surfaces and 

collective modes of the bilayers. 
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Figure 4.2: Temperature dependence of T2e for pure DPPC-d62 (e) and 30% DPPG-d62/70% DPPC-d62 
mixed bilayers (£) in the absence of calcium. 

Figure 4.2 shows that the addition of DPPG-d62 to DPPC-d62 substantially alters 

deuteron transverse relaxation in the liquid crystal but not the gel phase of these bilayer 

systems. This suggests that the interaction of DPPG with DPPC bilayers perturbs the 

slow collective or diffusive motions which are responsible for transverse relaxation in the 

liquid crystal regime and are frozen out at the chain-melting transition. The addition of 

DPPG does not affect the more local motions which dominate the decay in the gel phase. 

The behaviour in the liquid crystal phase may be sensitive to sample preparation. This 
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Figure 4.3: Temperature dependence of T2e for DPPC-d62 bilayers hydrated in the presence (+) and 
absence (e) of Ca2 +. 

will be addressed below. 

Calcium affects the motions which dominate the quadrupolar echo decay in the liquid 

crystal phase for pure DPPC. In figure 4.3 we observe no substantial effect in the gel 

phase of pure DPPC with the addition of calcium. The calcium ion may have a perturbing 

influence on a hydrogen-bonding network at the surface of pure DPPC. 

The transverse relaxation time exhibited some dependence on thermal history in the 

binary lipid mixtures under study. Figure 4.4 shows the T2 e temperature profile for 

30% DPPG-d62 in DPPC-d62 with Ca2+ present in the hydrating buffer. For successive 

heating and cooling cycles the T2e plateau is observed to progress towards lower values, 

corresponding to longer correlation times. 

Figure 3.11 showed that the orientational order of the acyl chains was insensitive 



Chapter 4. Acyl Chain Dynamics in DPPG/DPPC Mixtures 55 

1400 r-

1200 1-

r·... ... • 
. : ··.. -···. ..·· 

.· ··--·· .· .· 
··-· 

1000 1- ! .A .. 
j / .......... ........ .. ... ~---~--- .... 

- 800 (/) -:::1. -Q) 
N .,_ 

600 r-

400 f-.. -· 

200 1-

!i . : .. 
__ .. -•--•·-·.·.&_ ;: ··•··· ·~-.. ,, . 

-~-, .. -· .. 
, ...... 

0 
20 25 30 35 40 45 50 55 60 

Temperature (°C) 

Figure 4.4: T2e relaxation times calculated for the first cooling run (e) of 30% DPPG-d62 in DPPC-d62 
mixed bilayers hydrated in the presence of Ca 2+. The sample was subsequently° C warmed back to 64 ° C 
and the data represented by (.A) indicates the effect of this second cooling run. 

to the method of hydration. Quadrupole echo decays, however, displayed a marked 

dependence on the hydration protocol. Figure 4.5 shows the temperature dependence 

of T2e for equimolar mixtures of DPPG-d62 in DPPC-d62 with Ca2+ for different sample 

histories. By gently stirring the lipids in the buffer it was possible to achieve a state 

where the hydrated lipids exhibited a high T 2e in the liquid crystal phase. Successive 

heating and cooling cycles irreversibly altered the observed T 2e in this phase. During 

the fourth temperature cycle T2e approaches the behaviour of the corresponding sample 

prepared by hydrating the lipids in the flask above Tm.. This new plateau is observed 

to be stable for the subsequent cycle. It appears that in these DPPG/DPPC mixtures, 

the structures formed initially are metastable and evolve towards more stable structures 
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Figure 4.5: T2e times for equimolar DPPG/DPPC bilayers hydrated above Tm (.&) and for first (.6), 
second (D), third (0), fourth (e) and fifth(+) heating and cooling cycles for the corresponding sample 
hydrated with gentle stirring. 

with shorter T2e times. Again the T2e behaviour in the gel phase is independent of sample 

history. 

