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Abstract 

In this research, a risk-based shutdown inspection and maintenance interval 

optimization for a processing facility is proposed. Often inspection and maintenance 

activities can’t be performed until the processing unit or plant is taken into a non-operational 

state, generally known as “shutdown”. Extensive work on inspection and maintenance 

interval estimation modeling is available in the concerned literature however, no to very 

limited application on shutdown inspection and maintenance modeling is observed for a 

continuous operating facility. Majority of the published literature deals to optimize individual 

equipment inspection and maintenance interval without considering the overall impact of 

plant unavailability due to shutdown. They all deal to optimize individual equipment 

inspection and maintenance interval considering cost, risk, availability and reliability. The 

efforts towards finding an optimal inspection and maintenance interval is not considered in 

these studies especially when it requires unit or plant to be in shutdown state from an 

operational state for performing inspection and maintenance. This topic is selected to bridge 

the existing gap in the available literature and to provide a means to develop a methodology 

to estimate the shutdown inspection and maintenance interval for a continuous processing 

unit or plant, rather an inspection and maintenance interval for each piece of equipment 

considering the overall asset availability, reliability and risk. 

A component failure due to wear or degradation is a major threat to asset failure in a 

processing facility. A carefully planned inspection and maintenance strategy not only 

mitigate the effects of age-based degradation and reduce the threat of failure but also 

minimize the risk exposure. Generally failure caused by wear or degradation is modeled as a 
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stochastic process. For an effective inspection and maintenance strategy, the stochastic nature 

of failure has to be taken into consideration. The proposed methodology aims to minimize 

the risk of exposure considering effect of failure on human life, financial investment and 

environment by optimizing the interval of process unit shutdown. Risk-based shutdown 

inspection and maintenance optimization quantifies the risk to which individual equipment 

are subjected and uses this as a basis for the optimization of a shutdown inspection and 

maintenance strategy. 
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1  CHAPTER 1  

 

Introduction and Overview 

1.1 Introduction 

 

Processing industries such as oil and gas and petrochemicals are considered to be 

complex industries due to their size and production volumes. A process plant consists of 

equipment, machineries, systems or their integral parts or components (hard resources; such 

as pipes, heat exchangers, electric motors, pumps, turbine, vessel, columns, flow and control 

valves etc. etc.), controlling and monitoring software (soft resources) which provide a 

specific function or services. These hard and soft resources are generally called physical 

assets. These physical assets are a combination of many permanent or temporary components 

which are configured within the hierarchy of an asset. Performance of these assets depends 

on their reliability, operation and maintainability. Very often these components need to be 

removed, repaired, overhauled or replaced in order for the asset to keep functioning or 

deliver the output it is designed for. When an asset fail (partial or total) to perform its 

intended function, it may result in loss of production, poor quality products, financial losses 

and in some case, serious hazardous and environmental issues. These failures or breakdowns 

could be due to cracks, leakages, corrosion, erosion, heating, vibration and wear (age 

related). Failure to detect these symptoms and not inspecting or reacting to remove these 
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degraded mode or functionality may result in major asset breakdowns or serious catastrophic 

failures. 

A set of activities or actions which ensures that the asset is available to perform its 

intended function, in a cost effective manner is generally called maintenance. Proper and 

effective inspection and maintenance of the asset not only helps to sustain the reliability of its 

functioning but also to improve its availability and performance as required. Best inspection 

and maintenance strategy helps to detect the potential failure before it produce undesired 

event or down time e.g. emergency shutdown for corrective action. Gulati and Smith (2009) 

reported that maintenance is an act of maintaining, or the work of keeping an asset in proper 

operating condition. It may consist of performing maintenance inspection and repair to keep 

assets operating in a safe manner to produce or provide designed capabilities. These actions 

can be Preventive Maintenance (PM) and Corrective Maintenance (CM) actions. So, 

maintenance keeps assets in an acceptable working condition, prevents them from failing, 

and, if they fail, brings them back to their operational level effectively and as quickly as 

possible. 

1.2 Research Objective and Scope 

Inspection and maintenance activities are carried out aiming to improve the reliability 

and availability of the system. Nowadays, complexity and advancement in systems and 

equipment has increased significantly in Oil & Gas, Refineries and Petrochemical facilities. 

Due to this reason, inspection and maintenance activities are moving from the reactive and 

expensive mode (e.g., breakdown maintenance, failure-finding maintenance and corrective 

maintenance) to proactive based, cost effective and high service maintenance techniques and 



   

3 

 

approaches. Kobbacy et al. (2008) reported that a survey of some 34 companies was carried 

out in the UK, which indicated that around half of the work that was carried out by 

maintenance department was on repair; around a quarter was on preventive maintenance and 

5% on inspection and the remaining was on other type of maintenance actions including 

opportunistic maintenance, condition monitoring and design-out maintenance. Some of the 

planned inspection and maintenance activities require the facility to be in non-operational 

state, generally termed “shutdown”. Inspection and maintenance activities carried out during 

a shutdown are generally called shutdown, turnaround or outage maintenance. Majority of 

the inspection and maintenance methodology published in literature has presented 

optimization strategies without considering the overall impact of facility shutdown. This 

research tries to overcome this limitation and provide a novel solution to optimize shutdown 

interval with a risk-based approach. 

Unexpected failures of a component or equipment produce an unplanned or 

emergency shutdown (outage) of processing facilities which operate on a continuous basis. 

Loss of production and higher maintenance cost (due to unplanned nature) not only create 

significant financial impact but also customer dissatisfaction. Production loss, safety and 

environment issues due to unexpected failures can be minimized using an effective 

inspection and maintenance strategy. A risk-based shutdown for inspection and maintenance 

activities provides a cost effective strategy by using the information obtained from the study 

of failure mode and their consequences. It is a strategic decision for operating companies to 

bring a running plant into a state on non-operational state in order to carry out inspection and 

maintenance for components of the system in certain period over a planning horizon. 
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This research focuses on developing a risk-based shutdown inspection and 

maintenance interval optimization methodology for a processing facility. This methodology 

will help to identify a proper inspection and maintenance interval in view of the overall risk 

exposure (financial impact), and lead to avoid unwanted breakdowns in the facility.  

 

The specific research objectives of this work are: 

 

(1) To develop a framework to estimate risk-based shutdown inspection and 

maintenance interval 

(2) To develop a risk-based methodology to estimate shutdown interval 

considering system availability. 

(3) To develop a risk-based shutdown inspection and maintenance interval 

considering human error for a processing facility. 

(4) To develop a multi-constrained, bi-objective risk-based maintenance 

scheduling for a LNG gas sweetening unit. 

 

The endeavor of this research is to find the optimum shutdown interval to perform 

inspection and maintenance of a system such that the overall risk is minimized subject to a 

constraint on reliability and availability. The proposed methodology will provide a means to 

achieve the desired reliability and availability of the processing unit or facility under 

considered circumstances as illustrated in Figure 1-1: Overall research strategy. 
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Figure 1-1: Overall research strategy 

1.3 General Terminology and Definitions 

To better understand the concepts in this dissertation, basic definitions and 

terminology are discussed in the following sub-sections. 

1.3.1 Shutdown 

A duration in which a process facility is out of service and does not produce the 

desired outcome is termed as shutdown.  

Risk-based 
shutdown interval 

Framework to 
estimate risk-

based 
shutdown 

interval 

Risk-based 
shutdown 

interval 
considering 

human error 

Multi-
constraint, bi-

objective 
maintenance 
optimization  
using Genetic 

Algorithm 

Risk-based 
shutdown 

interval 
considering 

system 
availability 
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1.3.1.1 Planned/Scheduled Shutdown: 

Duffuaa and Daya (2004) and Lawrence (2012) have defined that a planned periodic 

shutdown (total or partial) of a processing unit or facility is the time taken to perform 

maintenance, overhaul and repair operations and to inspect, test and replace process materials 

and equipment. Planned/Scheduled shutdown can be classified as total and partial shutdown. 

1.3.1.2 Total Shutdown: 

In a total planned shutdown, the entire process facility is taken out of service. This 

type of shutdown causes serious negative financial impact on business operations due to 

production loss and shutdown maintenance cost (labor and spare parts). Generally, planning 

for total shutdown begins well in advance and includes stakeholders such as procurement, 

engineering, maintenance, operations, quality assurance, Health, Safety, and Environment 

(HSE), security and administration.  

1.3.1.3 Partial Shutdown: 

A partial shutdown is a scheduled short term shutdown. This type of shutdown is the 

result of critical equipment or process system deterioration for which the unit of the process 

facility has to be taken out for service. Generally, the duration of partial shutdown is short in 

nature. This type of shutdown may have some impact on the production rate, depending on 

the configuration of the plant. 

1.3.1.4 Extended Shutdown: 

According to the International Atomic Energy Agency (IAEA) publication (2004), 

mothballing or extended shutdown is to place the facility in a condition of preservation in 

order to prevent degradation and to maintain the facility or part of the facility for future 
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usage. Mothballing is characterized by the treatment afforded to major components. 

Components and systems to be preserved may be physically removed from the environment 

in which they have been operating to a new environment where they are protected from 

degradation.  

1.3.1.5 Emergency Shutdown: 

The emergency shutdown is an unscheduled event which is initiated in the event of 

safety and/or environmental related issues such as fire, spill, etc., or due to a sudden failure 

of certain component or equipment which may produce or result in the loss of production. 

Emergency shutdown is triggered either by the operators or the safety interlock systems 

installed, to avoid failure of sophisticated and complex equipment such as compressors, 

pumps, turbines, boilers, furnaces, vessels etc.  

1.3.2 Maintenance and Inspections: 

Maintenance and inspections are activities carried out with the aim to improve the 

reliability and availability of the equipment or system. Some of these activities are 

inspection, cleaning, lubricating, adjustment, alignment and/or the replacement of 

components carried out in order to reduce the risk of failure. Some of the most important 

maintenance approaches are reviewed briefly here. Figure 1-2 shows a broad classification of 

maintenance activities. 
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Proactive

 

Maintenance 

 

Operator based

 

Reactive

 

Preventive

 

Predictive

 

Risk-based

 
 

Figure 1-2: Types of maintenance 

 

1.3.2.1 Reactive Maintenance: 

Maintenance activities which are not planned and performed when an internal 

(inherent) or an external (operator-induced) failure is observed are called reactive 

maintenance. Run to failure, breakdown, corrective and emergency maintenance are reactive 

maintenance labeled as “unplanned”, having common characteristics with the objective to 

restore the equipment to a state in which it can perform its full intended function.   

1.3.2.2 Proactive Maintenance: 

Maintenance activities which are planned well in advance, to avoid any potential 

failure, whether internal (inherent) or external (operator-induced), are called proactive 

maintenance. Proactive maintenance is contrary to reactive maintenance. Preventive 

maintenance and predictive maintenance are proactive maintenance. 
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1.3.2.3 Preventive Maintenance: 

Duffua et al. (1999) and Dhillon (2002) reported that preventive maintenance can be 

defined as a series of planned tasks performed to counteract the known causes of potential 

failures of the intended function of an asset. Preventive maintenance can be planned based on 

time or usage. If the actual failure mechanism of an asset is known, certain maintenance 

action can be carried out and planned in advance to avoid failure. For example, if the failure 

mode is due to wear or usage and increases over a period of time, then the preventive 

maintenance will be time-based. The downside of preventive maintenance is that it increases 

system downtime as well as increases the possibility of induced failures which may 

negatively impact system availability and reliability. 

1.3.2.4 Predictive Maintenance: 

Duffua et al. (1999) reported that predictive maintenance can be defined as a series of 

planned tasks performed to counteract the unknown causes of potential failures of the 

intended function of an asset by monitoring or inspecting the health of the asset. This type of 

maintenance strategy is also referred to as condition-based or diagnostic based maintenance. 

This strategy is very useful when the probability of failure is constant regardless of time, age, 

or usage, and there is a gradual degradation from the onset of failure. Gulati (2009) reported 

that the "predictive" component stems from the goal of predicting the future trend of the 

asset's condition. This approach uses the principles of statistical process control and trend 

analysis to determine at what point in the future, maintenance activities will be appropriate 

and cost effective.  
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1.3.2.5 Reliability Centered Maintenance: 

RCM strategy was developed in the commercial aviation industry in the late 1960s to 

optimize maintenance and operational activities in order to preserve critical aircraft 

functions. This strategy was adopted and published in Maintenance Strategy Group 1 (MSG-

1), which was later approved by Federal Aviation Authority (FAA). In 1975, Department of 

Defense (DOD) directed that the MSG concept be labeled Reliability Centered Maintenance 

(RCM) and be applied to all major military systems (Gulati, 2009). Reliability centered 

maintenance is a proactive maintenance strategy which is based on an asset/system in its 

operating context to ensure safety, mission compliance, and system functionality. The 

process defines system boundaries and identifies functions, functional failures, and likely 

failure modes (Gulati, 2009). 

1.3.2.6 Opportunity Maintenance: 

Duffuaa and Daya (2004) reported that maintenance activities which are not planned 

well in advance but rather carried out when the opportunity arises are called opportunity 

maintenance. Very often, this type of maintenance is carried out when the process 

plant/equipment enters in a planned or un-planned shutdown to perform maintenance and 

inspection activities. Such defects that are pointed out during operation, but could not be 

repaired, are maintained during shutdown. 

1.3.2.7 Operator Based Maintenance: 

Stephens (2010) reported that in the operator-based maintenance strategy, plant or 

equipment operators, with help of formal training from maintenance department, can perform 

certain routine maintenance jobs such as house-keeping, equipment cleaning, protection from 
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dust, lubrication, routine inspection and routine adjustment as well as simple faults that can 

be easily taken care of by the production or operational staff. Telang et al. (2010) reported 

that operator driven maintenance strategy closes the gap between operation/production and 

maintenance and may help to achieve significant improvement in overall plant and 

equipment availability. 

1.3.3 Risk 

The word “risk” is widely used in the industries. This word is used to represent 

various conditions which are considered to be having a negative impact on the operating 

companies, such as business risk, economic risk, safety and environmental risk and injury or 

fatality risk. Risk is generally analyzed qualitatively or quantitatively. Kaplan and Garrick 

(1981) suggested that a qualitative risk analysis tries to answer three fundamental questions 

or the “set of triplets idea”: 

(1) What can go wrong? 

(2) How likely is it to happen? 

(3) What will be the consequences if it happens? 

Once all the scenarios are covered, these sets of scenarios can be represented as a set 

of triplets as shown in the following equation: 

                                (1-1) 

 

Further a quantitative risk is generally defined as the possibility of loss and injury and the 

degree of probability of such a loss. In this context, risk can be defined as: 

                                                       (1-2) 
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The result of a quantitative risk analysis produces a number in $ values/unit of time. This 

number is used by operating companies to decide their tolerance or acceptance criteria to 

meet their target or goal.  

1.3.3.1 Failure and reliability function 

All equipment, either static or rotating degrades as the time passes or ages in 

operation. This degradation may result in a failure of the equipment or system. Generally, 

reliability of an equipment or system is defined as the probability that it will perform its 

intended function under a specified condition for the specified period of time without failure. 

In contrast, the probability that the equipment is in a failed state and unable to perform its 

required function is a complement to reliability. Mathematically, this is represented as: 

For a given value of t,  

             (1-3) 

where, R(t) is referred to as reliability function, and F(t) is the probability that failure occurs 

before time t. 

             (1-4) 

1.3.3.2 Consequence of failure 

A failure or breach of containment can lead to various scenarios or hazards which 

may produces unwanted outcomes. Typically, in oil and gas or petrochemical industries, fire 

(Flash fire, Jet fire, Pool fire, and Fireball), and explosions (Boiling Liquid Expanding Vapor 

Explosion (BLEVE), Vapor Cloud Explosion (VCE), and Confined Vapor Cloud Explosion 
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(CVCE)), are considered to be major hazards events which may lead to devastated outcomes 

for the operating companies. Figure 1-3 briefly represents possible scenarios. 

 

Figure 1-3: Failure consequence modeling 

These consequences are estimated in terms of asset damage, production loss, health 

safety and environment and various inspection and maintenance costs and measured in $ 

values as shown in  Figure 1-4. 



   

14 

 

 

Figure 1-4: Asset Failure Scenarios and Hazards 

1.3.4 Availability 

Asset intensive industries such as petrochemical and hydrocarbon processing 

facilities operate on a continuous basis; 24 hours a day and 365 days a year. In order to 

maintain operability to meet the shareholders demands and to continue producing the output, 

availability of these assets is vital. Availability is one of the key measurement or 

performance indices for these industries. Higher availability indicates higher utilization of the 

facility. Ebeling (1996) defines availability as the probability that a system or component is 

performing its required function at a given point in time or over a stated period of time when 

operated and maintained in a prescribed manner. Availability is measured as the ratio of 

uptime and downtime of the facility, and represented as:  

               
      

               
 (1-5) 
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where, uptime and downtime are generally represented in terms of mean time between failure 

(MTBF) and mean time to repair (MTTR). Using MTBF and MTTR, the availability 

equation can be represented as: 

               
    

         
 (1-6) 

 

1.3.5 Risk based Inspection and Maintenance (RBI&M): 

Maintenance strategies such as breakdown maintenance, preventive maintenance, 

condition monitoring and reliability centered maintenance were the main focus for reducing 

maintenance cost and improving plant operational reliability and availability. However, over 

the last two decades, a paradigm shift has been observed in which maintenance strategies are 

now coupled with the risk associated with the operating plants. A risk-based approach, 

compared to a fixed interval (conventional) approach, assesses the failure by considering not 

only the likelihood but also the consequences of total shutdown and failure. 

1.4 Constraints and Limitations 

The proposal is based on a risk-based analysis. Quantification of risk requires having 

thorough understanding of equipment or system failure mechanism and failure probability. 

To calculate the failure probability of a component, equipment or system, failure data are 

required. Failure probabilities are primarily determined using physical plant data, test data, 

data banks and from the operating experience of plant personnel. Analyzing data without 

knowing the failure mechanism can lead to incorrect results. Depending on the availability of 

plant specific numerical data, failure rates can be estimated using the maximum likelihood 
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method, Bayesian reliability estimation or from a generic data base, if no raw data are 

available for a component. Some available industry databases e.g., Offshore and Onshore 

Reliability Data (OREDA) and Process Equipment Reliability Database (PERD), have 

documented failure and repair rates for different failure modes. In general, careful 

consideration is required in using this data since many of the failure modes are not applicable 

to all the processes. In this proposal, failure data for the selected critical equipment will be 

adopted from the available data banks, plant specific data as well as expert judgments. 

1.5 Thesis Structure 

This thesis follows the sequence of objectives as discussed earlier. The Chapter 

structure is discussed as follows:  

 Chapter 1 provides a brief introduction of the relevant terminologies discussed, such 

as shutdown and its types, inspection and maintenance and their types, operation 

performance measurements such as reliability, availability, and risk. Further, 

assumptions, limitations, research objectives are also mentioned.  

 Chapter 2 discusses a novel framework to estimate risk-based shutdown interval for a 

processing facility. This chapter includes a discussion on the introduction of a risk-

matrix for critical equipment selection to develop shutdown interval. Further, failure 

and consequence modeling for various failure scenarios is discussed and presented. 

Finally an operational risk profile is generated which is used considering the As Low 

As Reasonably Practical (ALARP) criteria to establish the shutdown interval. The 

proposed framework is applied and discussed to develop shutdown maintenance and 

inspection intervals for a gas chilling/liquefaction unit in a LNG processing plant. 
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 Chapter 3 describes the risk-based methodology to estimate shutdown interval 

considering system availability. Shutdown interval using plant availability as a 

constraint is discussed using Markov process. Availability of the system is estimated 

considering two different system configurations. Probabilities of failure and their 

consequences are presented. A novel concept of Mean Shutdown Time (MSDT) is 

proposed over the design life of the system, considering that the shutdown is a 

planned event in advance to obtain risk-based shutdown interval.  

 Chapter 4 presents a novel risk-based methodology to estimate shutdown inspection 

and maintenance interval by integrating human errors. Probability of human error is 

introduced while modeling the system failure. Success Likelihood Methodology 

(SLIM) is used to estimate the human error probability (HEP). The proposed 

methodology is the extension of the previously published work by the authors to 

determine the shutdown interval, considering the system desired availability. The 

methodology is used to ensure the practicality of the proposed formulation to the real 

industry. 

 Chapter 5 presents a multi-constrained, bi-objective non-linear maintenance 

scheduling optimization using Genetic Algorithm (GA). Further, in this chapter, the 

facility is split in to two main categories of equipment which help to develop a well-

planned maintenance, considering planned shutdown and its financial impact. The 

benefits of maintenance can only be gained when a reliable performance with high 

availability and productivity is sustained without having frequent facility shutdowns. 

The two conflicting objectives are: i) the minimization of total expenditures incurred 

on maintenance related activities and ii) improving the total reliability of gas 
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sweetening unit. Finally a true Pareto-front using plant specific data and employing 

Genetic Algorithm Toolbox in MATLAB (Version 2015b) is presented. The 

developed approach is applied to construct the maintenance schedule for a processing 

facility unit. 

 Finally, Chapter 6 presents the research conclusions with the key findings, presented 

novelties and contributions for the operating facility shutdown management. Further, 

possible opportunities to improve the shutdown modeling are also suggested to take 

this subject to the next higher level.  
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2 CHAPTER 2 

 

A framework to estimate the risk-based shutdown interval 

for a processing plant
1
 

 

Abstract 

The proposed framework is a cost effective way to minimize the overall financial risk 

for asset inspection and maintenance, while fulfilling safety and availability requirements. 

Petrochemical plants and refineries consist of hundreds of pieces of complex equipment and 

machinery that run under rigorous operating conditions and are subjected to deterioration, 

over a time due to aging, wear, corrosion, erosion, fatigue and other reasons. These devices 

operate under extreme operating pressures and temperatures, and any failure may result in 

huge financial consequences for the operating company. To minimize the risk and to 

maintain operational reliability and availability, companies adopt various maintenance 

strategies. Shutdown or turnaround maintenance is one such strategy. In general, shutdown 

                                                
1 This Chapter is based on the published work in a peer-reviewed journal. Hameed A., & 

Khan, F. (2014). “A framework to estimate the risk-based shutdown interval for a processing plant”. 

Journal of Loss Prevention in the Process Industries, 32, 18–29. To minimize the duplication, all the 

references are listed in the reference list. The contribution of the authors is presented in Section 

titled, “Co-authorship Statement”. 
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for inspection and maintenance is based on the original equipment manufacturer’s (OEM) 

suggested and recommended certain periods. However, this may not be the most optimum 

strategy given in which operating conditions may vary significantly from company to 

company. 

The framework proposed in this work estimates the risk-based shutdown interval for 

inspection and maintenance. It provides a tool for maintenance planning and decision making 

by considering the probability of the equipment or the system for failure and the likely 

consequences that may follow. The novel risk-based approach is compared with the 

conventional fixed interval approach. This former approach, characterized as it is by 

optimized inspection, maintenance and risk management, leads to extended intervals between 

shutdowns. The result is the increase in production and the consequent income of millions of 

dollars. 

