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ABSTRACT 

Mesoderm induction ~arly response 1 (mi-er 1) was first isolated as a novel 

fibroblast growth factor (FGF)-inducible immediate-early gene activated during 

mesoderm induction in Xenopus embryos (Paterno et al., 1997). The human orthologue 

of mi-er 1 shares 91% similarity to the Xenopus sequence at the amino acid level. Human 

mi-er 1 was shown to be highly expressed in breast carcinoma cell lines and breast 

tumours while remaining barely detectable in normal breast cell lines and breast tissue 

(Paterno et al., 1998). In addition, hMI-ER1 was found to interact with estrogen receptor 

a (Savicky et al., unpublished data) whose dysregulated expression contributes to breast 

tumour development. These data suggest that the expression of human MI-ER1 is 

associated with the neoplastic state in breast cancer. 

The alternate use of a facultative intron at the 3' end of hmi-er 1 gives rise to two 

major protein isoforms, hMI-ER1a and hMI-ER1~. Transcripts encoding the~ isoform 

are predominant in almost all tissues. Interestingly, the potent nuclear hormone receptor 

interaction motif (LXXLL; L represents leucine and X represents any amino acid) is 

present only in the C-terminus ofhMI-ERla and hmi-er1a mRNA is observed mainly in 

endocrine tissues (Paterno et al., 2002). Sequence analysis also revealed that the only 

bona fide nuclear localization signal (NLS) is located in the C-terminus of~ isoforms 

(Paterno et al., 2002), suggesting distinct cellular functions ofhMI-ERla and~ isofonns. 

With all the conserved, functional protein domains, hMI-ER1 was found to interact with 

various transcriptional and growth regulatory proteins. Such interactions will be 

important for modulating cell growth in normal and neoplastic cells. 
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In this study, we investigated the functional role ofhMI-ERla in regulating 

growth of normal and breast cancer cells. Transient overexpression ofhMI-ERla 

suppressed growth of normal cell lines, but has no significant effect on three breast 

carcinoma cell lines. In contrast, blocking hMI-ERla expression by antisense strategy 

resulted in growth-inhibitory effects on breast cancer cell lines. And the preliminary data 

from Hoechst staining suggests that the growth-suppressive function of antisense hMI­

ERla in breast carcinoma cell lines is not due to induction of apoptosis. 
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Chapter 1: Introduction 

1.1 Principles of Cell Proliferation 

Life depends on the ability of cells to store, retrieve, and translate the genetic 

instructions required to make a living organism. This hereditary information is stored in 

the form of double-stranded deoxyribonucleic acid (DNA) polymers made from a 

sequence ofnucleotides (adenine, guanine, cytosine, and thymine) (Alberts et al., 2002). 

Information expressed by DNA provides cells an instruction manual for synthesizing 

other molecules when needed. The two key classes of molecules are ribonucleic acids 

(RNAs) and proteins. The biological information stored in DNA flows primarily from 

DNA to RNA to protein. This process occurs in two sequential steps: transcription and 

translation. First, DNA serves as a template for the synthesis of RNA; it is known as 

transcription. Later, RNA molecules are translated by the complex protein-synthesis 

machinery, giving rise to proteins. The segment of DNA sequence encoding a single 

protein is defined as a gene. In eukaryotes, DNA is folded into compact chromosomes 

and enclosed in the nucleus (Alberts et al., 2002). To form a functional chromosome, 

DNA must be able to replicate, and replicated copies must be separated and passed on to 

daughter cells at cell division. This orderly procession of DNA replication and cell 

division is collectively known as the cell cycle (Schafer, 1998). 

Accurately distributing the properly replicated DNA into two daughter cells is the 

fundamental requirement for normal cell proliferation. However, DNA lesions can occur 

under many conditions. For example, free radicals generated as byproducts of normal 
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metabolic processes and environmental factors such as UV -radiation both threaten the 

integrity of DNA (Coultas and Strasser, 2000). Cells respond to DNA damage either by 

undergoing cell cycle arrest or apoptosis (programmed cell death). In multicellular 

organisms, a balance between cell proliferation and cell death is the key to normal 

homeostasis. Cell proliferation is a complex, genetically regulated process. Many genes 

involved in the control of cell proliferation are also important factors in triggering cell 

death. An imbalance between positive and negative signals determining decisions 

between life or death leads to diseases linked with aberrant cell growth or unwanted 

apoptosis (reviewed in Vermeulin eta/., 2003). Therefore, it is important to note that 

apoptosis and cell proliferation are thoughtfully coupled. 

1.2 An Overview of the Cell Cycle 

The multiplication of a single cell involves two essential processes: (i) DNA 

replication; and (ii) segregating the replicated DNA into two daughter cells by cell 

division. This process of duplication and division is known as the cell cycle (reviewed in 

Schafer et al., 1998). The most fundamental purpose of the cell cycle is to pass on 

genetic information to the next generation of cells. The eukaryotic cell cycle is divided 

into four sequential phases: G~, S, G2 and M phases (Figure 1.1). In the two gap phases 

(GI and G2), cells take time to ensure that environmental conditions are favourable and 

preparations are completed before committing to DNA synthesis and mitosis. The length 

of G1 phase is the most variable; it depends on external conditions and extracellular 

signals from other cells. DNA replication occurs during S phase (S for synthesis). After 

S phase, chromosome segregation and cell division occur in M phase (M for mitosis) 

2 
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Figure 1.1 The phases of the cell cycle 
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The cell cycle can be divided into four main stages: ( 1) the M phase, which consists of 

nuclear and cytoplasmic divisions~ (2) the G1 phase, which is the gap between M phase 

and S phase~ (3) the S phase, in which DNA replication occurs~ (4) the G2 phase, which is 

the gap between S phase and M phase. G1, S, and G2 together are called interphase. The 

restriction point near the end of G1 is where cells commit to entering the cell cycle 

(Alberts et al., 2002). This diagram is modified from: 

http://www. geocities. com/CollegePark/Lab/ 15 80/cycle. html 
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[Alberts et al., 2002]. Gh S and G2 phases together make up interphase, the period from 

the end of one mitosis to the start ofthe next. A new cycle can begin only if internal and 

external environments are suitable for further cell growth. If not, cells will delay progress 

through G1 and may even enter a resting state termed Go. In Go, cells do not proliferate 

but can remain viable for a certain period oftime and later retain the ability to replicate 

nonnally in response to appropriate signals. The stimulation of growth factors together 

with favourable extracellular conditions will bring cells in early G1 or Go to pass a 

commitment point near the end of G1 known as the restriction point. Once cells progress 

through this point, they usually enter a further round of the cell cycle. 

1.3 Cell-Cycle Control System 

An elaborate network of regulatory proteins involved in governing the events of 

the cell cycle is known as the cell-cycle control system. If some errors happen during the 

course of the cell cycle, the control system will delay entry into the next phase. These 

delays not only provide time for the malfunction to be repaired, but also prevent genomic 

instability and survival of damaged cells. There are several points in the cell cycle, called 

checkpoints, at which the cycle can be arrested if basic criteria directing proper cell cycle 

progression are not satisfied (Stein et al., 1998). As shown in the Figure 1.2, the core of 

the cell-cycle control system consists oftwo distinct families of proteins: the cyclins and 

the cyclin-dependent kinases (CDKs). Cyclins undergo a cycle of synthesis and 

degradation in each cell cycle and function as regulatory subunits of CDKs. The CDKs 

regulate the cell cycle events by phosphorylating a broad spectrum of intracellular 

proteins (Murray, 2004). There is another group of proteins, the cyclin-dependent kinase 
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Figure 1.2 

Cell Division 

G2 s 

~ s 

Control of 
Cell Cycle Entry 

•'START 

"Restriction 
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DNA Replication 

Expression of the cyclins and CDKs at different stages of the cell cycle 

At the core of the cell cycle is the cyclin-dependent kinase (CDK) family. The activity of 

CDKs is dependent on its association with a regulatory subunit known as cyclins. In 

mammalian cells, different cyclin-CDK complexes are active and required at different 

phases of the cell cycle. CDK4 and CDK6 are active in early G1 by complexing with 

cyclin D to regulate restriction point progression. Cyclin E-CDK2 activated at the end of 

G1 is important for initiating DNA replication. Once cells enterS phase, cyclin A-CDK2 

is required to continue DNA replication. Cyclin A later binds to a key cell-cycle 

regulator, Cdc2, through G2 and M phases. The entry into mitosis is promoted by 

cyclinB-cdc2 complex, which also plays a role in nucleus disassembling and cell division 

(reviewed in Ivanchuk and Rutka, 2004). This diagram is reproduced from: 

htto://cpmcnet.columbia.eduldept/eukaryotic/cobriniknotes2.pdf 
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inhibitors (CDKis), is also important for signal transduction and coordination of each 

stage of the cell cycle. 

In mammalian cells, there are three classes of cyclins: the G1 cyclins (D-type 

cyclins 1-3 and cyclin E), the S phase cyclins (cyclins A and E), and the mitotic cyclins 

(cyclin A and B). Similarly, the CDKs can be grouped according to their roles in each 

phase ofthe cell cycle, i.e., the G1-CDKs (CDK4, CDK6 and CDK2), the S phase CDK 

(CDK2), and theM phase CDKs (CDK2 and CDKI). The CDKs are activated by 

complexing with the cyclins and by a pattern of phosphorylation and dephosphorylation 

at specific residues on the kinases. When activated, CDKs are responsible for the 

phosphorylation of effector molecules such as the retinoblastoma (Rb) protein, a key 

regulator ofG1 progression (Ivanchuk and Rutka, 2004). In order to maintain cell cycle 

integrity, cyclin-CDK complexes are inactivated by protein degradation (proteolysis) at 

certain stages. In addition to the degradation of various cyclins when necessary, CDKls 

also have a central role in regulating cycin-CDK activity. There are a variety of CDKl 

proteins, which function as the "brake" in the system. Such inhibitory proteins are 

classified into two major groups: the INK4 (specific inhibitor ofCDK4) family and the 

CDK inhibitor protein (CIP)/ kinase inhibitor protein (KIP) family (Pavletich, 1999). 

Each of the cyclin-CDK complexes, together with the CDKis, are responsible for 

controlling different stages of cell cycle by preventing progression if DNA is damaged. 

Dysregulation ~fthis cell-cycle control system contributes to uncontrolled cell growth 

and carcinogenesis. 
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1.4 Programmed Cell Death (Apoptosis) 

Cell viability and death are mutually exclusive partners. Cell cycle is an integral 

component of viability, and some cell cycle regulators also influence programmed cell 

death (Sherwood et al., 1994). The balance between positive and negative signals 

detennining the decision between life and death is critical for normal cell growth. If cells 

are no longer needed, they commit suicide by activating an intracellular death program 

commonly called apoptosis. Apoptosis is critical and necessary in a variety of cellular 

events; for example, elimination of selected cells during embryogenesis, in the course of 

nonnal tissue turnover and in the developing vertebrate nervous system (White, 1996). It 

is also involved in many pathological conditions including cancer, cardiovascular and 

neurodegenerative diseases (Carson and Ribeiro, 1993). 

Apoptotic cells show a characteristic morphology (Figure 1.3). The distinct 

morphological changes including chromatin condensation and margination, cell shrinkage, 

membrane blebbing and ultimate cellular fragmentation was first described by Kerr et al. 

(1972). In the last decade, the deliberate intracellular apoptotic mechanism is a focus of 

research. It has become apparent that apoptosis is not a series of clearly defined pathways, 

but rather, a multitude of highly regulated and interconnected cascades. A number of 

genes and proteins, some acting within the cells themselves and others acting extrinsically, 

have now been identified which regulate apoptosis. 