Samples hydrated in the flask above the transition temperature were not observed to 

evolve with cycling of the temperature. T2 e relaxation times are remarkably reproducible 

for vesicles of 7% DPPG in DPPC prepared with Ca2+ buffer in this manner, as shown 

in figure 4. 7. The quadrupolar echo decay is independent of thermal history for this 

sample. T2 e relaxation times of vesicles of 30% DPPG in DPPC prepared using this same 

hydration protocol are shown in figure 4.8. We observe that Ca 2+ causes an upward shift 

of the transition temperature but has negligible effect on T2e in the LOt phase. In the 

gel phase Ca2+ appears to cause the motions dominating the decay rate to freeze out 
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Figure 4 .6: T2e times for 30% DPPG in DPPC prepared via gently stirring lipids in buffer (e) and 
rotating buffer in flask above Tm (.&) . Both samples contained Ca2+. 

more quickly. Figures 4. 7 and 4.8 provide evidence that the ultimate stable structure is 

insensitive to either Ca2+ or to the thermal history of the sample, but is sensitive to the 

concentration of the anionic component in binary lipid mixtures. 

The evolution of T2e towards a lower, stable value indicates that changes induced in 

the bilayer via temperature cycling are important for the motions which contribute to 

the decay of the quadrupolar echo in the liquid crystal phase. We have remarked that the 

first spectral moments for DPPG/DPPC mixed bilayers are insensitive to the thermal 

history of the sample while T2 e evolves with temperature cycling. The order parameters 

and echo decay times for 30% DPPG in DPPC prepared with Ca2+ are presented together 

for comparison in figure 4.9. While the rates of motions which modulate WQ have changed 

in the La region, the average orientation of the acyl chains have not. DPPG and Ca2+ 



Chapter 4. Acyl Chain Dynamics in DPPG/DPPC Mixtures 

-(J) 

:::t. -

1200 -

1000 -

800 -

600 -

4QQ r • ------ -•-

200 e-

0 
20 25 

... 

30 

• ... 
. ····--·-- .··• ............ ·· ---....... 

i • -.. 
-•• _ f 

-..... 

.. 

35 40 45 50 
Temperature (°C) 

55 60 

58 

-

-

-

-

-

-

65 

Figure 4.7: T2e times calculated for the first (•), second (.A) and third (e) successive cooling cycles for 
7% DPPG-d62 in DPPC-d62 hydrated by soaking with Ca2+ buffer in flask above Trn. 

interact with DPPC bilayers in a way which has little effect on the amplitude of the 

fast chain conformational fluctuations which determine mean orientational order for the 

perdeuterated chain in the liquid crystalline phase. This is strong evidence that it is the 

adiabatic motions that have changed since these motions do not contribute to motional 

narrowing. 

In figures 4.10 and 4.11 we observe that for the samples hydrated with gentle stir-

ring, the T2 e behaviour evolves with temperature cycling even in the absence of calcium. 

The effect was considerably more pronounced for equimolar mixtures of DPPC-d62 and 

DPPG-d62 than for pure DPPC-d62 bilayers. This suggests that the sensitivity to sample 

preparation is likely associated with DPPG rather than with calcium. The metastable 



Chapter 4. Acyl Chain Dynamics in DPPG/DPPC Mixtures 

-(f) 

::::1.. -., 
N 

r--

1200 

1000 

800 

600 

k . 

400 

200 

0 
20 

·-... 
... 

25 

.. -·---·---·---·-- . 
•. ···---·---·--·---·---' •&.. .. . : ·-·-·---·---·--- A. .. .•. .. _... _.. . - --------- ~ .... : . 

:'·.. -~ 
. . ·-..---~ ...... . 

30 

- ....... .. 
35 40 45 
Temperature (°C) 

50 55 60 

59 

Figure 4.8: T2e temperature profiles for 30% DPPG-d52 in DPPC-d52 hydrated in a flask above Tm in 
the absence (.&) and presence (e) of Ca2+. 

structures become progressively less stable with respect to their ultimate state as the 

proportion of DPPG in DPPC increases. 

