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Abstract

This thesis addresses the problem of digital video stabilization. With the widespread use

of handheld devices and unmanned aerial vehicles (UAVs) that has the ability to record

videos, digital video stabilization becomes more important as the videos are often shaky

undermining the visual quality of the video. Digital video stabilization has been studied

for decades yielding an extensive amount of literature in the field, however, current ap-

proaches suffer from either being computationally expensive or under-performing in terms

of visual quality . In this thesis, we firstly introduce a novel study of the effect of image

denoising on feature-based digital video stabilization. Then, we introduce SteadyFlow, a

novel technique for real-time stabilization inspired by the mass spring damper model. A

video frame is modelled as a mass suspended in each direction by a critically dampened

spring and damper which can be fine-tuned to adapt with different shaking patterns. The

proposed technique is tested on video sequences that have different types of shakiness

and diverse video contents. The obtained results significantly outperforms state-of-the

art stabilization techniques in terms of visual quality while performing in real time.
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Chapter 1

Introduction and Overview

1.1 Introduction

The widespread of hand-held devices (cell phones, portable camcorders) made recording

videos easier. However, these amateur videos are often so shaky with a lot of unwanted

motion jitter [5,19]. On the other hand, a professional stable video requires professional,

sophisticated and expensive devices (track , special body mount) as seen in Figure 1.1.

Video stabilization aims to improve the quality of the recorded video from ordinary cam-

eras to be similar to those recorded with specialized equipments.Video stabilization can

be achieved using one of the following methods:

1. Optical Image Stabilization (OIS)

2. Mechanical Image Stabilization (MIS)

3. Digital Video Stabilization (DIS)

Optical Image Stabilization (OIS)

Optical image stabilization systems , deal with the video during the acquisition phase

1



Fig. 1.1: Body mount for camera stabilization. [1]

before the image is transformed into the digital representation. These systems can be

further categorized into

• Lens- based often abbreviated IS or OS

• Sensor-based abbreviated IBIS

In general, Sensors are used to detect vibrations in pitch and yaw to calculate both the

angle and the speed of the movement. Then in IS, by the help of an actuator the lens

group can move in both directions horizontally and vertically to counteract the vibration

and maintain a stable image as seen in Figure 1.2, as distinct in IBIS it moves the image

sensor itself as the final element in the optical path.

Mechanical Image Stabilization (MIS)

Mechanical image stabilization is another hardware-based system for image stabilization.

This system uses gyroscopes and shock absorbers to compensate for vibrations in any

direction. Steadicam [1] shown in Figure 1.3 shows an example for such systems.

2



Fig. 1.2: Optical image stabilization system. [2]

Fig. 1.3: Steadicam equipment [1]
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Fig. 1.4: Digital Image Stabilization work flow.

Digital Image Stabilization (DIS)

Digital image stabilization is normally applied after images have been converted into

digital images as a post-processing technique. DIS aims to minimize the amount of

unwanted jitter in the movement by shifting the image to compensate for the jitter.

Some systems use sensors to help correcting the image, however, that can not be done for

all videos, urging the need for an automated computer vision approach. A typical DIS

system consists of three main steps as shown in Figure 1.4

1. Estimate original camera path (Shaky path).

2. Estimate new smooth camera path.

3. Correct the original path based on the smoothed one.

However, DIS systems face a lot of challenges:

1. Noise : Image noise present a huge challenge for DIS as they can severely damage

the image quality and make the process of estimating the camera motion (path)

a very challenging task. The types of noise vary from additive, impulsive and

frequency noise. This topic will be further discussed in detail in Chapter 3.

4



2. Quick camera motion : Quick rotations and zooming represents a challenge for

digital video stabilization, since most methods rely on long feature trajectories. In

this case, it becomes nearly impossible to maintain long feature trajectory which in

turn leads to severely damaging the performance of the digital video stabilization

algorithms.

3. Real-time Performance Vs Video Quality : Most video stabilization algo-

rithms suffer from being either computationally expensive to produce high quality

videos or trying to achieve real-time performance sacrificing video quality. The main

challenges therefore is to achieve real-time performance while maintaining high video

quality.

Efficient video stabilization system try to accommodate and overcome most of the

aforementioned challenges. The types of jitter in the video can be categorized into either:

• Low frequency jitter: originating from the movement of the platform holding the

camera.

• High frequency jitter : originating from sudden camera movements.

To obtain a high quality video, both forms of jitter have to be suppressed without the

introduction of any kind of artifacts (e.g. wobble, excessive cropping) to the video. In

summary, the objectives of the video stabilization are :

1. Good stability.

2. No geometrical distortion, or artifacts.

3. Reasonable cropping size.
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1.2 Thesis Contributions

This section provides a brief description of the contributions in this thesis:

1. Denoising effect on Stabilization Since noise is considered a challenge to most

of the stabilization algorithms, adding a denoising step as a pre-processing stage

for stabilization is very common in surveillance systems. However, no study has

been done before to evaluate the impact of the denoising stage on the quality of

the final stabilized video. Also, the known measures of image processing and video

stabilization in the literature is not sufficient to provide this quantitative analysis,

so we propose in the study a new quantitative measure to assess the impact of

the denoising on the final video. This work is to be submitted to Elseiver Pattern

Recognition Journal.

2. StableFlow which is a novel method based on mass-spring-damper model. In

StableFlow, a video frame is modelled as a mass suspended in each direction by

a critically dampened spring and damper which can be fine-tuned to adapt with

different shaking patterns. The proposed method is tested on video sequences that

have different types of shakiness and diverse video contents. The obtained results are

then compared to current state-of-the-art stabilization algorithms including Youtube

stabilization and Adobe After Effects and it is found that the proposed method sig-

nificantly outperforms other algorithms in terms of visual quality while performing

in real time. This work presents a novel method and has been accepted for publica-

tion in the International Conference of Pattern Recognition (ICPR 2016). Also an

extended version is to be submitted to the IEEE Transactions on Image Processing

Journal.
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1.2.1 Publications

• Abdelrahman Ahmed and Moahmed S Shehata, "Towards High-quality parallel sta-

bilization" in VISAPP 2016. International Joint Conference on Computer Vision,

Imaging and Computer Graphics Theory and Applications

• Abdelrahman Ahmed and Moahmed S Shehata, "StableFlow: A Novel Real-Time

Physics Inspired Method for Digital Video Stabilization" in ICPR 2016. Interna-

tional Conference of Pattern Recognition (ICPR 2016).

• Abdelrahman Ahmed and Moahmed S Shehata, "Effect of Denoising on Video sta-

bilization" submitted to IET Image Processing.

• Abdelrahman Ahmed and Moahmed S Shehata, "Video stabilization with Mass-

spring model" is to be submitted to the IEEE Transactions on Image Processing

Journal.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides the literature re-

view on video stabilization. Chapter 3 presents the work of studying the effect of denoising

on stabilization. Chapter 4 discusses a novel proposed algorithm for video stabilization.

Chapter 5 concludes this thesis with a discussion of future research directions.
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Chapter 2

Literature Review

2.1 Introduction

Digital video stabilization can be categorized into three main categories based on the

motion estimation model: 1) 2D Methods, 2) 3D Methods, and 3) 2.5D Methods.

2D digital video stabilization methods estimates linear transformations (affine or ho-

mography) between successive video frames, then, by concatenating these transforma-

tions, a camera path in 2D space can be obtained. Let the video be a sequence of images

I1, I2, ...In, where each frame pair (It−1, It) is associated with a linear motion model Ft.