2.1 Introduction 

Petrochemical plants and refineries consist of several pieces of equipment and 

machinery that are complex and run under rigorous operating conditions. They tend to 

deteriorate over time, due to aging, wear, corrosion, erosion, fatigue and other reasons. If the 

consequences of a failure are very low, the minimum amount of maintenance activity can be 

performed at the time of a failure. However, if the consequences of a failure are very high 

and are not addressed in a timely manner, the deterioration of equipment and system may 

result in unplanned shutdowns, production losses, higher production costs and in certain 

cases serious accidents and environmental issues.  
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To keep these losses low by minimizing the deterioration rate associated with time 

and operation, companies adopt different maintenance strategies by which to maintain the 

safety, reliability and availability of the systems, so that they may continue to operate 

smoothly. Shutdown maintenance is one of the maintenance management strategies used in 

process plants to improve the plant reliability, availability and integrity. Reliability is very 

important for any processing plant given that any equipment failure may result in safety 

consequences (e.g., injuries or loss of life and the company’s reputation), financial damages 

(e.g., production losses and damages to assets) and environmental consequences. Some of the 

planned inspection and maintenance activities cannot be performed if the plant is operational 

and require the unit or plant to be in a non-operational state. This category of maintenance is 

referred to as shutdown, turnaround or outage maintenance. Lawrence (2012) reported that 

refineries and other petrochemical facilities that run continuously must shut down operations 

every few years to provide access to production units so that essential maintenance, 

modification and inspection work can be carried out. To achieve a predefined operational 

reliability goal, companies adopt preventive maintenance strategies based on the original 

equipment manufacturer’s suggested fixed intervals of maintenance. However, these 

suggested intervals may not be the most optimum maintenance strategy, given that the 

operating conditions may vary significantly from company to company. Based on case 

studies performed for six major process plants in the United Kingdom, Obiajunwa (2012) 

reported that typically power plant shutdown (turnaround) maintenance is planned for every 

four years, oil refinery and petrochemical plant shutdown maintenance is planned for every 

two years, and chemical, steel, glass and food and beverage plant shutdown maintenance is 

planned for every year. Tan and Kramer (1997) reported that a typical refinery experiences 
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approximately 10 days of downtime per year due to equipment failures, with an estimated 

economic loss of $20,000-$30,000, per hour. Shutdown maintenance is critical to oil and gas 

companies as the availability of operating facilities has a major impact on the company’s 

profitability through the cost of the event and the revenue loss due to the plant being offline. 

The average production losses due to planned shutdowns based on a fixed interval strategy 

have a significant financial impact amounting to millions of dollars, which can be minimized 

by adopting a risk-based shutdown interval strategy.   

If the system deterioration can be modeled, it is possible to predict the time for 

failure, and maintenance action can be planned on the basis of the service age and the 

anticipated failure time. A risk-based shutdown maintenance interval methodology not only 

extends the interval between shutdowns but also produces millions of dollars in savings. 

2.2 State-of-the-art on shutdown inspection and maintenance: 

In recent years, shutdown maintenance strategies have emerged as a critical 

management decision to achieve optimal output for a unit or a plant, while keeping the 

overall costs low and maintaining safety and regulatory requirements. In the last two 

decades, a paradigm shift (risk-based maintenance strategies) has been observed, in which 

maintenance strategies are now coupled with the specific risk associated with the operating 

plant. It is likely that this reason that has influenced researchers to focus more on risk-based 

maintenance management approaches. Different risk-based maintenance and inspection 

approaches are reported in the literature, ranging from the qualitatively ones to the 

quantitative ones. Duffua and Daya (2004) reported that shutdown maintenance (also termed 

as turnaround maintenance) is a periodic maintenance where plants are shutdown to allow 
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time for inspections, repairs, replacements and overhauls, that can be carried out only when 

the assets (plant facilities) are taken out of service. During this period, three types of work 

are carried out: (1) work on equipment that cannot be performed unless the whole plant is 

shutdown, (2) work that requires a lengthy maintenance and a large number of maintenance 

personnel and (3) maintenance on defects that are discovered during normal operations but 

cannot be repaired. Duffua, Raouf, and Cambell (1999), and Lenahan (1999) both 

extensively discussed detailed requirements for shutdown (turnaround) maintenance. 

Pokharel and Jiao (2008) reported that if project management practices and the involvement 

of external experts and parties are allowed during maintenance projects, then issues in 

maintenance projects can be more clearly addressed and the cost and schedule for such a 

project can be minimized. Levitt (2004) discussed five phases of shutdown: planning, 

initiating, executing, completion and closeout. Duffua et al. (1999), Duffua and Daya (2004), 

Lenahan (1999) and Levitt (2004) covered only the management and execution portions of 

shutdown and have not addressed the important question regarding shutdown intervals to 

improve plant reliability and availability. Zulkipli et al. (2009) reported that the studies 

regarding turnaround (shutdown) maintenance are descriptive and highly narrative in nature. 

The shutdown (turnaround) event is considered duration-driven, and the frequency is largely 

determined by variables such as plant technology, the required level of plant reliability, and 

the legal requirements associated with the operation. Ghosh and Roy (2009) proposed 

optimizing the maintenance intervals by maximizing the reliability based cost/benefit ratio. 

Rusin and Wojaczeck (2012) presented optimization of power machine maintenance intervals 

by taking the risk into consideration. Vaurio (1995) presented a procedure for optimizing test 

and maintenance intervals for safety related systems and components. This procedure was 
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based on minimizing the total plant-level cost and setting an upper bound, on the total 

accident frequency (risk). Khan and Haddara (2003) developed a risk-based maintenance 

(RBM) strategy interval for periodic preventive maintenance (PM) on key equipment. Khan 

and Haddara (2004a, 2004b) applied the risk-based maintenance (RBM) strategies to 

offshore oil and gas processing facilities to develop a maintenance plan and extended similar 

strategies to an ethylene oxide production plant. Krishnasamy, Khan and Haddara (2005) 

proposed a risk based maintenance strategy for a power plant. The strategies listed by Khan 

and co-authors are intended to develop an optimized inspection and maintenance program 

based on integrating a reliability approach and a risk assessment strategy. The desired end 

product is an optimum maintenance schedule that reduces the overall risk for the plants based 

on the individual equipment in the plant. However, these methods are deficient in 

considering the overall financial impact of plant shutdown on the facility and the frequency 

of the maintenance shutdown interval. Tan and Kramer (1997) proposed a general framework 

for preventive maintenance optimization that combines Monte Carlo simulations with a 

genetic algorithm. When applied to opportunistic maintenance problems, the method 

overcomes the demonstrated shortcomings using analytic or Markov techniques in terms of 

solution accuracy, versatility and tractability. Duarte, Craveiro, and Trigo (2006) proposed 

optimizing the preventive maintenance plans of a series of components to ensure availability 

under the assumption that all of the components in the system exhibit a linearly increasing 

hazard rate, a constant repair rate and that preventive maintenance returns the system to ‘as 

good as new’ condition. Vatn, Hokstand, and Bodsberg (1996) presented an overall model 

for maintenance optimization for the components of a production system considering safety, 

health, maintenance costs, environment objectives and the cost of lost production. Keshavarz, 
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Thodi, and Khan (2011) proposed a risk-based shutdown management strategy for LNG 

units. A combination of preventive maintenance, active redundancy and standby redundancy 

was considered to achieve an optimized shutdown maintenance strategy. This work failed to 

address the equipment selection criteria for the shutdown interval characterization of the 

plant, which is a key issue as far as optimizing the shutdown maintenance interval is 

concerned. Hadavi (2009) proposed a heuristic single function model incorporating cost, risk 

and loss for outage maintenance scheduling optimization. Fujiyama et al. (2004) developed a 

risk based maintenance system for steam turbine plants coupled with a quick inspection 

system. The objective was to provide a rational basis for life cycle maintenance planning. 

Tam, Chan, and Price (2006) reported that in the manufacturing industry, PM is carried out to 

minimize the probability of unexpected plant breakdown. Suggested PM intervals are 

normally determined by the OEMs. However, they observed that due to the multi-faceted 

relationship between the operating context and the production requirements for different 

plants, it is unlikely that these OEM suggested intervals are optimized for plant specific 

conditions. Additionally, these authors proposed three models to calculate the optimal 

maintenance intervals for a multi-component system in a factory with a minimum required 

reliability, maximum allowable budget and minimum total cost. 

API Recommended Practice 580 (2009) provides guidance to owners, operators, and 

designers of pressure-containing equipment, including pressure vessels, process piping, 

storage tanks, rotating equipment (with pressure containing components), boilers and heaters, 

heat exchangers and pressure-relief devices. API Recommended Practice 581 (2008) 

provides quantitative procedures to establish an inspection program using risk-based methods 

for pressurized fixed equipment, including pressure vessels, piping, tankage, pressure relief 
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devices, heat exchangers, pumps and compressors. In literature, extensive work on inspection 

and maintenance modeling is available, however, very limited application is observed related 

to the modeling of shutdown for a processing unit or plant. Some of these methods have been 

discussed in details in literature to estimate optimal maintenance and inspection interval 

considering cost, risk, availability and reliability. However, they all tend to optimize 

individual equipment inspection and maintenance cycle. The efforts towards finding an 

optimal inspection and maintenance interval is not considered in these studies especially 

when it requires the unit or plant to be in non-operational (shutdown) state, from an 

operational state for performing inspection and maintenance on the equipment. If an 

inspection and maintenance strategy is developed only by giving consideration to individual 

equipment reliability and availability point of view, it will have a major impact on the return 

on investment for shareholders, lead to higher operating expenses and in some cases result in 

loss of market share. The Risk-based Shutdown Inspection and Maintenance Methodology 

(RBSIM) proposed in the present work, is a unique quantitative approach which enables us to 

find a unit or plant shutdown interval which will provide an optimal inspection and 

maintenance interval considering the overall system availability, reliability and risk. The 

proposed RBSIM is designed to optimize the plant shutdown interval and maintain a high 

level of equipment availability considering the critical equipment from the risk perspective, 

while ensuring that the overall financial impact is kept to a minimum, considering the critical 

equipment from risk perspective. RBSIM provides an efficient way to select the equipment 

based on the risk and direct impact on plant operability to manage assets in comparison to the 

individual equipment strategy by efficiently utilizing inspection and maintenance resources 

and thus achieve better results with less operating expenses. 
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2.3 Risk-based shutdown inspection and maintenance interval (RBSIM) 

methodology 

In this study, a framework to establish risk-based shutdown intervals is presented. 

This framework is broken down into three main modules, as shown in Figure 2-1: 

1. Risk-based equipment selection for shutdown interval estimation 

2. Estimation of failure data and failure consequences 

3. Establishing a risk-based optimized shutdown interval 

2.3.1 Module 1: Risk-based equipment selection for shutdown interval 

estimation. 

According to Zulkipli et al. (2009) tasks carried out during shutdown maintenance 

include overhauls, maintenance, replacement, inspection, tie-ins for plant expansions and 

modifications and upgrades. Duffua and Daya (2004) reported that during shutdown 

(turnaround), maintenance is performed on that equipment, which necessarily requires that 

the whole plant is shutdown and on defects that are discovered during operation that cannot 

be repaired or which require a lengthy repair period and a large number of maintenance 

personnel. 

To estimate the shutdown interval or provide enhancement, the focus must be placed 

on equipment failure probabilities that have the most significant impact on system failure. In 

a typical operating plant, thousands of pieces of equipment and components are operating. It 

is very unlikely that a shutdown interval can be based on all of the equipment. The overall 

financial impact of the shutdown for inspection and maintenance activities can be offset by 
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reducing excessive equipment selection by removing those pieces that exhibit a lower risk to 

reliability, availability and safety. 

Process industries such as oil, gas or petrochemical industries are exposed to risk 

which relates to financial losses due to losses in production and to operating risks associated 

with higher operating pressures, lower temperatures (cryogenic), as well as toxic and 

chemical hazards. To avoid or minimize these risks, risk-based equipment selection is 

proposed to help estimate the best risk-based shutdown intervals.  

This process begins with a qualitative risk-based study for equipment selection in 

reference to the imposed risk on the facility and the performance of the equipment. This 

module proposes a unique risk assessment strategy to select the critical equipment that 

affects the functionality of the system. To achieve this, operating plants need to be divided 

into manageable units/systems to identify pertinent equipment or components. To minimize, 

the exposed risk to the company, each unit needs to be analyzed, to identify the equipment 

with the largest impact on the plant operability, reliability, availability, financial impact (e.g., 

production loss, asset damage due to failure and revenue loss due to shutdown), as well as the 

possible impact on safety and the environment. This cycle continues until the whole unit or 

plant is analyzed. The output from this qualitative risk assessment is a categorization of the 

equipment that exhibits a significant impact on the operability of the unit or plant. 
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Figure 2-1: Frame work to estimate risk-based shutdown interval 

A qualitative criticality risk ranking matrix (see Figure 2-2: Qualitative Criticality 

risk ranking matrix) is proposed to select critical equipment which cannot be inspected or 

repaired if the plant is in operation. A level of severity and probability of failure from 1 to 5 
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is assigned to each category. For the case of several competing consequences for 

equipment/components, the highest observed risk among the consequences should be 

considered to be the most critical component. 

5

3

Risk Matrix

Failure Frequency
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L M M H H

L M M M H

L L M M H

L L L L M

Consequence Rating

Asset Damage

Production Loss

Safety/Health

Environment

1 2 3 4 5

Negligible Minor Moderate Major Catastrophic

<5% 5- 10% 10-30% 30-60% >60%

Near miss/ 

First Aid
Minor Injury

Injury with 

Disability

Permanent 

Disability
Fatalities

No

effect

Minor

effect

Moderate

effect

Major

effect

Massive
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Figure 2-2: Qualitative Criticality risk ranking matrix 

Operational relationships and knowledge regarding various system elements is 

required to perform shutdown interval estimation. System failures cannot be evaluated and 

improved until it is known that how these various elements affect system operation. A true 

representation of these relationships is required for prediction and assessment based on either 

cost or risk. Reliability block diagrams are usually used to represent these relationships. For a 

system comprising various elements (equipment), reliability diagrams are a good means of 
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showing the functional relationship between the elements and providing an indication of the 

elements which must operate successfully for the system to accomplish its intended function. 

An operating plant may constitute pieces of equipment arranged in series, active redundancy 

or standby redundancy. Typical reliability block diagrams are shown below (Figure 2-3 & 

Figure 2-4). 

Equipment 1 Equipment 2 Equipment 3 Equipment n
 

Figure 2-3: Block diagram showing equipment acting in series 

 

Equipment 1 Equipment 2 Equipment 2Equipment n

Equipment 1

Equipment m
 

Figure 2-4: Block diagram showing equipment acting in series/parallel configuration 

 

Furthermore, this study assumes that a piece of equipment/component in standby 

arrangement or active redundancy has the full capacity to undergo inspection and 

maintenance without requiring, that the operating plant be placed into a non-operational state. 

2.3.2 Module 2: Estimation of system failure probability and failure 

consequences 

A failure of a piece of equipment or a system is defined as its inability to perform its 

intended function as per stated procedure in a defined environment. A partial failure may 
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result in a reduction of process throughput, whereas a complete failure will stop the entire 

process operation. Failures are generally modeled as a stochastic process. A stochastic 

process can be defined using a probabilistic method. Ebeling (1997) reported that the 

reliability of a piece of equipment or a system is defined as the probability that it will 

perform its intended function without failure for a given period of time. The failure of a piece 

of equipment or a system is complementary to the reliability and is written mathematically 

as: 

                   (2-1) 

 

                   (2-2) 

2.3.2.1 System Failure Probability: 

A failure can be modeled using exponential, Weibull, normal or lognormal 

probability distributions. However, Weibull distributions provide a more generalized failure 

model and often are used in reliability analyses due to this model’s inherent flexibility.  

Additionally, Weibull distributions can mimic the behavior of other statistical distributions, 

such as normal (for β =3.4) and exponential (for β =1) distributions. A decreasing failure rate 

(β<1) corresponds to an early life failure or infant mortality. A constant failure rate (β =1) 

suggests that items are failing from random events. An increasing failure rate (β>1) suggests 

that wear out is occurring and that parts are more likely to fail over time (Ghosh & Roy, 

2009). The value of the shape parameter (β) estimated from the failure data provides an 

insight into the failure processes of the equipment. This includes reliable operation for certain 

durations and when the device enters into the wear out zone. All maintenance activities are 

based on this assumption so that action can be taken before any failures occur. It is necessary 
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to express the probability of failure for a piece of equipment or a system as a function of time 

for risk-based shutdown maintenance and inspection interval estimation. In this study, the 

Weibull model with the parameters β and characteristic life (θ) is used to model the time 

dependent reliability of the equipment involved in the system. Ebeling (1997) reported that 

the reliability of equipment following the Weibull distribution is defined as: 

       
  

 
 
 
 

 
(2-3) 
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The variable       is defined as the reliability of the equipment in a system that has 

not had any maintenance or inspection during a time t but is scheduled to undergo inspection 

and maintenance during a shutdown. Ebeling (1997) reported that the system failure 

probability prior to the shutdown maintenance and inspection is given as: 

For a System in a Series Configuration (Figure 2-3): 
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where i = 1, 2,….., n pieces of equipment acting in series, as shown in Figure 2-3, 

and: 

For System in Series/Parallel Configuration (Figure 2-4): 
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  (2-7) 

where i = 1, 2…n pieces of equipment acting in series and j=1, 2…m pieces of equipment 

acting in parallel, as shown in Figure 2-4. 

2.3.2.2 Estimation of failure probability parameters 

To calculate the failure probability of a component, equipment or a system, failure 

data are required. Noortwijk, Dekker, Cooke, and Mazzuchi (1992) proposed a 

comprehensive method to use expert opinion for obtaining the lifetime distributions required 

for maintenance optimization. Failure probabilities are primarily determined using physical 

plant data, test data, data banks and from the operating experience of plant personnel. 

Analyzing data without knowing the failure mechanism can lead to incorrect results. Cizelj, 

Mavko, and Kljenak (2001) reported that estimation of a component failure rate depends on 

the availability of plant specific numerical data and proposed a new method that explicitly 

adds numerical and linguistic information into the assessment of a specific failure rate using 

a Bayesian updating approach. Depending on the availability of plant specific numerical data, 

failure rates can be estimated using the maximum likelihood method, Bayesian reliability 

estimation or from a generic data base if no raw data are available for a component. For this 

study, failure data for the selected critical equipment are adopted from the OREDA (2002). 

Keshavarz et al. (2011) reported that by using different causes of failure, number of failures, 

and demand for equipment reported in OREDA, the reliability of any component may be 

calculated in the following way: 

               
 

 
 (2-8) 
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where n is the number of critical failures and N is the demand. 

As no information is listed in OREDA on the time of individual failures, it is fair to 

assume a constant mean time between failures for any specific cause. A simultaneous 

solution of Eq. (2-3) and Eq. (2-4) is used to obtain the distribution parameters β and θ for 

any piece of equipment.  

2.3.2.3 Economic failure consequences: 

Failure modes for process equipment (static or rotating) need to be assessed to 

perform inspection and maintenance activities. Maintenance activities can be as simple as 

lube oil analysis, lube oil replacement or a complete replacement of a degraded component. 

For example, a catastrophic failure of a pump bearing may result in damage to the casing, 

ring, impeller, and mechanical seal. A failure of a threaded drain connection due to corrosion 

in a process vessel may result in the release of a large amount of hydrocarbons. If a pump 

operating in a gas processing plant under extreme pressure or temperature fails 

catastrophically and releases hydrocarbons, it may form a vapor cloud and result in an 

explosion in the presence of an ignition source. The consequences of these failures are not 

only limited to mechanical damage of the equipment but may also cause significant damage 

to nearby assets, production loss, serious health and safety issues and environment impacts. 

These consequences can be calculated based on the effects of thermal radiation and 

overpressure on surrounding equipment and personnel and subsequently converted in the 

monetary ($) terms that are assumed to be invariant with time. Improper inspection or 

maintenance of processing units may result in severe failure consequences. The purpose of 
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risk-based shutdown maintenance and inspection interval modeling is to minimize the 

consequences of these failures by reducing the risk associated with deterioration or aging 

effects. The total economic consequences of these failures include asset losses, human health 

losses, production losses and the cost of maintenance and inspections. Each of these 

economic consequences is discussed briefly in the following section. 

2.3.2.4 Economic Consequences of Asset Loss (ECAL): 

To determine any damage to surrounding assets due to various hazards resulting from 

a hydrocarbon release, such as flash fires, jet fires, pool fires, fire balls, VCE, CVCE, 

BLEVE,  or toxic dispersion in a processing plant, consequence effect zones (m
2
) in terms of 

overpressure level are calculated to establish asset losses. The assessment of consequence 

effect zones and their impact involves many models, such as source modeling, dispersion 

modeling, fire and explosion models. A large number of computer software packages are 

available to perform these types of analyses. However, in this study, an analytical model is 

used to calculate overpressure in the effected zones due to an explosion (Crowl & Louvar, 

2002) and converted into probability of damage due to overpressure using probit analysis 

(Assael & Kakosimos, 2010). The main parameters required to perform these calculations are 

operating pressure, temperature, physical and chemical properties, and atmospheric 

conditions. Asset loss is estimated for each accident scenario using the following equation: 

                 (2-9) 

where PDOP is the probability of damage due to overpressure, EZ is the effected 

zone due to overpressure and AD is asset density.  
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2.3.2.5 Economic Consequences of Human Health Loss (ECHHL) 

The loss of life or pain suffered due to equipment failure or degradation has a severe 

impact on the operation of the facility and the operating company’s perception in the eyes of 

the public. Although it is difficult to calculate the impact of the loss of life or pain suffered to 

one’s family, the cost due to compensation and corporate liability needs be taken into 

account in terms of economic consequences, which vary from company to company. Judycki 

(1994) of the US Department of Transportation and the Federal Highway Administration 

published a technical note relating the injury scale (in terms of severity) to the 

comprehensive costs in police-reported crashes. The figures of this previous study are used 

hereinto calculate the financial impact on companies for human fatalities or injuries. 

Similar to the calculation of asset loss, human health loss is calculated in terms of 

dollars for each scenario using the following equation: 

                     (2-10) 

where PDOP is the probability of damage due to overpressure, EZ is the effected 

zone due to overpressure, PD is population density and CF is cost of injury or fatality. 

2.3.2.6 Economic Consequences of Production Loss (ECPL): 

The consequences of production loss are the product of downtime and the production 

loss volume: 

                (2-11) 

where SDT denotes the shutdown time in days, PL is production loss volume per day 

and SP is the selling price of the product per unit volume. 

The shutdown time includes the total amount of time, the plant would be out of operation 

(from the moment it is stopped to the moment it is again fully operational). 