While temperature cycling is observed to significantly alter deuteron transverse re-

laxation in the liquid crystal phase, the echo decay rate in the gel phase of these bilayer 

systems is insensitive to successive heating and cooling. This implies that the motions in 

the liquid crystal regime which are affected by the thermal history of the sample are those 

which are already on the slow side of the T2e minimum and freeze out at the transition. 

Those motions which are not frozen out at the transition are apparently not affected by 

temperature cycling. 

By comparing relaxation rates for samples containing 30% DPPG 1n DPPC with 
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Figure 4.9: M1 order parameters (left) and T2e relaxation times (right) for the first cooling run (e) of 
30% DPPG-d62 in DPPC-d62 mixed bilayers hydrated in the presence of Ca2+; (A) indicates the effect 
the second cooling run. 

either one or both lipids deuterated, it is possible to determine whether the motions 

in DPPG and DPPC acyl chains differ in mixtures of the two lipids in the presence of 

calcium. From section 3.2 we expect that there will be some isotope effect in the position 

of the T2e minimum. In figure 4.12 it is seen that the quadrupolar echo decay rates for 

DPPG/DPPC-ds2, DPPG-d62 /DPPC and DPPG-d62 /DPPC-d62 are similar in the gel 

phase. The difference in the height of the T2e plateau in the liquid crystalline phase for 

the mixture with both lipids deuterated may be a reflection of the sample preparation and 

not a real difference in the effectiveness of the motions which dominate T2e in modulating 

the quadrupolar interaction. 
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Figure 4.10: T2e times calculated for the first cooling run (e) of pure DPPC-d62 hydrated in the absence 
of Ca2 +; (.&)and(+) indicate the effect of successive cooling cycles. 

4.2.1 Summary 

In DPPG/DPPC mixtures the behaviour of the quadrupolar echo decay in the liquid 

crystal phase is curious. With an appropriate choice of hydration protocol it is possible 

to prepare the multilamellar vesicles in a metastable state with respect to more stable 

structures to which they eventually transform upon repeated heating and cooling. The 

formation of this metastable state depends on the DPPG content in the mixtures. This 

evolution is manifested only in T2e in the liquid crystal phase. McElhaney et al. [19] 

observed changes in lipid packing in the gel phase of pure DPPG upon prolonged incu-

bation at low temperatures. No investigation into the motions in pure DPPG bilayers 

was performed by these authors. 
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Figure 4.11: T2e times calculated for the first cooling run (e) of equimolar DPPG-d62/DPPC-d62 mixed 
bilayers hydrated in the absence ofCa2+; (.A.) and(+) indicate the effect ofsuccessive heating and cooling 
cycles. 

In the ultimate hydration state in our samples the echo decay time in the La state 

IS stable and lower when DPPG is present in the mixtures. Calcium does not have a 

significant effect on T 2e when the multilamellar vesicles are in their ultimate stable state. 

It appears that the sensitivity of the slow motions in the liquid crystal phase to sample 

preparation is associated with the anionic lipid rather than with calcium. Since the 

quadrupolar splittings are insensitive to the thermal history of the sample, it is unlikely 

that D..M2 for the faster motions changes as mixtures prepared by gentle stirring in buffer 

evolve towards their stable states. The reduction in T 2e with temperature cycling in these 

mixtures might be accounted for by a decrease in Tc for the slow motions, or alternatively 

by an increase in Tc for the fast motions in the liquid crystal phase. It is difficult to 
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Figure 4.12: Isotopic substitution effects for samples containing 30% DPPG in DPPC with calcium 
ion present. T2e temperature profiles are shown for DPPG/DPPC-d62 (+), DPPG-d62/DPPC (A), and 
DPPG-d62/DPPC-d62 (e) mixed bilayers. 

conceive that a change tending to decrease the rate of chain isomerisation or rotational 

diffusion would not result in a change in lateral organisation of the bilayer. On the other 

hand alterations in the hydrogen bonding network or the hydration layer at the bilayer 

surface could conceivably occur with repeated heating and cooling cycles , especially if 

such a network is disrupted by the incorporation of DPPG into the membrane. If T2e is 

dominated by very slow motions involving large length scales, such as collective motions 

and diffusion around a vesicle surface, their correlation times could be affected by changes 

in hydration or order in the headgroup region. 