The camera path Ct is defined as:

Ct = Ct−1Ft (2.1)

Ct−1 =
i=t−1∏

i=1
Fi. (2.2)

The 2D camera path is then smoothed over time to produce a stabilized video.In the liter-

ature most researches tries to enhance both the motion estimation [5] and path planning of

the camera [6]. The advantage of 2D methods is its robustness as it only requires feature
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correspondences between neighbouring frames. The 2D model fitting is much more robust

compared to 3D methods. However, When a scene contains large depth variations, the

2D model is not suitable and artifacts, such as content distortions, would be introduced

in the stabilized results. Our work ”Towards High-quality parallel stabilization” [7]and

"StableFlow: A Novel Physics inspired real time stabiliztion method” belong to this cate-

gory. Our proposed work can produce results with the same quality as 3D methods while

having the robustness of 2D methods.

3D methods require the recovery of the structure from the video sequence including

3D camera poses and depth structures. These structures can be computed using structure

from motion (SFM) techniques [8–11]. Buehler et al. [12] computed SFM in a general

un-calibrated camera setting using the bundle adjustment method [13]. Liu et al. [14]

proposed a full 3D stabilization method by introducing content-preserving warps for the

novel view synthesis. Liu et al. [15] used a depth camera to recover depth information

and perform 3D digital video stabilization.

2.5D Methods relax the requirement of full 3D reconstruction to some partial 3D

information such as epipolar geometry [16] . The 2.5D methods argue that the 3D re-

construction is an overshoot for video stabilization purposes. The 2.5D methods can

produce comparable results to full 3D methods while reducing the computational com-

plexity. However, the requirement of long feature tracks, for 30 frames or more, is still a

bottleneck for the robustness in these algorithms.

9



Fig. 2.1: Graphical representation of basic set of 2D Transformations [3]

2.2 2D Video Stabilization

2D stabilization methods use 2D transformations (affine, homography, similarity, .. etc),

as seen in Fig. 2.1, to represent the camera motion then smooth the parameters of these

matrices to stabilize the video. In the next section, these transformation matrices are

discussed.

2.2.1 Transformation Matrices

Transformation matrices form the mathematical parameters that map pixels from one

image to another. A number of motion models are possible such as :

• Dolly : Forward and backward motion

• Boom: Up and down motion

• Pan: Y-axis rotation.

• Tilt: X-axis rotation.

• Roll: View-axis rotation.

Table 2.1 summarizes various transformation matrices sorted by the number of degrees

of freedom and showing the different parameters for each matrix.

10



Transform Degrees Of Freedom Matrix

Translation 2 M =
{

1 0 tx
0 1 ty

}

Similarity 4 M =
{

1 + a −b tx
b 1 + a ty

}

Affine 6 M =
{

1 + a00 a01 tx
a10 1 + a11 ty

}

Homography 8 M =


1 + h00 h01 h02
h10 1 + h11 h12
h20 h21 1


Table 2.1: Parametric Transformation Matrices

2.2.2 2D Video Stabilization Methods

Video stabilization algorithms development can be traced back to the development in the

field of motion estimation. Different algorithms have been proposed to reduce the compu-

tational complexity and to improve the accuracy of the motion estimation. Hence,tThe

efficiency of video stabilization depends on the accuracy of the motion estimation and

optical flow methods. For example, Horn and Schunck [17] is a widely used optical flow

method, however, the method solely computes the slow motion and provides the mo-

tion vectors in one direction only. Global motion estimation can either be calculated by

feature-based methods [18–20] or pixel-based methods [5, 21, 22].

Early methods of video stabilization [23, 24] proposed the estimation of a series of

affine or homography transformation between successive video frames over time and the

application of a Gaussian low pass filter to smooth the transformation parameters and

reduce the high frequency jitter in the video. Hansen et al. [25] proposed a video stabiliza-

tion system based on a mosaic-based registration technique. Rong Hu et al. [19] proposed

an algorithm to estimate the global camera motion using Scale-Invariant Feature Trans-

from (SIFT) features. Derek Pang et al. [20] proposed using Dual-Tree complex wavelet

transform (DT-CWT). This method uses the relationship between the phase changes of

11



DT-CWT and the shift invariant feature displacement in spatial domain to perform the

motion estimation, then, an optimal Gaussian kernel filtering is used to suppress the mo-

tion jitters. Wang et al. [26] assumed the motion model can fit a polynomial curve, e.g.

a cubic curve to smooth the parameters. Litvin et al. [27] proposed the usage of Kalman

filtering to estimate the parameters of a the affine transformation. Irani et al. [28] at-

tempted to estimate a homography transformation which stabilizes a dominant planar

region in the video. Matsushita et al. [5] extended the stabilized frames to become full

frames and applied low pass filter to smooth the parameters over time. Recently, Liu

et al. [29] proposed modeling the camera path into multiple camera path. The model is

based on mesh-based, spatially-variant motion representation and an adaptive, space-time

path optimization. Liu et. al [30] proposed smoothing the pixel trajectories, which are

motion vectors collected at the same pixel location over time. Grundmann et al. [31] pro-

posed the automatic application of constrainable, L1-optimal camera paths to generate

stabilized videos and compute camera paths that are composed of constant, linear and

parabolic segments mimicking the camera motions employed by professional cinematog-

raphers. This technique is considered to be the current state-of-the-art and is currently

integrated into Google’s YouTube. This method will be discussed in more detail in the

upcoming subsection.

2.2.3 L1 Optimal Camera Path

From a cinematographic perspective, the most pleasant steady viewing experience is con-

veyed by the use of static cameras, panning cameras mounted on tripods and cameras

placed onto a dolly and avoiding any sudden change in acceleration. Therefore, the com-

puted camera path needs to adhere to these characteristics as much as possible. To mimic

professional footage, the optimized camera path should be composed by the following path
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segments:

• A constant path, representing a static camera |D(P )|t.

• A path of constant velocity, representing a panning or a dolly shot |D2(P )|t.

• A path of constant acceleration, representing the ease-in and out transition between

static and panning cameras |D3(P )|t.

Grundmann et al. [31] formulated the smoothed path estimation based on L1-norm opti-

mization as follows; Given the original path Ct ,the desired smooth path will be:

Pt = CtBt (2.3)

where Bt = C−1
t ,Pt is the update transform which brings the original frame to its

stabilized position. The objective function will be formulated as:

O(P ) = w1|D(P )|1 + w2|D2(P )|1 + w3|D3(P )|1 (2.4)

where w1,w2 and w3 are different weights that can be fine-tuned to improve the accuracy of

the video stabilization. The objective function can be minimized by linear programming

using forward differencing method for the three terms |D(P )|1, |D2(P )|1 and |D3(P )|1.
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2.3 3D Video Stabilization

3D methods estimate the 3D camera motion to perform stabilization. Beuhler et al. [12]

proposed a 3D video stabilization method based on a projective reconstruction of the scene

with an uncalibrated camera, when euclidean reconstruction is feasible. Liu et al. [14]

proposed the content-preserving warp for the novel view synthesis which is inspired by as-

rigid-as-possible shape manipulation [32]. The proposed method consists of three stages:

• Recovery of 3D camera motion and a sparse set of 3D static scene points.