1.4.1 Caspases 

Caspases (cysteine aspartate-specific pro teases), which are a family of 

intracellular proteins, function as the central proteolytic system of apoptosis. They 
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Figure 1.3 Morphological changes of a cell dying through apoptosis 

Apoptotic cells undergo a series of morphological changes. The process starts with 

chromatin condensation and cell shrinkage, followed by membrane blebbing and nucleus 

destruction. Later, apoptotic bodies are lysed and eliminated by macrophages. 

Reproduced from: 

http:/lwww-micro.msb.le.ac.uk/3035/kalmakoff/baculo/baculohostinteract.html 
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participate in both cell disassembly (act as effectors) and in initiating this disassembly in 

response to proapoptotic signals (act as initiators) (Thornberry and Lazebnik, 1998). 

Caspases are synthesized as inactive procaspases that are usually activated by cleavage at 

critical aspartate residues. Once activated, caspases cleave, and thereby activate, other 

procaspases and cellular proteins, resulting in an irreversible, amplifying proteolytic 

cascade. This in tum contributes to the controlled and efficient removal of damaged or 

unwanted cells. To date, at least 14 caspases have been identified in mammalian cells 

(Yin and Dong, 2003). 

1.4.2 The Bcl-2 Family 

The Bcl-2 family of proteins constitutes a crucial intracellular checkpoint in the 

intrinsic cell death pathway to determine whether a cell should live or die. They are 

essential mediators of cell survival and apoptosis. The proto-oncogene Bcl-2 (forB-cell 

leukemia 2) was first identified as a gene activated by chromosome translocation in 

human lymphoma (Tsujimoto et al., 1985;Cleary and Sklar, 1985;Bakhshi et al., 1985). 

Members of the Bcl-2 family that are very similar in sequence and structure generally fall 

into two functional classes with respect to their effects on cell survival. One class 

including Bcl-2 itself and other members (such as Bcl-xl and Bcl-w) inhibits apoptosis. 

The other class (such as Bax, Bok and Bak) promotes procaspase activation and cell death 

(Heath, 2001 ). Both anti- and proapoptotic family members have been demonstrated to 

be essential for the completion ofapoptotic programs (Lindsten et al., 2000;Wei et al., 

2001). 
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1.4.3 The lAP Family 

The inhibitor of apoptosis (lAP) family is another important intracellular 

apoptosis regulator. They function as endogenous caspases inhibitors. The lAPs regulate 

the activity of both initiator and effector caspases in two ways: they bind to targeted 

procaspases to prevent their activation, and they bind to active caspases to inhibit their 

activity (Alberts et al., 2002). Controlled expression of the lAPs has been shown to 

influence cell death in a variety of contexts, including in hyper-proliferative disorders, 

such as cancer (Miller, 1999). 

1.5 Introduction to Cancer 

In normal cell growth, there is a tightly controlled balance between growth­

promoting and growth-restraining signals such that proliferation occurs only when 

required. At the most basic level, cancer is a multifaceted disease where cellular 

proliferation is no longer under normal control mechanisms (reviewed in Garrett, 2001). 

Cancer cells acquire accumulative mutations of proto-oncogenes, tumour-suppressor 

genes, and other genes that regulate, directly or indirectly, cell proliferation, thus growing 

in an uncontrolled fashion (Hahn and Weinberg, 2002). A number of characteristics 

which differentiates tumour cells from normal cells are: (1) Self-sufficiency in growth 

signals, (2) insensitivity to antigrowth signals, (3) evading apoptosis, (4) limitless 

replicative potential, (5) induced vascularization for receiving oxygen and nutrients 

(angiogenesis), (6) migrating from the site of origin to a distant part of the body 

(metastasis), and (7) genome instability (Hanahan and Weinberg., 2000). 
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Classification of cancer according to the site of origin describes the type of tissue 

from which the cancer cells arise. Cancers originating in epithelial cells are termed 

carcinomas; those arising from connective tissue or muscle cells are termed sarcomas. 

Besides these two broad categories, there are many other types of cancer, such as 

leukemias, originating in tissues that produce blood cells; melanoma, derived from a 

pigment cell in the skin, and cancers derived from cells of the nervous system (Alberts et 

a/., 2002). 

1.6 Cancer-Critical Genes 

Cancer is a genetic disease of somatic cells: it involves dynamic alterations in the 

genome (Knudson, 2002). Many genes that are mutated in human cancer have been 

identified in the past three decades. These cancer-critical genes, meaning all genes whose 

mutation contributes to the development of cancer, are grouped into two broad classes. 

The first class describes genes with a gain-of-function mutation lead to cancer 

development, known as proto-oncogenes; their mutant, overactive forms are known as 

oncogenes. Genes of the second class, for which a loss-of-function mutation results in the 

removal of the functional brake on cell growth, are called tumour suppressor genes 

(Alberts et a!., 2002). 

1.6.1 Proto-oncogenes and Oncogenes 

Genetically dominant proto-oncogenes with mutation of a single allele can have 

growth-promoting effects on cells and prompt them to enter a tumourigenic state. Once 

proto-oncogenes mutate to become oncogenes they retain their functionality, but no 
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longer respond to normal regulatory signals. Oncogenes were first identified in 

retroviruses capable of transforming cells in culture and inducing tumours in animals 

(Bishop et al., 1985). The types of genetic alterations that can transform proto-oncogenes 

into oncogenes fall into three basic categories, as shown in Figure 1.4: A change of a 

single nucleotide base pair in coding sequence (point mutations), a larger-scale alteration 

such as a partial deletion, or chromosomal translocation that results in the production of a 

hyperactive fusion protein. Alternatively, the cancer-critical genes may be overexpressed 

because of DNA amplification caused by errors in DNA replication (Alberts et al., 2002). 

Oncogenes and proto-oncogenes represent a diversity of functions, sequences and 

cellular locations. The majority of oncogenes fall into four familial functional classes: 

growth factors, receptors, signal transducers and transcription factors (Heath, 2001 ). 

There is no single consistent activation mechanism of any one oncogene. Whatever the 

mechanism for oncogene activation, the end result is to produce a protein which can 

cause abnormal cell growth. 

1.6.2 Tumour suppressor genes 

Tumour suppressor genes are defined as genes involved in the control of abnormal 

cell proliferation and whose activation can suppress tumourigenicity (Macdonald and 

Ford, 1997). Early efforts to identify these genes were guided by Knudson's hypothesis 

ofbiallelic gene inactivation; both copies (alleles) of recessive tumour suppressor genes 

must be removed or inactivated before an effect is seen (Knudson, Jr., 1971 ;Comings, 

1973). Over the past 15 years, many tumour suppressor genes have been identified and 

their three classical properties are defined. First, tumour suppressor genes are recessive, 
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Figure 1.4 Mechanisms of oncogene activation 

Proto-oncogenes can be converted to oncogenes in three ways: Deletion or point 

mutation in coding sequence, gene amplification or chromosomal rearrangement. 

Adapted from Weinberg (1998). 
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requiring "two-hit" inactivation of both alleles. Second, inheritance of a single mutant 

allele increases tumour susceptibility; only one additional mutation is needed to produce 

malignancy. Third, the same gene is frequently mutated in sporadic cancers (Sherr, 2004). 

Recently, "new-generation" tumour suppressor genes that do not conform to the classical 

view of a tumour suppressor were identified. These "new-generation" tumour suppressor 

genes are switched off by mechanisms other than mutation (Li et al., 2002). For example, 

the second allele of tumour suppressor genes can be epigenetically silenced by 

methylation ofthe gene promoter (Jones and Laird, 1999). Alternatively, they may 

influence tumour progression through functional haploinsufficiency, a process in which 

loss of only one allele confers a selection advantage for tumour growth (Cook and 

McCaw, 2000;Quon and Berns, 2001). Tumour suppressor genes play a crucial role in 

our natural anticancer defense. The two best characterized tumour suppressor genes are 

retinoblastoma gene (Rb) andp53 (reviewed in Knudson, 2002). Both are important 

regulators of the cell cycle and programmed cell death. 

1. 7 Development of Breast Cancer 

Breast cancer is one of the most common cancers in women in the developed 

countries of the world. In 2004, the most frequently diagnosed cancers continue to be 

breast cancer for women in Canada; an estimated 21,200 women will be diagnosed with 

breast cancer and 5,200 will die of it (Canadian Cancer Society, 2004). 

The main function of the human breast is to produce life-sustaining milk for the 

young. As shown in Figure 1.5, the female breast is made up mainly oflobules (milk­

producing glands), ducts (milk passages connecting the lobules to the nipple), and stroma 
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Figure 1.5 Normal Breast Structure 

The human breast is made of the secretory glandular tissue and surrounding fatty tissue. 

The glandular tissue comprises between 15 to 20 lobes with ducts and lobules surrounded 

by connective tissue. The nipple is surrounded by a pigmented area known as the areola 

(Donegan and Spratt, 2002). Reproduced from American Cancer Society: 

http:/ /www.cancer.org 
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(fatty tissue surrounding the glands and ducts) [Donegan and Spratt, 2002]. Most breast 

cancers begin in the ducts (ductal). And the most common type of breast cancer is 

infiltrating ductal carcinoma (IDC); it accounts for 80% of invasive breast cancers 

(Galmarini eta/., 2002). Other types include infiltrating lobular carcinoma (ILC), 

mucinous carcinoma, ductal carcinoma in situ (DCIS), and lobular carcinoma in situ 

(LCIS), etc. Each has distinct etiologies, tissues of origin, and metastatic behaviours 

(Greifzu, 2004). A number of risk factors have been associated with development of 

breast cancer, including cigarette smoking, alcohol consumption, age at menarche, age at 

first childbirth, age at menopause, dietary fat, exogenous hormone use and family history 

(Donegan and Spratt, 2002). 

Like most malignancies, breast cancer is a collection of diseases. It is the result of 

a complex and heterogeneous combination of genetic alterations that promote 

development of tumour cells. The great majority of breast cancer is due to acquired 

somatic mutations; however, hereditary cases account for 5-10% of all breast cancer. 

Several genes that contribute to the occurrence of hereditary breast cancer have been 

identified. Among these breast cancer susceptibility genes, BRCAJ and BRCA2 are 

responsible for the majority of hereditary breast cancer (reviewed in Yang and Lippman, 

1999). Many studies indicate that both BRCAJ and BRCA2 are involved in transcriptional 

regulation, cell-cycle control and DNA damage repair pathways (Wong eta/., 

1997;Scully eta/., 1997;Anderson eta/., 1998;Yang and Lippman, 1999). Interestingly, 

mutations of BRCAJ and BRCA2 rarely appear in sporadic breast cancer (reviewed in 

Yang and Lippman, 1999). It is possible that they function through different mechanisms 

such as differential splicing or altered cellular location (Thakur eta/., 1997). 
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t.8 Role of the Estrogen Receptor in Breast Cancer 

The ovarian steroid hormones, estrogen and progesterone, are necessary for 

normal mammary growth and development. These steroid hormones regulate the 

expression of numerous growth factors that mediate growth and differentiation signals. 

Estrogen has long been implicated in the pathogenesis and progression of breast cancer 

(Allegra et a/., 1979). The action of estrogen is mediated by the estrogen receptors (ERs) 

that are members of the steroid/thyroid hormone nuclear receptor superfamily, including 

receptors for steroid and thyroid hormones, vitamin D and retinoic acid (Mangelsdorf et 

al., 1995;Tenbaum and Baniahmad, 1997). As a class, these receptors are transcription 

factors whose activity is regulated by ligand binding. 

The ER is located predominantly in the nucleus (King and Greene, 1984). Two 

estrogen receptors have been identified, ERa and ERJ3. Increased ERa expression may be 

one of the very earliest changes occurring in the process ofbreast cancer development 

(Khan eta/., 1994;Lawson eta/., 1999). ERa is therefore considered as a biomarker of 

breast cancer hormone sensitivity and of differentiation which predicts disease-free 

survival (Leclercq, 2002). The exact role of ERJ3 in the growth of breast cancer is still 

unclear. However, some studies suggest that ERJ3 might interact with and negatively 

modulate the actions of ERa (Hall and McDonnell, 1999). 