Samples prepared using different hydration protocols may very well have different 

distributions of vesicle sizes which could determine the dominant relaxation mechanism. 
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For example, lateral diffusion should contribute more strongly to transverse spin relax­

ation for smaller vesicles than for larger multilamellar vesicles. It is not clear, however, 

that temperature cycling should be expected to affect vesicle size in a reproducible way. 

Importantly, the gel phase behaviour of T2e is insensitive to the hydration protocol. The 

motions responsible for transverse relaxation in the gel phase are predominantly localised 

reorientations which might be expected to be less sensitive to the details of vesicle for­

mation or bilayer hydration. 

A disruption of the bilayer surface with the incorporation of DPPG is consistent with 

the results of Kwon et al. (23], who observe that DPPG vesicles are more disordered 

than DPPC vesicles in a recent FTIR study. Their results also suggest that the car­

bonyl groups in the interfacial region of hydrated phospholipids participate in hydrogen 

bonding. McElhaney et al. argue that DPPG may be able to mimic the behaviour of 

water molecules for hydration sites in pure DPPG vesicles [19]. If DPPG is competing 

with water for hydration sites in the DPPG/DPPC mixtures under study, unstable or 

metastable hydration states could result. More work needs to be done to arrive at a 

better understanding of the important interactions in DPPG/DPPC mixed bilayers. 



5 

Concluding Remarks 

Deuterium NMR was used to study the order, dynamics and phase behaviour of 

DPPG/DPPC mixed bilayers in the absence and presence of calcium. By using the 

available information from 2 H NMR spectra we have been able to determine that in 

the presence of Ca2+ the transition temperature and lateral packing density of the acyl 

chains increase modestly with increasing proportion of the DPPG component in these 

mixtures. A possible explanation is charge neutralisation and the resulting reduction 

in electrostatic repulsion between the headgroups, which would be reflected in an in­

creased lateral pressure. However, although there is little doubt that these effects are 

important, it is difficult to categorically assign the observed effects to the influence of 

electrostatic headgroup interactions given the differences in phase behaviour of various 

anionicfzwitterionic mixtures [14] [21] [22]. 

For systems with quadrupolar interactions, the orientation of the principal axis coor­

dinate system with respect to the magnetic field depends on the molecular motions. The 

decay of the quadrupolar echo is an excellent indication of the possible motions that may 

be contributing to relaxation. Our results from quadrupolar echo measurements lead us 

to conclude that hydration and hydrogen bonding are also important in influencing the 
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dynamics of these mixed bilayers. 

With an appropriate choice of hydration protocol it was possible to prepare the mul­

tilamellar vesicles in a metastable state with respect to more stable structures to which 

they eventually transform upon repeated heating and cooling. During this evolution the 

echo decay time decreases in the La phase when DPPG is present in the mixtures. This 

can be accounted for by an increase in the rates of slow motions which dominate the 

echo decay in the liquid crystal phase. The introduction of a negatively charged lipid 

component into DPPC membranes may alter the hydrogen bonding or modify the water 

layer at the surface, or both. 

If cycling the temperature alters factors such as hydration at the bilayer surface in 

these mixtures, there does not appear to be any effect on the lateral organisation of the 

lipids. This leads us to conclude that the motions which are affected by the presence of 

the anionic lipid are large length scale motions such as diffusion around curved vesicle 

surfaces or bilayer collective modes. These motions might be expected to be sensitive 

to such things as hydration and vesicle size. More local motions such as chain libration, 

lipid rotational diffusion and trans-gauche isomerisation were not observed to be sensitive 

to the concentration of DPPG in the mixed bilayers. 