• Desired camera path is selected interactively by the user

• Least square optimization computing a spatially- varying warp from the input video

frame into an output frame. The wrap is computed to follow the displacements

suggested by the recovered 3D structure and to minimize the distortion of local

shape and content in the video frames.

However, 3D reconstruction is still a limitation for all these methods despite the significant

progress in 3D reconstruction [8–11].

2.4 2.5D Video Stabilization Methods

2.5D Methods try to overcome the challenges associated with 3D reconstruction of a

full video, Goldstein and Fattal [16] used the concepts of epipolar geometry to avoid 3D

reconstruction. The method consists of tracking feature points in the scene and using

them to compute fundamental matrices that model the stabilized camera motion. Then,

the tracked points are projected onto the novel stabilized frames using epipolar point

transfer and the new frames are synthesized using image-based frame warping. Wang

et al. [33] proposed a new representation of each feature trajectory as a Bezier curve
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Fig. 2.2: Low-pass filter for each trajectory independently [34].

and then smoothed over time. Liu et al. [34] proposed the method of subspace video

stabilization. The method is based on the choice to smooth the basis trajectories of the

subspace [35] which are extracted from long feature tracks of 30 frames or more. The

subspace method also achieved high quality stabilization that is similar to the full 3D

methods, while avoiding the need of a full 3D reconstruction. Recently, Liu et al. [36]

proposed an extension of the method in [34] to adapt with stereoscopic videos. However,

the need of long feature trajectories is difficult to achieve especially in videos with quickly

changing scenes or frequent occlusions. In the following, we briefly discuss the method of

Liu et al. [34] subspace video stabilization. This technique has been integrated in Adobe

After Effects as a digital video stabilization function named “Warp Stabilizer”.

2.4.1 Subspace Video Stabilization

Given a set of 2D point trajectories, their concatenation into a trajectory matrix will be:

M =



x1
1 x1

2 . . . x1
F

y1
1 y1

2 . . . y1
F

...

xN
1 xN

2 . . . xN
F

yN
1 yN

2 . . . yN
F
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Fig. 2.3: Eigen-trajectory smoothing [34].

where N are the features per frame and F is the number of frame. According to

Liu [34] attempting to apply low pass-filter directly on this trajectory matrix will lead to

distortions in the image as the independent smoothing of the feature trajectory will not

respect the relationship between the points as shown in Figure 2.2.

The subspace approach to video stabilization consists of four steps:

• 2D point tracking and assembly of the 2D trajectory sparse matrix.

• Moving factorization representing the trajectories as the product of basis vectors

called "eigen-trajectories".

• Smoothing the eigen-trajectories.

• Rendering the final stable frame.

Figure 2.3, shows the output of the smoothing of the eigen-trajectories.
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Chapter 3

Denoising Effect on Digital Video

Stabilization

3.1 Introduction

Noise can degrade the image during the acquistion or transmission of the image and their

removal algorithms depend on the type of noise present in the image. Image denoising

usually refers to the process of applying specific filters according to the type of noise

(e.g, additive noise, impulsive noise, etc. . . ) to produce higher visual quality images with

higher signal to noise ratio (SNR) [37].

Noise can be categorized into three main categories:

• Additive noise

• Impulsive noise

• Frequency noise

Additive Noise is modelled as the sum of the input signal and a random variable,

for example, if the random variable is Gaussian, then this noise is called Additive White
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Fig. 3.1: Image corrupted with AWGN. [4]

Fig. 3.2: Image corrupted with salt and pepper. [4]

Gaussian Noise (AWGN) as shown in Fig. 3.1

Impulsive Noise does not follow a specific probabilistic distribution. Impulsive noise

is modelled as random occurrences of spikes in the input signal with random amplitudes.

A special case of impulsive noise is Salt-and- pepper noise in which the energy spikes alter

some of the input image pixels into either white (salt) or black (pepper) as shown in Fig.

3.2.

Frequency Noise is commonly modelled as a multiplication of the input signal and

a random variable. Motion blur is considered as an example of frequency noise which is

common in videos captured using moving camera platforms as shown in Fig. 3.3.

Fig. 3.3: Image corrupted with blurring noise. [4]
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Fig. 3.4: Different Denoising Algorithms

3.2 Image Denoising

Different techniques have been proposed in the literature for each of the three denoising

categories. In the case of the AWGN, Weiner filter represents one of the earliest denoising

techniques for this type of noise [38] along with its variations [39,40]. Other popular tech-

niques are based on wavelets were introduced such as VisuShrink [41], BayesShrink [42]

and SureShrink [43]. The VisuShrink threshold is a function of noise variance and the

number of samples. The SureShrink threshold is considered the optimal in terms of

Stein’s Unbiased Risk Estimator (SURE). Modern algorithms such as BM3D [44] and its

variations BM3DSPCA [45] have been used as a benchmark for most state-of-the-art tech-

niques. BM3D utilizes the block-matching concept and filtering in 3D transform domain

with a sliding window. Wang et. al [46] introduced a novel technique using second order

(CONVEFF Second) and fourth order (CONVEFF fourth) diffusion model for image de-

noising. Zhang et. al. [47] proposed a novel technique (IRJSM) for denoising based on
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both local smoothness and non-local self-similarity of natural images in a unified statis-

tical manner.

For denoising of the salt and pepper noise, median filter [4] is one of the earliest tech-

niques used with low salt and pepper noise densities. However, modern state-of-the-art

techniques addressed that drawback; for example, Zhang et al. [48] proposed a switching

median filter with a pre-defined threshold to detect noisy pixels. Dong et al. [49] proposed

a technique based on directional weighted median filter (DWM), then Ching-Ta et al. [50]

further extended this filter and proposed the modified directional weighted median filter

(MDWM) which can produce high quality results with images corrupted up to 70% noise

density. Zhang et al. [47] non-local self-similarity technique can also be used with images

corrupted by salt and pepper.

In case of blurring noise, the deblurring techniques can be categorized into two main

categories based on the information needed for the estimation of the blur kernel. These

categories are: 1) Single image, and 2) Multi-image. To be consistent with other types

of noise categories presented in this paper (e.g. Additive noise and impulse noise), only

the single image techniques are evaluated. Image blurring is commonly modelled as a

convolution of the image and a blur kernel as follows:

y = k ⊗ x (3.1)

where y represents the blurred image, k is the blur kernel, x is the original image and

⊗ represents the convolution operation. Fergus et al. [51] introduced a Bayesian-based

approach to estimate the kernel. Also, BM3D [44], BM3DSPCA [45] and IRJSM [47] can

be used for deblurring images.
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Table 3.1: Experiment Summary

Noise type Algorithms considered
AWGN BM3D, IRJSM, Conveff Second

Salt & Pepper MDWM, IRJSM
Blur BM3D, IRJSM

3.3 Study Desgin

In this study, current state-of-the-art denoising techniques will be examined to evaluate

their effect on feature-based stabilization of a shaky video from different datasets. In the

following subsections, the details of each component of this study is provided. It is worth

mentioning that due to the high processing demand for some of the techniques used in

the study, some of the experiments have been run on the ACENet cluster [52] on both

parallel and sequential jobs.

3.3.1 Datasets

The study was conducted on three different datasets provided by [53] , [31] and [14]. The

datasets were chosen carefully to evaluate the denoising techniques effect on feature-based

stabilization under different and diverse image contents, such as: 1)Large flat texture

regions, 2) Repeated patterns, and 3) Large number of edges and corners. The frames of

each video sequence being tested are extracted and the noise is then synthesized into the

frames, then, the frames undergo denoising followed by stabilization.