   

38 

 

2.3.2.7 Economic Consequences of Shutdown Inspection and Maintenance Costs 

(ECSIM): 

Shutdown inspection and maintenance costs include scheduled inspection and 

maintenance costs for a group of equipment or components. These costs include the cost of 

preparation (scaffolding, insulation removal, blinding, purging, etc.), the cost of inspection 

(visual inspection, hydro jetting, eddy current testing, etc.), the cost of maintenance activities 

and materials (spare parts, maintenance materials, tools and vehicles associated with 

maintenance or inspection jobs), and the cost of technical support. 

2.3.2.7.1 Preparation cost: 

The preparatory cost can be estimated in the following manner: 

           (2-12) 

where Cp is the preparatory cost ($), Clp is the cost of preparatory maintenance labor 

per hour ($/h) and t1 is the duration of the work. 

2.3.2.7.2 Inspection cost: 

The inspection cost can be estimated with the following equation: 

                  (2-13) 

 

where Ci is the inspection cost ($), Cli is the cost of skilled inspection labor per hour 

($/h), Cie is the cost of inspection equipment per hour ($/h), t2 is the duration of the work and 

t3 is the duration of the required equipment. 

2.3.2.7.3 Maintenance cost: 

The maintenance cost can be estimated in the following manner: 
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               (2-14) 

where Cm is the maintenance cost ($), Clm is the cost of skilled maintenance labor per 

hour ($/h), Csp is the cost of spare parts consumed and t4 is the duration of the work. The cost 

of spare parts includes replacement parts, consumables, internally manufactured parts, parts 

sent out for repairs at vendor’s facilities, special equipment and treatments. Spare part cost 

can be drawn from the plant warehouse book. 

2.3.2.7.4 Technical support cost: 

The technical support cost can be estimated with the following equation: 

             (2-15) 

where Cts is the technical support cost ($), Clts is the cost of a technical support 

specialist per hour ($/h) and t5 is the duration of the work in hours. 

The economic consequences of shutdown inspection and maintenance are the 

following: 

                    (2-16) 

The total economic consequences of failure are the following: 

                            

 

   

      
(2-17) 

where i =1, 2, 3………, n is the equipment identified from the criticality matrix and 

considered for shutdown interval estimation. 
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2.3.3 Module 3: establishing risk-based optimized shutdown inspection and 

maintenance interval 

The risk-based plant shutdown inspection and maintenance interval optimization 

model is a mathematical model in which both the risks and the benefits of maintenance are 

quantified in terms of failure probability. 

Schon (1980) defined risk as a statement concerning the damage probability 

depending on both the frequency of occurrence and the extent of possible expected (either 

direct or indirect) damage to all kinds to life and health. The risk may be described by a 

suitable combination ( ) of the frequency of occurrence of an undesirable event with the 

probable extent of the damage expected upon occurrence. Muhlbauer (2004) wrote that the 

most commonly accepted definition of risk is often expressed as the following mathematical 

relationship: 

                                          (2-18) 

 

                                                   
(2-19) 

 

                                                       (2-20) 

 

Where RISKe is the estimated operational risk, which varies with time because the 

probability of failure is a function of time. The objective of this study is to obtain a risk-

based plant shutdown inspection and maintenance interval with an acceptable risk and to 
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determine the time at which the estimated risk is equal to the acceptable risk. Thus, Eq. 

(2-19) is subject to the following condition: 

                      (2-21) 

 

Acceptable risk is defined as the level of acceptance for shutdown inspection and 

maintenance planning purposes. For economic based consequence analysis, the acceptable 

risk is defined in terms of the financial limits. Each operating company defines its own 

tolerable risk criteria. This risk criterion should be used when making an estimation of risk-

based shutdown interval. 

2.4 The application of RBSIM to an onshore processing facility unit 

The above-proposed methodology has been used to develop shutdown maintenance 

and inspection intervals for a gas chilling/liquefaction unit in a LNG processing plant. The 

plant considered in this study employs the AP-X
TM

 Hybrid liquefaction process, licensed by 

Air Products and Chemicals Inc. (APCI). The AP-X
TM 

process cycle is an improvement on 

the C3MR process in that the LNG is sub-cooled using a simple, efficient nitrogen expander 

loop rather than a mixed refrigerant. A schematic process flow of this unit is shown in Figure 

2-5. 
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Figure 2-5: Process flow schematic of a gas chilling/liquefaction unit 

 

2.5 Results & discussions 

2.5.1 Module 1 

The main purpose of the gas chilling and liquefaction unit is to condense the natural 

gas into LNG in the main cryogenic heat exchanger (MCHE) and sub-cool it in the Sub-

cooling Heat Exchanger or the LNG Sub Cooler. The sweetened, dry and lean feed gas from 

the LNG recovery unit enters the Gas chilling and liquefaction unit and is chilled by 

vaporizing propane refrigerant in the exchangers (high, medium, low, and low-low pressure 

level), as shown in the block diagram. The propane vapors generated during chilling are 
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returned to the propane compressor via suction drums. After pre-cooling with propane 

refrigerant, the feed gas is liquefied in the MCHE, which uses a mixed refrigerant. It is then 

sub-cooled in the LNG Sub Cooler, which uses nitrogen as the refrigerant. The proposed risk 

matrix is applied to select the critical equipment from gas chilling and liquefaction unit 

(Table 2-1). A block diagram of the critical equipment selected for this unit is shown in 

Figure 2-6. It is evident that to perform any maintenance and inspections on any of these 

equipment, the unit (plant) must be placed in the shutdown mode. 

E01 E02 E03 E04 E05 E06

 

Figure 2-6: Block diagram of the critical equipment selected for a gas chilling/liquefaction 

unit 

 

Table 2-1: Critical equipment selected from gas chilling and liquefaction unit 

Chilling and Liquefaction Unit: 

Equipment No. Description 

E01 Feed Gas/HP C3 Exchanger 

E02 Feed Gas/MP C3 Exchanger 

E03 Feed Gas/LP C3 Exchanger 

E04 Feed Gas/LLP C3 Exchanger 

E05 Main Cryogenic Heat Exchanger 

E06 Sub Cooling Heat Exchanger/ LNG Sub Cooler 
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2.5.2 Module 2  

System failure probability is calculated using the block diagram shown in Figure 2-6. 

As the equipment in this unit operates in series, Eq. (2-5) is appropriate for this scenario. To 

calculate the system failure probability, the Weibull distribution parameters for the selected 

equipment are estimated using the method described in section 2.3.2.2. The estimated values 

are shown in Table 2-2. As no data for the MCHE and the LNG Sub Cooler is available in 

the history of operation for these components in OREDA, and considering that it has not 

failed and is highly reliable, a characteristic life and shape parameter is adopted based on 

expert judgment.  

Table 2-2: The failure rate data for the equipment considered in this case study 

Equipment No. Characteristic life (θ, h) Shape Parameter (β) 

E01 

282,000 4.38 
E02 

E03 

E04 

E05 
450,000 2.0 

E06 

 

Failure scenarios such as VCE for equipment E01 to E05 and VCE and Asphyxiation 

are considered for equipment E06 as listed in Table 2-3. These failure scenarios are subjected 

to consequence assessment. Given that the equipment described here involves the processing 

of hydrocarbons and operates at extreme conditions, the consequences of any failure will be 

very high. The last column in Table 2-3 shows the consequences of asset loss and human 
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health loss at the study point. This clearly shows that these consequences will have a major 

financial impact due to asset damages and human injuries or fatalities. Judycki (1994) of the 

US Department of Transportation and the Federal Highway Administration published a 

technical note relating the injury scale (in terms of severity) to the comprehensive costs in 

police-reported crashes. This note is used to calculate the financial impact on companies for 

human fatality or injuries.  
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Table 2-3: Failure scenarios and their estimated consequences 

Equipment 

No. 

Accident Scenario Accident Scenario Description Consequences of Asset 

Loss and Human 

Health Loss at study 
point (all values in 

million dollars) 

E01  

 

 

 
VCE (Vapor Cloud 

Explosion) 

 

 

Release of hydrocarbons from 

any of the equipment, which 
upon finding an ignition source 

may result in vapor cloud 

explosion, causing shock wave 
damaging assets and humans. 

344.98 

E02 307.29 

E03 256.40 

E04 88.34 

E05 284.18 

E06 VCE (Vapor Cloud 

Explosion) and 
Asphyxiation 

a) Release of hydrocarbons 

from the equipment, which 
upon finding an ignition 

source may result in vapor 

cloud explosion, causing shock 
waves damaging assets and 

humans. 

b) Release of N2 vapors, which 

upon physical contact may 
produce asphyxiation, 

resulting in human injuries or 

fatalities. 

377.76 

 

U.S. Energy Information Administration (2012) has published the LNG price in 

$/thousand cubic feet. The same is used in this study to calculate the economic consequences 

of production loss. 
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2.5.3 Module 3  

The estimated results of the consequences and failure probability of a unit are 

combined to quantify the operational risk. In general, the acceptable risk will be different 

from one company to another. An ALARP for this particular study is assumed to be $100/h. 

or lower. Any value higher than this is not acceptable. Given that the considered failure rate 

of the selected equipment is time dependent, the operational risk changes over the time 

period that the unit is in operation. A comparison of the estimated operational risk with the 

acceptable risk helps to determine the optimal shutdown inspection and maintenance 

intervals under the considered risk criteria. The optimized risk-based shutdown inspection 

and maintenance interval is found to be 23,663 h as shown in Figure 2-7. Estimated 

shutdown interval is considered to be an optimal solution under the assumed risk 

acceptability criteria. A conventional approach for inspection and maintenance interval based 

on the individual equipment does not consider the system unavailability resulting facility 

shutdown. Further, the consequences would be much higher with a conventional approach 

(based on individual equipment) as it does not consider, the overall facility shutdown, 

specifically production loss, leading to a higher risk. 
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Figure 2-7: Risk-based shutdown maintenance & inspection interval 

 

2.6 Summary and Conclusions 

In this study, a new framework for risk-based shutdown interval estimation for 

inspection and maintenance is proposed. The proposed methodology differs from the various 

maintenance scheduling methodologies available in the literature in that it considers the 

selection of equipment based on the actual risk to which a company may be exposed when 

selecting the shutdown interval of a unit or plant for maintenance and inspection. The 

methodology is composed of three main modules: (1) risk-based equipment selection for 

shutdown interval estimation, (2) estimation of failure data and failure consequences and (3) 

establishing the risk-based optimized shutdown interval. 

$0 

$50 

$100 

$150 

$200 

$250 

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 

R
IS

K
e
 (

$
/H

r)
 

Time (Hours) 

Risk-based Shutdown Maintenance & Inspection Interval 



   

49 

 

This methodology helps to optimize shutdown intervals for the inspection and 

maintenance of a processing unit or plant while considering the exposed risk related to 

production, safety and environment. It minimizes the financial consequences for an operating 

company due to production loss, loss of assets, safety (e.g., injury or loss of life) and 

environmental consequences. 

The proposed methodology has been applied to obtain an optimum shutdown interval 

for a liquefied natural gas chilling and liquefaction unit, ensuring that the high level of risk is 

contained at an acceptable level. Such a shutdown interval optimization approach is expected 

to provide a cost-effective maintenance and inspection program and provide better asset and 

capital utilization. Estimated shutdown interval for maintenance and inspection are based on 

assumed ALARP criteria. As these criteria vary for different operating companies, the 

shutdown interval can be increased or decreased accordingly. The proposed RBSIM 

methodology can be easily applied to any processing facility, however, proper attention must 

be given to identify the most critical equipment which can be inspected or maintained only 

when the plant is in the non-operational (shutdown) state. A process plant consists of a large 

number of equipment and components which interact together under severe operating 

conditions such as high pressure, high and low temperatures and flow, thereby making the 

estimation of consequences an uphill task. A risk matrix must reflect a company's risk criteria 

as it will differ significantly from those of the other companies. It should ensure that 

appropriately experienced personnel from engineering, operations, SHE and the maintenance 

team ( with a good understanding of the system, failures, hazards, impact on operations and 

the consequences if the inspection and maintenance is delayed beyond a certain period) are 
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involved in performing risk assessment. Effective tools and methods should be utilized for 

the same. Other essential elements that govern the success of the methodology are:  

(1) An appropriate risk matrix that reflects organizational commitment,  

(2) Credible risk acceptance criteria developed considering the long term perspectives 

such as process safety and business interruption,  

(3) An effective data collection protocol to support risk assessment and evaluation of 

management strategies, and  

(4) Most importantly, safety culture. These non-technical elements require the 

unwavering commitment of the senior management.
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3 CHAPTER 3 

 

A risk-based methodology to estimate shutdown interval 

considering system availability
2
 

 

Abstract 

 This paper presents a risk-based methodology to estimate shutdown inspection and 

maintenance interval considering system availability. Most inspection and maintenance 

activities are performed when the plant/unit is in the operational state. However, some 

inspection and maintenance activities require the plant to be in a non-operational or 

shutdown state. In most cases, operating companies adopt a shutdown schedule based on the 

original equipment manufacturer’s (OEM) suggested recommended periods. However, this 

may not be the best strategy as OEM recommended duration is general and may not reflect 

the current state of operation. The proposed methodology is unique in the sense that it 

identifies a shutdown interval by identifying the critical equipment in terms of risk 

                                                
2 This Chapter is based on the published work in a peer-reviewed journal. Abdul Hameed, 

Faisal Khan, Salim Ahmed (2015), “A risk-based methodology to estimate shutdown interval 

considering system availability,” Process Safety Progress, Volume 34 (3), pages 267-279. To 

minimize the duplication, all the references are listed in the reference list. The contribution of the 

authors is presented in Section titled, “Co-authorship Statement”. 
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considering availability and safety of the operating unit. It optimizes process plant shutdown 

interval to minimize the risk (in dollar terms). The Markov process is used to establish the 

state diagram to calculate system availability. The proposed methodology is comprised of 

three steps namely, risk based equipment selection, shutdown availability modeling of a 

complex system using the Markov process and risk-based shutdown inspection and 

maintenance interval modeling. It can be applied to process plants such as those for LNG 

processing, petrochemicals and refineries. The key elements for the success of the proposed 

methodology are the plant specific data and identification of critical equipment. 

3.1 Introduction 

Inspection and maintenance have evolved from a nonissue into a strategic concern in 

a short span of time. Mourbray (1997) reported that over the last few decades, maintenance 

has changed more than any other management discipline. The changes are due to a huge 

increase in the number and the variety of physical assets (plant, equipment and buildings), 

more complex design, new maintenance techniques and changing views on maintenance 

organization and responsibilities.  

In general, a complex system consists of a large number of interacting components or 

equipment that performs the system’s required functions. The system is subject to 

periodically or non-periodically planned inspection and maintenance during its life cycle. 

The inspection and maintenance actions are generally taken to fix a piece of equipment if it is 

found defective and having the potential to fail or to perform preventive maintenance to 

avoid any possible failure. In certain cases, these equipment or system cannot be isolated to 

perform inspection and maintenance, and this requires the plant to be taken out of service, 
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which is known as shutdown or turnaround. Shutdowns are generally classified as sudden or 

emergency and non-emergency shutdowns as shown in Figure 3-1. The sudden or emergency 

shutdown is an unscheduled event which is initiated in the event of a failure or breach of 

containment (such as fire, major spill, instrument failure, power failure, or total loss of 

control of chemical or physical processes). Non-emergency shutdowns can be further 

classified as planned or unplanned shutdowns. According to Duffuaa & Daya (2004) and 

Lawrence (2012), a planned, periodic shut down (total or partial) of a processing unit or 

facility is carried out to perform maintenance, overhaul and repair operations and to inspect, 

test and replace process materials and equipment. Generally, planning for total shutdown 

begins well in advance and involves the departments of procurement, engineering, 

maintenance, operations, quality assurance, HSE, security, and administration. An unplanned 

shutdown is initiated when a possible failure scenario seems to exist but does not require 

immediate stoppage of the operation, and can be delayed for a few weeks. Both planned and 

unplanned shutdowns can be total or partial in nature. In extended shutdown a facility is put 

in a condition of preservation to prevent degradation over time for future usage. The focus of 

this article is on planned shutdown, both total and partial. 

Shutdown inspection and maintenance management is one of the maintenance 

management strategies used in continuously operating plants to improve plant reliability, 

availability and integrity. 
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Figure 3-1: Shutdown Classification 

 

Extensive literature is available on inspection and maintenance interval modeling 

considering cost, reliability, availability and risk. Inspection and maintenance intervals can 

be estimated on equipment by equipment basis. However, in a process plant, a unit or system 

consists of hundreds of pieces of equipment that run in continuous mode. Developing an 

inspection and maintenance strategy without considering the impact of these inspection and 

maintenance cycles over the operability of the plant will not produce an optimum interval. 

This problem could be solved by considering a risk-based critical component selection and 

by developing an optimized shutdown inspection and maintenance interval for the system. 

Risk, reliability and availability are interminably interlinked. Higher risk means lower 

reliability and availability, while higher availability means higher reliability and lower risk. 

In order to quantify the associated risk to the operating plant due to equipment or component 

failures, estimation of consequences is essential. Failure of a complex system results in not 
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only the loss of revenue due to production loss but also asset damages, safety and health 

issues and inspection and maintenance costs.  

Khan et al. (2008) have presented a risk-based methodology to estimate the optimal 

inspection and maintenance intervals which maximize a system’s availability by considering 

risk-based inspection and maintenance program to reduce the risk of failure and enhance the 

overall availability of the system. Sarkar and Behra (2012), Bertolini et al. (2009), Kumar 

and Chaturvedi (2008), Zhaoyang et al. (2011) and Wang et al. (2012) proposed that the risk-

based maintenance approach provided a mean to reduce the overall risk when selecting a 

maintenance strategy. Neil and Marquez (2012) considered a hybrid Bayesian network 

(HBN) framework to model the availability of renewable systems. In this approach, HBNs 

were used to model distributions for corrective repair time, logistics delay time and 

scheduled maintenance and combine these with time- to-failure distributions to derive system 

availability. Jacob and Amari (2005) explored the difficulties in determining reliability and 

availability for repairable and non-repairable systems. The analysis is difficult when the 

failure distribution is not exponential and becomes even more difficult when the systems are 

hybrid and complex rather than only series, parallel or a combination of the two. A binary 

decision diagram to calculate a system’s reliability and availability is presented (Jacob & 

Amari, 2005). Pil et al. (2008) proposed a concept of reliability assessment of re-liquefaction 

systems with focus on redundancy optimization and maintenance strategies based on a time 

dependent Markov approach. Penrose (2009) presented a tool for time to failure estimation 

for risk-based reporting of condition based maintenance tests and inspections to improve the 

effectiveness of the maintenance program by prioritizing corrective action. Khan and 

Haddara (2003) proposed a comprehensive and quantitative methodology for risk-based 
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maintenance. This methodology comprises of risk estimation module, risk evaluation 

module, and maintenance planning module by integrating reliability with safety and 

environmental issues and used as a decision tool for preventive maintenance planning. Risk-

based approach has been applied successfully to the maintenance of oil pipelines (Dey et al., 

1998), and Dey (2001). Krishnasamy et al., (2005) applied a risk-based maintenance strategy 

in developing cost-effective maintenance policies for critical equipment of a power-

generating plant by reducing the overall risk of the plant. Krishnasamy et al., (2005) reported 

that the profitability is closely related to the availability and reliability of the equipment. 

Alsyouf (2007) presented a model which enables the decision-makers to trace how an 

effective maintenance policy could influence the productivity and profitability through its 

direct impact on quality, efficiency and effectiveness of operation. Backlund and Hanu 

(2002) reported that risk analysis depends on various factors and therefore the focus must be 

put on the function required of the subsystem and equipment. Fujiyama et al. (2004) 

developed a risk-based maintenance system for steam turbine plants coupled with a quick 

inspection system. The objective was to provide a rational basis for life cycle maintenance 

planning. Duffua et al. (1999), Duffua and Daya (2004), Lenahan (1999) and Levitt (2004) 

covered only the management and execution portions of shutdown and have not addressed 

the important question regarding shutdown intervals to improve plant reliability and 

availability. Keshavarz et al. (2011) proposed a risk-based shutdown management strategy 

for liquefied natural gas (LNG) units. However, it did not address the equipment selection 

criteria for the shutdown interval. 

Thus, keeping in view the existing work, the objective of this article is to develop a 

risk-based methodology for a continuous processing facility to estimate shutdown interval for 



   

57 

 

optimal inspection and maintenance, considering complex system unavailability using the 

Markov model. This proposed methodology will provide a rational basis to make a shutdown 

interval inspection and maintenance decision considering the availability of the unit or plant 

and overall risk exposure. 

3.2 A risk-based Shutdown Interval Methodology (RBSIM) 

Although extensive work on inspection and maintenance interval estimation modeling 

is available in the literature, a very limited number of studies are there on shutdown 

inspection and maintenance modeling for a continuous operating facility. Authors such as 

Ghosh and Roy (2009), Rusin and Wojaczeck (2012), Vaurio (1995), Khan and Haddara 

(2003, 2004a, & 2004b), Krishnasamy et al. (2005), Tan and Kramer (1997), Duarte et al. 

(2006) and Vatn et al. (1996) have discussed methods to estimate the optimal maintenance 

and inspection interval considering cost, risk, availability and reliability. However, most of 

these studies are concerned with optimizing individual equipment inspection and 

maintenance cycles. The efforts towards finding an optimal inspection and maintenance 

interval is not considered in these studies, especially when it requires a unit or plant to be in 

nonoperational (shutdown) state from an operational state. This work has been carried out to 

bridge the existing gap in the literature and to provide a means to develop a methodology to 

estimate the shutdown inspection and maintenance interval for a continuous processing unit 

or plant rather than an inspection and maintenance interval for each piece of equipment. The 

proposed methodology to determine risk-based shutdown inspection and maintenance 

intervals is presented in the following sections. This framework is broken down into three 

main modules as shown in Figure 3-2: 
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(a) Module 1: Risk-based selection of critical equipment 

(b) Module II: Shutdown availability modeling using the Markov model  

(c) Module III: Risk-based shutdown interval estimation 

3.2.1 Module 1: Risk-based selection of critical equipment 

Duffua and Daya (2004) reported that during shutdown (turnaround), maintenance is 

performed on the equipment that cannot be performed unless the whole plant is taken out of 

service. In a typical operating plant where thousands of equipment and components are 

operating, it is very unlikely that a plant as a whole can be taken offline to perform inspection 

and maintenance based on individual equipment.  It will have severe financial consequences 

due to loss of production. A better approach will be to focus on the selection of equipment 

which cannot be inspected or repaired during the plant operation. This will help to reduce the 

frequent production losses due to shutdowns of the facility for each individual equipment 

inspection and maintenance. 