Lung surfactant contains phosphatidylcholine with a large amount of anionic lipid. It 

is unclear whether the role of anionic lipids in lung surfactant is mediated by the actual 

chemical nature of the lipids or by an induced condensed state of the lipid domain. The 

question arises as to whether the role of the anionic lipid in large scale rearrangements 

in lung surfactant is related to its complicated effects on slow motions observed here. 
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The extraction of specific correlation times for the motions under discussion requires 

analysis of the quadrupole echo decays via a detailed model. Such a study is beyond 

the scope of this thesis but would be a next logical step in interpreting our relaxation 

data. These results also provide a basis for future studies for modeling the behaviour of 

DPPG/DPPC mixtures based on hydrogen bonds and hydration forces. 

A larger effect on motions and more interesting phase behaviour might be seen in 

shorter chain systems where the interactions at the bilayer surface might be expected to 

be greater. Conversely, a smaller effect might be observed in unsaturated chains where 

the relative roles of headgroups and chains are expected to differ. Other interesting ex­

tensions of this study would be to binary lipid systems containing different anionic lipids. 

Investigators of these systems have tended to focus on the influence of the anionic lipid or 

divalent cations on ordering of the lipid headgroups and acyl chains. An analysis of the 

motional behaviour in these systems has not been pursued. The interesting behaviour 

described here might be expected to be observed to varying degrees in binary systems 

containing, for example, PS, PA or PI in which the network of hydrogen bonding is 

thought to be quite different. This would lead to a better understanding of the various 

interactions at bilayer surfaces and of the nature of hydration forces in general. 
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Appendix A 

Density Matrix "freatment of Spin 1 Dynamics 

The following is a practical application of the more abstract NMR theory of chap­

ter 2. The product operator formalism is used to follow the role of the rf pulses and the 

quadrupolar interaction during the quadrupolar echo pulse sequence. The commutators 

for the spin 1 basis operators are tabulated below for convenience (table A.l). 

Table A.l: Commutators of spin 1 basis operators. 

~I 
1 0 3 -2 -v'36 -8 y'3 4 + 7 -6 5 

2 -3 0 1 v'35 -v'34+7 8 -5 6 

3 2 -1 0 0 6 -5 28 -2 7 

4 v'36 -v'35 0 0 v'32 -v'31 0 0 

5 8 v'34-7 -6 -v'3 2 0 3 2 -1 

6 -v'34- 7 -8 5 v'31 -3 0 1 2 

7 6 5 -2 8 0 -2 -1 0 23 

8 -5 6 27 0 1 -2 23 0 

*All values in table must be multiplied by i / v'2. 
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For deuterium in high fields the quadrupolar interaction is a small perturbation on 

the Zeeman interaction and Q0 ~ 10 • Therefore we will follow only the evolution and 

transformation of the Zeeman polarisation 10 during the experiment. The equilibrium 

density operator can be expressed in terms of the Cartesian lz spin operator. Initially, 

then, 

For the first pulse along they-axis the system evolves under 1-ly = -v'2nw12 and 

The equation of motion 2.15 for c3 (t) is 

- ~ L cq(t) Tr { Pq [1-ly, 3]} 
q 

W1 L Cq ( t) Tr { Pq 1} 
q 

Similarly the equation of motion for c1 ( t) is 

The solutions to these two coupled differential equations are 

I c1(ty) = -Io sin (w1ty) 

l c3(ty) = Io cos (w1ty). 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

Thus lz precesses into lx, or in operator space, precession occurs in the ( 1, 3) plane. For 

a pulse such that w1 ty = 1r /2, c3 ( ty) = 0 and c1 ( ty) = - Io. All of the magnetisation 

initially aligned along z has precessed into the negative x axis. 
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Between rf pulses the system evolves subject only to 1iQ = ~ nwQ 4: 