3.4 Evaluation Criteria

The evaluation of the effect of denoising techniques on featre-based stabilization is based

on [23] using the following measures: 1) Mean of the stabilized sequence, 2) Fidelity, and

3) Proposed background detail preserving measure.
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3.4.1 Mean of Stabilized Sequence

The mean of the stabilized video sequence is the average of all the frames as follows:

Mean(I1, I2, ....., In) = 1
n

n∑
i=1

Ii. (3.2)

In this paper, we have chosen to use the mean of the stabilized sequence because it

shows the visual quality enhancement achieved by the stabilization after the denoising

technique under evaluation is applied.

3.4.2 Fidelity

In [23], the fidelity has been introduced as a measure to evaluate any stabilization tech-

nique based on peak signal-to-noise ratio (PSNR) which measures how much the stabilized

frames have departed from the optimal case. As defined in [23], the PSNR between two

frames I1 and I0 is defined as:

PSNRdB(I1, I0) = 10 log (255)2

MSE(I1, I0) (3.3)

where MSE is the mean squared error measuring the error per pixel from the optimal

stabilized result, and the 255 represents the maximum intensity a pixel can have. In

this paper, we have chosen fidelity as a measure to evaluate the stabilized sequence after

denoising because the direct relation in which a high fidelity means better stabilized

sequence.

3.4.3 Background Detail Preserving (DP)

This is a novel measure that been proposed by the author to quantitively assess the effect of

denoising algorithms on feature-based digital video stabilization. SNR has commonly been
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(a) BM3D (b) IRJSM

Fig. 3.5: Sequence mean of AWGN with 25% noise

(a) BM3D SNR=47.8dB,
DP=58.34%

(b) IRJSM SNR=42.1dB,
DP=66.3%

Fig. 3.6: SNR VS Proposed measure Comparison of AWGN with 25% noise

used to indicate the quality of the denoised images using a specific denoising technique [37].

In Figure 3.6, the image in (a) represents the AWGN denoising result using BM3D and

it has a SNR of 47.8 dB while the image in (b) represents the AWGN denoising result

using IRJSM and it has a SNR of 42.1 dB. Based on this information only, one can

expect that applying a stabilization technique on the sequence containing image (a) will

result in better stabilization than the sequence containing image (b) because of the higher

SNR in the former one and hence using BM3D is better than IRJSM . However, after

applying the stabilization technique, the fidelity of sequence that contains image (a) is

56.3 dB and its mean is shown in Figure 3.5 a; while the fidelity sequence that contains

image(b) is 60.7 dB and its mean is shown in Figure3.5 b. This shows that the stabilization

of sequence (b) is better than the stabilization of sequence (a) and hence IRJSM is

better than BM3D, in contradict to SNR-based the initial assumption. Therefore, we

propose a new measure to evaluate the impact of the denoising algorithm on stabilization

using background features that can be recovered after denoising. Hence, by comparing

the average number of features which belong to the background extracted and matched
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between frames before adding any type of noise and the average number of matches that

has been recovered after denoising, we can have a percentage defining the impact of a

specific desnoising algorithm on the stabilization. A higher recovery percentage means

the motion of the video is better preserved leading to better estimation for transformation

matrices and hence better stabilization. Using this proposed measure (abbreviated DP )

on the images in Figure 3.6, we find that indeed image b has high DP than image a

which is in-line with the other two measures (e.g. fidelity and mean). Although the

fidelity measure can give a indication on the effect of the denoising technique, however,

using it alone is insufficient to have an accurate quantitative assessment for the effect of

the denoising technique. Fidelity measures how a stabilized video frame deviated from

the optimal alignment case after warping, hence the measure will be affected by any

rounding errors in the motion transformation parameters estimation process, unlike the

proposed DP measure. More importantly, the proposed DP measure can be used as an

early indication as it does not require the warping to be calculated.

3.5 Results from the study

3.5.1 Additive White Gaussian Noise

Traditional Algorithms

Gaussian white noise with different variances has been added to each frame of the test

sequence with variances ranging from 0.01% to 0.1% with 0.01% step. Figures 3.7 - 3.12

shows the results of the effect of the Wiener filters, VISUSHRINK, and SURESHRINK de-

noising techniques on stabilization as applied to three different dataset contents, namely:

1) dataset with large flat areas, 2) dataset with rich features, and 3) dataset with repeated

patterns.
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Fig. 3.7: AWGN - Percentage of matches recovered after using each Traditional denoising
algorithm in datasets with large flat areas.
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Fig. 3.8: AWGN - Fidelity of the resulting stabilized sequence after Traditional denoising
in datasets with large flat areas.
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Fig. 3.9: AWGN - Percentage of matches recovered after using each Traditional denoising
algorithm in datasets with rich features.
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Fig. 3.10: AWGN - Fidelity of the resulting stabilized sequence after Traditional denoising
in datasets with rich features.
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Fig. 3.11: AWGN - Percentage of matches recovered after using each Traditional denoising
algorithm in datasets with Patterned texture.

Discussion

The adaptive wiener filter in general performs better than the two wavelet filters

(SureShrink,VisuShrink). However, the processing time for the wiener filter was found to

be greater than the other two wavelet filters. The wiener filter had an overhead processing

time of 28% compared to the VisuShrink filter and 23.6% compared to the SureShrink

wavelet. Both wavelet filters did not preserve the details of the image resulting in more

loss of features unlike the wiener filter which preserved the edges and other high frequency

parts of the image. VisuShrink performed poorly on all the experiments generating images
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Fig. 3.12: AWGN - Fidelity of the resulting stabilized sequence after Traditional denoising
in datasets with Patterned texture.

that are overly smoothed. This is because VisuShrink has the limitation that it employs a

global threshold that is applied to all wavelet coefficients unlike, SureShrink that employs

an adaptive threshold to each resolution level generating images with less smoothing.

State-of-the-art

Gaussian white noise with different variances has been added to each frame of the test

sequences. The variances of the noise added range from 25% to 70% with 5% step.

Figures 3.13 - 3.19 shows the results of the effect of the BM3D, IRJSM, and Conveff

Second denoising techniques on stabilization as applied to three different dataset contents,

namely: 1) dataset with large flat areas, 2) dataset with rich features, and 3) dataset with

repeated patterns.

Discussion

As summarized in Tables 3.2 - 3.4, BM3D in general performs better with significantly

lower running time compared to the two other algorithms, Conveff Second and IRJSM.

Although BM3D had generated smooth images, yet the edges of the image were well

preserved even at high noise levels. BM3D scores the highest percentage of recovered
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Table 3.2: BM3D Performance , DP denotes Detail Preserving Percentage and Fid denotes
Fidelity Enhancement Percentage

Dataset Type Noise Percentage
25% 35% 45% 55% 65%

DP Fid. DP Fid. DP Fid. DP Fid. DP Fid.
Feature Rich 63.7% 54.8% 50.8% 47.67% 41.8% 40.41% 30.15% 35.65% 20.7% 28.42%

Large Flat Areas 50.32% 37.7% 35.98% 28.3% 20.47% 16.82% 12.0% 10.95% 6.8% 2.3%
Repeated Patterns 50.1% 41.78% 39.12% 32.0% 19.2% 19.01% 8.99% 5.61% 5.23% 0.34%

matches even when increasing the noise level up to 70% over different datasets. It also

scores the highest SNR and Fidelity and generated the most stable sequence as seen in

Figure 3.13.