Steroid hormones such as estradiol and progesterone are lipophilic and they enter 

cells by diffusing through the cell membrane. Once in the cell, estradiol binds the ER 

with high affinity and specificity. This ligand binding induces a conformational change 

leading to dimerization of receptors, which allows the receptor-hormone complex to bind 

to its specific DNA target, the estrogen responsive element (ERE), followed by 
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recruitment of co-activators (or co-repressors) as well as other transcription factors 

(Hanstein eta!., 2004). The EREs are DNA sequences located in the promotor region 

upstream of the transcriptional start site of many genes. Upon ERE binding the liganded 

receptor activates transcription of target genes (Jordan, 1998). ERs also regulate 

transcription of a variety of genes at alternative response elements, such as AP-I site, that 

binds the Jun!Fos transcription factor but not ER (Kushner et al., 2000). 

About 35% of patients withER-positive breast tumours fail to respond to 

hormonal therapy implying that ER is likely mutated in these tumours. Several mutations 

and ER splice variants have been identified in neoplastic breast tissue, some of which 

function as dominant negatives; they are transcriptional inactive and also render co­

expressed wild-type receptors transcriptional inactive. In addition, some ER 

variants/mutants are constitutively active in the absence of ligands, and others alter the 

agonist/antagonist activity of selective ER modulators (Osborne et al., 2001). Expression 

of the ER variants/mutants observed in breast tumours may possibly explain disease 

progression and lack of responsiveness to endocrine therapy (Murphy et a!., 1997). 

However, further research is needed to support this theory. 

Alteration in ER expression at the early stages of breast tumour development 

implies that dysregulation of ER expression is an important factor contributing to 

tumourigenesis. Therefore, the measurement of ER protein expression in the routine 

screening of breast tumours may provide some significant clinical correlations. 
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1.9 Immediate-Early Genes 

Extracellular signals are transduced into the nucleus through a variety of signaling 

pathways to induce changes in patterns of gene expression. The very first genes to be 

activated along these ordered signaling cascades are termed as immediate-early genes. 

Therefore, the characteristic of immediate-early genes is that their expression can be 

rapidly and transiently induced upon stimulation of cells. Their expression is generally 

low in non-stimulated cells; however, it is rapidly activated within minutes to a few hours 

once stimulated and does not require de novo protein synthesis (Caputto and Guido, 2000). 

Immediate-early genes usually encode proteins, such as transcription factors, that play an 

important part in transducing extracellular messengers into long-term changes in cellular 

phenotype. After translation, these inducible transcription factors re-enter the nucleus 

and regulate the expression of "later response" genes (Walton et al., 1999). Most 

prominent among the immediate-early genes are fos and jun gene families (Sheng and 

Greenberg, 1990;Morgan and Curran, 1991 ). 

Because immediate-early genes encode proteins that act as pleiotropic regulators 

of a large variety of cellular and developmental processes, their complex interactions 

together with additional modulating signals result in fundamental cellular decisions of 

whether to proliferate or die (Kelly and Siebenlist, 1995). The dysregulated expression of 

these immediate-early gene products may lead to tumour development since signal 

pathways specifying cell growth and division become over-stimulated and uncontrolled. 
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1.10 Human Mesoderm Induction Early Response 1 (hmi-erl) Gene 

A few years ago, investigations into the role of fibroblast growth factors (FGFs) 

and their receptors (FGFRs) in regulating cell differentiation and growth during 

development of Xenopus embryos led to the isolation of a novel FGF-regulated 

immediate-early gene, which was later named mesoderm induction ~arly response 1 (mi­

er 1) (Paterno et a/., 1997). Expression levels of mi-er 1 were increased during mesoderm 

induction by FGF in Xenopus. A human orthologue of Xenopus mi-er 1 was later cloned 

and characterized. It was found that human and Xenopus MI-ER1 share 91% similarity at 

amino acid level (Paterno et a/., 1998b ). Sequence analysis revealed that hmi-er 1 is a 

single copy gene located at 1 p31.2 and is 63 kb in size. As shown in Figure 1.6, hmi-er 1, 

which consists of 17 exons including one skipped ex on ( exon 3A) and a facultative intron 

(intron 15), gives rise to 12 distinct transcripts (Paterno eta!., 2002). 

Alternate promoter usage and splicing at distinct 5' ends that arise from transcripts 

including either exon 1A or 1B and alternate use of exon 3A, give rise to mRNAs 

encoding three N-termini domains: N1, N2 and N3 (Figure 1.6A). N1 and N2 have the 

same translational start (ML-), but N1 has an additional sequence encoding a 25 amino 

acid (aa) cysteine-rich domain. N3 with the translational start (MAE-) results from 

transcription from a different promoter. The alternate inclusion of intron 15 and together 

with alternate use ofthree polyadenylation signals (PASi-iii) produce four distinct 3' ends: 

a, bi, bii and biii (Figure 1.6B). These four distinct 3' ends encode two specific C­

terminal domains: a and f3. The f3 C-terminus represents a longer sequence (1 02 aa) than 

a C-terminus (23 aa) and arises from inclusion of facultative intron 15. The three distinct 

N-terminal domains, a common internal region, and together with the two possible C-
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Figure 1.6 Structure and N-termini sequences of the human mi-erl gene 

(A) The sequences of the three distinct N-termini with two possible translational starts 

(ML- and MAE-) are shown; Nl includes sequence from exon 3A. (B) Schematic 

illustrating the structure of the hmi-erl gene and transcripts. The three distinct 5' ends 

(Nl, N2 and N3), the central common coding region, and the four alternate 3' ends (a, bi, 

bii, and biii) of hmi-er 1 transcripts are demonstrated. Adapted from Paterno et a/., 2002. 
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termini result in the production of six hMI-ERI protein isoforms: Nlu, Nl p, N2a, N2f3, 

N3a, and N3f3 (Paterno et al., 2002b). 

The f3 C-terminus contains the only functional nuclear localization signal (NLS). 

Consequently, hMI-ERlf3 is localized exclusively in the nucleus, while hMI-ERlu 

remains cytoplasmic (Paterno eta!., 2002). Human mi-er 1 is expressed ubiquitously, but 

at very low levels in most human tissues (Paterno eta!., 1998, 2002), and transcripts 

encoding the f3 isoforms are predominant (Paterno et a!., 2002). In contrast to the barely 

detectable expression levels in normal human cell lines and tissues, the expression of hmi­

er 1 is upregulated in breast carcinoma cell lines and breast tumours (Paterno eta!., 1998). 

Therefore, hmi-er 1 expression is believed to play an important role in the neoplastic state 

ofhuman breast carcinomas. 

1.10.1 Functional Protein Domains and Motifs in hMI-ER1 

The structure ofhMI-ERl was closely examined and compared to other known 

proteins using various computer programs (MOTIF: http://www.Motif.genome.ad.jp; 

PSORT: http://www.psort.nibb.ac.jp, DART: 

http://www.ncbi.nlm.nih.gov/Structure/lexington/Iexington.cgi and BLAST search). The 

overall results revealed a number of putative functional protein domains and motifs in 

hMI-ERI, as shown in Figure 1.7. Studying each ofthese functional domains and motifs 

will provide indications as to the possible cellular functions of hmi-er 1. 
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Figure 1.7 hMI-ERl functional protein domains and motifs 

Schematic illustrating the functional protein domains and motifs that are common and 

unique to the hMI-ERla and ~ isoforms. 
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(A) Acidic activation domains 

Acidic activation domains were first described in yeast transcriptional activators 

in 1987 (Ma and Ptashne, 1987). It was later found that these activation domains not only 

play a role in recruitment of the transcriptional machinery by protein-protein interactions 

(Abmayr eta/., 1988;Choy and Green, 1993;Struhl, 1998), but also stimulate 

transcriptional steps subsequent to initiation (Bentley, 1995). Acidic activation domains 

are characterized by bulky hydrophobic amino acid residues interspersed with acidic 

amino acid residues (Cress and Triezenberg, 1991;Drysdale eta/., 1995). These 

hydrophobic and acidic amino acids are crucial for transactivation. 

TheN terminus ofhMI-ER1 was found to contain several highly acidic stretches, 

characteristic of the acidic activation domains of many transcription factors. In addition, 

these stretches of acidic amino acid residues were able to stimulate transcription (Paterno 

eta/., 1997). Therefore, hMI-ER1 functions as a transcription factor. 

(B) EF -hand motif 

The EF-hand motif is a highly conserved calcium-binding motif found in a large 

number of intracellular proteins. It was first described in the structure analysis of carp 

muscle calcium-binding parvalbumin (Kretsinger and Nockolds, 1973). The EF-hand 

motif is a helix-loop-helix structure with a Ca2
+ ion bound to the interhelicalloop region. 

In many calcium-binding proteins, Ca2
+ binding induces a conformational change in the 

EF-hand motif and in tum regulates a vast number oftarget proteins (Yang eta/., 2002). 

Therefore, the EF-hand-containing proteins employ this helix-loop-helix motif to carry 
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out their diverse biological functions, thus controlling many cellular processes in addition 

to free calcium levels in the cell (Falke et al., 1994;Kretsinger, 1997). 

(C) ELM2 domain 

The EGL-27 and MTA1 homology domain 2 (ELM2) was first described in egl-

27, a C. elegans gene that regulates the activity of transcription factors involved in 

embryonic patterning (Solari et al., 1999) through its interaction with HOX proteins 

(Ch'ng and Kenyon, 1999). This highly conserved ELM2 domain is found in a number of 

transcription factors. The role ofELM2 domain in transcriptional regulation was first 

reported by Ding et a/.(2003); the ELM2 domain within hMI-ER1 functions as a 

transcriptional repressor by recruiting histone deacetylase 1 (HDAC1) (Ding et al., 2003). 

HDACs are involved primarily in transcription repression by tightly compacting 

chromatin structure and preventing accessibility of transcription factors (de Ruijter et al., 

2003). 

(D) SANT domain 

A SANT domain was identified in hMI-ER1, downstream ofthe ELM2 domain. 

The SANT domain was initially found in Swi3 (switching-defective protein 3), Ada2 

(adaptor 2), NCoR (nuclear receptor co-repressor), and TFIIffi (transcription factor); all 

of these proteins are involved in transcriptional regulation. Further sequence analysis 

revealed its homology to the DNA binding domain (DBD) of c-myb (Aasland et al., 1996). 

Like Myb DBDs, the SANT domain also consists of three a-helices arranged in a helix­

tum-helix motif; each a helix contains a highly conserved, bulky aromatic residue playing 
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a key role in helix packing (Ogata eta/., 1994;Aasland et al., 1996b;Tahirov eta/., 2001 ). 

Interestingly, many ELM2 domain-containing proteins also contain SANT domains 

(Sloaris et al., 1999). The SANT domain seems to play an essential role in chromatin­

remodeling complexes. For example, a SANT domain is found within A TP-dependent 

remodeling complexes (SWI/SNF, RSC, etc.), as well as histone acetyltransferase (Ada2) 

(Aasland et al., 1996) and deacetylase (coREST, NCoR, etc.) complexes (Aasland et al., 

1996a;Humphrey et al., 2001 ). Several recent reports suggest that SANT domains may 

function as histone-binding modules (Boyer et al., 2002;Grune et al., 2003). This 

supports the idea that SANT domain-containing proteins, like hMI-ER1, act as critical 

transcriptional regulators through interaction with chromatin-remodeling complexes. In 

hMI-ER1, Ding et al., (2004) showed that the SANT domain is important for binding Sp1 

and regulating its function. 