(A.5) 

and 

[1iq, 1] = ~ liwq [4, 1] = i1iwq6. (A.6) 

The quadrupolar Hamiltonian couples 1 to 6, so we also need 

[1iq, 6] = ~ liwq [4, 6] = -iliwql. (A.7) 

Precession under the influence of 1iQ is in the ( 1, 6) plane of Liouville space. In spin 

space the Quadrupolar Hamiltonian converts the lx operator into a linear combination 

of lylz and lzly. Again the evolution is described by two coupled differential equations 

whose solutions are 

dc1 (t) ( ) d 
dt = -WQCu t an 

l c1 (r) = 10 cos (wQr) sin (w1ty) 

eu(r) = 10 sin (wQr) sin (w1ty). 
(A.8) 

When a second pulse is applied along the x axis at t = T, both c1 ( T) and eu( T) are 

non-zero and 1ix = -v'2nw1 1. The equation of motion for c1 (t) is 

dc1 ( t) i "" { [ -] } dt = n 7 cq(t)Tr Pq 1ix, 1 = 0. (A.9) 

Ct(t) is thus invariant under this rf pulse. eu(t) is not invariant since 1ix and 6 do not 

commute: 

(A.lO) 
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and 

(A.ll) 

This suggests that we should also seek 

(A.12) 

and 

! [~ ( v'314(t) + c7(t))] = ~ ~:C9 (t) Tr { P9 [1tx, ~ ( v'3 4 + 7)]} = -2w1c,(t). 

(A.13) 

Once again we have two coupled differential equations. Just before the second pulse is 

applied, c4( T) = c7( T) = 0. Then, solutions for pulse length tx are 

cl(tx) =invariant 

CE>(tx) = Io cos (2wltx) sin (wQT) sin (w1ty) (A.l4) 

~ ( v'3c4(tx) + c7(tx)) = -Io sin (2wltx) sin (wQr) sin (w1ty) 

H both pulses are of duration w1 t = 1r /2, then 

After this second pulse the system is again allowed to evolve under the quadrupolar 

Hamiltonian. Only c1 (t) and CE>(t) are non-zero and need be examined. The commutators 

of interest are [1-lQ, 1] and [1-lQ, 6] as obtained above in A.6 and A.7. Again 1-lQ couples 

I to 6, but with different initial conditions following the two 1r /2 pulses: 
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Finally, at time t' from the removal of the second pulse, 

l c1 (t) = 10 {sin (wqr) sin (wqt') +cos (wqr) cos (wqt')} 

ct>(t) = 10 {sin (wqr) cos (wqt')- cos (wqr) sin (wqt')}. 
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(A.l5) 

From the origin of the pulse sequence t = t' + T, neglecting tx and ty, and the above 

equations A.l5 become 

l c1 (t) = 10 coswq (t- 2r) 

ct>(t) = -10 sin wq (t- 2r). 

(A.l6) 

The trace of Ix(t) provides the expression for the observed NMR signal. The free 

induction decay (FID) following the first pulse 

(A.l7) 

is the Fourier transform of the lineshape of the spin system [42]. Following the second 

pulse the signal forms an echo at t = 2r and then exactly reproduces the FID following 

the first pulse; 

(Ix(t)) = V2 Tr { Ip(t)} = vf2c1(t) = V2 Io cos (wq [t- 2r]). (A.l8) 

Refocussing of the phase memory lost during quadrupolar interactions is complete 

insofar as relaxation effects have been ignored. Thus the origin of the time domain 

may be shifted to the peak of the echo without losing any information. A more subtle 

consequence of this is that the QE signal decays only as a result of randomly fluctuating 

interactions and not due to any static distribution of quadrupolar splittings [1]. The 
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Table A.2: Quadrupolar Hamiltonian relaxation rates. 