This module proposes a qualitative risk-based study for equipment selection with 

reference to the imposed risk on the facility and the performance of the equipment for taking 

the plant into shutdown mode. To achieve this, operating units or plants need to be divided 

into manageable systems to identify pertinent equipment or components. To minimize the 

exposed risk to the company, each unit needs to be analyzed to identify the equipment with 

the largest impact on the plant operability, reliability, availability, financial impact (e.g., 

revenue loss due to shutdown, asset damage due to failure, etc.), as well as the possible 

impact on safety and the environment. This cycle continues until the whole unit or plant is 

analyzed. The output from this qualitative risk assessment is a categorization of the equipm-  
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Figure 3-2: Risk-based shutdown interval methodology 
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-ment that exhibit a significant impact on the operability of unit or plant. API recommended 

practice API-580 (2009) provides the basic guidelines to develop a risk matrix. These 

guidelines have been used to establish the proposed risk-matrix as shown in Figure 3-3. 

According to API-580, (2009) for a qualitative risk analysis, the probability of failure (POF) 

may be categorized from one through five. However, it is appropriate to associate an event 

frequency with each probability category to provide guidance to determine the probability of 

failure as shown in Table 3-1. POF can be assessed separately for each unit, system, 

equipment grouping or individual equipment item. Similarly, consequences are represented 

in monetary terms ($) as shown in Table 3-2. 

Schon (1980) defined risk as a statement concerning the damage probability 

depending on both the frequency of occurrence and the extent of possible expected (either 

direct or indirect) damage to all kinds. The risk R, may be described by a suitable 

combination (×) of the frequency of occurrence of an undesirable event with the probable 

extent of the damage expected upon occurrence. Using the above definition, the risks 

associated with safety and health (       , production loss            asset loss (        

and environment        can be calculated. For the case of several competing consequences 

for equipment/components, the highest observed risk among the consequences should be 

considered. The outcome of this risk assessment will enable the selection of the most critical 

set of equipment that may result in functional failure of a unit or a system and will require to 

go for shutdown inspection and maintenance. Overall risk can be selected using Eq. (3-1): 

                                       (3-1) 
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Figure 3-3: Qualitative criticality risk ranking matrix 

 

Table 3-1: Five levels of probability of failure  

Possible qualitative rank Annual failure probability or 

frequency 

Frequent >0.1 

Probable 0.001 to 0.01 

Occasional 0.0001 to 0.001 

Remote 0.00001 to 0.0001 

Extremely Unlikely <0.000001 
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Table 3-2: Five level consequence table 

Possible qualitative rank Economic loss range 

Negligible EL<$10,000 

Minor $10,000<EL≤$100,000 

Moderate $100,000<EL≤$1,000,000 

Major $1,000,000<EL≤$10,000,000 

Catastrophic EL>$10,000,000 

 

3.2.2 Module II – Shutdown availability modeling using the Markov process 

In the life cycle of a plant, a component or a system, the duration for which it works 

can be defined as operational state with duration “d” until it undergoes into a fail or repair 

state. This leads to unavailability of the system which is generally referred to as unplanned 

shutdown. The component or system remains in the nonoperational state until a repair is 

completed with duration “r” and it starts delivering its intended function. This cycle of 

operation and shutdown continues throughout the lifetime of the component or system and 

can be represented as shown in Figure 3-4. An alternative approach is a planned cycle of 

inspection and maintenance of the systems, which cannot be inspected or maintained while in 

operation.  

Availability of a component or a system is one of the most important measures to 

analyze its performance. Since availability is a probability, the rule of probability theory may 

be applied to compute the system availability from the knowledge of component or system 

availability. Markov analysis looks at a system as being in one of several states. One possible 
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state, for example, is that in which all the components comprising the system are in 

operation. Another possible state is that in which one component has failed but the other 

components continue to work. A third possible scenario is that a component failure leads to 

system failure. Markov model can be extended to the repairable component or system 

assuming that both the failure rate and repair rate are constant (exponential distribution). A 

majority of the components or systems in a process facility can often be modeled using a two 

state Markov process. For example, the simplest case for determining the steady state 

availability is a single component system that has a failure rate (λ) and a repair rate (μ). 

Assume that the system will be in either one of the two possible states, Operational state (1) 

or Shutdown state (2) under repair or failed condition. This can be represented using a 

transition rate diagram as shown in Figure 3-5: 

 

Figure 3-4: Operational and shutdown state of a repairable system 

 

Operational State

(1)

Shutdown State

(2)

λ 

μ 
 

Figure 3-5: Markov state space diagram of a single component repairable system 
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Simple equipment is designed to perform few basic functions and is typically exposed 

to only one possible failure mode. However, a complex system performs multiple functions 

and consists of a number of items that can fail. Nowlan and Heap (1978) have reported that 

six different failure patterns exist as shown in Figure 3-6. NASA (2000) reported that random 

failures accounted for 77-92% of the total failures and age related failure characteristics 

accounted for the remaining 8-23% failures. Since 77-92% of the failures seem to follow 

constant failure rate, it is fair to assume the exponential distribution while modeling the 

availability of complex systems. 

 

Figure 3-6: Illustration of failure patterns (redrawn after Nowlan and Heap, 1978) 

 

Considering that 77-92% of the failures are random in nature (exponential 

distribution), Markov process can be extended to the complex system. Steady-state 

availability can be calculated using the Markov rate diagram. Steady state equations may be 

written for each state i on the basis of a general relationship as given in Eq. (3-2). 
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(3-2) 

 

Letting Pi be the probability of being in state i and Pj in state j, the steady state 

equation can be written to calculate the availability or unavailability of the system. In 

general, the summation of all state probabilities remains equal to 1 as shown in Eq. (3-3). 

                (3-3) 

In the life cycle of a process plant, a system can be in the state of unplanned 

shutdown for repair due to the failure which has already happened or in a planned shutdown 

to perform the inspection and maintenance activities to improve the availability and 

reliability. The parameters of the distributions for unplanned shutdown can be estimated from 

failure data over the life cycle of the plant. If a planned shutdown is treated as a random 

event then the state space diagram for an unplanned shutdown and a planned shutdown can 

be modeled under two scenarios namely Case I and Case II.  

3.2.2.1 Case I 

Complex industries consist of multiple equipment configurations. These arrangements can be 

either full standby or active redundant. Full stand by and active redundant configurations 

provide contingency to the operation of the facility in case of any unforeseen failure and help 

to avoid the unplanned shutdown. In a standby system, the primary unit is in operation while 

the other units are in standby. If repair of the primary unit is feasible when it is in failed state, 

the system will continue to operate as long as the backup unit has not failed. If the primary 

unit is restored before the back-up unit fails, then from the operational perspective no 
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unplanned shutdown situation arises. Standby systems are generally much more reliable than 

the active redundant systems. In the case of a parallel or redundant system, system failure 

will only happen when all of the redundant systems have failed. If one or more of the units 

are operational, the system continues to operate. Generally, in a complex system, standby or 

redundancy features are designed to take 100% load of the production. If in both of these 

configurations, the primary failed equipment is not restored before the operating equipment 

fails, then the system will enter into an unplanned shutdown state. This situation is modeled 

as Case I and the corresponding state space diagram is shown in Figure 3-7. In Figure 3-7, λ 

and μ represents the transition rate for different system states.   

Applying the Markov method to the state space diagram, system availability can be 

calculated as follows: 

       (3-4) 

where 

         (3-5) 

where,    and    represents system in unplanned shutdown mode and in planned 

shutdown mode. 

For simplicity, it is assumed that µ1 = µ2 = µ3 = R, then the system availability (A) and 

unavailability (Q) can be defined as: 

   
    

               
 

  

         
 (3-6) 

Assuming that in an ideal case, failure rate is higher in the degraded as compared to 

the normal operation, Eq. (3-7) can be simplified as, 

               (3-7) 
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Figure 3-7: State space diagram of an unplanned and planned shutdown for system 

with redundancy 

State System condition 

1 System in operation mode 

2 System in operation mode with back-up unit  

3 System in unplanned shutdown mode 

4 System in planned shutdown mode 
 

 

and thus, the expression for Q gets modified as:  

   
                          

                  
 (3-8) 
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3.2.2.2 Case II 

Another possible scenario is that the systems are designed with no redundancy or 

standby. In this situation a failure of any equipment or component will lead to unplanned 

shutdown.  Figure 3-8 shows the state space diagram for this type of a system configuration. 

1

2
3

μ2 

μ1 

λ1 

λ2 

 

Figure 3-8: State space diagram of an unplanned and planned shutdown for system  

with no redundancy 

State System condition 

1 System in operation mode 

2 System in unplanned shutdown mode 

3 System in planned shutdown mode 
 

  

Applying the Markov method to the state space diagram, system unavailability can be 

calculated as: 

         (3-9) 

    
    

              
   

    

              
  (3-10) 
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  (3-11) 

 

where Q is the system unavailability. The availability of the system can be calculated 

using Eq. (3-4). 

3.2.2.3 System Failure Rate 

A complex system may fail through various means resulting from different physical 

phenomena or different failure characteristics of individual components which may lead to an 

unplanned shutdown. A useful analysis approach in reliability engineering is to separate 

these failures according to the mechanism or components causing the failure. These 

categories of failures are then referred to as failure modes. Ebeling (1997) has defined that if 

λi (t) be the failure rate function for the ith failure mode then, assuming independence among 

the failure modes, the system failure rate is obtained as: 

                  

 

   

 (3-12) 

In case of a series-parallel combined system, the system failure rate can be calculated 

by breaking the network into series and parallel configurations. Mannan (2005) reported that 

if the failure rate of a component is constant, λ, then in the parallel configuration, the failure 

rate can be estimated using Eq. (3-13):  

 
    

 

  
 
   

 
   

 (3-13) 

 

Overall system failure rate for series-parallel configuration may be obtained by Eq. (3-14): 
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  (3-14) 

where, the term     
 
    represents the failure rate of the components acting in series 

and     
 
    represents the failure rate of the parallel configuration.. 

3.2.2.4 System Repair Rate 

System repair time is generally represented as the function of the repair times of the 

components. An average (mean) system repair time can be calculated by using the 

knowledge of the mean subsystem or component repair time. For a complex system 

comprising many subsystems or components, the mean time to repair depends on the repair 

time distribution of each of the subsystems or components such as electrical, hydraulic, 

mechanical and so on. Ebeling (1997) defined that the system mean time to repair (MTTR) 

may be computed as a weighted average of the subsystem MTTRs in which the weights are 

based on the relative number of failures and can be represented as: 

             
          

 
   

     
 
   

 (3-15) 

 

where MTTRi is the mean time to repair the ith unique subsystem, fi is the expected 

number of failures of the ith unique subsystem over the system design life, and qi is the 

number of identical subsystems of type i.  

 

3.2.3 Module III – Risk-Based Shutdown Interval Estimation 

Muhlbauer (2004) presented the most commonly accepted definition of risk, often 

expressed mathematically as: 
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                                          , (3-16) 

 

However, in this paper, risk is defined as the POF of a system or component to 

deliver its intended function in a given time-frame under a given operating context and the 

overall consequences in monetary ($) values. The two components of the risk can be 

quantitatively expressed as: 

 
      

                                               , 

(3-17) 

 

Since the risk is a combination of probability and the consequence, one needs to 

consider all possible consequences, including safety and health, operational and non-

operational consequences. Estimation of failure probability and the consequences are 

discussed below.   

3.2.3.1 Estimation of System Failure Probability 

In general, operating companies keenly focus on targeting to maintain the desired 

availability to achieve their operational goal.  Considering the process plant targeted 

availability, and using this as a constraint in the Markov model (as discussed in Case I and 

II), system failure rate can be estimated. This planned failure rate will help to achieve the 

required availability of the unit or plant and minimize the overall exposure of the risk to 

operating companies. Since the system failure probability is a function of failure rate and is 

complementary to the reliability of the system, mathematically it can be written as: 

                            (3-18) 

 

where t is the failure time of the system on or before a time      
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3.2.3.2 Estimation of the Economic Consequences of Shutdown 

Generally, process plants run under extreme operating conditions such as high 

pressures and temperatures. Improper inspection and maintenance of processing equipment 

may result in damage to the casing, ring, impeller, and mechanical seal of rotating 

equipment. These in turn can lead to failure modes which can have a severe impact on the 

safety and health of the people. For example, a catastrophic failure of a pump bearing 

operating in a gas processing plant or refinery may release hydrocarbons, which may form a 

vapor cloud and result in an explosion in the presence of an ignition source. The 

consequences of a failure are not only localized to mechanical damage of the equipment 

itself; it can cause significant damages to nearby assets, as well as result in operational loss, 

serious safety and health issues, adverse environmental impact and inspection and 

maintenance cost. These consequences can be calculated based on the effects of thermal 

radiation and overpressure on surrounding equipment and personnel and subsequently 

converted in monetary ($) terms. Each of these economic consequences is discussed briefly 

in the following section.  

3.2.3.2.1 Economic Consequence of Asset Loss (ECAL) 

A failure of processing equipment may lead to various hazards resulting from the 

release of materials and energy. For example, a hydrocarbon release may result in flash fires, 

jet fires, pool fires, BLEVE, fire balls, VCE or toxic dispersion in a process plant. 

Consequence effect zones (m
2
) for such hazards can be calculated in terms of overpressure to 

establish asset losses. The assessment of the consequence effect zones and their impact 

involves many models. These include source models, dispersion models, fire models and 
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explosion models. A large number of computer software packages are available to perform 

these types of analyses. The main parameters required to perform these calculations are 

operating pressure, temperature, physical and chemical properties, and atmospheric 

conditions. In cases of flash fire, jet fire, pool fire and BLEVE, asset damage due to heat flux 

can be calculated and converted into POF of various damage effects using the probit analysis 

((Assael & Kakosimos, 2010), & (Crowl & Louvar, 2002)). Asset damage can be estimated 

for each accident scenario using the following equation: 

                      (3-19) 

 

where, i represents the various possible scenarios,      is the probability of damage 

due to heatflux in the effected zones and    is the asset density.  

In the case of explosion, asset damage due to overpressure can be calculated and 

converted into POF due to overpressure using the probit analysis ((Assael & Kakosimos, 

2010), & (Crowl & Louvar, 2002)). Asset damage can be estimated for this scenario using 

the following equation: 

                 (3-20) 

 

where      is the probability of damage due to overpressure,    is the effected zone 

due to overpressure and    is asset density.  

3.2.3.2.2 Economic Consequence of Human Health Loss (ECHHL) 

In cases of flash fire, jet fire, pool fire and BLEVE, probability of injury or death due 

to fire effects can be calculated for a given heat flux at a specified effected zone and which 

can be converted into probability of injury or death using the probit analysis ((Assael & 
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Kakosimos, 2010), & (Crowl & Louvar, 2002)). ECHHL can be estimated for each accident 

scenario using the following equation: 

                            (3-21) 

 

where, i represents the various possible scenarios,      is the probability of injury or 

death due to heatflux in the effected zones ,    is the population density and    is the cost of 

injury or fatality.  

In the case of explosion, human health losses such as injuries and fatalities due to 

overpressure can be calculated and converted into probability of damage due to overpressure 

using the probit analysis ((Assael & Kakosimos, 2010), & (Crowl & Louvar, 2002)). 

Economic consequence of human health loss can be estimated for each accident scenario 

using the following equation: 

                      (3-22) 

 

where,      is the probability of damage due to overpressure,    is the effected 

zone due to overpressure,    is population density and    is cost of injury or fatality. 

The loss of life or pain suffered due to equipment failure is difficult to calculate in 

monetary value. However, the cost due to compensation and corporate liability needs be 

taken into account in terms of economic consequences, which vary for operating companies. 

Judycki (1994) of the US Department of Transportation and the Federal Highway 

Administration published a technical note relating the injury scale (in terms of severity) to 

the comprehensive costs in police-reported crashes. The figures of this study are used herein 

to calculate financial impact on companies for human fatality or injuries. 
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3.2.3.2.3 Production Loss 

One of the most important operational consequences is the production loss due to 

unavailability of the asset to perform its function. Production loss due to plant being taken 

into a planned shutdown is one of the major negative financial impacts on the operating 

companies. The loss due to the non-production of the desired product is directly linked to the 

inspection and maintenance duration and frequency over the life of the asset. Production loss 

is the function of the number of unit loss, selling price/unit and the amount of duration the 

system is out for inspection and service. In general, the reported MTTR does not cover all the 

factors which contribute in getting the actual repair duration. To overcome this shortfall and 

to have a better estimation of the production loss, in this paper a Mean Shutdown Time 

(MSDT) is proposed over the design life of the system or unit considering that the shutdown is 

a planned event in advance and the factors related to material supply delay and any 

uncertainty in supply are negligible.  

It can be defined as: 

     
        

            
  
   

     

       
  
   

 (3-23) 

where, 

 

MTTR is the mean time to repair, td is design life of the plant or unit, TSD is shutdown 

interval and MSDT is Shutdown duration considering preparation, inspection and 

maintenance actions.  

In the case of exponential distribution, m is replaced with λsys. 

Hence, the operational consequence due to production loss can be represented 

mathematically as: 



   

76 

 

 EC        
                 (3-24) 

 

where,      
        denotes the mean shutdown maintenance time in days, PL is production 

loss volume per day and SP is the selling price of the product per unit volume. 

3.2.3.2.4 Inspection and Maintenance Cost 

Planned inspection and maintenance cost can be classified as a nonoperational 

consequence. This cost includes the cost of preparation (scaffolding, insulation removal, 

blinding, purging), cost of inspection (visual inspection, hydro jetting, eddy current testing, 

etc.,) and the cost of maintenance activities and materials (spare parts, maintenance materials, 

tools and vehicles associated with maintenance or inspection jobs), and the cost of technical 

support. These costs can be calculated using the following equations: 

             
(3-25) 

                      
(3-26) 

 

 
                

(3-27) 

               
(3-28) 

                     
(3-29) 

  

Where, Cp is the preparatory cost, Clp is the cost of preparatory maintenance labor per 

hour ($/Hr.), tp is the duration of the preparatory work, Ci is the inspection cost, Cli is the cost 

of skilled inspection labor per hour ($/Hr.), Cie is cost of inspection equipment per hour 

($/Hr.), ti is the duration of inspection work, Cm is the maintenance cost, Clm is the cost of 

skilled maintenance labor per hour ($/Hr.), Csp is the cost of spare parts consumed, tm is the 
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duration of maintenance work, Cts is the technical support cost, Clts is the cost of a technical 

support specialist per hour ($/Hr.) and t is the duration of technical support work in hours. 

The total economic consequences of shutdown are the following: 

                               
        , 

(3-30) 

where, i = 1, 2, 3………n is the equipment identified from the criticality matrix and 

considered for shutdown interval estimation. 

A risk-based approach not only helps to make an optimized decision to bring a process 

plant or unit in a shutdown mode for inspection and maintenance but also assists in 

determining an optimized shutdown inspection and maintenance interval. The concept of 

risk-based inspection and maintenance optimization is generally accepted and applied in 

petrochemical and process industries. However, it has not been used to optimize the 

shutdown inspection and maintenance interval. 

3.3 The Application of RBSIM to a LNG Processing Facility 

Alabdulkarem et al. (2011) have reported that LNG plants are increasing in number 

due to the growing demand for natural gas (NG). NG is the cleanest of the fossil fuels. LNG 

is produced by the liquefaction of NG from the atmospheric temperature to -160 
o
C. 

Different NG liquefaction cycles exist that use either pure refrigerant in cascade cycles, 

multi-pressure cycles, or mixed refrigerant (MR) cycles. Mokhateb and Economides (2006) 

reported that the Air Products and Chemicals, Inc. (APCI) licensed Propane Precooled MR 

process has dominated the market since 1970 and accounts for a significant proportion of the 

world's base load LNG production capacity.  
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Alabdulkarem et al. (2011) reported that about 77% of LNG plants are using the 

propane pre-cooled MultiComponent Refrigerant cycle licensed by APCI for NG 

liquefaction. Roberts et al. (2002) reported that in response to continuing producer demand 

for increased LNG train capacity, APCI has developed the AP-X
TM

 LNG Process. The AP-

X
TM

 process is a hybrid of a C3-MR cycle for precooling and liquefying LNG and a nitrogen 

gas compressor-expander cycle for subcooling LNG. In the AP-X™ process, the warmer 

LNG is subcooled to storage temperature by a gaseous nitrogen refrigerant in the same 

compression/expansion cycle that has been used for years to liquefy oxygen, nitrogen, and 

for peak-shaver NG liquefiers. Similar to the traditional C3MR process, propane is used to 

provide cooling to a temperature of approximately -30 °C. The feed is then cooled and 

liquefied by MR, exiting the Main Cryogenic Heat Exchanger (MCHE) at a temperature of 

approximately -120 °C. Final subcooling of the LNG is performed using cold gaseous 

nitrogen from the nitrogen expander. The proposed methodology is applied to a LNG facility. 

Figure 3-9 shows a general equipment layout for the liquefaction and subcooling sections of 

an AP-X™ LNG train. Coil wound heat exchangers are used to liquefy and subcool the LNG, 

while the nitrogen economizer uses brazed aluminum plate fin heat exchangers. 
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Figure 3-9: Air Products AP-X™ process (redrawn after Roberts et al. 2002) 

 

The described methodology can be extended to other production processes as well. 

However, the risk matrix should be re-evaluated accordingly for equipment selection. 

3.3.1 Module I: Risk-based Selection of Critical Equipment 

In this application, the methodology discussed earlier is applied to a section of the 

refrigeration unit of one of the LNG liquefaction processing plants. The main purpose of the 

refrigeration unit in a liquefaction processing plant is to supply various refrigerants to 

condense the NG into LNG. As a by-product, the exhaust gas from the gas turbine is routed 

through a heat recovery system where high pressure steam is produced. The refrigeration unit 
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is composed of three major systems viz., the propane refrigeration system, the MR system 

and the nitrogen refrigeration system. The propane system primarily provides chilling for the 

feed circuit and the MR system. The MR system provides low temperature refrigeration to 

produce LNG in the MCHE. Finally the nitrogen system subcools the LNG in the Sub-

cooling Heat Exchanger. The propane refrigeration system consists of propane compression, 

water-cooled condensers and subcoolers. The heart of the system is a gas turbine with a 

starter, helper and/or generator which drives the compressors. The MR comprises a mixture 

of hydrocarbon (methane, ethane and propane) and nitrogen. The system is composed of a 

numbers (varies design-wise) of compressors, turbine, water cooled and propane cooled heat 

exchangers, suction drums and separators. The nitrogen refrigeration system consists of 

compressor, water-cooled inter-coolers and exchangers. Equipment criticality analysis helps 

to evaluate how failures of these equipment impact the performance of assets and is used to 

prioritize equipment selection for inspection and maintenance. Module I of the presented 

methodology describes the critical equipment selection using the risk matrix. The proposed 

risk assessment not only helps to evaluate and select the critical equipment for shutdown 

inspection and maintenance availability modeling (by considering its influence on the plant 

or unit) but also to determine the risk associated if the inspection and maintenance interval 

cycle is delayed beyond the manageable duration. Equipment categorization using this 

methodology helps to identify the critical equipment and their interaction for unit or plant 

availability. The outcome of this qualitative risk evaluation is the classification of the 

equipment with a risk prioritization number. For example, if an equipment is identified 

having as high probability (frequent = 5) and higher production loss (extreme= 5), the risk 

number is 25. Similarly the other risk factors can be estimated. In the case of multiple risk 
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numbers, the higher risk number is considered for the equipment. This process is continued 

until all of the equipment in the unit is evaluated. In case, if the POF is low but has a higher 

consequence impact on HSE, the equipment is selected as critical. The selected critical 

equipment is used to develop the functional block diagram to model the shutdown 

availability. The block diagram helps to select the best Markov model for system availability 

estimation. A total of 12 equipment are identified to be critical for the considered unit which 

can have a severe financial impact on the operability of the unit. These equipment are listed 

in Table 3-3. The block diagram is shown in Figure 3-10, which is based on the selected 

equipment.  