(E) Proline-rich motif 

Both hMI-ER1a and J3 isoforms contain a motif, PXXP (P represents proline and 

X represents any amino acid) that conforms to the consensus for SH3 (Src homology 3) 

binding domains (Cohen et al., 1995). The SH3 domain, which is a small conserved 

sequence of about 60 amino acid residues, is critical for the assembly of many 

intracellular signaling complexes and pathways (Zarrinpar et al., 2003). By binding with 

proline-rich motifs, these proline recognition domains target proteins involved in cell 

growth (Rozakis-Adcock eta/., 1993;Buday and Downward, 1993) and other key cellular 

processes (McPherson, 1999). Site-directed mutagenesis ofthe proline-rich domain of 
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Xenopus MI-ER1 showed that proline 365 is a critical residue for embryonic development 

and mesoderm induction (Teplitsky et al., 2003). 

(F) LXXLL motif 

Sequence analysis ofhMI-ER1 revealed a core LXXLL motif(L denotes leucine 

and X denotes any amino acid) is present in the C-terminus of a isoform, but not in the J3 

isoform (Paterno et a!., 2002). This motif is required for ligand-dependent binding of 

many transcriptional co-activators, such as SRC1 and CBP/p300, to nuclear receptors 

(Torchia et al., 1997;Heery et al., 1997a;Heery et al., 2001b). Transcriptional co­

activators interact with the conserved inducible activation domain (AF-2) of nuclear 

receptors via LXXLL motif (Heery et al., 1997b;Nolte et al., 1998;Mclnemey et al., 

1998;Leers et al., 1998). Further structural analysis showed that LXXLL motifs form a 

amphipathic a helix with the conserved hydrophobic leucine residues aligned on one side 

of the helix (Darimont et a!., 1998). This leucine-rich motif also has very strong 

similarity to Sin3A interaction domain (SID) contained in the family of MAD 

transcriptional repressors (Brubaker et al., 2000). The number and sequence ofLXXLL 

motifs varies considerably among the co-activators and is likely to influence the 

selectivity and affinity of co-activators for different nuclear receptors. The LXXLL 

motifs showing the strongest interaction with nuclear receptors tend to have a 

hydrophobic amino acid residue at the -1 position relative to the core (Paige et a!., 

1999;Chang et al., 1999;Heery eta/., 2001a). hMI-ERla does have a hydrophobic amino 

acid at position -1, suggesting its interaction with nuclear receptors. This has been 
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confirmed by Savicky eta/. (unpublished data) who showed that hMI-ERl interacts with 

the ERa. 

(G) Nuclear localization signals 

All passive and active transport into and out of the nucleus takes place through the 

nuclear pore complexes (NPC), structures that penetrate the nuclear envelope (Nigg, 

I997;Wente, 2000). The NPC has a channel of9 nm (Goldberg and Allen, 1992) so that 

larger molecules can not enter the nucleus unless they carry a specific nuclear targeting 

signal or nuclear localization signals (NLS). There are at least three different classes of 

NLS; one class comprises a single short stretch of basic amino acids (Kalderon et a/., 

1984); another class consists oftwo stretches ofbasic amino acids separated by a spacer 

of I 0-12 amino acids (Robbins eta/., 1991 ), and the third class has polar/charged residues 

interspersed with non-polar residues (Chan and Jans, 2002). NLS are sufficient and 

necessary for nuclear import of the proteins carrying them. Sequence analysis showed 

that hMI-ER1 contains several predicted NLS; however, the only functional NLS is 

located in the C-terminus ofthe J3 isoform. As predicted, hMI-ER1J3 is targeted 

exclusively to the nucleus, while hMI-ER1a is cytoplasmic (Paterno et al., 2002). hMI­

ER 1 disappears from the nucleus and remains in the cytoplasm in human breast cancer 

tissue, as compared to normal breast samples (Paterno et al., unpublished data), 

suggesting hMI-ERI may have a functional role in breast cancer cells. 

28 



1.11 Project Goals 

The LXXLL motif in hMI-ERla indicates its possible interaction with nuclear 

hormone receptors. This was later confirmed by showing that hMI-ERla but not f3 

affects ERa activity in vivo (Savicky et a/., unpublished data). And it has long been 

appreciated that the abnormal activity of estrogen receptor is strongly associated with the 

development and progression of human breast cancer. It would be interesting to 

understand the significance ofhMI-ERla in human breast cancer with respect to its 

interaction with nuclear hormone receptors. Therefore, my work focused on the impact 

of the hMI-ERla isoform on cell growth, using hMI-ERlf3 as the control for transfection 

rate. The purpose of this study was to investigate the functional role ofhMI-ERla in 

regulating growth of normal and breast cancer cells. In addition, the possible mechanism 

underlying the effect ofhMI-ERla on cell growth was also studied. 

Objective 1: Investigation of the role of hMI-ER1a in growth regulation in normal 

cells 

Human embryonic kidney cell line (HEK 293) and normal breast cell line (Hs574) 

were transfected with either sense or antisense hMI-ERla. The colony formation assay 

was then conducted in order to determine the effect ofhMI-ERla expression on normal 

cell growth. 

Objective 2: Investigation of the role of hMI-ER1a in regulating growth of breast 

carcinoma cells 
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Two ER-negative human breast carcinoma cell lines (MDA-MB-231 and MDA­

MB-468) and one ER-positive breast cancer cell line (BT-474) were transfected with 

either sense or antisense hMI-ERla. Those transfected cells were then examined for their 

colony-forming ability in order to determine the effect ofhMI-ERla expression on 

growth of breast cancer cells. 

Objective 3: Analysis of the possible mechanism whereby hMI-ERla regulates 

growth of normal and breast cancer cells 

The inhibitory effect of antisense hMI-ERla expression on growth of breast 

cancer cells was examined in order to understand whether it is due to induction of 

programmed cell death (apoptosis). Two breast carcinoma cell lines (1IDA-MB-231 and 

MDA-MB-468) were transfected with antisense hMI-ERla, followed by Hoechst staining 

to study apoptotic cells. 
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Chapter 2: Materials and Methods 

2.1 Cell Culture 

Human ~mbryonic kidney 293 cells (HEK 293), normal human mammary gland cells 

(Hs574), and three human breast carcinoma cell lines (BT-474, MDA-MB-231 and 

MDA-MB-468) were obtained from the American Tissue Culture Collection (ATCC). 

HEK 293, Hs574 and BT-474 cells were maintained at 5% C02 in Dulbecco's modified 

Eagle' s medium (DMEM) with 10% fetal calf serum (FCS) and 100U/ml antibiotics 

(penicillin/ streptomycin) [Invitrogen]. MDA-MB-231 and :MDA-MB-468 were cultured 

in Leibovitz' s L-15 medium (Invitrogen) supplemented with 10% FCS and 100U/ml 

antibiotics. They were maintained at 3 7°C in a humidified atmosphere without C02. 

2.2 Plasmids and Constructs 

A. CS3+MT and CS3+MT-hMI-ERla/~ (myc-hMI-ERla/~) 

CS3+MT vectors having the Myc epitope tag (a kind gift from Dr David Turner, 

University ofMichigan) were engineered to contain full-length hmi-erla (N3a) or hmi­

erlp (N3f3) (Ding eta/., 2003) as follows: the entire coding sequence of either hMI-ERla 

or hMI-ER1f3 [accession numbers AY124187 and AF515447, respectively] was amplified 

using specific primers incorporating 5' and 3' Bamlll sites. The PCR fragments were 

then inserted into the Bglll site ofCS3+MT plasmid. 
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B. pcDNA3.1, pcDNA3.t:...hMI-ER1a and antisense pcDNA3.t-hMI-ER1a 

The pcDNA3_1 mammalian expression vector (Invitrogen) was engineered to contain full­

length hmi-erla eDNA (N3a) in sense and antisense orientations as described in Paterno 

eta/. (2002). All constructs were verified by sequencing the junctions. 

2.3 Transient Transfections 

HEK 293 and Hs574 cells were seeded on 6-well plates at 5 x 105 cells per well and 

grown overnight (approximately 18h) in the 37°C incubator. The three human breast 

carcinoma cell lines, BT-474, MDA-MB-231 and MDA-MB-468 cells, were seeded at 4 

x 105 cells per well since they were bigger cells and grew faster. Cells were then 

transfected with 1.5 J..Lg of the empty vector (CS3+MT or pcDNA3.I), sense (myc-hMI­

ERla/f3 or pcDNA3.1-hMI-ERlu) or antisense (AS-pcDNA3_1-hMI-ERlu) plasmid DNA 

by Lipofectamine Plus reagent (Life Technologies, Inc.) according to the supplier's 

protocol. Briefly, 1.5 J..Lg of plasmid DNA were incubated with 6 J..Ll Lipofectamine and 6 

J..Ll Plus reagent in the total of 200 J..Ll serum-free medium at room temperature for 30 min. 

The mixture was added to cells previously seeded in 6-well plates containing 800 J..Ll of 

serum-free medium and incubated at 37°C for 4h, following which serum-free medium 

was replaced by the regular medium of each cell line. 

2.4 RNA Isolation 

5 x 10
5 

cells were used for preparation of total RNA. At 24h after transfection, total 

cellular RNA from five human cell lines (HEK 293, Hs574, BT -474, l\.IDA-MB-231 and 
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MDA-MB-468) that were transfected with I.5 J.!g of the empty vector pcDNA3.I or 

antisense pcDNA3.1-hMI-ERia, was isolated using Trizol reagent (Invitrogen) according 

to the manufacturer's instructions. The RNA extracted from each cell line was then 

treated with RQI RNase-free DNase (I U/J.!l) [Promega] to digest chromosomal DNA and 

eliminate DNA contamination. This was followed by incubating the mixture at 37°C for 

20 min and two subsequent washings with phenol/choloroform/isoamyl alcohol 

(Invitrogen) to remove the enzyme. After final extraction with diethylpyrocarbonate 

(DEPC) [Sigma] treated H20-saturated chloroform (Fisher), the purified RNA was 

precipitated overnight with I/IO the volume of 3M sodium acetate (pH 5.2) and 2.5X the 

volume of 100% ethanol (Fisher). The final RNA samples were then resuspended in 35 

J.ll DEPC-treated H20 and stored at -70°C until required. The integrity of the RNA 

samples was checked on a 1% agarose gel. RNA was quantified by measuring ultraviolet 

(UV) absorbance at 260 nm of each sample with a spectrophotometer. 1 ml ofDEPC­

treated H20 was used as a blank to calibrate the machine. 4 J.!l of each RNA sample in 

the total of I ml DEPC-treated H20 (dilution: 1 in 250) was then assessed. 

2.5 Reverse Transcription -Polymerase Chain Reaction (RT-PCR) Analysis 

The first strand DNA was synthesized at 37°C for 60 min using 1 J.tg total RNA in a 

mixture containing I 0 J.!l DEPC-H20, 4 J.!l 5X first strand buffer, 2 J.!l 0.1 M dithiothreitol 

(DTT), 2 J.!l (200 ng) random primer, 2 J.!l dNTP mix (2.5 mM each of dATP, dCTP, 

dGTP, dTTP), 1 J.!l (200 U/J..Ll) Moloney murine leukemia virus (M-ML V) reverse 

transcriptase (Invitrogen) and I J.!l (38660 U/ml) RNAguard RNase inhibitor (Amersham). 

One-eighth of eDNA synthesized was added to a 50 J.!l PCR reaction mixture containing 
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IX PCR buffer, 1.5 mM MgCh, 200J.!M each of dATP, dCTP, dGTP and dTTP, 4 J.Lg/ml 

appropriate forward and reverse primers, and 1 U platinum Taq DNA polymerase 

(Invitrogen). All the primers used are listed in Table 2.1. The PCR reaction was done in 

a thermal cycler (Mastercycler gradient, Eppendorf) using the following program: 

1 cycle: 94 °C for 4 min 

X cycles: 

1 cycle: 

55°C for 1 min 

72°C for 1 min 

94 °C for 1 min 

55°C for 1 min 

72°C for 10 min 

30°C for 1 sec 

X represented 23 cycles with forward primer (HER 2) and reverse primer (HER 4) for 

hMI-ERla amplification. X also represented 26 cycles with forward primer (HER 8) and 

reverse primer (HER 9) for testing the functional antisense hMI-ERla construct. 