Operator Relaxation Rate, A = 4
; w~ 

- I - I 
1 = 72,2 = 72 A =A [Jo(O) + ~J1(wo) + ~J2(2wo)] 

3= ~ T~z =A~ [J1(wo) + 4J2(2wo)] 

- 1 ( 2 ) 4 = 76 3Jz- 2 T
1 = 2AJ1(wo) 
lq 

5 = ~ (lxlz + lzlx), 6 = ~ (lylz + Jzly) T!q =A [Jo(O) + ~J1(wo) + ~J2(2wo)] 
- 1 ( 2 2) - 1 7 = .../2 Jx - JY , 8 = .../2 (lxly + lylx) ~ = 2A [J1(wo) + 2J2(2wo)] 

DQ 

quadrupolar relaxation rates in terms of the spectral densities J0 (0), J1 (w0 ) and J 2 (2w0 ) 

for the spin 1 basis operators are provided in table A.2 (56]. 
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- -2 6 

- -Invariants: 3, 4 

- -6 5 

Invariants: 3, 4, 7, S 

-2 5 

-----l''------'----- 3 

-1 

- 1--{3-
Invariants: 1 , 2 4 - 2 7 

-8 

- 1-...f3-
Invariants: 2, 2 4 + 2 7 

--t---'---7 

-6 
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Appendix B 

"W"igner Rotation l\1atrices 

Radiofrequency pulses applied down a specific axis induce rotations in a plane or-

thogonal to that axis. To describe a rotation about an arbitrary axis, we use the Euler 

angles. In general this involves three successive rotations, 

z=z' 

\ 

\/ 
\ 

\ 
\ 

y''' 

Figure B.l: The Eulerian angles </J, 8, {defined for right-handed rotations. 

• a about the z axis 
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• {3 about the new y axis - y' 

• 1 about the resulting z axis- z". 

The general rotation operator is written 

alternatively, we can define the rotations with respect to the original axes: 

The Wigner rotation matrix is defined as 

as shown in figure B.l. lm) and lm') are eigenstates for spin I and in a basis where lz is 

diagonal i.e. 

For these states, 

D~771,(a f3!) = e-ia71l d~711,({3) e-i-y71l' 

where k is the rank of the tensor and 

d:n
711

, ({3) = ( mle-i,8Iy lm') 

is the reduced rotation matrix. Values for elements of d:n
711

,({3) are tabulated elsewhere 

(34]. 
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As an example, for I= 1, m, m' = {1, 0, -1} 

and 

where 

D1 (a, /3, -a) 

d1(/3) = 

!(1 + cos/3) 1 . /3 --Sill 
.../2 !(1 - cos/3) 

1 . /3 ..,j2Slll cos/3 1 . /3 --Sill 
.../2 

!(1- cos/3) 1 . /3 
72Slll !(1 + cos/3) 

8 -e c 
D 1 (a, /3, -a)= et c -e 

ct et 8 

8 cos2 (/3 /2) 

e hcos(/3 /2) sin(/3 /2) e-ia 

cos2 (/3 /2) -0-cos(/3 /2) sin(/3 /2) e-ia sin2 (/3 /2) e-2ia 

85 

0,cos(/3 /2) sin(/3 /2) eia cos/3 -0-cos(/3 /2) sin(/3 /2) e-ia 

sin2 (/3 /2) e 2ia 0,cos(f3 /2) sin(/3 /2) eia cos2 (/3 /2) 

It can be seen that a rotation about the x-axis is equivalent to a rotation by 1r /2 about 

z, followed by a rotation about y (since the x axis is now where they axis was was), and 

finally a rotation by -7r /2 about z to return the x, y axes to their original positions: 

e -ialx = e -i1r /2Iz e -ia/11 e -i1r /2Iz. 
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Hence pulses of duration {3 along x and y, respectively, are represented by the Wigner 

rotation matrices 

D( 1r /2, {3, -1r /2) and D(O, {3, 0). 
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