Table 3-3: Critical selected equipment for MR unit 

Tag Equipment description 

MR1 Accumulator 

LSD1 Suction Drum 

LC1 Compressor 

LPA1 Compressor After-cooler 

MSD1 Suction Drum 

MC1 Compressor 

MPA1 Compressor After-cooler 

HSD1 Suction Drum 

HC1 Compressor 

HPA1 Compressor After-cooler 

GT1 Gas Turbine 

HM1 Starter/Helper/Generator Motor 
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MR1 LSD1 LC1 LPA1 MSD1 MC1

MPA1 HSD1 HC1 HPA1 GT1 HM1

 

Figure 3-10: Block diagram of critical selected equipment for MR unit 

 

3.3.2 Module II: System Availability Modeling using Markov Process 

The developed block diagram in Module I will help to select the Markov model to 

estimate the planned system failure rate for inspection and maintenance under the considered 

availability constraint. It is evident from the block diagram that a failure of any of the 

selected equipment will lead to complete system failure which will produce an undesired 

shutdown of the plant. Thus, any inspection and maintenance plan should consider these 

critical equipment to perform a risk-based shutdown inspection and maintenance interval. In 

order to estimate the planned shutdown failure rate considering the required unit availability, 

failure rate and repair rate data are of primary importance.  Failure and repair rates of a 

system are primarily determined using plant historical data, test data, data banks, and/or from 

the operating experience of plant personnel using expert judgment. In case if failure specific 

data are not available, theoretical approaches published by Cizelj et al. (2001) can also be 

used.  For this study, failure and repair data for the selected critical equipment are either 

adopted from the OREDA (2002) or help has been sought from qualified plant personnel 

based on their technical judgment for repair data. Table 3-4 shows the failure rate and repair 

rate data considered for this study. Eq. (3-8) and Eq. (3-11) of the proposed Markov model 
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discussed in Module II are used to estimate the system planned shutdown failure rate which 

will help to achieve the desired availability target. The estimated value is shown in Table 3-5. 

Table 3-4: Critical selected equipment failure and repair data 

Equipment description Failure rate (λ) Repair rate (μ) 

Accumulator 1.141Х10
-6

 0.0208 

Suction Drum 1.141Х10
-6

 0.0208 

Compressor 2.314Х10
-6

 0.0027 

Compressor After-cooler 1.141Х10
-6

 0.0208 

Gas Turbine 2.283Х10
-5

 0.0208 

Starter/Helper/Generator Motor 3.805Х10
-6

 0.0138 

 

Table 3-5: Estimated system failure and repair rates  

Availability Constraints 0.98  

Estimated system failure rate 4.157X10
-5

 Using Eq. (3-12) 

Estimated system repair rate 0.0097 Using Eq. (3-13) 

Estimated planned shutdown failure rate 0.00016 Using Eq. (3-9) 

3.3.3 Module III: Risk-Based Shutdown Interval 

Module III of the proposed methodology consists of three parts viz. estimating system 

failure probability, all possible consequences due to process unit shutdown, and finally 

developing a risk profile to find the optimal shutdown inspection and maintenance interval. A 

system failure probability is a function of time and failure rate, which can be modeled using 
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exponential, Weibull, normal or lognormal distribution. In order to apply Markov availability 

model system failure probability is calculated using the exponential distribution as discussed 

in Module II. The estimated value of exponential distribution parameter is shown in Table 

3-5. Thus, the system failure probability function can be written using Eq. (3-17) as follows: 

                          (3-31) 

 

Given the fact that the equipment described here involves the processing of 

hydrocarbons and operates at extreme conditions, the consequences of any failure will be 

very high. The failure scenario considered for estimating the asset loss and human health loss 

for these equipment is the release of hydrocarbons, which upon finding an ignition source 

may result in explosion that could generates shock waves. These shock waves may cause 

serious asset damage as well as human injuries or fatality. Calculated shock waves are then 

transformed into probability of damage due to shock waves for various effected zones. In this 

particular scenario, estimated consequence is based on a radius of 200m. It is important to 

note that the loss of life or injury suffered by the people is hard to estimate in monetary 

value. However, the cost associated with the compensation and corporate liability needs to be 

taken into account in consequence analysis. In this regard, a published note from Judycki 

(1994) of the US Department of Transportation and the Federal Highway Administration 

relating the injury scale (in terms of severity) to the comprehensive costs in police-reported 

crashes is used. Production loss is estimated using Eq. (3-23), and an average of 10 days is 

considered for MSDT. The U.S. Energy Information Administration (2012) published the 

LNG price in $/thousand cubic feet. The same is used in this study to calculate the economic 

consequences of production loss. The total calculated consequence along with Eq. (3-29) is 
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used to generate the expected risk profile to determine the optimal inspection and 

maintenance intervals. Figure 3-11, shows the obtained risk profile to achieve the optimal 

planned shutdown inspection and maintenance interval. This risk profile will enable the 

achievement of a desired level of availability (98%) for the system considered while meeting 

the risk exposure to the lowest level. The lowest risk point will give an optimum shutdown 

interval; in this case it is estimated to be 13000 h. It is evident that by performing a risk-

based planned shutdown inspection and maintenance interval, the risk will be significantly 

reduced. As the shutdown interval beyond this period (the time at which the system needs to 

be down for inspection and maintenance) increases, the risk starts to increase as shown in 

Figure 3-11. Risk profile obtained is a function of system failure, and system configuration 

coupled with exposed consequences to the operation due to unavailability of the facility. 

Hence, depending upon the company risk tolerance, estimated shutdown interval for the 

considered unit can be further increased. A sensitivity analysis is performed to study the 

effect of the availability constraint and mean shutdown inspection and maintenance duration 

on the shutdown interval model. The results are plotted in Figure 3-12 and Figure 3-13. It is 

evident from Figure 3-12 that the estimated shutdown inspection and maintenance interval is 

sensitive to the overall system availability considered. For 95% system availability, the 

estimated interval is close to 19000 h. for 97% system availability the estimated interval is 

close to 16000 h., and for 98% system availability the estimated interval is close to 13000 h. 

No significant impact is observed for the mean shutdown time duration over the shutdown 

inspection and maintenance interval. Based on risk-based shutdown interval estimation, for 

the design life of 25 years, a total of 17 shutdowns are recommended. This is the optimal 

number of shutdown over the design life. However, if an inspection and maintenance strategy 
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is selected based on individual equipment basis, it will be suboptimal and will have higher 

financial risk (as evident in Figure 3-12). 

 

Figure 3-11: Risk-based shutdown inspection and maintenance interval modeling 
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Figure 3-12: Risk-based shutdown inspection and maintenance interval – Sensitivity 

analysis for availability 
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Figure 3-13: Risk-based shutdown inspection and maintenance interval - Sensitivity analysis 

for MSDT 
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reduce the exposure of risk to the operating company and shareholders. This methodology 

ensures that the unit or plant is not only available for production but also the overall risk 

exposure is reduced to an acceptable level. Estimated risk-based shutdown inspection and 

maintenance interval will not only enhance the reliability and availability but also the safety 

and operation of the facility. The methodology provides a tool to determine shutdown 

inspection and maintenance intervals for unit or systems based on the optimization of the 

total risk in order to bring the operating plant in a planned shutdown mode. The presented 

methodology consists of three main modules: (1) Risk-based critical equipment selection, (2) 

Shutdown availability modeling using Markov process, and (3) Risk-based shutdown interval 

estimation. The proposed methodology minimizes the financial consequences for an 

operating company due to production loss, loss of assets, safety (e.g., injury or loss of life).  

In the present study, the proposed methodology is applied to the MR section of a 

LNG refrigeration unit, ensuring that the high level of risk is contained at an acceptable level. 

The developed risk-matrix is used to select the critical equipment that cannot be inspected or 

maintained without the unit or plant being taken into shutdown. Applying the Markov 

process, an availability constraint of 98% is used to estimate the planned shutdown rate. 

Estimated planned shutdown failure rate along with the consequences of failures are used to 

generate the risk profile as shown in Figure 3-11. Risk-based shutdown interval optimization 

approach is expected to provide a cost-effective maintenance and inspection program and 

provide better asset and capital utilization. All processing plants such as LNG processing 

facilities, petrochemicals and refineries, which consist of similar equipment like heat 

exchangers, vessels, columns, compressors, pumps, turbines, valves, detectors, transmitters 

and others can benefit immensely from this approach. The functionality of these equipment 
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remains the same, except that their operating parameters can vary. Moreover, since the 

shutdown availability modeling is only dependent upon the failure rate and the repair rate and 

other assumptions do not play a significant role, the presented methodology can be extended 

to any processing or manufacturing facility. However due care should be exercised when 

defining the risk-matrix for selecting critical equipment which requires the unit or plant to be 

taken in shutdown in order to perform any inspection and maintenance.
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4 Chapter 4 

 

A risk-based shutdown inspection and maintenance interval 

considering human error for a processing facility
 3

 

Abstract 

This paper presents a risk-based methodology to estimate shutdown inspection and 

maintenance interval by integrating human errors with degradation modeling of a processing 

unit. The methodology presented in this paper addresses to identify number of shutdown 

intervals required to achieve a target reliability over a goal period. The proposed 

methodology is the extension of the previously published work by the authors to determine 

the shutdown interval considering the system desired availability. The proposed work is 

novel in the sense that a concept of human error during shutdown inspection and 

maintenance is introduced while modeling the system failure. Selection of critical equipment 

is the most important aspect in obtaining the shutdown interval to minimize overall 

operational risk. In order to achieve this; a risk criticality matrix is proposed to select the 

                                                
3
 This Chapter is based on the published work in a peer-reviewed journal. Abdul Hameed, 

Faisal Khan, Salim Ahmed (2016), “A Risk-based Shutdown Inspection and Maintenance Interval 

considering human error for a processing facility,” Process Safety and Environmental Protection, 

Volume 100, pages 9-21. To minimize the duplication, all the references are listed in the reference 

list. The contribution of the authors is presented in Section titled, “Co-authorship Statement”. 
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critical equipment for shutdown inspection and maintenance. Probability of human error 

induced during shutdown inspection and maintenance is estimated using Success Likelihood 

methodology (SLIM). The proposed methodology is comprised of three steps namely, 

equipment selection considering criticality of operation, system failure modeling considering 

human error and finally a risk-based shutdown inspection and maintenance interval 

estimation. The proposed methodology is applied to a gas chilling and liquefaction unit of a 

hydrocarbon processing facility. The methodology is used to ensure the practicality of the 

proposed formulation to the real industry. The proposed methodology can be applied to any 

plant (process or non-process) such as those for LNG processing, petrochemicals, refineries 

or manufacturing plants. The key elements for the success of the proposed methodology are 

the identification and selection of critical equipment, breakdown of activities to estimate 

human error probability (HEP) and plant specific data for modeling system failures. 

4.1 Introduction 

Due to continuous production demands, processing facilities are getting not only bigger 

and bigger but also more complex in nature. The increase in complexity and size is inviting 

maintenance and reliability engineers to put more emphasis on system inspection and 

maintenance optimization to minimize unplanned downtime, overall cost and risk exposure. 

Effective inspection and maintenance is one of the critical elements for operating facilities. 

The core objective of inspection and maintenance is to make sure that the facilities or 

equipment are optimized in a way, which does not only increase the reliability and 

availability of the plant but also minimizes the overall operational risk. Inspection and 

maintenance on some of the equipment are performed by taking the unit or facility out of the 
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service, generally termed as Shutdown. Taking the unit or facility out of the service, 

generally termed as shutdown, performs inspection and maintenance on some of the 

equipment. Duffua and Daya (2004) and Lawrence (2012) have stated that a planned periodic 

shut down is carried out to perform maintenance and to inspect, test and replace process 

materials and equipment. Inspection and maintenance strategies of the equipment, which do 

not require facility to be taken in shutdown mode, can be developed based on individual 

equipment. Shutdown interval is one of the most important factor in determining an effective 

inspection and maintenance policy. In case if the shutdown inspection and maintenance 

interval is too short, facility shutdown time and production loss along with the inspection and 

maintenance cost will be too high, vice versa if the shutdown interval is too long, the 

production loss and inspection and maintenance cost will be low but the risk exposure will be 

high. This leads to find an optimal solution for shutdown inspection and maintenance 

interval. Failure of equipment may lead to significant consequences due to improper 

planning. Understanding the facilities system from operation and safety is the most important 

faucet when selecting and designing a shutdown inspection and maintenance model. A 

typical processing facility consists of hundreds of equipment, which works, in rigorous 

environment. One of the key aspects which should be covered and included when modeling 

for shutdown inspection and maintenance optimization, is to include human error and its 

impact on the equipment or system failure. Integration and design of the systems such as 

acting in series, parallel, combination of series-parallel, 50% load capacity or 100% load 

capacity dictate the development of shutdown inspection and maintenance strategy for the 

processing plant. Inspection and maintenance operation is one of the key links in the process 

chain for achieving the required production and management goals. While performing 
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inspection and maintenance, a minor failure and omission in following a clear guideline or 

process not only minimizes all of the inspection and maintenance benefits but also increases 

and changes the failure rate or behavior of the equipment or system due to introduction of 

human error. Despite technological advancement in equipment design and consideration 

given for maintainability, man-machine interface cannot be eliminated. In general, any 

inspection and maintenance process involves disassembly; reassembly and/or replacement of 

components. These processes require human interaction, and under various circumstances, 

create potential to include human error by installing or replacing a wrong part or assembling 

the part in wrong sequence despite all technological enhancement. In this paper, the focus is 

on the group of equipment which cannot be inspected or maintained and requires a shutdown 

of the facility. Thus, in order to develop an optimal inspection and maintenance strategy, 

attention must be paid while selecting these critical equipment. 

4.2 Past Studies 

Inspection and maintenance optimization has gained huge momentum and dynamic 

changes over the last couple of decades due to the realization of potential benefits in plant 

availability, reliability, scheduling, cost and risk minimization. Risk, reliability and 

availability are the three facet of facility operation and are interminably linked together. A 

high risk is generally an indication of facility lower reliability and availability, while higher 

availability means higher reliability and lower risk. Operation risk is associated with the 

probability of equipment or component failure and the consequences of failure such as loss of 

revenue due to production loss, asset damages, safety and health issues and inspection and 

maintenance costs. Obiajunwa (2012) reported that typically power plant turnaround 
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maintenance is planned for every four years, oil refinery and petrochemical plant shutdown 

maintenance is planned for every two years, and chemical, steel, glass and food and beverage 

plant shutdown maintenance is planned for every year. Alsyouf (2007) presented a model 

enabling the decision-makers to identify how an effective maintenance policy could 

influence the productivity and profitability through its direct impact on quality, efficiency 

and effectiveness of operation. Backlund and Hanu (2002) reported that while doing the risk 

analysis focus must be put on the function required of the subsystem and equipment. 

Fujiyama et al. (2004) proposed a risk-based maintenance system for steam turbine plants 

which is coupled with an inspection system. Ghosh and Roy (2009), Rusin and Wojaczeck 

(2012), Vaurio (1995), Khan and Haddara (2003, 2004a,b), Krishnasamy et al. (2005), Tan 

and Kramer (1997), Duarte et al. (2006) and Vatn et al. (1996) have presented methods to 

estimate the optimal maintenance and inspection interval considering cost, risk, availability 

and reliability for individual equipment and have not considered the impact of facility 

shutdown. Neil and Marquez (2012) proposed a hybrid Bayesian network (HBN) framework 

to model the availability of renewable systems considering corrective repair time, logistics 

delay time and scheduled maintenance. These were combined with time- to-failure 

distributions using HBN. Mannan and Yang (2010) proposed a dynamic risk assessment 

(DORA) methodology considering various process variables such as level, flow rate, 

temperature, pressure and chemical concentration and their impact to guide and improve the 

process design and optimize failure probability. However, the proposed methodology is not 

considering whether a sequence of component failure will lead to the system failure. The 

uniqueness of the presented methodology is that it helps to optimize the shutdown inspection 

and maintenance interval to minimize the overall system failure which will lead to reduce the 
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un-necessary shutdown. Jacob and Amari (2005) presented a binary decision diagram to 

calculate system reliability and availability. Pil et al. (2008) proposed a redundancy 

optimization and maintenance strategies based on a time dependent Markov approach. Khan 

and Haddara (2003) proposed a comprehensive and quantitative methodology for risk-based 

maintenance. Dey et al. (1998) and Dey (2001) have applied risk-based approach to the 

maintenance of oil pipelines. Khan et al. (2008) have presented a risk-based methodology to 

maximize a system’s availability by considering risk-based inspection and maintenance 

program to reduce the risk of failure and enhance the overall availability of the system. 

Sarkar and Behra (2012), Bertolini et al. (2009), Kumar and Chaturvedi (2008), Zhaoyang et 

al. (2011) and Wang et al. (2012) proposed that selecting a maintenance strategy based on 

risk reduces the overall risk. However, most of these studies are concerned with optimizing 

equipment inspection and maintenance cycles based on perfect (AGAN) as good as new or 

minimal (ABAO) as bad as old repair. AGAN strategy holds the assumption that after the 

maintenance intervention, the system starts its life under the same failure rate as if it were 

new. On the other hand ABAO holds that the equipment or system is maintained with minor 

action, which has not changed the failure rate behavior and after the maintenance activity the 

failure rate remains the same as it was before the maintenance. In order to overcoming the 

short fall of AGAN or ABAO strategy, researchers have introduced concept of imperfect 

maintenance. Nguyen and Murthy (1981) introduced the concept of imperfect maintenance 

considering that the failure characteristic of the system is different (worse) from that of 

correctively maintained system to minimize the mean cost rate. Block et al. (1985) extended 

Brown and Proschan model and proposed an age dependent repairable model considering a 

probability of p(t) a complete repair or with probability q(t)=1-p(t) is a minimal repair, 
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where, t is the age of the equipment in use at the failure time. Ben-Daya and Alghamdi 

(2000) presented two sequential preventive maintenance model considering age reduction 

model, an extension of Nakagawa’s model while in the second model PM, intervals are 

defined such that the integrated hazard rate over each interval is the same for all intervals. 

Levitin and Lisnianski (1999) have used Genetic Algorithm to generalize a preventive 

maintenance optimization to multi-state system considering the effective age of equipment. 

Nakagawa et al. (2012) considered system damages (damage level k) due to shock (shock 

number N) and proposed a preventive model considering imperfect maintenance. Rangan and 

Grace (1989) extended Brown and Proschan model to develop a replacement policy for a 

deteriorating system with imperfect maintenance. Li and Shaked (2003) extended Brown and 

Proschan (1983) imperfect maintenance approach to model preventive maintenance and 

obtained stochastic maintenance comparisons for the number of failures under different 

policies via a point process approach. Malik (1979) introduces the concept of improvement 

factor assuming that maintenance action changes the system time of the failure rate curve and 

the failure rate post maintenance lies between as good as new and as bad as old. Brown and 

Proschan (1983) reported that some possible causes for imperfect, worse or worst 

maintenance due to the maintenance performer, such as repair the wrong part, only partially 

repair the faulty part, repair the faulty part but damage the adjacent part are the true 

contributor. Nakagawa and Yasui (1987) reported that hidden failures which are not detected 

during the maintenance, human errors such as wrong adjustment and further damage done 

during maintenance and replacement with faulty parts. Dhillon (1986) reported that 

operation, assembly design, inspection, installation and maintenance are all prone to human 

errors. These errors are due to poorly written maintenance procedures, complex maintenance 
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tasks, harsh environment, fatigue, outdated maintenance manual, inadequate training and 

experience. Dhillon and Liu (2006) reported that reasons for the occurrence of human errors 

including inadequate lightning in the work area, inadequate training or skills of the 

manpower involved, poor equipment design, high noise level, an inadequate work layout, 

improper tools and poorly written equipment maintenance and operating procedure. They 

further classified that human error in six categories, (1) operating error (2) assembly error (3) 

design error (4) inspection error (5) installation error and (6) maintenance error. Dhillon and 

Yang (1995) cited that failure of repairable system can occur not only due to hardware failure 

but also due to operating human error or maintenance error. Factors such as temperature, 

dust, fatigue, incomplete or inappropriate maintenance tools, errors in inventory and personal 

problems may be the contributor for these errors. Noroozi et al. (2014, 2013) used Human 

Error Assessment and Reduction Technique for evaluating human error risk assessment and 

applied to pre- and post-maintenance procedure of a process facility and has also applied 

Success Likelihood method (SLIM) to perform human factors analysis in pre- and post-pump 

maintenance activities for offshore facility. The above referred literature covers inspection 

and maintenance interval modeling considering cost, reliability, availability and risk, 

imperfect maintenance and human error. However majority of these have discussed 

inspection and maintenance based on equipment by equipment basis. In reality, a process 

plant, a unit or system consists of hundreds of pieces of equipment that run in continuous 

mode. Further, possible human errors in the inspection and maintenance activities can impact 

equipment performance. For example, poor repair can play an instrumental role in increasing 

the number of equipment breakdowns or failure pattern which in turns can significantly 

increase the risk associated with equipment. Understanding the probability of human error 
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while performing inspection and maintenance and including in the modeling will provide a 

better sight to reduce the overall risk and increasing reliability, availability and safety.  

Developing an inspection and maintenance strategy without considering the impact of these 

inspection and maintenance due to the shutdown of the plant and the associated risk due to 

human errors will not produce an optimum interval. This problem could be solved by 

considering a risk-based critical equipment selection and then by developing an optimized 

shutdown inspection and maintenance interval considering the imperfectness due to human 

error for the system or unit. The objective of this paper is to develop a risk-based shutdown 

inspection and maintenance optimization methodology by integrating HEP in the system 

failure model for a continuous processing facility. This proposed methodology will provide a 

rational basis to make a shutdown inspection and maintenance decision making considering 

human error contribution in inspection and maintenance and the overall risk exposure. 