Human f)-actin was amplified with forward primer (HBAC-1) and reverse primer 

(HBAC-3) listed in Table 2.1 for 23 cycles and used as an input control. In all 

experiments, the PCR products were analyzed in the linear range of amplification, which 

for hmi-er 1 a is 23 cycles, for testing functional antisense hmi-er 1 a is 26 cycles, and for 

f)-actin is 23 cycles. 

Ten microliters of each PCR product was eamined on a 1% agarose (Gibco) gel 

containing ethidium bromide (0.1% J.Lg/ml) [Bio-Rad] in tris borate/EDT A electrophoresis 
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(TBE) buffer. The relative intensities of the bands representing PCR products were 

visualized under UV illumination. 
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Table 2.1 List of primers used for PCR analysis 

Forward primer Reverse primer Expected 

PCR product 

sizes 

hMI-ERla (HER2) (HER4) 146 bp 

amplification 5' -CCAAA TCGTGTT 5' -CAAGGGCTGAAG 

TGCTGAGC-3' GCCT ATGG-3' 

Antisense (HER 8) (HER 9) 224 bp 

hMI-ERla 5'-TCAGTTCAAGAG 5'-TAAGTGTTGCAA 

examination CCAATGCC-3' AGTGGCT-3' 

Human ~-actin (HBAC-1) (HBAC-3) 

5' -ATCTGGCACCACACCT 5' -AGCTCGTAGCTC 

TCTACAA TGAGCTGCG-3' TTCTCCAGG-3' 
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2.6 Protein Extraction 

Cells transfected with either the empty vector pcDNA3.I or pcDNA3.I-hMI-ERlu were 

washed with ice cold PBS and then treated with 100 Jll Deox protein lysis buffer (Table 

2.3) mixed with IX protease inhibitor (PI) [1M aprotinin, 1M leupeptin, and 5M nor-p­

tosyl-1-lysine chloromethyl ketone (TLCK )] and 1 JiM phenylmethylsulfonyl fluoride 

(PMSF) [Sigma] at 24h post-transfection. After 30 min on ice, the lysates were 

centrifuged at 4°C for 10 min. And the total soluble protein extracted from each 

transfected cell line was collected and stored at -70°C until required. The protein 

concentration was then determined by Bio-Rad protein assay kit (Bio-Rad). 

Table 2.2 Components of Deox protein lysis buffer 

Working solutions Stock concentration ml added/ 1 OOml 

50 mM Tris.HCl (pH 8.0) 1M 5 ml 

150 mM NaCI (Fisher) 5M 3 ml 

0.02% Sodium azide 2% 1 ml 

(Fisher) 

Nonidet P-40 100% 1 ml 

(ICN Biomedicals, Inc.) 

0.1% SDS (Sigma) 10% 1 ml 

0.5% Sodium --- 0.5 g 

Deoxycholate (Sigma) 

distilled water --- 89ml 
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2.1 Bio-Rad Protein Assay 

The Bio-Rad protein assay is a dye-binding procedure responding to various 

concentrations of soluble proteins. Dilutions of the protein sample are made with Deox 

protein lysis buffer, and this lysis buffer is used as a blank. Each sample was made up 

with dH20 to the total volume of 800 J..tl and mixed with 200 Jll BioRad reagent. The 

mixture was then left at room temperature for 15 min. The completed reaction is read on 

a spectrophotometer at a wavelength of 595 nm. A set of serial dilutions made from a 

bovine serum albumin (BSA) stock (1.4 Jlg/Jll) was used to create a standard curve, which 

is set up plotting absorbance against BSA protein concentrations (Jlg/Jll). Using this 

standard curve, the concentration of each protein sample can then be determined. 

2.8 Western blotting 

Total cell lysates were prepared as previously described. Equal amounts of denatured 

proteins (25 Jlg) extracted from each transfected cell line were resolved on an 8% sodium 

dodecyl sulfate-polyacrylamide gel (SDS-PAG) and transferred onto Hybond-ECL 

nitrocellulose membranes (Amersham). Filters were blocked by incubation in 5% skim 

milk in TBS-T (20 mM Tris pH 7.6, 137 mM NaCl, 0.1% Tween-20) for 1h at room 

temperature. Blots were probed with a 1:2000 dilution of a rabbit polyclonal anti-hMI­

ER1 antibody in 5% skim milk/TBS-T for 3h at room temperature, washed with TBS-T 

for 1h, and then incubated with horseradish peroxidase (HRP)-conjugated anti-rabbit 

secondary antibody (dilution: 1:4000) [Amersham] in 5% skim milk/TBS-T for lh. The 

blots were washed with TBS-T and developed by enhanced chemiluminescence using the 

ECL kit and exposed to ECL ™ -Hyperfilm ™ (Amersham). 
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2.9 Colony Formation Assay 

Cells were transfected with 1.5 J.Lg ofpcDNA3.I empty vector, pcDNA3.1-hMI-ER1a. or 

antisense pcDNA3.1-hMI-ERla. using Lipofectamine Plus reagents as previously 

described. At 24h post-transfection, cells were washed with PBS and transferred to 60 

mm cell culture dishes. Cells were selected in 500 J.Lg/ml geneticin (Invitrogen). After 10 

to 14 days of selection, the medium was removed and cells were washed with PBS. Cells 

were rinsed with dH20 and stained with 2% crystal violet in PBS for 20 min. The 

number of geneticin-resistant colonies or cells were then scored and photographed. 

2.10 Immunocytochemistry 

Cells were transfected with 1.5 J.Lg ofmyc-tagged hMI-ERla. or hMI-ERlj3 constructs 

using Lipofectamine Plus reagents as previously described. Twenty-four hours after 

transfection, transfected and non-transfected control cells were washed with PBS and 

transferred to 8-chamber slides (Becton Dickinson Labware) with 4 x 104 cells/ chamber. 

Cells were fixed in PBS containing 4% (v/v) paraformaldehyde (Fisher) for 30 min, 

rinsed twice with PBS, and then permeabilized using 0.2% (v/v) Triton X-100 (Sigma) in 

PBS for 10 min. Nonspecific staining was blocked by incubating the slides with the 

blocking buffer (1.5% normal goat serum [Invitrogen] in PBS) for 20 min. After washing, 

the slides were incubated first with a 1:1000 dilution ofthe anti-MYC monoclonal 

antibody, 9E10 (Developmental Hybridoma Bank), in the blocking buffer for 2 hours, 

then with a biotinylated goat-anti-mouse-conjugate (1 :500; 30 min; Santa Cruz) and 

finally with an avidin-biotin-horseradish peroxidase (HRP) complex (1 :25; 30 min; Santa 

Cruz). Reaction was visualized by 3,3' diaminobenzidine (DAB) staining (Sigma). The 
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slides were mounted in 10% (v/v) glycerol (Fisher) in PBS after removal of gaskets. The 

cells with brown-stained nuclei or cytoplasm were considered as positive. A total of 200 

cells was counted at magnification of 400X and images were taken with a Coolsnap 

digital camera. 

2.11 Apoptosis Assay 

Morphological changes in the nuclear chromatin of cells undergoing apoptosis were 

detected by staining with the DNA-binding fluorochrome bisbenzimide (Hoechst 33342; 

Sigma). Cells were first transfected with either pcDNA3.1 empty vector or antisense 

pcDNA3.1-hMI-ER1a using Lipofectamine Plus reagents. At 24h post-transfection, cells 

were transferred to 8-chamber slides with 4 x 104 cells/ chamber. Forty-eight hours later, 

cells were washed with PBS and fixed in 4% paraformaldehye/PBS for 30 min. After 

washing with PBS, cells were stained with 0.5 J..Lg/ml Hoechst 33342 in PBS for 10 min at 

room temperature. Cells treated with 1 J..LM staurosporine (Sigma) in their corresponding 

cell medium for 48h were used as positive controls. The stained cells were visualized 

under an Olympus BX 50 fluorescence microscope using a UV filter in the range of 395-

450 nm. Condensed or fragmented nuclei were considered as apoptotic cells. 
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Chapter 3: Results 

3.1 Human mi-er 1 transfection efficiency 

Previous studies have shown that hmi-er 1 was highly expressed in tumour cell 

lines and tumour tissues while remaining undetectable in normal breast cell lines and 

breast tissues (Paterno eta!., 1998a). The expression of hmi-er1 is believed to be 

associated with the neoplastic state in human breast carcinoma. Therefore, the role of 

human mi-er 1 in cell growth regulation was investigated in three human breast carcinoma 

cell lines (BT-474, MDA-MB-231 and MDA-MB-468) using HEK 293 and Hs574 as 

non-breast carcinoma cell lines for comparison. It has long been appreciated that 

estrogen receptor (ER) contributes to the metastatic behaviour and progression of breast 

cancer (Mercer eta!., 1984;Coradini eta!., 1984). The hMI-ER1 protein was found to 

interact with estrogen receptor (Savicky eta!., unpublished data). Therefore, the 

functions of hmi-er 1 were examined in three breast cancer cell lines that differ markedly 

in their estrogen receptor content. The ER-positive (BT-474) and ER-negative (MDA­

MB231 and MDA-MB-468) breast cancer cell lines were used. 

Transfection refers to a range of techniques used for introducing genes into cells 

in such a way that they can be taken up by the nucleus and expressed. Cellular 

transfections provide powerful experimental tools to understand gene regulation in vivo 

and in vitro (Kaiser and Toborek, 2001 ). Achieving a high transfection efficiency is the 

key to successful experiments in characterizing the function of the genes of interest. 

Therefore, it is important to determine the percentage of cells in a culture that express 

41 



transfected gene (transfection efficiency). This will not only avoid underestimating or 

overestimating functions of gene of interest, but also closely study its effects on cell 

growth. 

Transfection rates of hmi-er 1 were first determined in human embryonic kidney 

cells (HEK 293) and in human breast carcinoma cell lines (BT -474, MDA-MB-231 and 

:MDA-:MB-468) by immunocytochemical staining. The very slow-growing normal 

human breast cell line (Hs574) was not included in this part of experiments because they 

are very fragile and it is hard to work with. Previous studies have showed that hMI-ER1~ 

is localized exclusively in the nucleus, while hMI-ER1a remained in the cytoplasm of 

mouse Nlli 3T3 fibroblasts (Paterno et al., 2002a). Because the cellular localization of 

hmi-er1P is well-characterized with clear nuclear staining, hmi-erlfitransfectants were 

used as positive controls here. 

Cells were transiently transfected with plasmids containing myc-tagged hmi-er 1 a 

or hmi-er1P eDNA and grown on 8-chamber slides. After 24h, transfected cells were 

fixed with 4% paraformaldehyde in phosphate-buffered saline (PBS). After several 

washings, the cells were incubated first with the anti-MYC antibody 9El 0. After 

incubation with a biotinylated secondary antibody and with avidin-biotin-horseradish 

peroxidase complex, staining was visualized using 3,3' diaminobenzidine (DAB). Non­

transfected and myc-tagged empty vector-transfected cells were used as controls. Only 

cells with stronger staining than controls were counted and considered as successful 

transfectants. Cells that showed abnormal morphology were excluded from the count. 