IRJSM performed slightly worse than BM3D in sequences with large flat areas and in

sequences with high levels of noise. In other sequences which had repeated textures, IR-

JSM outperformed BM3D. Unlike BM3D, IRJSM did not over smooth the image allowing

it to preserve the features even when producing lower SNR images as seen in Figure 3.6

and in Tables 3.2 - 3.4 over different datasets. However, the main drawback in IRJSM

is that it is very computationally expensive taking around 10 minutes per frame, as its

denoising technique is based on an iterative technique that takes time to converge.

Conveff Second performed poorly at high noise levels which can be seen in the terms

of fidelity or the percentage of matches that can be recovered.

(a) Noisy Mean (b) BM3D (c) Conveff Second (d) IRJSM

Fig. 3.13: AWGN - Mean of the sequence at 25% noise level
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Fig. 3.14: AWGN - Percentage of matches recovered after using each denoising algorithm
in datasets with large flat areas.
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Fig. 3.15: AWGN - Fidelity of the resulting stabilized sequence after denoising in datasets
with large flat areas.

Table 3.3: Conveff Second Performance , DP denotes Detail Preserving Percentage and
Fid denotes Fidelity Enhancement Percentage

Dataset Type Noise Percentage
25% 35% 45% 55% 65%

DP Fid. DP Fid. DP Fid. DP Fid. DP Fid.
Feature Rich 42.15% 38.17% 23.7% 17.3% 11.3% 4.72% 5.15% 0% 1.5% 0%

Large Flat Areas 35.21% 25.41% 14.28% 10.20% 4.23% 1.07% 0.04% 0% 0% 0%
Repeated Patterns 18.5% 13.72% 4.74% 1.65% 0% 0% 0% 0% 0% 0%

3.5.2 Salt-and-Pepper Noise

In this study, Salt-and-pepper noise with different densities has been added to each frame

of the test sequence, then the frames undergo denoising followed by stabilization. The
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Fig. 3.16: AWGN - Percentage of matches recovered after using each denoising algorithm
in features rich datasets
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Fig. 3.17: AWGN - Fidelity of the resulting stabilized sequence after denoising in features
rich dataset

Table 3.4: IRJSM Performance , DP denotes Detail Preserving Percentage and Fid de-
notes Fidelity Enhancement Percentage

Dataset Type Noise Percentage
25% 35% 45% 55% 65%

DP Fid. DP Fid. DP Fid. DP Fid. DP Fid.
Feature Rich 59.75% 47.3% 46.35% 40.6% 31.8% 34.89% 18.3% 27.4% 14.2% 24.7%

Large Flat Areas 47.82% 35.2% 29.42% 27.45% 18.59% 14.59% 11.74% 7.74% 4.23% 1.3%
Repeated Patterns 51.68% 43.21% 38.74% 31.44% 18.3% 17.78% 9.89% 3.89% 4.2% 0.2%

variances of the noise added range from 25% to 70% with 5% step. Figures 3.21 - 3.26

shows the results of the experiment on the diverse used datasets. Figure 3.20 shows the

mean of the sequence (after adding salt and pepper noise) and the resultant mean after
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Fig. 3.18: AWGN - Percentage of matches recovered after using each denoising algorithm
in patterned texture datasets
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Fig. 3.19: AWGN - Fidelity of the resulting stabilized sequence after denoising algorithm
in patterned texture datasets.

denoising using the two different techniques at 25% noise level.

Discussion

As summarized in Tables 3.5 - 3.6 , IRJSM outperformed the MDWM over all the datasets,

preserving most of the image features and generating better stabilized sequences. However

in cases where the amount of noise is not high, generally lower than 30%.
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(a) Noisy Mean (b) MDWM (c) IRJSM

Fig. 3.20: Salt & Pepper - Mean of the sequence.
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Fig. 3.21: Salt & Pepper - Percentage of matches recovered after using each denoising
algorithm in datasets with large flat areas.

Table 3.5: Salt & Pepper ,MDWM Performance , DP denotes Detail Preserving Percent-
age and Fid denotes Fidelity Enhancement Percentage

Dataset Type Noise Percentage
25% 35% 45% 55% 65%

DP Fid. DP Fid. DP Fid. DP Fid. DP Fid.
Feature Rich 40.81% 45.3% 25.31% 19.52% 8.13% 3.65% 0.15% 0% 0% 0%

Large Flat Areas 30.67% 24.47% 15.21% 12.14% 1.2% 0.5% 0% 0% 0% 0%
Repeated Patterns 25.24% 19.68% 10.57% 6.89% 2.11% 0.35% 0% 0% 0% 0%

3.5.3 Blurring

In this study, Gaussian Blur kernel with different variances has been multiplied by each

frame of the test sequence, then the frames undergo deblurring followed by stabilization.
32



Noise Level
25 30 35 40 45 50 55 60 65

A
ve

ra
ge

 F
id

el
ity

 E
nh

na
ce

m
en

t P
er

ce
nt

ag
e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Salt & Pepper- Flatness Dataset Fidelity Comparison

IRJSM
MDWM

Fig. 3.22: Salt & Pepper - Fidelity of the resulting stabilized sequence after denoising in
datasets with large flat areas.
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Fig. 3.23: Salt & Pepper - Percentage of matches recovered after using each denoising
algorithm in features rich datasets

Table 3.6: Salt & Pepper, IRJSM Performance , DP denotes Detail Preserving Percentage
and Fid denotes Fidelity Enhancement Percentage

Dataset Type Noise Percentage
25% 35% 45% 55% 65%

DP Fid. DP Fid. DP Fid. DP Fid. DP Fid.
Feature Rich 53.3% 65.7% 41.27% 50.5% 30.65% 32.12% 15.43% 29.8% 12.1% 22.42%

Large Flat Areas 48.74% 39.81% 37.62% 29.35% 23.27% 21.11% 15.13% 17.45% 6.93% 10.24%
Repeated Patterns 50.81% 48.38% 39.15% 33.74% 27.23% 25.4% 13.16% 15.21% 5.5% 7.1%

The variances of the blur kernel used range from 1% to 5% with 1% step.

Figures 3.27 - 3.32 shows the results of the experiment on the used datasets.
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Fig. 3.24: Salt & Pepper - Fidelity of the resulting stabilized sequence after denoising in
features rich dataset
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Fig. 3.25: Salt & Pepper - Percentage of matches recovered after using each denoising
algorithm in patterned texture datasets

Discussion

As shown in Tables 3.7 - 3.8, the added blur was challenging for both techniques in

the different datasets. On low noise levels both techniques produce comparable results.

However, BM3D outperforms IRJSM on higher noise levels. Also, the computational

complexity of BM3D is significantly lower than IRJSM.
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Fig. 3.26: Salt & Pepper - Fidelity of the resulting stabilized sequence after denoising
algorithm in patterned texture datasets.
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Fig. 3.27: Percentage of matches recovered after using each denoising algorithm in datasets
with large flat areas.