4.3 A risk-based inspection and maintenance modeling considering 

human error  

Although several research have been published on inspection and maintenance 

interval modeling and optimization in the literature as discussed above, majority of these 

works deals to address the individual equipment. Consideration of shutdown inspection and 

maintenance modeling is found to be limited. Hameed et. al (2014) and Hameed and Khan 

(2014) has proposed a risk-based shutdown interval modeling for continuous operating 

facilities. These modelings are based on the assumption of the perfect maintenance. In reality 

majority of the time inspection and maintenance does not meet the perfect conditions and fall 

short. The result of imperfectness is induced due to the contribution of human error. Errors 
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induced during inspection and maintenance may be realized immediately and result in the 

premature failure of the equipment or system or in some cases may lie dormant with the 

equipment or system for some period of time, until a combination of other factor accelerate 

the degradation mechanism and lead to a failure. Some-time these have resulted in serious 

accidents in process industries. The proposed model is developed considering the human 

error which may be induced during the shutdown inspection and maintenance and is the 

extension of Hameed et. al (2014) and Hameed and Khan (2014). The objective of this paper 

is to integrating human errors in the system failure model and to interlink this with the 

operational risk. Higher the probability of failure of inducing the human error in inspection 

and maintenance, the degradation or the system failure probability will be more impacted. 

The proposed shutdown inspection and maintenance methodology is broken down in three 

modules and shown in Figure 4-1. Assumption in developing the model as well as detail of 

each module is described below; 

4.3.1 Assumptions for Model Development: 

o A group of equipment which cannot be inspected or maintained without taking the 

plant into non-operational mode (shutdown). 

o Failure as time-dependent process. 

o Material, labor, specialist, production cost are available. 

o The degree of imperfectness is assumed to be a number between 0 and 1 due to 

human error while performing inspection and maintenance.  

o Sufficient manpower and equipment are available to execute the planned job. 

o Inspection and maintenance durations are non-negligible. 



   

 101 

Divide plant/unit into 
manageable units

Perform critical ranking 
assessment to select 

equipment

Exclude equipment from 
shutdown modelling

Include equipment in 
shutdown modelling

Module1: Equipment 
selection considering 

criticality

Collect failure data Collect repair data

Develop functional block 
diagram

Estimate system failure 
probability

Estimate system failure 
consequence

Generate risk profile

Inspection and 
Maintenance interval 

optimization

Is risk 

acceptable

Setup a risk acceptance 
criteria

Develop system failure 
model

Select Human error 
probability model

Develop Overall system 
failure

Module 2: System 
failure modelling 

considering human 
error

Module 3: Riskbased 
shutdown inspection 

and maintenance 
interval optimization

 

Figure 4-1: A Risk based inspection and maintenance interval optimization model 

considering human error 
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4.3.2 Module 1: Equipment selection considering criticality of Operation: 

A processing facility consists of a large number of interacting systems or equipment. 

When these system or equipment performs together the facility delivers its intended function. 

These systems or equipment are subject to periodically or non-periodically planned 

inspection and maintenance during its life cycle. The inspection and maintenance 

management is one of the key decisions for continuously operating plants to improve the 

plant reliability, availability and integrity. Some of these system or equipment can’t be 

isolated to perform inspection and maintenance, and requires the plant to be taken in 

shutdown mode.  The remaining systems and units do not impact the overall facility 

operation and can be taken out for inspection and maintenance without causing facility 

operation shutdown. Thus, it is very critical to identify system or equipment for their 

inspection and maintenance to minimize the impact due to operation loss and to achieve 

required reliability and availability. The success to achieve an optimal inspection and 

maintenance plan for the facility depends on identifying and selecting these critical 

equipment. In this paper a risk criticality matrix is proposed to select these equipment. The 

uniqueness of the proposed matrix is to identify these critical equipment and system which 

will not only help to reduce the utilization of inspection and maintenance resources but also 

help to increase the reliability and availability of the unit. The process consists of the 

following steps; 

(1)  Developing a boundary diagram by breaking down units or plant into manageable 

system.  
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(2) Reviewing all equipment in the selected boundary using a risk matrix to establish 

the criticality in relation to the operation of facility, production loss and impact on 

asset damage. Proposed criticality matrix is shown in Figure 4-2.  

(3) Estimating the qualitative risk criticality number and comparing with the 

acceptable criteria. 

(4) If the risk number does not meet the acceptable criteria, include the equipment in 

shutdown inspection and maintenance planning. 

(5) Continue the process until the all equipment in the selected boundary has been 

analyzed. 

The advantage of this qualitative risk assessment helps to categories the equipment 

that will require a facility shutdown. For qualitative risk analysis, a criticality risk number 

may be developed depending on the company operational considerations. According to API 

(2009), risk-based inspection, for a qualitative risk analysis the likelihood of failure may be 

categorized from one through five. However, it is appropriate to associate an event frequency 

with each likelihood category to provide guidance to determine the probability of failure as 

shown in Table 4-1 and consequences are represented in monetary terms ($) as shown in 

Table 4-2. 
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Figure 4-2: Qualitative Criticality risk ranking matrix 

 

Table 4-1: Five Level of Probability of failure (Khan et al. (2014))  

Possible Qualitative Rank Annual likelihood of failure 

Frequent >0.1 

Probable 0.001 to 0.01 

Occasional 0.0001 to 0.001 

Remote 0.00001 to 0.0001 

Extremely Unlikely <0.000001 
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Table 4-2: Five Level Consequence Table (Khan et al. (2014)) 

Possible Qualitative Rank Economic Loss Range 

Negligible EL<$10,000 

Minor $10,000<EL≤$100,000 

Moderate $100,000<EL≤$1,000,000 

Major $1,000,000<EL≤$10,000,000 

Catastrophic EL>$10,000,000 

 

For the case of several competing consequences for equipment/components, the 

highest observed risk (criticality number) among the consequences should be considered to 

be the most critical component. Overall risk, R, can be selected using below equation: 

                                  (4-1) 

4.3.3 Module 2: Component/System failure modeling considering human error 

Failure characteristics of the component or system are one of the most important 

parameter used to analyze and model the system failure or behavior. Since failure of a system 

is a probability, the rule of probability theory may be applied to compute the system failure 

probability from knowledge of component or system characteristics. 

4.3.3.1 System Failure Modeling: 

A unit or system may constitute pieces of equipment arranged in series, active 

redundancy or in standby. Very often, these redundancies or standby is designed to take full 

load in case of a functional failure to avoid unplanned shutdown. Operational relationships 

and knowledge regarding various system elements is required to develop a system failure 
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model. System failures cannot be evaluated and improved until it is known that how these 

various elements affect system operation. A true representation of these relationships is 

required for prediction and assessment based on either cost or risk. A functional block 

diagram is developed once the critical equipment are identified to represent their 

relationships and provide an indication of the element which must operate successfully for 

the system to accomplish its intended function. Depending on the functional block diagram, 

system reliability or failure model equation can be developed using either standard series or 

series-parallel equations. Further most often inspection and maintenance modeling is 

considered based on a fixed time interval between two consecutive inspection and 

maintenance. In this paper, it is assumed that the inspection and maintenance interval will be 

dictated by the risk considered and will vary between two consecutive shutdown inspection 

and maintenance as shown in Figure 4-3. Considering the variability in shutdown interval, 

the reliability of the system over the life cycle can be written as follows:  

               

 

   

        

 

   

  (4-2) 

Where; 

(1)       
 
    

(2)              is shutdown inspection and maintenance interval 

(3)      

(4)        

(5) ∆1>∆2>∆3>……>∆n 
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Figure 4-3: System Operational Availability 

4.3.3.2 Human error modeling in inspection and maintenance: 

Inspection and maintenance activities are critical to improve the reliability and 

availability of equipment. These activities are performed not only under immense pressure to 

bring the facility up and running in shortest period of time but also under difficult and 

hazardous conditions.  Even with all kind of technical advancement while designing the 

equipment or system, human involvement needs to be considered when performing 

inspection and maintenance. Human interactions with machines or systems are prone to 

introduce error while performing inspection and maintenance due to various factors.  Human 

errors during inspection and maintenance activities have already produced disastrous 

outcomes (in millions of dollars) such as Flixborough, Three Mile Island, Piper Alpha and 

Bhopal accident. Sometime human errors in inspection and maintenance may lie in dormant 

mode for a longer period of time before leading the equipment or system to failure. An 

example of a loosely secure nut during maintenance may produce vibration and result into a 

fatigue crack over period of time. Human errors such as misinterpretation of engineering 

drawings and maintenance manuals, inadequate training, poor working environment, time 

constraint and working environment as well as processing hazards are some factors which 

impact human performance. Swain and Guttmann (1983) have defined these factors as 

performance shaping factor (PSF) and listed several PSF which are linked with internal, 
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external, or stress related for complex man-machine interface for nuclear power plants. 

Wilson and McCutcheon (2003) reported that facility layout, workstation configuration, 

controls, hand tools, control systems, noise, vibration, lighting, temperature, force, repetition, 

posture, work schedule/workload, behavior based safety, labels/signs, communications, 

training, stress/fatigue, motivation, fitness/body size) are the areas where human factor 

should be considered. Toriizuka (2001) evaluated the importance of each PSF from the 

viewpoint of work efficiency, workload and human reliability. Any inspection and 

maintenance activity whether non shutdown or shutdown for a complex system consists of 

three major steps namely preparation activities, inspection and maintenance activities and 

boxing up/lining up activities before it is taken in operation. The above three steps consist of 

several sub-sets of task. Since these actions are performed by humans, there is always a 

probability of introducing an error. If the probability of inducing such human error is 

analyzed considering various PSF and represented by p, it can be integrated in to the system 

failure function of the equipment or system. Various techniques have been presented in 

literature to estimate the HEP. Some of the major techniques are Success Likelihood 

Indexing Method (SLIM), Technique for Human Error Rate Production (THERP), Justified 

Human Error Data Information (JHEDI) and Human Error Assessment and Reduction 

Technique (HEART). Kirwan (1996, 1997) and Kirwan et al. (1997) have discussed and 

validated these techniques in details. These techniques have been applied in Nuclear, Air and 

process industries. In this paper, SLIM technique is utilized to estimate human error 

probability and later integrated in the system failure probability. Figure 4-4 represents the 

SLIM process. SLIM process is based on developing the Performance Shaping Factors (PSF) 

and their impacts on human behavior. Generally an expert judgment is used to quantify PSF 
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which is used to derive a Success Likelihood Index (SLI) for each activity. A detailed set of 

task needs to be developed. Each task is reviewed in view of the considered PSF. Field and 

Technical expert judgments are used to assign a ranking and weighting to each PSF in terms 

of the influence on the success of a task. Eq. (4-4) is used to convert estimated SLI to 

estimate HEP. 

Select set of Performance 
Shaping Factor

Calculate PSF ranking

Determine PSF Weight

Determine SLI for each task

Predict HEP for each action

Calculate overall HEP

 

Figure 4-4: SLIM methodology to calculate HEP 
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                    (4-4) 

 

Where, SLIk is the SLI for each activity k, Wj is the importance weight for the jth 

PSF, Rjk is the scaled rating of task k on the jth PSF. The overall probability of human error 

in inspection and maintenance can be calculated using Eq. (4-5): 

             

 

   

 (4-5) 

Incorporating inspection and maintenance HEP in Eq. (4-6) will result in: 

 

              

 

   

        

 

   

        

 

   

 

 

(4-6) 

  

Figure 4-5 represents the impact of human induced error in the survival function of 

the system and is compared with no inspection and maintenance. 
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Figure 4-5: Impact of Human Error in Survival Function 

  

4.3.4 Module III – Risk-based shutdown interval estimation 

Too frequent inspection and maintenance of equipment or system will increase not 

only the loss in revenue but also the overall operational risk exposure due to possible human 

error introduction in the system. On the other hand, an optimal inspection and maintenance 

interval will not only help to have better utilization of the inspection and maintenance 

resources but also reduce the risk of increased failure. It is necessary to express the 

probability of failure for a piece of equipment or a system as a function of time for risk-based 

shutdown inspection and maintenance interval estimation. In order to develop a risk-based 

shutdown inspection and maintenance interval, system failure probability considering human 

error and consequences are required to generate the overall risk exposure and are discussed 

below: 
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4.3.4.1 Estimation of system failure probability 

In general, operating companies keenly focus on targeting to maintain the desired 

reliability to achieve their operational goal.  Since the system failure probability is a function 

of failure rate and is complementary to the reliability of the system, mathematically it can be 

written as: 

 

                            (4-7) 

 
                 

 

   

        

 

   

        

 

   

  

 

(4-8) 

where t is the failure time of the system on or before a time      

A system or equipment failure can be modeled using exponential, Weibull, normal or 

lognormal probability distribution. Plant-specific inspection and maintenance data are the 

best source to identify the model. However, sometime due to the limited availability of plant- 

specific data, test data, data bank or expert judgment is also used. Weibull distributions due 

to its inherent flexibility such as normal (for β =3.4) and exponential (for β =1) distributions 

is most commonly used to model system failure probability. In this study, the Weibull model 

with the parameters β and θ is used to model the time dependent reliability of the equipment 

involved in the system. A decreasing failure rate (β<1) corresponds to an early life failure or 

infant mortality. A constant failure rate (β =1) suggests that items are failing from random 

events. An increasing failure rate (β>1) suggests that wear out is occurring and that parts are 

more likely to fail over time (Ghosh & Roy, 2009).  
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4.3.4.2 Estimation of the economic consequences: 

In general, process plants such as refineries, chemical plants, natural gas processing 

facilities equipment operate under extreme conditions (pressure and temperature).  It is due to 

these extreme operating conditions, failure consequences are not limited to the localized 

failure of component or equipment. Further these facilities process hazardous substances 

(hydrocarbons), failures due to leak of hydrocarbons may produce sever impact on the nearby 

assets, safety and health issues of the people and operational losses in the presence of an 

ignition source. For example in a gas processing plant, hydrocarbon release may result in 

flash fires, jet fires, pool fires, boiling liquid expanding vapor explosion (BLEVE), fire balls, 

vapor cloud explosions or toxic dispersion. In order to estimate the impact in the effected 

zones, operating pressure, temperature, physical and chemical properties and atmospheric 

conditions are required. Economic consequences due to these may be estimated based on the 

effects of thermal radiation and overpressure on surrounding equipment and personnel in 

monetary ($) terms for effected zones. Failure to consider these consequences when 

developing inspection and maintenance strategies for the facility may increase the 

operational risk. Hameed et al. (2014) has described various equations to estimate economic 

consequences in monetary ($) terms. Table 4-3 lists the summary of these equations which 

has been used here.    
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Table 4-3: Consequence Estimation (Khan et al. (2014)) 

Economic Consequence of Asset Loss 

 

Due to Heat Flux                      
(4-9) 

Due to Overpressure                 
(4-10) 

Economic Consequence of Human Health Loss (ECHHL) 

 

 

Due to Heat Flux                            
(4-11) 

Due to Overpressure                      
(4-12) 

Economic Consequence of Production Loss (ECPL) 

 

                
(4-13) 

   

Economic Consequence of Inspection and Maintenance (ECSIM) 

 

 

                
(4-14) 

                         
(4-15) 

                    
(4-16) 

                 
(4-17) 

                                   (4-18) 

The total economic consequences of shutdown (     

                               
        , (4-19) 
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where, x represents the various possible scenarios,      is the probability of damage 

due to heatflux in the effected zones and    is the asset density,      is the probability of 

damage due to overpressure,    is the effected zone due to overpressure,      is the 

probability of injury or death due to heatflux in the effected zones ,    is the population 

density and    is the cost of injury or fatality,      is the probability of damage due to 

overpressure, PL is production loss volume per day and SP is the selling price of the product 

per unit volume, SDT is the shutdown duration, Cp is the preparatory cost, Clp is the cost of 

preparatory maintenance labor per hour ($/h), tp is the duration of the preparatory work, CI is 

the inspection cost, ClI is the cost of skilled inspection labor per hour ($/h), CIe is cost of 

inspection equipment per hour ($/h), ti is the duration of inspection work, Cm is the 

maintenance cost, Clm is the cost of skilled maintenance labor per hour ($/h), Csp is the cost 

of spare parts consumed, tm is the duration of maintenance work, Cts is the technical support 

cost, Clts is the cost of a technical support specialist per hour ($/h) and t is the duration of 

technical support work in hours. 

4.3.4.3 Risk estimation: 

 

Since the risk is a combination of probability and the consequence, one needs to 

consider all possible consequences, including safety & health, operational and non-

operational consequences. In this paper, risk is estimated in terms of ($) value due to all 

possible combination and can be written as: 
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(4-20) 

4.4 The application of RBSIM to a LNG processing facility 

Sönmez et al. (2013) reported that energy plays a fundamental role in both 

manufacturing and services, and natural gas is rapidly becoming a key energy source 

worldwide. Since the last few decades liquefied natural gas (LNG) plants are increasing in 

number due to the growing demand for natural gas (NG) to meet the energy requirement. 

This trend is due to the fact that NG is the cleanest of the fossil fuels. LNG is a temporarily 

converted form of NG for storage and shipping because it occupies six hundred times less 

volume. The NG liquefaction process begins when the NG is extracted from the underground 

reservoirs and is sent to a liquefaction facility, where NG is liquefied at -160 
o
C. The 

liquefaction plants are asset intensive which operates on continuous basis. Unavailability of 

major equipment or system due to any failure may have severe consequences and produce 

significant risk to the operating companies due to production loss, asset damage, safety and 

company perception. A typical onshore LNG processing plant consists of several units as 

shown in the following Figure 4-6. Raw gas is received from either an onshore or offshore 

reservoir to the inlet/receiving area where condensate and water is separated from 

hydrocarbon. Hydrocarbon is then pre-treated to remove corrosive and hazardous contents. 

These include H2S, CO2, mercury, helium and water. The dry sweet gas is then cooled to 
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separate heavier hydrocarbon such as C3, C4 etc. Finally it is cooled in the cryogenic units to 

liquefy natural gas for storage and or shipping. In this paper, a section of gas chilling and 

liquefaction unit of a LNG processing facility is selected to develop shutdown inspection and 

maintenance interval for a targeted goal time to achieve a desired reliability (0.95). The 

general schematic and the block diagram of gas chilling and liquefaction unit section is 

shown in Figure 4-7 and is taken from Hameed and Khan (2014) previous work. The main 

purpose of the Gas Chilling and Liquefaction Unit is to condense the sweetened, dry, lean 

feed gas into LNG in the Main Cryogenic Heat Exchanger, and then sub-cool it in the Sub-

cooling Heat Exchanger. 

Offshore well 
head platform

Inlet facilities
Separation of Gas

Acid Gas Removal
Dehydration/ 

Mercury Removal
NGL Recovery

Gas chilling/
Liquefaction 

Waste Water 
Treatment

Condensate 
Treatment 
(Removal)

Sulfur Recovery 
(Change H2S to 

Liquid)

Liquid Sulfur 
Tanks

Fractionation
LPG (C3 & C4)

N2 Rejection 
(Removal of 

Nitrogen)

Refrigeration

LPG Tank

Condensate

Sulfur 

loading
LPG

loading LNG

LNG

loading

 

Figure 4-6: A typical LNG processing plant process flow 
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4.4.1 Module 1: equipment selection considering criticality of operation 

Equipment criticality analysis helps to evaluate how failure of these equipment 

impacts the performance of asset and is use to prioritize equipment selection for inspection 

and maintenance. Module I of the presented methodology is applied to select critical 

equipment using the risk criticality matrix. The risk criticality matrix helps to estimate the 

risk criticality number for all equipment in the unit for all considered consequences. Using 

the risk criticality matrix, equipment can have a criticality number ranging from 1 to 25. 

Criticality number 1 indicates that the equipment has least impact while a criticality number 

25 indicate significant impact on the risk. For example, if an equipment is having high 

probability (frequent = 5) of failure and the unavailability of the equipment having moderate 

impact on production, 50% loss (moderate = 3), the risk number will be 15, compared to an 

equipment which upon failure will result total loss of operation will get a criticality number 

of 25.  Higher criticality number indicates that the equipment will have higher risk on 

operational facilities due to the unavailability, and should be considered for a shutdown 

inspection and maintenance. Other risk factors can also be estimated to obtain the criticality 

number. In the considered unit, hydraulic turbines are design to take full load capacity, in 

case if one unit fails, other unit will take the load, hence it does not get a higher criticality 

number and is not considered for shutdown inspection and maintenance interval 

optimization. These can be inspected and maintained any time without taking the unit in 

shutdown. Equipment E01, E02, E03, E04, E05 and E06 as shown in Figure 4-7 are 

estimated to be having higher critical number and are selected for shutdown inspection and 

maintenance interval for the studied unit. 
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Figure 4-7: Gas Chilling and Liquefaction Unit 

 

4.4.2 Module 2: integrating human error in reliability modeling: 

A functional block diagram is developed for the selected critical equipment and is 

shown in Figure 4-8. System failure probability is calculated using the block diagram from 

the selected critical equipment. Since these equipment (in this unit) operate in series, 

reliability equation in series is appropriate for this scenario. In order to estimate the risk-

based inspection and maintenance interval, failure data is a key.  For this study, failure and 

repair data for the selected equipment are taken from the previously published work by 

Hameed and Khan (2014) and is listed in Table 4-4. 
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E01 E02 E03 E04 E05 E06

 

Figure 4-8: Functional block diagram of selected equipment 

 

Table 4-4: The failure Characteristics of considered equipment. 

Equipment No. 

Characteristic life 

(θ, h) 

Shape Parameter 

(β) 

E01 

282,000 4.38 

E02 

E03 

E04 

E05 

450,000 2.0 
E06 

 

All inspection and maintenance activities whether it is minor services, such as 

tightening the bolt or loose parts, cleaning and removing dust and rust, repairing and/or 

replacing degraded components such as bearing and seals, or performing welding to 

strengthen the integrity of the equipment requires human interaction. As discussed in Module 

II, various factors may introduced human error and result in accelerating the degradation or 

failure of the system. Table 4-5 list the considered PSF which may have impacts on the 

shutdown inspection and maintenance activities. Expert judgment from the experienced plant 

personnel are used to identify the significant Performance Shaping Factors and are listed in 

Table 4-5. These PSF are then ranked to select the top five PSF. Selected top five PSF were 

then assigned a weightage and is listed in Table 4-6. Table 4-7 list the general and common 

shutdown inspection and maintenance activities which were developed using field engineer’s 
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experience. This information was used to estimate the HEP for individual activities using Eq. 

(4-3) to Eq. (4-5) as discussed in Section 4.3.3.2. 