Efficiency oftransfection and levels ofhMI-ER1 expression were determined by 

means of immunocytochemistry (Table 3.1 and Figure 3.1). We showed that the average 
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transfection efficiency ofthree breast carcinoma cell lines (BT-474, MDA-MB-231 and 

MDA-MB-468) is 30-40%, which is the expected rate with the use of the conventional 

protocol (Yamamoto et al., 1999). We also found that the highest transfection efficiency 

(77%) was achieved in transfected human embryonic kidney (HEK 293) cells. It is 

believed that certain cell lines are intrinsically easier to transfect than others, although the 

exact reason for these differences is still unknown (Nikcevic et al., 2003). Weak nuclear 

staining was observed in HEK 293 cells that had been transfected with myc-tagged empty 

vector (Figure 3.1A). HEK 293 cells were first described as human embryonic kidney 

cells transformed by sheared adenovirus 5 DNA (Graham et al., 1977). It is possible that 

the small but sufficient amount of c-MYC tag was produced in myc-tagged empty vector­

transfected HEK 293 cells. This resulted in the recognition of the tag by antibody 9E10, 

thus leading to weak nuclear staining in vector-transfected HEK 293 cells. The staining 

of endogenous MYC in HEK 293 cells is another possible explanation. However, no 

other supporting reference can be found for these proposed explanations. Therefore, it is 

still unclear why myc-tagged vector-transfected HEK 293 cells showed weak nuclear 

staining. As expected, hmi-er 1 P-transfected cells showed predominantly nuclear staining. 

Interestingly, most positive hmi-er 1 a-transfected breast cancer cells showed staining in 

the nucleus, while HEK 293 cells were stained both in the nucleus and cytoplasm. 
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Table 3.1 Total numbers and subcellular localization of positive hmi-erl-

transfected cells 

HEK293 

Nucleus Cytoplasm Unstained Transfection 

rate (i'o) 

CS3+MT 84 31 285 --

hmi-er1a 166 144 90 77% 

hmi-er1P 262 36 102 75% 

BT-474 

CS3+MT -- -- 400 --
hmi-erla 100 26 274 . 32% 

hmi-er1P 136 8 256 36% 

MDA-MB-231 

CS3+MT -- 12 388 --
hmi-er1a 92 30 278 31% 

hmi-er1P 128 8 264 34% 

MDA-MB-468 

CS3+MT -- -- 400 --
hmi-er1a 102 24 274 32% 

hmi-er1P 112 12 276 31% 

The first column lists myc-tagged empty vector (CS3+MT), myc-tagged hmi-er 1 a or him­

er 1 P-transfected cells. A total of four hundred cells were counted. The data shown are 

total numbers of two independent experiments. By observing the DAB staining in 

transfected cells, the subcellular localization ofhMI-ER1a and hMI-ER1P was identified. 
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Figure 3.1 Immunocytochemistry of cells transient transfected with hMI-ERl 

HEK 293 (A), BT-474 (B), :MDA-MB-231 (C) and :MDA-MB-468 (D) cells were 

transfected with 1.5 Jlg ofmyc-tagged empty vector (CS3+MT), myc-tagged full-length 

hmi-erla or hmi-erip, fixed after 48h and stained using the anti-MYC antibody 9EIO as 

described in "Materials and Methods". DAB stain (brown) indicates that cells were 

successfully transfected and also revealed the subcellular localization ofhMI-ERla and 

hMI-ERlf3. No staining was detected in non-transfected cells. Cells mock-transfected or 

transfected with myc-tagged empty vector were used as controls. Representative pictures 

from two independent experiments were showed. 
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J.2 The overexpression of hmi-er 1 a at the mRNA level in transfected cell lines 

was evaluated by reverse transcription-polymerase chain reaction (RT -PCR) 

Paterno et al. have previously suggested that hMI-ERla and J3 isoforms may have 

distinct cellular functions. Further examination of the amino acid sequence of the a 

isoform revealed a potential protein interacting LXXLL motif (Paterno et al., 2002). This 

leucine-rich motif (LXXLL; where L denotes leucine and X denotes any amino acid) 

mediates protein interaction with the nuclear receptors and the assembly of nuclear 

receptor-co-activator complexes (Heery eta!., 1997c). hMI-ERl is already known to 

interact with estrogen receptors (Savicky et al., unpublished data) and its expression level 

is elevated in breast tumour cell lines and tumour tissue, suggesting that the hMI-ERla 

isoform is associated with the pathology of human breast cancer. Therefore, my work 

focuses on the role ofhMI-ERla playing on growth regulation ofhuman breast 

carcinoma cells. 

The expression levels ofhMI-ERI were very low in normal human tissues. Its 

expression can not be detected at the protein level using the available antibodies; thus, we 

employed the sensitive PCR method. RT-PCR was performed to determine the 

expression of hmi-er 1 a at the mRNA level in multiple transfected cell lines, including 

human embryonic kidney cells (HEK 293), normal breast cells (Hs574), and human 

breast carcinoma cell lines (BT-474, l\.1DA-MB-231 and MDA-MB-468). In addition, 

RT-PCR was also used to confirm that the antisense construct was effectively 

downregulating hmi-er 1 a expression. First, the full-length eDNA of hmi-er 1 a was 

subcloned in sense or antisense orientation under the CMV promoter in pcDNA3.I· Each 

cell line was transiently transfected with pcDNA3.1 empty vector, pcDNA3.1-hMI-ERla 
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(pcERla), or antisense pcDNAJ.I-hM1-ERla (AS-pcERla). These were transfected at a 

concentration of 1.5 J.Lg each. Twenty-four hour later, total RNA was extracted from 

transfected cells using Trizol, and the complementary DNA was prepared by reverse 

transcription. PCR was then carried out usirtg hmi-er 1 a-specific 5' (HER 2) and 3' (HER 

4) primers to confirm the expression of hmi-er1a at the mRNA level. These primers 

recognize the same coding sequence in both endogenous and transfected hmi-er 1 a. Non­

transfected cells and cells transfected with pcDNA3.1 empty vector served as controls to 

ensure the entire experiment was properly conducted. The expression of human f3-actin 

was also examined to show integrity and equality of input eDNA in each sample. 

As expected, in each cell line the overexpression of hmi-er 1 a was detected in cells 

transfected with pcDNAJ.I-hM1-ERla and those with antisense pcDNA3 . • -hMI-ERla 

(Figure 3.2). This indicated successful cell transfections. Because the set ofPCR primers 

used here could also recognize endogenous hmi-er 1 a, the expression of endogenous hmi­

er1a mRNA in non-transfected and pcDNA3.1 empty vector-transfected cells could be 

readily detected with an increase of PCR cycle. 
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Figure 3.2 RT-PCR analysis of hmi-erla expression in human normal and breast 

carcinoma cell lines 

Each cell line was transfected with pcDNA3_1 empty vector, pcDNA3_1-hMI-ER1a 

(pcER1a) or antisense pcDNA3.1-hMI-ER1a (AS-pcER1a), followed by RNA isolation 

and reverse transcription as described in "Materials and Methods". cDNAs from each 

sample were amplified using hmi-er 1 a-specific 5' and 3' primers. The PCR products 

were loaded and electorphoresed on a 1% agarose gel (top panels). The over-expression 

of hmi-erla was shown in HEK 293 (A), Hs574 (B), BT-474 (C), MDA-MB-231 (D) and 

MDA-MB-468 (E) cells. The expression of f3-actin shown in each bottom panel was used 

as input control. 
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3.3 Antisense hmi-erla decreased hmi-erla mRNA levels 

Because the functional role of hmi-er 1 a in human normal and breast cancer cells 

has not been defined, we investigated the impact ofhMI-ER1a on cell proliferation by 

either overexpressing it as mentioned in Section 3.4 or suppressing its expression by 

using an antisense (AS) strategy. Inhibition of expression by nucleic acids has been 

known to occur for more than two decades. Researchers have been applied the antisense 

principle to manipulate gene expression and thereby identify gene functions. Antisense 

RNAs bind to their target RNAs (sense RNA) thereby controlling expression of the target 

genes. This approach aims to knockdown a target molecule, either by translational 

blocking or the activation of endogenous cellular nucleases, such as RNase H (reviewed 

in Tatjana et a/., 2003). 

In this study, the antisense pcDNA3.1-hMI-ER1a was used for transient 

transfection ofHEK 293, Hs574, BT -474, MDA-:rvffi-231 and MDA-:rvffi-468 cells. At 

24h post-transfection, the expression levels of hmi-er1a mRNA was evaluated by RT­

PCR analysis using primers against 3' UTR of hmi-er 1 a. The antisense hmi-er 1 a DNA 

construct was transcribed only from the coding region; therefore, this analysis would 

detect only endogenous hmi-er 1 a mRNA, and not antisense RNA. 

Figure 3.3 reveals that introduction of antisense pcDNA3.1-hMI -ER 1 a into HEK 

293, Hs574, BT-474, MDA-:rvffi-231 and MBA-MD-468 cells resulted in a significant 

reduction in hmi-er 1 a mRNA levels, as compared with non-transfected cells. There was 

no significant difference in f3-actin mRNAs between transfected and non-transfected cells. 

These data suggested that transfection of each cell line with antisense hmi-er 1 a constructs 
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specifically suppresses hmi-er 1 a mRNA levels. To find out how many fold is the hmi­

er 1 a mRNA being suppressed, densitometric scans should be included in future study. 
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Figure 3.3 Down-regulation of endogenous hMI-ERla expression in antisense 

pcDNA3.1-hMI -ERla-transfected cells 

HEK 293 (A), Hs574 (B), BT -474 (C), MDA-MB-231 (D) and MDA-MB-468 (E) cells 

were transfected with or without antisense pcDNAJ.J -hMI-ERla (AS-pcERla). Total 

RNA was extracted with Trizol24h later and used as template for RT-PCRs performed 

with primers specific for 3' UTR of hmi-er 1 a. PCR products were analyzed on a I% 

agarose gel. Antisense pcDNA3.t-hMI-ERla-transfected cells showed a marked 

reduction in the expression of hmi-erla mRNA (top panels). The expression off3-actin 

was included to confirm that each lane contained the same amount of PCR products 

(bottom panels). 
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J.4 Overexpression ofhMI-ERla in human normal and breast cancer cells 

It has been known that hmi-er 1 was consistently expressed in breast carcinoma 

cell lines and breast tumour tissue while remaining negligible in normal breast cell lines 

and breast tissue (Paterno eta/., 1998). However, little is known about functional aspects 

ofhMI-ER1 expression as they relate to either the normal or the transformed cellular 

phenotype. To address the question whether upregulated expression ofhMI-ER1 is 

associated with the neoplastic state in human breast carcinoma, we attempted to 

overexpress hMI-ER1a in normal and breast cancer cell lines. 

Human normal breast cell lines (Hs57 4 ), non-breast cancer cell line (HEK 293), 

and breast carcinoma cell lines (BT-474, MDA-:MB-231 and MDA-MB-468) were 

transfected with pcDNA3.1-hMI-ER1a (pcER1a) or pcDNA3.1 empty vector. At 24h post­

transfection, cells were harvested and lysed. The total protein concentration of each 

sample was then measured by Bio-Rad protein assay, which is a simple colorimetric assay. 

Approximately 25 J..Lg of cell lysate was resolved by 8% SDS-PAGE and subjected to 

Western blot analysis for hMI-ER1a, using polyclonal anti-hMI-ER1 antibody. 