Table 3.7: Blurring ,BM3D Performance , DP denotes Detail Preserving Percentage and
Fid denotes Fidelity Enhancement Percentage

Dataset Type Noise Percentage
1% 2% 3% 4% 5%

DP Fid. DP Fid. DP Fid. DP Fid. DP Fid.
Feature Rich 36.71% 40.3% 23.25% 20.17% 14.03% 9.85% 6.91% 2.13% 1.05% 0%

Large Flat Areas 28.1% 32.25% 17.24% 20.12% 11.5% 6.3% 2.24% 0.15% 0% 0%
Repeated Patterns 18.6% 20.43% 9.27% 6.1% 2.57% 1.01% 0% 0% 0% 0%

3.6 Summary Of Findings

The most important findings from the study can be summarized in:

• Using the recent algorithm does not always guarantee the best stabilization results
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Fig. 3.28: Blur - Fidelity of the resulting stabilized sequence after denoising in datasets
with large flat areas.
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Fig. 3.29: Blur - Percentage of matches recovered after using each denoising algorithm in
features rich datasets

Table 3.8: Blur, IRJSM Performance , DP denotes Detail Preserving Percentage and Fid
denotes Fidelity Enhancement Percentage

Dataset Type Noise Percentage
1% 2% 3% 4% 5%

DP Fid. DP Fid. DP Fid. DP Fid. DP Fid.
Feature Rich 26.5% 17.38% 15.42% 6.3% 8.01% 1.1% 2.3% 0.05% 0% 0%

Large Flat Areas 16.7% 24.04% 12.35% 16.85% 5.5% 3.21% 0% 0% 0% 0%
Repeated Patterns 13.21% 15.73% 5.8% 3.21% 1.23% 0.5% 0% 0% 0% 0%

as seen in Figure 3.6

• The content of the dataset can also affect the choice of the denoising algorithm. For

example in case of videos with patterned texture with AWGN, IRJSM generated
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Fig. 3.30: Blur - Fidelity of the resulting stabilized sequence after denoising in features
rich dataset
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Fig. 3.31: Blur - Percentage of matches recovered after using each denoising algorithm in
patterned texture datasets

the best stabilization results. Though for videos rich in features or with large flat

areas BM3D proved to outperform other algorithms.

• For Salt and pepper, IRSJM preserved more features hence producing better videos

form the stabilization process.

• In case of blurring, BM3D outperformed other algorithms preserving important

image features for video stabilization.
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Fig. 3.32: Blur - Fidelity of the resulting stabilized sequence after denoising algorithm in
patterned texture datasets.

3.7 Conclusion

This chapter highlights the importance of the choice of the denoising algorithm on the

outcome of the stabilization. As an inappropriate choice of denoising algorithm may lead

to the loss of important information. It also shows that the most commonly used measures

does not always reflect the best denoising choice. Hence, a new feature-matching based

evaluation measure has been presented to evaluate the relation between the denoising

algorithm and the stabilization quality. This measure depends on the accuracy of the

matching algorithm used. Not only, we also highlight that choosing the latest denoising

algorithm will not always guarantee the best results. But also,we highlight that the video

content may greatly affect the choice of the technique.

38



Chapter 4

StableFlow: A Novel Video

Stabilization Method

4.1 Introduction

This chapter introduces StableFlow a novel method for video stabilization. StableFlow

falls in the 2D stabilization method category, and is based on a novel physics model to

estimate the 2D transformations and generate a stable video. A detailed description of

StableFlow, implementation details and obtained results is introduced in this chapter.

4.2 StableFlow

In this section, we introduce StableFlow, a novel two pass digital video stabilization real-

time method inspired by the mass spring damper model. The method eliminates the

undesired motion in the video based on the impulse response from the mass spring model

in the first pass, then eliminates the high frequency jitter using a Gaussian low-pass filter

in the second pass as shown in figure 4.1. In the first pass, the video frame is modelled

as a mass suspended in each direction by critically dampened spring and damper. The
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Fig. 4.1: Flowchart of the proposed algorithm

springs allow the mass (i.e., the frame) to move while controlling its range of movement

in case of shakiness. On the other hand, the dampers prevent undesired oscillations back

and forth. The system is parametric and can be fine-tuned to adapt with various types

of motion including rotation, translation or combination of both.

The proposed method is novel and unique in the following aspects:

1. It is the first digital video stabilization method to employ a physics inspired software

model based on mass spring damper model to smooth the camera path and generate

a video with a better visual quality.

2. No a priori knowledge of the camera motion is required

3. Meets real time requirements.

4. It is highly parallelizable as the calculation for each node in the physical model can

run in parallel.

5. The results outperforms current state-of-the-art methods.
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4.2.1 Motion Estimation

The first block in the proposed algorithm is the Motion estimation as seen in Figure

4.1. Motion estimation is the process of estimating transformation parameters between

successive frames in a video, hence recovering the camera path (trajectory). Given a set

of frames Ti, i = 0, 1, 2, ..., assuming the transformation between frames Ti and Ti+1 as

affine transforms Hi, the camera path will be the product of all the preceding inter-frame

transforms as follows:

Hcummlative,i =
i−1∏
i=0

Hi (4.1)

As shown in Figure 4.1, the first step in motion estimation is feature detection and

matching to identify key unique image features in the video frame. In the literature, a

lot of different methods is found as Harris corner detector [54], SIFT [55], SURF [56],

ORB [57], FREAK [58]. After that the features are matched over successive frames. In

SteadyFlow, feature detection and matching is done according to the paper proposed

by [59] to detect corners and match them; the main advantage of this implementation is

its robustness and low computational complexity. The second step in motion estimation

is to estimate the transformation parameters; in this step an affine transformation H

is estimated between the matches found between successive frames, then, RASNSAC is

used to filter the outliers in the matches and estimate the best transformation between

the frames. The last step is transforming the estimated translation and rotation in the

affine matrix H into forces to be fed to the physical system, which is done be multiplying

the translation (HT ranslation) and the rotation (HRotation) with the delta time between

frames ∆t as follows:

Ft = HT ranslation ∗∆t (4.2)

Ftheta = HRotation ∗∆t (4.3)
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Fig. 4.2: Mass spring model for digital video stabilization.

where FtandFtheta are the translation and rotational forces respectively.

4.2.2 First Pass - Physical Model

Apply forces to the particles in the system

The proposed method can be described using the physics model shown in Figure 4.2.

The video frame is modelled as a mass suspended with a spring and damper in each

direction. In this model, there is no gravity as it is irrelevant in the context of digital video

stabilization and hence the forces due to gravity are not considered in the formulation of

the system equations mg = 1 as seen in Figure 4.3. In the proposed model, the frame can

move freely, but the springs suppress the undesired motion. Moreover, the dampers, which

can be fine-tuned to allow the system to converge to the steady state quickly, prevent the

frame from undesired oscillations. From the video stabilization point of view, there are

two types of forces that lead to shaky videos: (1) translation and (2) rotation; which are

described next.

Translational Forces

The analysis of the system forces in 1-Dimension is shown in Figure 4.3. The first force

acting on the frame is Fspring which is generated from stretching the spring and acts in
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Fig. 4.3: Model in 1-Dimension.

the opposite direction of the stretch; Fspring is defined by:

Fspring = −kx (4.4)

where k is the spring constant, and x is the stretch length of the spring

In addition, there is a damping force Fdamping that resists the motion and is proportional

to the velocity ẋ, Fdamping is defined by:

Fdamping = −cẋ (4.5)

where c is the damping coefficient

Therefore, the total force acting on the frame will be:

F = Fspring + Fdamping = −kx− cẋ (4.6)

From Newton’s law of motion we have:

∑
f = mẍ (4.7)

where ẍ is the acceleration

mẍ+ cẋ+ kx = 0 (4.8)
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Moreover, the motion of this frame also depends on what is called the damping ratio ζ

which is given by [60]:

ζ = c

2
√
km

(4.9)

ζ



< 1, Under-damped system and will keep oscillating.