 

Table 4-5: List of considered PSF 

External PSF Internal PSF Stressors 

o Environment o Training 

o Fatigue, Pain or 

discomfort 

o Working hours, 

work breaks, shift 

rotations  

o Experience 

o Temperature and 

Radiations 

o Availability and 

adequacy of special 

equipment, tools 

and supplies 

o Knowledge of performance 

standards 

o Oxygen insufficiency 

o Method, Policies 

and Procedure 
o Stress (Mentally or bodily) o Vibration 

o Criticality and 

Complexity of Task 
o Work Memory o Movement limitation 

 o Physical Condition o Risk and Threats 
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Table 4-6 : Performance Shaping Factor, Rank and Weight 

Number Performance Shaping Factor Rank Weight 

1 Training 5 0.20 

2 Experience 4 0.25 

3 Time Pressure 3 0.20 

4 Work Memory 2 0.15 

5 Work Environment 1 0.20 
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Table 4-7:  Common Shutdown Inspection and Maintenance activities and estimated HEP. 

Task Number Task Description HEP 

1 Receive I&M work permit 0.001594 

 
2 Perform system blinding and isolation 1.47E-05 

3 Open entry points 0.00029 

 4 Install ventilation System 0.00029 

 5 Install internal/external lighting 1.47E-05 

6 Remove manways 1.47E-05 

7 Install internal/external scaffolding for I&M 1.47E-05 

8 Remove/Clean demisters, (if required) 0.000359 

 9 Clean Weld Joints, drains, nozzles etc. 0.010839 

 10 Carry out inspection 1.47E-05 

 11 Carry out repairing/maintenance works, 1.47E-05 

 12 Re-fix the demisters (if required) 1.47E-05 

 13 Remove Internal scaffoldings 1.47E-05 

 14 Re-fix internal manways 0.010839 

 15 Perform final inspection 5.07E-06 

 16 Final Internal Inspection 0.010839 

 17 Close entry points 1.47E-05 

 18 De-blinding & hydra tightening 1.47E-05 

 19 Close I&M work permit 1.47E-05 

  

4.4.3 Module III – risk-based shutdown inspection and maintenance interval:  

Module III of the proposed methodology consists of estimating system failure 

probability, all possible consequences due to process unit shutdown and finally developing a 

risk profile to find the optimal shutdown inspection and maintenance intervals. Since system 
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failure probability is the function of time, it is modeled here using Weibull distribution. To 

calculate the system failure probability, the Weibull distribution parameters of the equipment 

are used as discussed in Module II, thus the system failure probability function can be written 

using Eq. (4-8). Considered gas chilling and liquefaction unit is used to process hydrocarbons 

and operates at higher pressure and cryogenic temperature conditions, the consequences of 

failure will be very high. Failure scenario considered to estimates the asset damage and 

human health loss for these equipment is release of hydrocarbon which upon finding an 

ignition source may result in explosion which could generates shock waves. Calculated shock 

waves are then transformed in to probability of damage due to shock wave for various 

effected zones. This shock wave may cause serious asset damage as well as human injury or 

fatality. In this particular scenario, estimated consequence is based on a radius of 200m and 

is listed in Table 4-8. It is important to note that the loss of life or injury suffered to the 

people is hard to estimate in dollars value, however the cost associated with the 

compensation and corporate liability needs to be taken account in consequence analysis. In 

this regard, published note from Judycki (1994) of the US Department of Transportation and 

the Federal Highway Administration published relating the injury scale (in terms of severity) 

to the comprehensive costs in police-reported crashes is used. In this paper production loss is 

estimated using Eq. (4-13) for 10 days of shutdown is considered. Plant-specific data and 

field engineer supports to estimate number of manhour, labor and equipment cost is 

considered to estimate economic consequence of each shutdown inspection and maintenance 

interval.  
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Table 4-8: Estimated failure consequences 

Equipment No. 

Consequences of Asset damage and human health loss in terms of 

(Million dollars) 

E01 344.98 

E02 307.29 

E03 256.40 

E04 88.34 

E05 284.18 

E06 377.76 

 

The total calculated consequence along with Eq. (4-20) is used to generate the 

expected risk profile to determine the total number of shutdown intervals. Figure 4-9 show 

the obtained risk profile to achieve optimal shutdown inspection and maintenance interval, 

which would enable a level of 95.0% system reliability for a desired goal time while meeting 

the risk exposure to the lowest level. The shutdown inspection and maintenance interval is 

obtained from Figure 4-9. A sensitivity analysis is performed to study the effect of the 

number of shutdown days on the shutdown interval model. The results are plotted in Figure 

4-10. It is evident from Figure 4-10 that operational risk profile is increasing or decreasing 

with the increase or decrease of shutdown duration, due to the impact of production losses, 

however the number of shutdown required in achieving desired system reliability over the 

goal time does not have significant impact. Table 4-9 shows the estimated shutdown 

cumulative time. It is evident from Figure 4-9 that the overall operational risk is low when a 

total of six shutdowns with unequal intervals are performed under the given conditions to 

achieve minimum operational risk ($) per hour. The presented methodology does not only 
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provide optimal number of the facility shutdown interval but also suggest when these 

shutdowns should be planned to achieve target reliability, availability and to minimize the 

overall risk for the considered life of the facility. 

Table 4-9: Estimated Shutdown Cumulative time 

Shutdown Number Cumulative Time 

1 43222 h 

2 72014 h 

3 96487 h 

4 117289 h 

5 134971 h 

6 150000 h 

 

 

Figure 4-9: Risk-based shutdown inspection and maintenance 

    

200 

225 

250 

275 

300 

5 6 7 8 9 10 

R
is

k
 (

$
)/

H
r 

Number of Shutdowns 

Risk based Shutdown Optimization 



   

 127 

 

Figure 4-10: Risk-based shutdown inspection and maintenance 

 

4.5 Conclusion 

Shutdown inspection and maintenance activities are performed to increase the 

availability and reliability of facility by selecting the critical equipment to optimize the 

overall risk profile. Risk assessment integrates the system failure probability and 

consequences. A risk-based shutdown inspection and maintenance helps to select the critical 

equipment and systems which can’t be inspected or maintained without taking the plant out 

of operation. This paper presents a risk-based shutdown inspection and maintenance intervals 

optimization for a processing facility unit considering human error which may be introduced 

during these activities. The unit considered in this study is a gas chilling and liquefaction unit 

of LNG facility.  In this study, SLIs were calculated for each activity and converted into HEP 

using SLIM methodology. Estimated HEP is then integrated in the probability of system 

failure. Shutdown inspection and maintenance consequences of selected equipment were 
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determined and expressed in financial values ($). The cost of inspection and maintenance 

were calculated using the plant data and/or using engineer’s experiences. System probability 

of failure couples with estimated consequences is used to generate operational risk profile. 

By including the HEP in system failure modeling, it is safe to say that shutdown inspection 

and maintenance planning  will help to obtain a risk profile which will not only allow 

achieving an optimal shutdown intervals but also the desired system reliability over the goal 

time by minimizing the overall risk. As the system operating life increases, the reliability 

decreases, which require shorter duration of inspection and maintenance to avoid excessive 

operational consequences. Duration of shutdown and the number of activities depends on the 

number of equipment selected which will go for inspection and maintenance and the scope of 

shutdown. The proposed methodology is an extension of Hameed and Khan (2014) and 

Hameed et al. (2014) to estimate shutdown interval, where in the previous studies, the impact 

of human error was not considered. Further these methodologies was considered to find a 

risk-based shutdown interval considering the equal interval whereas the proposed 

methodology helps to find optimal shutdown inspection and maintenance considering 

unequal interval over a goal time to minimize the overall operational risk. Risk-based 

shutdown inspection and maintenance interval methodology proposed in this paper can be 

applied and used for any processing or manufacturing facility. By using the risk criticality 

matrix, it is possible to select the critical equipment which should be considered for 

shutdown to optimize the overall risk.
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5 Chapter 5 

 

Risk-based maintenance scheduling for a LNG gas 

sweetening unit
 4

  

Abstract 

Significant productivity increase has been observed due to advanced automation in 

process operations, which has also caused increased complexity in the process.  The benefits 

from this investment can only be gained when a reliable performance with high availability 

and productivity is sustained. In process operations, a reliable performance requires well-

planned maintenance activities. A well-planned maintenance considers planned shutdown 

and its financial impacts. Due to increased process complexity, it is cost effective to adopt a 

risk-based approach for maintenance planning. In this paper, a risk-based approach for 

maintenance planning and scheduling for a gas-sweetening unit in a Liquefied Natural Gas 

(LNG) plant is discussed. A bi-objective scheduling optimization model is developed for 

maintenance planning. The two conflicting objectives: i) the minimization of total 

                                                
4 This Chapter is based on the submitted work in a peer-reviewed journal. Abdul Hameed, 

Syed A. Raza, Qadeer Ahmed, Faisal I. Khan and Salim Ahmed (2016), “Risk-based maintenance 

scheduling for a LNG gas sweetening unit,” Submitted to Journal of Loss Prevention in the Process 

Industries. To minimize the duplication, all the references are listed in the reference list. The 

contribution of the authors is presented in Section titled, “Co-authorship Statement”. 
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expenditures incurred on maintenance related activities and ii) improving the total reliability 

of a gas sweetening are considered. The simulation-based optimization framework is 

proposed to obtain a true Pareto-front using plant specific data and MATLAB 2015b built-in 

Genetic Algorithm procedure. The developed framework provides a rapid decision support 

tool for bi-objective problem embedded with the simulation-based optimization framework. 

5.1 Introduction 

Maintenance management is not only essential to manufacturing facilities but also 

highly critical to the asset intensive industries such as petrochemical, refineries and gas 

processing plants. These facilities consist of hundreds of equipment, which operate on a 

continuous basis.  Some of the equipment inspection and maintenance cannot be performed 

until the unit or facility is taken into shutdown, which poses a significant impact to the 

company revenue. On the other hand, some equipment maintenance can be planned without 

triggering the facility shutdown, here we termed it as non-shutdown strategy. Inspection and 

maintenance has three critical aspects, which, what, and when? ‘Which’ relates to selecting 

the equipment considering the operational risk, ‘What’ relates to define maintenance task or 

activity and ‘When’ explains the time these activities should be performed. The right task at 

the right time on the right equipment is essential to make sure that facility remains in reliable 

operational condition. Developing maintenance management is not only about developing 

maintenance strategies on individual equipment basis but also to minimizing the risk to 

operability of the facility due to shutdown. It is vital to understand the integration and design 

of the systems such as acting in series, parallel, combination of series-parallel, 50% load 

capacity or 100% load capacity to design an optimal inspection and maintenance strategy. 
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Campbell, Jardine, and McGlynn (2011) reported that typically inspection and maintenance 

cost ranges from 28% to 52% of the total operating cost of a plant. The significant cost 

associated with inspection and maintenance has encouraged researchers to develop efficient 

methods, techniques for inspection and maintenance which have been published over the 

years. When developing inspection and maintenance schedule, it is critical to consider which 

strategy should be applied to minimize unplanned downtime, overall cost, risk exposure and 

to effectively utilize skilled personnel and available spares. The inspection and maintenance 

scheduling optimization topic has gained much attention among researchers and industrial 

practitioners over the last few decades. However, it is noted that there is an opportunity to 

introduce shutdown and non-shutdown inspection and maintenance strategy in the 

optimization model to minimize the overall cost and maximize reliability.  

In this paper, a bi-objective risk-based maintenance scheduling optimization for a 

continuous processing plant considering facility shutdown is suggested. The proposed bi-

objective scheduling optimization is solved using an  - constraint method and GA. If the 

maintenance schedule is developed without considering the facility shutdown mode, it will 

not only result in too frequent intervals, but also have produced huge financial losses such as 

production loss and maintenance cost due to higher number of shutdown. The proposed 

maintenance optimization methodology considers multiple conflicting objectives; several 

constraints with a common goal of achieving lower cost, higher reliability and efficient 

maintenance schedule. The prime objective of the proposed maintenance schedule 

optimization is to minimize the overall maintenance cost and maximize the reliability of the 

physical assets. 
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5.2 Literature Research 

5.2.1 Maintenance of Natural Gas processing plant: 

Liquefied natural gas (LNG) processing plants are not only asset intensive and 

complex, but also require a heavy financial investment. A careful maintenance planning for 

LNG assets depends on the good understanding of assets configuration and their impacts on 

operation. Some equipment deteriorates over time and failure of these key equipment 

produces an undesirable event which can lead to the shutdown of the facility. A carefully 

designed maintenance planning for these critical equipment may prevent unwanted 

breakdown. Gowid, Dixon, and Ghani (2014) developed and proposed a system redundancy 

and maintenance interval optimization for a Floating Liquefied Natural Gas (FLNG) export 

platforms to reduce the total associated maintenance cost. This was achieved by identifying 

the optimum maintenance intervals for the major LNG liquefaction plant components. 

Keshavarz, Thodi, and Khan (2011) proposed a risk-based shutdown management strategy 

for LNG units. A combination of preventive maintenance, active redundancy and standby 

redundancy was considered to achieve an optimized shutdown maintenance strategy. These 

proposed optimization studies cannot be applied to the existing plant, as most of the facilities 

do not have redundancies for liquefaction units. Nwaoha, Yang, Wang, and Bonsall (2010) 

used GA to model risk-based maintenance and repair cost for a liquefied natural gas 

containment system and its transfer arm in conjunction with probabilistic risk assessment 

technique to improve system safety. When developing shutdown maintenance planning for 

LNG or processing facilities, realizing the criticality of the equipment to the operation is very 

important. Hameed, Khan, and Ahmed (2014); Hameed, and Khan (2014) have proposed a 

risk-based shutdown interval modeling for continuous operating facilities by selecting and 
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analyzing the risk of critical equipment to define the facility shutdown interval. In reality, not 

all assets in the LNG plant required a facility shutdown to carry out maintenance. Thus, the 

key question is to define what would be the maintenance activities for equipment and what 

would be the frequency? Frequent maintenance activities on these equipment may introduce 

accelerated failure due to human interface and produce severe negative financial impacts due 

to frequent shutdown; on the other hand few of the planned maintenance activities will not 

help in achieving a reliable operation of the facility either. Thus, a balanced or optimized 

maintenance schedule is required to meet the functional requirements considering facility 

shutdown.  

5.2.2 Risk-based maintenance optimization: 

Maintenance optimization is an active research topic. Single objective or multiple 

objectives optimization has been addressed under risk, reliability, availability, and cost. 

Backlund, and Hanu (2002) reported that while doing the risk analysis focus must be put on 

the function required of the subsystem and equipment. Garg, Monica, and Sharma (2013); 

Fitouhi, and Nourelfath (2014); Adhikary, Bose, Jana, Bose, D., and Mitra (2015); Salvador, 

and Juan-Carlos (2013); Ghosh, and Roy (2009); Rusin, and Wojaczeck (2012); Khan, and 

Haddara (2003, 2004a, 2004b) have presented methods to estimate the optimal maintenance 

and inspection interval considering cost, risk and availability. Bertolini, Bevilacqua, 

Ciarapica, and Giacchetta (2009) proposed a risk based inspection and maintenance strategy 

to minimize the overall risk considering time limit, budget and human resources. Zhaoyang, 

Jianfeng, Zongzhi, Jianhu, and Weifeng (2011); Wang, Cheng, Hu, and Wu (2012) proposed 

a risk rating criteria to select a maintenance strategy which reduces the overall risk. However, 
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the real-life optimization problems are quite complex and often intractable to solve using 

conventional optimization approaches.  

5.2.3 Meta-heuristics approach for maintenance optimization:  

There has been significant development in the heuristics-based approaches to solve 

large-scale problems. Silver (2004) stated that a metaheuristic is an iterative master process 

that guides and modifies the operations of subordinate heuristics to produce efficiently high-

quality solutions and presented an overview of various metaheuristic solution methods. 

Statistics presented by Jones, Mirrazavi, and Tamiz (2002) shows that 70% of the 

optimization problem used GA as primary meta-heuristic algorithms compared to 24% 

Simulated Annealing (SA) and 6% Tabu Search (TS). Dowsland (1996); and Chen, Vempati, 

and Aljaber (1995) reported that GA has been successfully applied to wide range of 

applications ranging from maintenance optimization to revenue maximization and so on. 

Moghaddam and Usher (2011) have explored maintenance scheduling using dynamic 

programming and introduction of heuristic algorithms in maintenance optimization with 

reliability, availability, and budget criteria. Painton, and Campbell (1995); and Coit and 

Smith (1996) have introduced meta-heuristics, for example GA, to effectively handle 

optimization problems in maintenance and reliability contexts. Hadi, Ashkan, and Isa (2012) 

presented a joint production, and maintenance scheduling model with multiple preventive 

maintenance services. A component-based heuristic algorithm was developed to solve the 

optimization model for a real field system while maintaining the architecture or components 

in a traction catenary system. Xu, Han, Wang, and Sun (2012) proposed a risk-based 

optimization model for system maintenance scheduling problem that consists of optimizing 

availability and cost of the system by balancing between system maintenance risk and failure 
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risk. Fu (2013) presented a selection of multiple maintenance strategy in process equipment. 

Three maintenance strategies namely, repair maintenance, preventive maintenance and 

preventive replacement on equipment reliability was analyzed. The harmony search 

algorithm was designed to solve the model, and the diversity of solutions was ensured by 

generating the new solution and the replacement process. Ahmadi, and Newby (2011) 

proposed an integrated model for the joint determination of both optimal inspection strategy 

and optimal repair policy for a manufacturing system whose resulting output is subject to 

system state. In this paper, an intensity control model adapted to partial information provides 

an optimal inspection intensity and repair degree of the system as an optimal control process 

to yield maximum revenue. Go, Kim, and Lee (2013) studied the problem of determining 

operations and maintenance schedules for a container ship equipped with various subsystems 

during its sailing according to a pre-determined navigation schedule. A mixed integer 

programming model is developed. Then, due to the complexity of the problem, a heuristic 

algorithm that minimizes the sum of earliness and tardiness between the due-date and the 

actual start time for each maintenance activity is discussed and improvement is reported over 

the experience based conventional method. Mirabedini, Mina, and Iranmanesh (2012) 

proposed a multi-objective integrated production and maintenance optimization using GA for 

multi parallel machines. Kancev, Gjorgiev, and Cepin (2011) proposed surveillance test 

interval optimization of standby equipment considering aging parameters uncertainty using 

GA. Esmaeili (2012) developed a single machine scheduling problem with maintenance 

activities to optimize total cost scheduling problem using GA.  

The above literature review clearly indicates that meta-heuristic such as GA has been 

successfully applied for maintenance scheduling optimization. However, it is found that 
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maintenance scheduling optimization considering facility shutdown for hydrocarbon facilities 

has not been explored extensively, and provides an opportunity to expand the application in 

this area. This paper is expected to contribute by developing a practical solution using  - 

constraint method, and GA to address the issue of efficient maintenance scheduling of LNG 

processing facility considering shutdown. In this work, inspection, maintenance and 

replacement are considered as various maintenance tasks to minimize the cost and maximize 

the system reliability. 

5.3 LNG Gas Sweetening Unit  

At atmospheric condition when natural gas is cooled to approximately        it 

takes the liquid form which is generally known as liquefied natural gas (LNG). The most 

significant advantage of liquefying natural gas is that in liquid forms the volume of natural 

gas gets reduced to 1/600th the volume of in its gaseous form, which helps to transport long 

distance using transporting vessels. A typical LNG processing plant schematic is shown in 

Figure 5-1. These equipment require timely maintenance to meet safety, availability and 

reliability of the facility. In the gas processing facility, raw natural gas received from 

reservoirs is processed to remove unwanted corrosive and hazardous material before it can be 

liquefied and transported. In majority of the gas processing facility, a three phase raw gas is 

received at onshore processing plant in the inlet-receiving facility where the gas, condensate 

and water are separated. Condensate is usually sent to the refinery for further processing to 

obtain by-products. The separated natural gas from the inlet-receiving facility is processed to 

remove sulfur in the form of hydrogen sulfide and water in gas sweetening unit before it can 

be converted in the liquefied form. A general schematic of a section of gas sweetening unit is 
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shown in Figure 5-2 . The main function of this unit is to remove H2S, CO2 and organic 

sulfurs from the stream and convert the gas into a sweet gas for further processing. Since this 

unit deals with highly corrosive and hazardous materials, equipment inspection and 

maintenance must be planned carefully to achieve reliable operation. Considering this, the 

proposed methodology has been applied to develop an optimized maintenance schedule 

under multiple constraints for a section of gas sweetening unit. 
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Figure 5-1: A typical LNG Process Plant (Mokhatab, Mark, Valappil, & Wood, 2014) 
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Figure 5-2: A typical Section of gas sweetening unit 

 

Effective maintenance is one of the key functional areas in industry to address safety, 

reliability, plant uptime and maintenance cost. To address these objectives, maintenance 

optimization has gained momentum in understanding equipment failure modes, equipment 

age, remaining useful life and the disadvantages of only performing time-based maintenance. 
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Estimation of equipment age is a difficult task which drives the conservative maintenance 

schedules. This results in performing maintenance too early when it is not required and 

possibly introducing the effect of poor workmanship or human error. On the other hand, if 

the interval between successive maintenance is increased equipment may run into the risk of 

unscheduled breakdown. This situation results a demanding area of interest for the industry 

and researcher. The concept of inspection and maintenance management is not restricted to 

only the strategy but also how the strategy is being selected considering system process flow, 

equipment design, its maintainability, and so on. A continuous operating facility such as 

LNG processing plant operates in rigorous condition, 365 days a year. Developing a 

maintenance schedule for these equipment depends on the system configuration. These 

systems are designed in various possible configurations such as acting in series, parallel, 50% 

load sharing, 100% load sharing; thus results in two major scenarios a shutdown or non-

shutdown  maintenance strategy. Majority of the model presented in literature for 

maintenance optimization has not been specific to consider facility shutdown scenarios. This 

shortcoming provides an opportunity to integrate concept of shutdown in maintenance 

strategy to minimize cost and maximize system reliability considering aging of the 

equipment and error introduced in the system. Risk is usually based on the consequence and 

probability of an equipment breakdown or failure. Risk also relates to the operability, the 

operating pressures, temperatures, and age of the facilities. Maintenance planning and 

scheduling is important due to its direct impact on the reliability of the facility. The right 

maintenance activity at the right time is the goal of any maintenance organization. However, 

due to shortage of resources and to meet production demand sometimes a compromise is 

made by delaying the schedule task. Current maintenance strategies focus not only on 
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keeping the plant in operation but also on efficient utilization of equipment through quality 

and service. Processing liquefied natural gas is a hazardous process requiring considerable 

safety. It is a cryogenic process where the operating temperature is around -164 °C and any 

failure can have catastrophic consequences. Hence, effective and optimized maintenance is a 

key to safety, reliability and to minimize overall maintenance cost. Maintenance strategy for 

hydrocarbon processing facilities is important not only because of critical application but also 

due to the high cost of unplanned or planned shutdowns on revenues due to production loss. 

These motivating factors are behind the formulation of a maintenance scheduling 

optimization model. 

5.4 Risk-based Bi-Objective Maintenance Scheduling Model 

In this section, a risk-based bi-objective mathematical model for maintenance 

scheduling for the gas sweetening process of a LNG plant is presented. 