As shown in Figure 3.4, the overexpression ofh.MI-ER1a was detected only in 

pcDNA3.1-hMI-ER1a-transfected cells, but not in pcDNA3.1-transfected or non­

transfected cells. This revealed that control transfection did not alter h.MI-ER1a 

expression, and introduction ofpcDNA3.1-hMI-ER1a into cells led to highly expressed 

hMI-ER1a in each cell line. 
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Figure 3.4 Western blot analysis of hMI-ERla expression in multiple cell lines 

HEK 293 (A), Hs574 (B), BT -474 (C), J\.1DA-!vffi-231 (D) and MDA-:MB-468 (E) cells 

transiently transfected with pcDNA3_1-hMI-ERla (pcERla) or pcDNA3.J control vector, 

along with non-transfected cells were harvested 24h after transfection. And 

approximately 25 Jlg of cell lysate was Western blotted with polyclonal anti-hMI-ERla 

antibody, as described in ''Material and Method". Only cells transfected with pcDNA3_1-

hMI-ERla showed the overexpression ofhMI-ERla. 
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3.5 The effects of hMI-ERla on cell growth was analyzed by colony formation 

assays 

To further investigate whether the overexpression of hmi-er 1 in adult tissues 

contributes to the neoplastic phenotype, we introduced hmi-er 1 a isoform into multiple 

cell lines and examined its effect on cell growth. The normal human breast cell line 

(Hs574), non-breast carcinoma cell line (HEK 293), and breast carcinoma cell lines (BT-

474, MDA-J\.ffi-231 and 1IDA-MB-468) were transfected with 1.5 J.Lg of sense or 

antisense pcDNA3.1-hMI-ERla constructs as well as pcDNA3.I vector, which carries a 

neomycin selection marker. At 24h post-transfection, those transfected cells were 

selected in neomycin analog, geneticin-containing media for 10 to 14 days. To be able to 

count the colony number of transfected cells, their colony size must be large enough to be 

visualized. Therefore, the period of selection time depends on the proliferation rate of 

each cell lines. HEK 293 cells grow fast, so colony formation was measured after I 0 

days. The other four cell lines grow slower; thus, they were examined after 2 weeks of 

selection. The number of drug-resistant colonies for each cell line was then scored after 

staining with 2% crystal violet, which is a basic metachromophore used to stain all cells 

purple in order to determine relative cell number (Gillies et al., 1986). Because of the 

slow growth rate ofHs574, no colonies were formed and only individual cells were seen; 

therefore, the overall surviving Hs574 cells were counted instead of colony number. 

Figure 3.5 illustrates a microscopic view of a representative plate of each cell line 

transfected with the empty vector (pcDNA3.1) or with hMI-ERla in antisense or sense 

orientations. HEK 293 cells transfected with hMI-ERla expression plasmids 

demonstrated a dramatic reduction in the number of colonies suggesting that 

54 



overexpression ofhMI-ER1a suppresses growth of~hese cells. The similar anti-growth 

effect is also seen in human normal breast cell line, Hs574. As shown in Figure 3.5D, the 

dead Hs57 4 cells that were fragmented into debris (purple dots) were excluded from the 

count. BT-474 cells did not grow into big colonies; therefore, the pictures of micro 

colonies were shown (Figure 3.5E). For each experiment, triplicate plates were prepared 

and the values represent an average of these independent data. Results from three 

independent experiments revealed between 70 and 90% growth inhibition of HEK 293 

and Hs574 upon overexpression ofhMI-ER1a (Figure 3.6A and B). However, very little 

effects on colony formation (5-10% reduction) were observed in three breast carcinoma 

cell lines that were transfected with sense hMI-ER1a. In other words, hMI-ERla­

transfected MDA-:MB-231, MDA-MB-468 and BT -474 cells maintained their normal 

growth rate (Figure 3.6C, D and E). 

In the case of antisense hMI-ERla-transfected HEK 293 and Hs574 cells, only a 

slight reduction in growth rate was observed as compared to the vector controls (Figure 

3.6 A and B). Applying the Student's t-test, the colony or cell counts for antisense hMI­

ER1a-transfected cell lines were compared to that of the control vector transfected cells. 

Antisense hMI-ER1a has no significant effects on HEK 293 and Hs574 cells (P = 0.12 

and 0.29 for HEK 293 and Hs574, respectively). Interestingly, a significantly marked 

reduction in the colony numbers was observed in the breast cancer cells transfected with 

antisense hMI-ERla (all P-values < 0.05). Examination of colony formation from three 

independent experiments showed 40 to 60% decrease in colony-forming efficiency in 

antisense hMI-ERla-transfected breast carcinoma cells (Figure 3.6C, D and E). The 

extent of cell growth inhibition by antisense hmi-er 1 a varied between the three breast 
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cancer cell lines. This difference may be associated with their content of estrogen 

receptors (ERs); BT-474 is ER-positive, and both :rviDA-MB-231 and :MDA-MB-468 are 

ER -negative and highly invasive breast cancer cell lines. 

The overall data demonstrate that the impact ofhMI-ERla on growth of human 

breast carcinoma cells is very different from normal and non-breast cancer cells. The 

expression ofhMI-ERla caused a noticeable decrease in growth rate of normal breast 

cells, but it is also essential for growth of breast cancer cells. The hMI-ERla 

overexpressing breast cancer cells exhibited a colony formation advantage, while the 

breast cancer cells with reduced levels ofhJ\.11-ERla were growth suppressed. These 

fmdings support an important regulatory role for hMI-ERlu In breast cancer. 
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Figure 3.5 Colony formation of various cell lines transfected with either sense or 

antisense hl\11-ERla expression plasmids 

HEK 293 (A), MDA-MB-231 (B), MDA-MB-468 (C), Hs574 (D), and BT -474 (E) were 

seeded in 6-well plates. After 24h, cells were transfected with empty vector pcDNA3_1 

(top), pcDNA3.1-hMI-ERla (middle), or antisense pcDNA3.1-hMI-ERla (bottom). At 

24h post-transfection, cultures were harvested and equal numbers of cells were placed in 

60mm plates with geneticin-containing media. These transfected cells were selected by 

geneticin for 10 to 14 days. The formed colonies were photographed after staining with 

2% crystal violet. The pictures ofBT-474 micro colonies were all taken at the same 

magnification (Bar, 1 mm). The pictures ofHs574 surviving cells were taken at 40X 

magnification (Bar, 0.5 mm). Each experiment was carried out three times. 

Representative plates are shown. Note that hMI-ER1a overexpression resulted in growth 

suppression in human normal cell lines, but had no significant effects on human breast 

carcinoma cell lines. Interestingly, a marked reduction in colony-forming efficiency was 

observed in the antisense hMI-ER1a vs. sense hMI-ER1a-transfected breast cancer cells. 

Cells transfected with empty vector were used as controls. 
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Figure 3.6 Measurement of colony numbers in transfected cell lines 

HEK 293, Hs574, BT-474, MDA-MB-231 and MDA-MB-468 cells were transfected with 

pcDNA3.1 control vector, pcDNA3.~-hMI-ERla or AS-pcDNA3.1-hMI-ERla. Transfected 

cells were selected in the presence of geneticin for 10-14 days. Numbers of drug-resistant 

colonies or cells were scored after staining with 2% crystal violet. The results represent 

the average± SD of three experiments, each performed in triplicate. The overexpression 

ofhMI-ER1a was associated with a marked reduction in the growth rate of two human 

non-breast carcinoma cell lines, HEK 293 (A) and Hs574 (B), but did not alter the growth 

rate of three breast cancer cell lines: BT-474 (C), MDA-MB-231 (D) and MDA-MB-468 

(E). It is apparent that colony-forming efficiency was significantly reduced by antisense 

inhibition ofhMI-ER1a expression in three breast cancer cell lines. * , Statistical 

significance is assessed by Student's t-test for independent groups (All P-values < 0.05) 
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3.6 Hoechst staining for the detection of apoptosis in antisense hMI-ERla-

transfected breast carcinoma cells 

Having shown that the downregulation ofhMI-ERla. using antisense technology 

suppressed the growth of breast cancer cells up to 60%, we next investigated if this 

inhibition was due to apoptosis. Apoptosis is a form of programmed cell death that plays 

a critical role in the development and maintenance of multicellular organisms. It is 

characterized by a variety of morphological features, including membrane blebbing, cell 

shrinkage, chromatin condensation, and chromosomal DNA fragmentation, etc. (Sgonc 

and Gruber, 1998). 

HEK 293, MDA-MB-231 and MDA-MB-468 cells ·were transfected with empty 

vector pcDNA3.1 and antisense hMI-ER1a. construct (AS-pcDNA3.1-hMI-ER1a.). At 24h 

post-transfection, cells were seeded in 8-chamber slides. After 48h, cells were fixed with 

4% paraformaldehyde in PBS and stained with the DNA-binding fluorochrome bis­

benzimide dye (Hoechst 33342). Cells were then observed with a fluorescence 

microscope and photographed. The Hoechst 33342 dye is a popular cell-permeant 

nuclear stain that emits blue fluorescence when bound to double-stranded DNA. Hoechst 

dyes preferentially bind to adenine-thymidine (AT) base pair rich regions. It is often used 

to distinguish condensed pycnotic nuclei in apoptotic cells (Holmquist, 1975;Shapiro, 

1981). 

HEK 293 cells were used as a negative control here since antisense hMI-ER1a. 

had no profound effect on growth of these cells. On the other hand, staurosporine (STS)­

treated MDA-MB-231 and MDA-MB-468 cells were used as positive controls. 

Staurosporine is a strong protein kinase C inhibitor and a well-studied apoptosis inducer 
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(Tamaoki eta!., 1986;Jacobsen eta!., 1996;Jiang eta!., 2002). Morphological changes in 

the nuclear chromatin of staurosporine-treated cells undergoing apoptosis were detected 

by staining with Hoechst. 

As shown in Figure 3.7, after the treatment with staurosporine, the positive control 

cells showed significant DNA fragmentation and cell shrinkage that are characteristics of 

apoptotic cells. In contrast, little or no DNA fragmentation was detected in either empty 

vector pcDNA3.1 or antisense ~ERla-transfected HEK 293, MDA-MB-231 and 

MDA-MB-468 cells. This preliminary data suggests that the inhibitory effect of antisense 

hMI-ERla on growth of breast cancer cells may not be via an apoptotic mechanism. In 

other words, blocking hMI-ERla in breast carcinoma cell lines may not induce apoptosis. 
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Figure 3.7 Nuclear staining of cells with Hoechst 33342 

Transfection ofHEK 293 (A), MDA-MB-231 (B) and MDA-MB-468 (C) cells with 

empty vector pcDNA3.1 or AS-pcDNA3_1- hMI-ERla (AS-pcER1a) construct, followed 

by nuclear staining with Hoechst 33342 were viewed and photographed with a 

fluorescence microscope. All three cell lines transfected with antisense hMI-ER1a 

revealed no difference in nuclear morphology from that transfected with empty vectors. 

MDA-231 and MDA-468 cells treated with staurosporine (STS) for 48h were used as 

positive controls. These control cells with typical punctuated nuclear morphology of 

apoptotic cells were detected (B and C). Data shown are representative of three 

independent experiments. 
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Chapter 4: Discussion 

It is now well accepted that FGF signaling pathway plays an important role in 

controlling mammary gland development, morphogenesis, and breast cancer progression 

(Chalbos eta/., 1994;Dickson and Lippman, 1995). The recent discovery of a novel 

FGF-inducible immediate-early gene, mi-er 1, has revealed a possible "master" regulatory 

gene involved in a variety of cellular processes. The expression of human mi-er 1 is 

higher in the testis than in the other tissues (Paterno et a/., 1998). In the testis, 

spermatogenesis occurs as a complex developmental process characterized by a fast rate 

of cell proliferation that is controlled by an elaborate cascade of transcriptional and 

regulatory events (Sassone-Corsi, 2002;Lewis eta/., 2003). This is consistent with the 

notion that the hMI-ER1 protein might be involved in normal cellular functions, such as 

cell proliferation. Paterno eta/. (1998) have showed that hmi-er1 is consistently 

expressed in breast carcinoma cell lines and tumours while being barely detectable in 

normal breast cell lines and breast tissue. In an attempt to understand its role in 

regulating growth of human normal and breast cancer cells, several basic cell culture 

techniques and assays were performed in this study. 