> 1, Over-damped, system will be shaky.

= 1, Optimally damped.

(4.10)

To make the formulation of the model simpler, we assume the mass of the frame to be

a unit mass m = 1 as the mass of video frame has no physical meaning and setting the

mass to a certain value will only lead to a scale in the response of the physical system.

As illustrated above in Equation 4.10, to obtain an optimal damping ζ = 1, equation 4.9

becomes:

c = 2
√
k (4.11)

Substituting in Equation 4.8, we get:

ẍ+ 2
√
kẋ+ kx = 0 (4.12)

Rotational Forces

The analysis for rotational forces is similar to the analysis of translation forces but with

a rotational spring as shown in Figure 4.4. Similar to equation 4.12, the equation for the

rotation will be:

θ̈ + 2
√
krθ̇ + krθ = 0 (4.13)

where θ̈ represents the angular acceleration, θ̇ is the angular velocity and θ is the rotation

angle, kr is the rotational spring constant.
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Fig. 4.4: Rotational Model.

Estimate new particles position

To estimate new postions of the particles, we need to solve Equation 4.12 numerically (i.e.,

using computer program) using the Runge-Kutta method [61] Therefore, we must convert

the second order differential equations 4.12 and 4.13 into a set of first order differential

equations. Since the acceleration can be written as the first derivative of velocity: ẍ = v̇,

Equation 4.12 can be expressed as a system of two first order differential equations:

ẋ = v (4.14)

v̇ = −kx− 2
√
kẋ (4.15)

Equations 4.14 and 4.15 represent the form needed in order to use the Runge-Kutta

method to numerically solve the differential equation in Equation 4.12. To solve using

Runge-Kutta, four variables k1, k2, k3 and k4 have to be evaluated using:

k1 = f(t, y) (4.16)
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where t is time and y is the function to be approximated and f is the integration function

k2 = f(t+ ∆T/2, y + ∆T/2k1) (4.17)

k3 = f(t+ ∆T/2, y + ∆T/2k2) (4.18)

k4 = f(t+ ∆T, y + ∆Tk3) (4.19)

where ∆T is the time interval between two successive frames.

Next, the integration will be used to update the new value of the function being approx-

imated:

yn+1 = yn + ∆T
6 (k1 + 2k2 + 2k3 + k4) (4.20)

In the case above, the procedure will be executed for both translation and rotation as in

the following equations:

Tn+1 = Tn + ∆T/6(k1 + 2k2 + 2k3 + k4) (4.21)

θn+1 = θn + ∆T/6(k1 + 2k2 + 2k3 + k4) (4.22)

Algorithm 1 RK4 Method
1: Input: ∆T .
2: for each mass do
3: Compute k1 using equation 4.16 .
4: Compute k2 using equation 4.17 .
5: Compute k3 using equation 4.18 .
6: Compute k4 using equation 4.19 .
7: Compute velocity and position using equation 4.20.
8: end for
9: Output: New position of the system particles.

As seen in the equations 4.21 and 4.22, the equations is based on an iterative solution
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which keeps on running until convergence i.e. the difference in value between iterations

becomes negligible less than 0.0001 or until it reaches the maximum number of iterations

which has been set to 30 in our implementation.

Output the response from the Physical System

let Pt denotes the original shaky frame path, which is formed by the concatenation of the

frame affine transformations H over time, as defined by:

Pt =
i∏

i=0
Hi. (4.23)

The stabilized camera path Ṕt can be computed through the convolution of the path with

the response of the physical model A(t) as shown in Equation 4.24:

Ṕt = Pt ∗ A(t) (4.24)

where A(t) is an affine matrix that represents the physical response of the system.

And the difference in the particle position represent the translation part of matrix A(t),

i.e. the horizontal translation will equal the current horizontal position subtracted by the

previous position, similarly the vertical translation is calculated. Also, the difference in

the angle represents the rotation angle used for the matrix A(t).

4.2.3 Second Pass - Gaussian Low pass filter

Smooth the transformation parameters using the Gaussian low pass filter

The second pass of the proposed algorithm is a standard Gaussian low pass filter with

zero mean and a default standard deviation σ = 0.5. Given the smoothed path produced

from the first pass as in Equation 4.24. The low pass filter is applied to the smooth
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camera path over a window in time for N frames through convolution to suppress any

high frequency jitter. The smoothed parameters are calculated as follows:

P̂t = Ṕt ∗ Ǵt (4.25)

where Ǵt is the low pass Gaussian filter. Using the gaussian low pass filter, gives the

algorithm the advantage of suppressing any sudden jitter in the transformation parameters

over time. Then, the next step is using the produced transformation matrix to re-align

the frame using the built-in OpenCV warping function. The final step is rendering the

video frame and writing it to the video file.

4.2.4 Implementation of the Proposed Method

The implementation of the proposed method is described in details in Algorithm 2. The

motion between frames is considered as affine transformation consisting of translation

and rotation. The affine transformation is calculated based on feature matching between

successive frames and is implemented based on the paper GoodFeaturesToTrack [59]. In

the first pass, the proposed method then converts the calculated affine transformation

into forces using equation 4.2 and4.3 and inputs it to the physical model. After that, the

Runge-kutta method is used to solve the model and estimate the position and velocity of

the frame given the set of springs and dampers as shown in Figures 4.2 and 4.3. Finally,

in the second pass, the Gaussian filter is applied on the transformation parameters over a

window of 15 frames to compute the final stabilized frame is computed through warping

the input frame with the estimated trajectory from the second pass of the algorithm.
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Algorithm 2 The Proposed Method
1: Input: Input Frame.
2: Extract good features to track [59].
3: Track the features into previous frame [59].
4: Evaluate good matches [59].
5: Estimate affine transformation.
6: Convert transformation to forces and feed them to the mass spring model.
7: Calculate the damping coefficient using Equation 4.11.
8: Calculate the position and velocity using Runge-Kutta as shown in Algorithm 1
9: Calculate a smoothed trajectory based on the physical model response .

10: For each frame over the window of the N frames, the trajectory is smoothed using a
Gaussian low pass filter.

11: Calculate the final smoothed trajectory and calculate its transformation matrix.
12: Generate the final stabilized frame by warping the input frame with the transformation

matrix estimated from the smoothed trajectory.
13: Output: Stabilized Frame.

4.3 Results

The proposed algorithm has been tested on different videos from the datasets provided

by [53] [31] and [14] and other online videos. Some of the tested videos can be found on our

webpage (http://stableflow.weebly.com/). The evaluation criteria are based on: 1) the

mean of the sequence to assess the visual quality improvement, 2) the average fidelity [23]

(using Equation 4.26), 3) the camera trajectory in x, y, and θ, and 4) cropping percentage

PSNRdB(I1, I0) = 10 log (255)2

MSE(I1, I0) (4.26)

where MSE is the mean square error measuring the error per pixel from the optimal

stabilized result, and the 255 represents the maximum intensity a pixel may have.