In spite of the fact that hmi-er 1 mRNA expression is up regulated in breast 

tumours (Paterno eta/., 1998), the expression levels of endogenous hMI-ER1 protein 

remain unexplored due to lack of effective antibodies. In this experiment, Western 

analyses showed no detectable hMI-ER1a protein in breast carcinoma cell lines yet lots in 

normal human breast cell line, Hs574, (Figure 3.4). The relatively substantial levels of 
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hMI-ER1a protein in Hs574 cells may be the result of a mixed cell population in this 

particular cell line since many of available normal breast cell lines are obtained from 

histologically normal tissue surrounding a breast tumour (Paterno et al., 1998). These 

observations raise the possibility that a hMI-ER1a mutant protein may be produced in 

breast cancer cells; therefore, no hMI-ER1a can be detected. This possibility warrants 

further study. 

Previous studies have revealed that the only bona fide nuclear localization signal is 

found in the C-terminus ofthe hMI-ER1~ isoform; hence, hMI-ERl~ is located 

predominantly in the nucleus, while hMI-ERla is cytoplasmic in transfected Nlli 3T3 

cells (Paterno et al., 2002). Interestingly, DAB staining of three hMI-ER1a-transfected 

human breast carcinoma cell lines showed that hMI-ER1a is targeted primarily to the 

nucleus. Many proteins without an NLS have been found to translocate to the nucleus 

through interaction with other proteins, including ~-catenin (Gan and Khalili, 

2004;Townsley et al., 2004) and Smads (Kurisaki et al., 2001 ;Fink et al., 2003). 

Therefore, it is possible that hMI-ER1a was transported into the nucleus through 

interaction with histone deacetylase (I-IDA C) (Ding et al., 2003), histone acetyltransferase 

(HAT) (Blackmore et al., unpublished data), nuclear hormone receptors (Savicky et al., 

unpublished data), or other proteins. Within epithelial cells, diverse appropriately 

regulated signaling pathways are frequent targets of genetic alteration during progression 

to carcinoma (reviewed in Hanahan and Weinberg, 2000). A shared property of these 

pathways is the regulation of transcription factors by tethering within the cytoplasm. 

Under tightly controlled conditions, paracrine/autocrine signals induce translocation of 

latent transcription factors from the cytoplasm to the nucleus, resulting in activation of 
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specific target genes. Genetic alterations found in cancer lead to inappropriate nuclear 

accumulation oftranscription factors. Therefore, nuclear accumulation ofhMI-ERla. in 

breast carcinoma cells may trigger a variety of transcriptional responses and in tum 

affects cell growth. It is very likely that its altered nuclear functions contribute to tumour 

progression. Some may argue that nuclear transport ofhMI-ERla. in breast cancer cells 

may be due to cell-type specificity. More studies are needed in order to clear this doubt. 

Estrogen receptor (ER) status is an important prognostic biomarker in breast cancer. 

Loss of expression or function of ER facilitates the metastatic behaviour and progression 

of breast cancer (Girdler and Brotherick, 2000); thus, ER-negative breast cancer cells are 

more aggressive and invasive. A recent study has shown that hMI-ERla. interacts with 

ERa. and represses ER element (ERE)-driven transcription in ER-positive MCF-7 breast 

cancer cells, indicating potential negative regulation between hMI-ERla. and ER (Savicky 

eta/., unpublished data). To determine whether the interaction between hMI-ERla. and 

ER has an impact on growth ofbreast cancer cells, sense or antisense hmi-erla­

transfected ER-positive and -negative breast carcinoma cell lines were examined. 

Blocking hMI-ERla. using an antisense strategy inhibited the growth of bothER-positive 

and -negative cancer cells, but the extent of growth inhibition is greater in ER-negative 

cells. Therefore, hmi-er 1 a has, at least in part, a direct effect on cellular growth, 

independent of the estrogen receptor. 

Quantitative analysis of colony-forming efficiency by colony-formation assays 

allows us to investigate the effect of ectopic hMI-ERla. expression on cell proliferation in 

selected cell lines. Furthermore, it has also provided evidence that hMI-ERla expression 

is associated with the change of morphology in human normal breast cells (Figure 3.5B); 
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it is therefore linked with cell transformation and cell death. In this study, transient 

overexpression ofhMI-ERla in human normal cell line (Hs574) resulted in a dramatic 

reduction in the number of colonies indicating that hMI-ERla can act as a potent growth 

suppressor in normal cells. In contrast, forced hMI-ERla expression has no significant 

effect on growth of three breast carcinoma cell lines. 

The functional inactivation of hmi-er 1 a, using antisense technology, led to the 

reduced colony-forming ability of breast carcinoma cells; however, it appears that 

antisense constructs did not fully knockout hMI-ERla expression. It is important to note 

that the most recognized disadvantage of transient transfection is low efficiency of 

transfection (30-35%); not all cells are transfected. With a large cell population that is 

unsuccessfully transfected with antisense constructs, complete knocking down of hmi-er 1 

can not be expected. A greater degree of growth inhibitory effect may be seen ifhMI­

ERla expression can be completely repressed in cancer cells that are all positively 

transfected with antisense constructs. This can be achieved by using stable cell lines 

expressing antisense hMI-ERla; only successfully transfected cells are selected. 

Shortcomings associated with the use of full-length hmi-er 1 a antisense constructs 

are to increase the likelihood of non-specific inhibition of other genes with sequence 

homology to the various domains ofhMI-ERla and to induce an interferon response. 

Together, they in turn alter physiological function of a large number of genes; thus, 

aberrant cell behavior may result. The problems can be overcome by employing a more 

effective technology, such as RNA interference (RNAi), to specifically inhibit the 

expression of hmi-er1a in a sequence-specific manner. In addition, use of the lowest 

effective number ofRNAi vectors limits the risk of inducing interferon expression since 
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small interfering RNAs (siRNAs) are too short to trigger an interferon response (Bridge et 

al. , 2003). 

These overall results together with the findings in previous studies using different 

cancer cells (Ding et al., unpublished data) suggested that hMI-ERla expression is not 

only highly regulated, but also plays a specific role in oncogenesis. 

To gain some insight into the mechanism underlying the inhibition of cellular 

proliferation in these antisense hmi-er 1 a-transfected breast carcinoma cells, we employed 

Hoechst staining for the detection of apoptosis. Programmed cell death is recognized as a 

critical element in the removal of hazardous, damaged, or unnecessary cells, such as those 

resulting from DNA damages or during development. Many factors contribute to this 

process, each demonstrating specificity of function, regulation, and pathway involvement 

(Ashe and Berry, 2003). Apoptosis can be defined by significant morphological features, 

including cell shrinkage, chromatin condensation, membrane blebbing and DNA 

fragmentation (Vermeulen et al., 2003). Therefore, condensed chromatin and nuclear 

fragmentation can be easily determined by staining cells with DNA specific 

fluorochromes such as Hoechst dye. This technique is primarily used for qualitative 

analysis of apoptotic cells. 

In our study, downregulation ofhMI-ERla expression did not trigger apoptosis in 

MDA-MB-231 and MDA-MB-468 cells stained with Hoechst dye. No nuclei 

fragmentation was detected in these antisense hmi-er 1 a-transfected breast carcinoma cell 

lines, suggesting that inhibitory effect of antisense hmi-er 1 a on the growth of breast 

cancer cells was not due to the induction of apoptosis. It is possible that the anti-growth 

effect of antisense hmi-er1a is due to cell cycle arrest since hMI-ERla has been 
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demonstrated to interact with retinoblastoma tumour suppressor protein (Rb) (Ding et a/., 

unpublished data). The Rb protein acts as a transcriptional repressor by targeting the E2F 

transcription factors, whose functions are required for cell cycle entry and DNA synthesis 

(Harbour and Dean, 2000;Stevaux and Dyson, 2002). Rb proteins are thought to inhibit 

expression ofE2F-regulated genes in several ways, including the recruitment ofHDACs, 

SWI/SNF complexes (Zhang eta/., 2000), polycomb group proteins (Dahiya eta/., 2001), 

or methyl transferases (Van del et a/., 2001 ;Nielsen et a/., 200 I) that act on the nearby 

surrounding nucleosome structure. It is clear that Rb plays a pivotal role in making a 

decision whether a cell should enter or exit the cell cycle. In addition to its role in cell­

cycle control, Rb has been implicated in regulating a broad variety of cellular events, 

including differentiation (Lipinski and Jacks, 1999) and apoptosis (Hickman et a/., 2002). 

It is likely that hMI-ERl interacts with and presumably modulates the function ofRb, and 

in tum initiates cell cycle arrest. However, Ding eta/., (unpublished data) previously 

showed that the overexpression ofhMI-ERl also inhibited growth ofRb-inactivated cell 

lines (C33A and HeLa). Therefore, we can not rule out the possibility that hMI-ERI 

regulates cell growth through an Rb-independent mechanism. 

A recent study showed that hMI-ERI represses its own promoter by forming 

complexes with Sp I and interfering with the latter's DNA binding activity (Ding et a/., 

2004). Spi is a transcription factor that specially binds to GC-rich sequences and 

activates a large number of genes, including growth-regulated genes (reviewed in (Black 

eta/., 200I). Many reports suggested a role for Spl in the cell cycle. It was shown that 

Sp 1 interacts with cell cycle regulatory proteins such as cyclin D and Rb (Kim et a/., 

I992;Adnane eta/., I999;0pitz and Rustgi, 2000;Chang eta/., 2001), Rb-related protein 

67 



p107 (Datta eta!., 1995), the transcription factor E2F (Karlseder eta!., 1996), p53 

(Gualberto and Baldwin, Jr., 1995) and the oncoprotein :MDM2 (Johnson-Pais eta!., 

2001). The requirement ofSpl for cell cycle progression through Gl phase has been 

reported (Grinstein eta!., 2002). Therefore, the interaction between Spl and hMI-ERl 

may be involved in regulating the cell cycle and related to positive or negative changes in 

cell growth. 

The sense and antisense hMI-ERla. significantly inhibit growth ofhuman normal 

and breast carcinoma cells, respectively. Although the preliminary data from Hoechst 

staining showed that the growth-inhibitory effect of antisense hMI-ERla. on breast cancer 

cells is not due to induction of apoptosis, this is not necessarily true for the case of sense 

hMI-ERla. suppressing growth of normal cells. The sense and antisense hMI-ERla. 

might function through different mechanisms. Therefore, the precise mechanism 

underlying the anti-growth effect ofhMI-ER1a. remains unclear. It would be interesting 

to further investigate whether hMI-ER1a.-mediated growth suppression results from the 

induction of apoptosis or cell cycle arrest. 

The expression ofhMI-ERla. has been associated with growth inhibition in 

normal human cells and hMI-ERla. likely has tumour-related functions in breast cancer. 

These overall results indicate a role for hMI-ERla. in regulating cell growth and suggest 

that its overexpression in breast carcinoma cells is of functional significance. Therefore, 

the role ofhMI-ERla. in breast cancer development and/or progression is worthy of 

further study. 

Future work would look further into the mechanism underlying the growth­

inhibitory activity ofhMI-ERla. using sense or antisense hMI-ERla. in the stable-
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transfectant HeLa "Tet-ON" system developed in our lab, followed by employing flow 

cytometry to measure apoptosis and cell cycle progression. Furthermore, repressing hMI­

ERla. expression in breast cancer cells using a more effective method known as RNA 

silencing (RNAi) could prove to be very exciting. The next step would involve 

investigating whether downregulation ofhMI-ERla. by RNAi in breast cancer cells 

inhibits: (1) cell proliferation, (2) cellular invasion, (3) anchorage-independent growth, 

and (4) migration using a variety of assays. Moreover, to determine whether 

subcutaneous injection ofhMI-ERla. HeLa Tet-ON cells into nude mice has an impact on 

tumour growth would be rewarding. Finally, the ultimate approach to understand the 

function ofhMI-ERI would be to utilize transgenic techno.logy to "knockout" specific 

hMI-ERI isoforms in mice. The further analysis ofhMI-ERl isoforms should greatly 

enhance our understanding the mechanisms of human breast cancer development, 

progression and endocrine response, and may potentially identify hMI-ERI as a 

therapeutic target for breast cancer. 
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