Figure 4.5 shows a comparison of the mean for the stabilized sequences using Google’s

YouTube stabilizer [31], Adobe After Effects [34] and the proposed method.Table 4.1 com-

pares the fidelity values from the original video, the proposed method , Google’s Youtube
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(a) Original Mean of Se-
quence

(b) Our Stabilized Se-
quence Mean

(c) Google’s Youtube
Stabilized Sequence
Mean

(d) Adobe After Effects
Stabilized Sequence
Mean

Fig. 4.5: Sequence Mean Comparison

and Adobe After Effects method. Figures 4.7 - 4.15, shows the trajectories comparison

in vertical, horizontal and rotational angle respectively for some of the sequences. For a

good cropping the value should be close to zero. Figure4.6 compares the cropping for the

different methods. It is clear that the proposed method preserves more of the original

frame and has the least cropping percentage.
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Fig. 4.6: Cropping Percentage comparison.
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Fig. 4.7: Sequence 4 - Vertical Trajectory
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Fig. 4.8: Sequence 4 - Horizontal Trajectory

Frame Number
0 20 40 60 80 100

A
ng

le

×10-3

-4

-2

0

2

4

6

8
Affine Trajectory

Original Trajectory
Our Trajectory
Youtube Trajectory
Adobe After Effects

Fig. 4.9: Sequence 4 - Rotational Trajectory

Table 4.1: Comparison between the fidelity of the original sequence (left) ,using our
method (middle) and Stabilized Fidelity from Google’s Youtube(right).

Sequence Original Fidelity Our Stabilized Fidelity Google’s Youtube Adobe After Effects
Seq. 1 42 dB 62 dB 59 dB 56
Seq. 2 34 dB 51 dB 50 dB 47
Seq. 3 12.38 dB 14.2 dB 13.75 dB 13.4
Seq. 4 9.4 dB 13.4 dB 10.2 dB 9.8
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Fig. 4.10: Sequence 2 - Vertical Trajectory
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Fig. 4.12: Sequence 2 -Rotational Trajectory
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Fig. 4.13: Sequence 3 -Vertical Trajectory
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Fig. 4.14: Sequence 3 -Horizontal Trajectory
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4.4 Discussion and Performance Analysis

4.4.1 Discussion

The proposed method outperformed the current state-of-the-art method used on Google’s

Youtube and Adobe After Effects in the video sequences being tested. As seen in Figures

4.7 - 4.15, the proposed method generates a stable camera path that is either better or

comparable to the state-of-the-art methods. Also the proposed method produced videos

with higher fidelity as shown in Table4.1. In general, the proposed method produces videos

with high visual quality and takes benefit of the robustness and simplicity of 2D methods

and takes advantage of the physical system properties to generate a stable camera path.

Choice of the Spring Constant

The system depends on the spring constant k. Selecting a very small value for k will

soften the resistance of the spring to motion and hence the system will not be able to

suppress much of the jitter motion which eventually will lead to inefficient stabilization.

On the other hand, selecting a very high value for k will cause the spring force Fspring

to be very high which in turns makes it harder for the system to converge to a steady

state. Moreover, this very high spring force Fspring may, in some cases, lead to more jitter

in the produced video because it will enlarge the response of the system in the opposite

direction of the motion. In the proposed method, the spring constant must be carefully

chosen for each test sequence to produce the best possible stabilization result.

Since the gaussian low pass filter in the second pass of the algorithm suppress any

sudden jitter, therefore , instead of choosing a value for each video, the problem can be

optimized to choose the spring constant that produces the best quality after the applica-

tion of the second pass over the different datasets. Generally, the test videos used in this

thesis are classified into two categories 1) Videos with high frequency jitter and 2) Videos
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Fig. 4.16: Relation between Spring Constant and Video Fidelity for videos with high
frequency jitter
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Fig. 4.17: Relation between Spring Constant and Video Fidelity for videos with low
frequency jitter
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Table 4.2: Running time in Frames per second for each of the tested sequences

Sequence Motion Estimation (fps) First Pass Running Time (fps) Second Pass Running Time (fps) Overall
Seq. 1 20.7 59.2 140 20.7
Seq. 2 18.7 57.6 153 18.7
Seq. 3 20.27 56.8 165 20.27
Seq. 4 19.2 58.7 133 19.2

with low frequency jitter. The algorithm is applied with spring constant ranging from 0.2

to 2.7 with a step of 0.1. As shown in Figures 4.16 and 4.17, the spring constant k = 1.9

gives the best results in both cases. Hence, it was used in all the results produced in the

previous subsections.

4.4.2 Runtime Analysis

The proposed algorithm has been tested on the following configurations: Intel Quad Core

processor @2.20 GHz. The average running time for the whole algorithm is around 20 fps,

which meets real-time applications constraints. The total running time of the proposed

method on each of the test sequence is given in Table 4.2. It is worth mentioning that

the first step of the motion estimation block which is feature detection and matching is

the most computationally expensive step for the whole algorithm.

4.5 Conclusion

In this chapter, we presented a novel stabilization method based on 2D linear transforma-

tions that meets real time requirement. The proposed method outperforms current state-

of-the-art methods, such as Youtube and Adobe After Effects "WrapStabilizer" function,

while achieving real time performance. The proposed method novelty can be summarized

in the following

1. It is the first digital video stabilization method to employ a physics inspired software

model based on mass spring damper model to smooth the camera path and generate
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a video with a better visual quality.

2. No a priori knowledge of the camera motion.

3. Real time performance.

4. Highly parallelizable

Future work include modifying the method to be used on feature-less scenes using

pixel trajectory. Also, deployment on various automated systems.
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Chapter 5

Conclusion and Future Work

5.1 Summary

In this thesis, we have proposed a novel solution to the problem of video stabilization. In

chapter 1, we introduced the problem of video stabilization and discussed the challenges

related to this topic. These challenges can be summarized as follows:

1. Noise

2. Quick Camera motion

3. High Computational Complexity

According to the adopted motion models, video stabilization methods can be catego-

rized into 2D, 3D and 2.5D . In chapter 2, we reviewed most related video stabilization

approaches based on these categories.

The contribution of this thesis consists of :

1. Introducing a novel study of the effect of denoising algorithms on Video Stabiliza-

tion.
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2. Introducing a novel physics inspired video stabilization method.

Chapter 3 presented the study of the effect of denoising on video stabilization. We

studied the effect of different types of noise along with the state-of-the-art denoising

techniques on a diverse dataset, from the obtained results we showed that choosing the

recent method of denoising does not always guarantee the best results. In case of AWGN,

it is clear from the obtained results that BM3D outperformed other algorithms, however,

in case of videos with patterned texture, IRJSM outperformed BM3D and generated

better images. In case of Salt and pepper, IRJSM outperformed the other algorithm over

all the video types. In case of Blurring, BM3D outperformed BM3D on all the datasets.

Chapter 4 presented a two pass novel physics inspired 2D video stabilization method

"StableFlow". The proposed method outperforms state-of-the-art methods while keeping

real time performance. We proposed to use mass spring damper model to suppress the

low frequency jitter in the video. Then in the second pass we further smoothed the trans-

formation parameters using a gussian low pass filter. We demonstrated the advantages of

the StableFlow by stabilizing challenging videos with extreme shakiness.

5.2 Future Work

Future work include introducing more measures to assess the effect of denoising on stabi-

lization on feature-less scenes. Also, extending the StableFlow method to handle feature-

less scenes and employ pixel trajectories.
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