5.4.1 Assumptions: 

Following are the assumptions to ensure the models are representative of real plant 

operations. These assumptions are the basis of bi-objective optimization.  

o Equipment time to failure follows increasing failure with known or estimated shape 

and characteristics life parameter. 

o Material, labor, specialist, and production cost are available. 

o Labor cost/unit time is independent of equipment. 

o Sufficient manpower and equipment are available to execute the job once planned. 

o Inspection and maintenance times are non-negligible 
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5.4.2 Notations: 

The following notations are used. 

Sets 

 

  Set of Equipment, indexed such that                   

  Set of time period intervals,  indexed such that                   

 

Decision Variables 

     
                                                                 
          

  

     
                                                                 
          

  

     
                                                                
          

  

 

Parameters 

L Length of the planning horizon 

    Cost of corrective (failure) task of equipment   

     labor cost/hour to perform a corrective task of equipment m 

    Cost of replacement of components in equipment   

     labor cost/hour to perform a replacement task of equipment m 

    Cost of maintenance of equipment   

     labor cost/hour to perform a maintenance task of equipment m 

     cost of material of an equipment m 

    Cost of inspection of equipment   
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     labor cost/hour to perform an inspection task of equipment m 

    Expected total inspection and maintenance cost 

   High pressure 

   Low pressure 

     Overall system reliability 

    Corrective repair time at equipment m 

    time required to perform a maintenance at equipment m 

    time required to perform a replacement at equipment m 

    time required to perform an inspection at equipment m 

   Shape parameter of equipment   

   Scale parameter of equipment   

   Improvement factor of equipment   

   Rate of occurrence of failure (ROCOF) 

   failure cost factor of equipment m 

       Expected number of failures of equipment   at time t 

    Reliability of an equipment   at time   

     Age of equipment   at start of period   

     Age of equipment   at end of period   

5.4.3 Preliminaries: 

In a typical LNG production facility, many maintenance actions are taken to ensure 

the functionality of each equipment by properly capturing its failure modes and assigning 

suitable tasks such as inspection, preventive maintenance or replacement. One of the 

objectives of this work is to develop maintenance task such as inspection, preventive 

maintenance and repair schedule for each equipment ( ), for a planning horizon ( ). While 
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developing this optimized maintenance schedule, the overall planning horizon is broken in 

equally spaced period i.e.      . At the end of each period, the system is analyzed to select 

which maintenance activity should be performed such as inspection (I), preventive 

maintenance (M) or replacement (R). Here the inspection task is considered to be an operator 

based inspection. These inspections (I) activities are specific to the operators using their 

sensory element such as visuals, hear, touch and feel to analyze the equipment behavior and 

report to the maintenance team if any un-wanted condition is observed such as noise, leak 

etc. etc. Based on the operator based inspection, if required, maintenance team performs the 

detail investigation and takes any necessary action. The operator based inspection does not 

change the failure rate of the equipment. At the same time, operator based inspection ease the 

maintenance resource utilization and helps in reducing the maintenance cost. In contrast, a 

predefined planned maintenance such as oil change or grease filling help to improve the 

degradation in the equipment failure characteristic. In industry these actions are called as 

preventive maintenance or simply maintenance (M). These actions help to improve the 

condition of the equipment. However, there is always a chance of introducing human error. 

Further, a corrective maintenance action is taken if a sudden failure of a component is 

observed while the system is in operational state. Corrective task or replacement task is 

synonymously being used in the industry. Corrective task is initiated when a sudden failure 

of equipment is observed. On the other hand, a replacement activity (R) may be of a planned 

replacement of seal, bearing and other components which may be in the wear-out zone of the 

failure characteristic. These actions will improve the equipment condition. Ahmed et al. 

(2015) has discussed these activities in greater details.  
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Many state-of-the-art computerized maintenance management systems have been 

developed to manage, execute, record and track these activities. These systems also help to 

obtain real operational failure data to perform equipment and system studies and failure 

investigations. 

5.5 Operational Risk-based Equipment Selection: 

A risk-based approach for equipment selection to a section of gas sweetening unit of a 

LNG plant is outlined in this section.  As described earlier in Section 5.3 (Figure 5-2) that a 

typical gas sweetening unit in an LNG plant consists of a large number of equipment and it 

would be very difficult to plan and manage the maintenance activities at once. Indeed, some 

equipment are likely to be at more risk of failure such as rotating equipment compared to 

stationary equipment.  Also in certain cases, a planned maintenance action on some of the 

equipment cannot be performed, and requires the unit or plant to be taken out of operation. 

This situation is generally known as shutdown. On the other hand, some units or equipment 

do not impact the overall facility operation and hence, maintenance activity can be performed 

during normal operation. Identifying and integrating such systems and equipment is one of 

the most important aspects to achieve a risk-based optimal maintenance schedule without 

impacting operability and loss of revenue due to un-necessary shutdowns. A sound approach 

will be to plan and schedule maintenance activity considering the operational risk of the 

facility.  

Generally risk is defined as the resultant of the probability of an undesired event and its 

consequences. Assessing and performing a risk assessment require a cross-functional team 

with detailed knowledge about the system and function being analyzed. Risk can be 
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measured in using the probability of failure and its relation to multi facet consequences such 

as operation loss due to facility shutdown, inspection and maintenance cost due to incorrect 

planning, environment and safety impacts on the facility and people. API (2009) guideline 

suggests that a risk matrix is an effective tool to show the distribution of risk associated with 

a plant or a process. The size of a risk matrix may vary, such as 5  5, 4 4 and so on. In this 

study, a 3×3 risk assessment matrix is used to segregate and categorize equipment for 

inspection and maintenance considering a unit or facility shutdown. A 3×3 risk matrix for 

probability of loss of operation and consequence ($) is shown in Figure 5-3.  To exemplify, if 

the consequence is as high as 3 and the probability of the failure is high as 3, the risk 

exposure will be maximum i.e. 9. In order to apply the risk matrix, facility needs to be 

broken down into small manageable units. All equipment in the gas sweetening unit of LNG 

plant are reviewed using the risk matrix to identify a quantitative measure of risk (also 

known as risk index) representing the impact on facility operability. Equipment having 

impact on facility operation with a higher risk index should be given higher priority in 

planning for shutdown inspection and maintenance strategy while others with a lower risk 

may be considered lower in the priority. This assessment process is performed for all 

equipment until the complete unit is analyzed as shown in Figure 5-2. One significant 

advantage of using the risk segregation would be to allocate and use skilled resources for the 

systems which are critical for plant operability and availability. Further, the proposed risk 

assessment will help to establish the equipment or system which will require facility 

shutdown for inspection and maintenance and help to make better planning. However, it 

should be noted that the risk criteria can vary from organization to organization, depending 

on their exposure and tolerance to absorb the consequences of the facility shutdown. 
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Figure 5-3: Operational Risk-based Equipment Selection 

  

5.5.1 Modeling equipment failure mode: 

While modeling the equipment failure mode, equipment is classified as repairable or 

non-repairable. Repairable equipment may include compressors, turbines, pumps, motors, 

valves etc. In contrast to this, non-repairable systems are more often the electronic modules. 

Generally corrective maintenance activities are taken when a repairable system fails. 

However, this strategy creates significant economic consequence in contrast to a planned 

maintenance which could be of inspection, preventive maintenance or replacement nature. 

Knowing and understanding the failure mode and their modeling is vital in developing the 

planned maintenance schedules for a reliable plant operation. Failure data obtained from 

actual operation provides better insight when developing the model as operational failures 

occurs under the actual operation and environments and provides an accurate representation 

of system behavior. Kapur and Lamberson (1977) reported that Weibull distribution is 
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considered as generalized failure model and is often used in reliability analysis due to its 

inherent flexibility to model increasing or decreasing failure rates. In reality equipment 

failure pattern does not always tend to be independent of each other; in this case a Non-

Homogeneous Poisson Process (NHPP) can be used to model the time-dependent random 

failures. Ahmed, Moghaddam, Raza, and Khan (2015); Moghaddam and Usher (2011) and 

many other researchers have used this approach. In this article we assume that the selected 

equipment are repairable. It is also assumed that failure, repair, replacement and inspection 

task can be scheduled and time to failure follows a NHPP. Each equipment in the system is 

assumed to have an increasing failure rate. For non-homogeneous Poisson process, failure 

rate is a function of time. As we are considering increasing failure rate, Rate of Occurrence 

of Failure (ROCOF),       is given by Eq. (1); 

                                  (5-1) 

In Eq. (5-1)        ,    are scale parameter, shape parameter, and t is the time 

interval. Using Eq. (5-1), expected number of failures can be computed as follows: 

 

          

    

    

                
            

    

                      

(5-2) 

5.5.2 Equipment age estimation: 

Age of an equipment,   at a given time,   with respect to the different tasks such as 

inspection (I), Maintenance (M), and Replacement (R) is estimated by Ahmed et al. (2015) 

and is represented in Eq. (5-3) to Eq. (5-7).  Further, the maintenance task is considered to be 
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imperfect, and therefore after the maintenance task the equipment does not return to as good 

as new (AE=0) and its age is reduced by a factor    for an equipment, m.  

 
Inspection Task 

                                   (5-3) 

Maintenance Task: 

                                      (5-4) 

Replacement Task: 

 

                             (5-5) 

                               (5-6) 

Considering the above maintenance task, if the age of the system at the end of each 

period t for equipment m can be obtained from Eq. (7) 

           
 

 
                       (5-7) 

5.5.3 Maintenance activities costing: 

 Performing a maintenance activity such as inspection, corrective or preventive 

maintenance and replacement for any equipment requires skilled resources and materials. 

Consuming these resources derives various cost activities and is an increasing function 

depending upon the nature and number of time action is taken over the life span of the 

facility. The economic consequence (cost) of these activities has been discussed in detail by 

Ahmed et al. (2015) and is summarized in Eq. (5-8) to Eq. (5-11).  

 

 
Inspection Task: 
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                                       (5-8) 

Where in Eq. (8),      is the time for inspecting equipment    and        is the cost of 

labor for inspection. 

Maintenance Task: 

                                       (5-9) 

Where in Eq. (9),      is the time required to carry out maintenance of equipment    and  

      is the cost of maintenance labor. 

Replacement Task: 

                                  (5-10) 

Where in Eq. (5-10),      is the time required to replace an equipment  ,      is 

the cost of replacement labor and      is the replacement material cost. Due to various 

failure natures, the material cost is not considered here. 

In the case of a failure, an unplanned replacement is carried out. It is assumed that 

this cost of replacement due to failure would be;   

                                      (5-11) 

Where in Eq. (5-11),      is the time required to replace a failed equipment  ,      

is the cost of labor to replace a failed equipment,    is the failure cost factor of equipment 

m, and      is the replaced material cost. 

In addition to the above, one of the major and significant cost contributor is the 

production loss due to the facility shutdown. Since, in this proposed methodology, the 

maintenance schedule is designed such that there is no impact on operational availability; the 

cost of production loss is not considered.   
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5.5.4 System reliability estimation: 

We assume that the failure rate function of an equipment follows an increasing failure 

pattern and the rate of failure of occurrence for repairable system follows a NHPP, the 

reliability,     of an equipment m for a given period t  is computed using Eq. (5-12), 

 

 
                          

            
    

                     
(5-12) 

However, when various subsystems are interlinked to each other, the system functionality 

depends on the function of each of the subsystem considered. Considering that the failures of 

each subsystem are independent, the system reliability is the product of the reliability of each 

individual subsystem for a considered interval. Thus for a system acting in series, reliability 

equation can be written as, 

 

                     
            

   

   

   

   

   

  (5-13) 

5.6 Bi-objective model formulation 

Damghani, Abtahi, and Tavana (2013) reported that epsilon-constraint method is one 

of the methodologies to solve multi-objective optimization. In this method decision makers 

select one objective function out of n to be optimized, while the remaining objective 

functions are put as a constraints to be less than or equal to given target values. We use an 

epsilon-constraint framework, and this has been used in other areas of research as well.  

Berube, Gendreau, and Potvin (2009) provided evidences that Pareto set of bi-objective 
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problem can be generated more efficiently using the epsilon-constraint method. Laumanns, 

Thiele, and Zitzler (2006); Amirian and Sahraeian (2015); and Morabi, Owlia, Bashiri, and 

Doroudyan (2015) have used this method for multi-objective decision problem. 

In this paper expected total estimated cost (   ) and system reliability (    ) are 

considered as the two objectives to optimize and the decision is the complete schedule for 

inspection (I), Maintenance (M), and Replacement (R) 

 

              

                                   

   

   

   

   

             

(5-14) 

                        
            

   

   

   

   

   

 (5-15) 

5.             

6.  

                    (5-16) 

 

                                 

                     
(5-17) 

           
 

 
                      (5-18) 

               (5-19) 

             (5-20) 

                   (5-21) 

Eq. (5-16) to Eq. (5-21) represents various constraints used in designing the model. 

Where, Eq. (5-16) sets the initial age to zero for each subsystem at the beginning of the 

http://www.sciencedirect.com.qe2a-proxy.mun.ca/science/article/pii/S1568494615000861
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planning horizon, Eq. (5-17) and Eq. (5-18) are used to estimate the effective age of the 

equipment due to various activities performed over the period, Eq. (5-19) prevents 

simultaneous activities scheduling for an equipment, Eq. (5-20) makes sure that in all cases 

the equipment age at the beginning or end of the period is always positive and more than zero 

and finally Eq. (5-21) defines various maintenance activities as a binary variables and 

restricts the values to be positive numbers. 

5.6.1 Proposed solution approach 

In Figure 5-4, a solution framework is presented. It is mainly a simulation-based 

optimization approach. The risk-based equipment selection has been completed in section 5.5 

and a bi-objective nonlinear integer program (BONIP) is proposed in section 5.6. Next, 

following the solution suggested in Figure 5-4, we developed an  -constraint method to 

transform BONIP into a single objective function which can be solved more conveniently. 

 

 

              

                                   

   

   

   

   

             

(5-22) 

            

                (5-23) 

 

And constraints defined in Eq. (16) to Eq. (21). 

. 
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In Single Objective Nonlinear Integer Program (SONIP), the reliability objective      

is transformed as a constraint.  

5.6.2 Decision variables re-orientation: 

In Figure 5-5, we have explored the structure of the decision variables (    

       ) and have shown how we can generate a schedule ( ).  We can observe here that 

using the schedule,  , it reduces the decision variables from            to  considerably 

less,         variables in the schedule,  . Each cell in the Schedule matrix can take either 

of three actions:  Inspection ( ), Maintenance ( ), or Replacement (  . 
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Figure 5-4: Proposed solution framework 
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Figure 5-5: Decision Variable re-orientation 

 

Using re-orientation presented in Figure 5-5, we can reduce the total number of 

decision variable to exact one-third of the original problem      .  Thus, we get a reduced 
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(5-24) 

            

                (5-25) 

 

The matrix   contains elements as outlined in Figure 5-5. Using Eq. (24), we can 

compute ETC by recoding             into    ,    , and    . Given      , then 

     ,      ,      . Similarly for other values of    , the     ,    , and      are  

easily  translated. Notice that constraints in Eq.(16)-(21) are removed as the proposed 

solution using schedule,    resolves the selection decision among the three operation 

       ,  that was earlier addressed using, into    ,    , and    . Similarly, for a given 

schedule,  , the reliability,       can be estimated using Eq. (15) 

5.6.3 Genetic Algorithm (GA) implementation: 

GA is a meta-heuristic, which belongs to the class of evolutionary algorithms (Deb, 

2001). It mimics the process of natural evolution like inheritance, mutation, selection, and 

crossover in pursuit to find the best solution to an optimization problem (Kaveshgar, Huynh, 

& Rahimian, 2012). In the proposed solution framework as shown in Figure 5-4, we have 

utilized the GA provided in Global Optimization tool in MATLAB (2015b). The current 

version of the toolbox has incorporated increased functionality and enables the built-in GA 
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procedure to handle the nonlinear mixed integer optimization problem (NLMIP) such as the 

one presented in       .  In the following we discuss the important features. 

The procedure starts with the knowledge of the input data form the LNG plant gas 

sweetening process unit. The data includes information regarding equipment failure, and the 

estimated cost for each equipment regarding the inspection, preventive maintenance, planned 

replacement, and replacement or repair. The planning horizon is also decided at this stage. 

There are four main procedures a typical GA implementation performs:  

5.6.3.1 Initial population generation: 

Typically GA procedure starts with the creation of a randomly generated initial 

population. Using the decision variable re-orientation framework presented in Figure 5-6 an 

individual solution, ‘schedule’,   which is also referred to as chromosome is randomly 

generated. The population size valuation could be arbitrarily set in the population generation 

option in ‘gaoptimset’ in the MATLAB (2015b) ‘ga’ procedure. In Figure 5-4, the procedure 

is represented in Step 1 in the GA related operators which is repeated for each simulation. In 

this implementation we have generated initial population using ‘PopulationSize’ parameters 

in ‘gaoptimset’.In the following, the main procedure of MATLAB (2015b) ‘ga’ along with 

the options used is presented.  

‘options =gaoptimset('PopulationSize', 'Generations', 'EliteCount', 'TolFun', 'PlotFcns', 

@gaplotbestf)’ 

The MATLAB 2015b built-in procedure used is: 

‘[x,fval,exitflag] = ga(@cost_obj,nvars,[],[],[],[],lb,ub,nonlcon1,IntCon,options), 

Table 5-1 and Table 5-2  outline the user-defined and built-in parameters selection. In 

addition to the stated parameters in Table 5-1 and Table 5-2, all other parameters in ‘ga’ 
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procedure are set to their default values. A detailed documentation on how ‘ga’ built-in 

procedure works is available at MATLAB (2015b)
a
 Global Optimization Toolbox. However, 

the problem that we have addressed here is an integer program which requires several 

modifications to basic ‘ga’ procedure. In this implementation for ‘ga’ procedure for our 

problem, we have restricted to default settings for crossover, mutation, special creation in 

order to keep the decision variables integers. These details on default settings can be found at 

MATLAB (2015b)
b
 Global Optimization Toolbox. 

Deep et al. (2009) have discussed the use of GA for constrained integer programming 

problems.  ‘ga’ procedure used penalty functions as suggested in Deep et al. (2009) and Deb 

(2000) for handling nonlinear constraint in       .  The MATLAB (2015b) built-in function 

‘ga’ also suits this implementation of the integer variable problems as there are no equality 

constraints in       .  Due to integer variables, no custom creation functions such as 

(‘CreationFcn’ option), crossover function (‘CrossoverFcn’ option), mutation function 

(‘MutationFcn’ option), or initial scores (‘InitialScores’ option) can be user-supplied in ‘ga’. 

These functions are self-selected in MATLAB default setting in ‘ga’ procedure. In the 

simulation, to maintain the integer decision variables, ‘ga’ have used special creation. 

Crossover, and mutation functions, and their detailed documentation is also available at 

MATLAB (2015b)
c
 Global Optimization Toolbox. 
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Table 5-1: MATLAB (2015b) built-in procedure ‘ga’ related selected parameters in 

‘gaoptimset’ 

Parameters Remarks Selection value(s) 

‘PopulationSize’ The number of individual chromosomes 

(solutions) in a generation  

150 

‘Generations’ Total number of generations explored in  

simulation run 

500 

‘EliteCount’ Number of individual in the current generation 

guaranteed to survive for next generation. 

10 (MATLAB 2015b, 

default) 

‘TolFun’ Function tolerance, i.e., the different between the 

objective values improved  

1e-08 

‘PlotFcns’ Optional. It is used to graph the best total expected 

cost 

Built-in parameters 

 

‘SelectionFcn’ 

Selection options specify how the genetic 

algorithm chooses parents for the next generation. 

Binary tournament, 

default for integer 

problem 

 

  



   

 160 

Table 5-2: MATLAB (2015b) built-in procedure ‘ga’ user-defined functions and parameters 

Parameters Remarks Selection value(s) 

@cost_obj User-defined function to compute the total 

expected cost  

Not applicable  

nvars Total number of decision variables. A column 

vector of size 168 containing values, ‘1’, ‘2’, ‘3’ 

           , where 

   , and     , 

Indicators 

1= Inspection,  

2= Maintenance,   

3= Replacement 

lb Lower bound column vector of size 168 all 

values are ones, i.e., lb=ones(168,1) 

1= Inspection 

ub Lower bound column vector of size 168 all 

values are set at three, i.e., ub=3 * ones(168,1) 

3= Replacement  

Nonlcon User-defined non-linear constraint for reliability   

IntCon The total number of integer values.  Set to 168, since         

   . All variables are 

integers. 
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Figure 5-6: Population representation in a typical generation 

 

5.6.3.2 Cost and reliability estimation: 

For a given schedule,    as an individual chromosome in the population the expected 

total cost, (   ) is computed using Eq. (14) using the decision variable orientation 
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procedures outlined in Figure 5-4 and Figure 5-5. Similarly, we also estimate reliability for  - 

constraint method using Eq. (15). 

5.6.3.3 Crossover and mutation: 

As discussed previously in Section 5.6.3.1, ‘ga’ procedure restricts a customized 

selection for crossover and mutation related parameters.   

5.6.3.4 Stopping criterion: 

There are several stopping criteria that are employed with built-in ‘ga’ function in 

MATLAB (2015b).   The details on the stopping criterion can be found in MATLAB 

(2015b)
d
 Global Optimization Toolbox. We have selected the default stopping criterion, with 

the exception to two criteria: ‘Generations’ and ‘TolFun’.  The selected values for these 

parameters are provided in Table 5-1. 

5.7 Simulation Study 

5.7.1 Operational Risk-based Equipment Selection: 

Operational risk-based equipment selection process as discussed in Section 5.5 is 

applied to a section of gas sweetening unit as shown in Figure 5-2. The proposed operational 

risk-based equipment selection generated two categories of equipment as listed Table 5-3. 

From the operational risk analysis, it is evident that maintenance scheduling of all columns, 

drums and recontactor cannot be done unless the unit is planned for a shutdown and requires 

a shutdown maintenance strategy to develop the maintenance plan. Shutdown inspection and 

maintenance modeling has been presented by Hameed, and Khan (2014) and Hameed et al. 

(2014). On the other hand, for the remaining equipment maintenance scheduling can be 
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planned and optimized without shutting down the facility. The proposed model is applied to 

develop an optimized maintenance schedule for selected equipment considering facility non-

shutdown maintenance strategy.  

Table 5-3: Operational Risk-based Equipment Selection 

Equipment requiring shutdown 

maintenance strategy 

Equipment requiring  

non-shutdown maintenance strategy 

Washing column Wash water circulation pumps 

Absorber  Skim oil pumps 

HP recontactor Makeup water pumps 

LP recontactor AFA pumps 

HP flash drum Drain pumps 

LP flash drum Rich sulfinol pumps 

Drain drum Lean sulfinol pumps 

 

5.7.2  Equipment Failure Model: 

Equipment failure history and repair data are generally stored in the maintenance 

management systems. Data from a LNG plant gas sweetening unit was analyzed and 

presented by Ahmed et al. (2015). In this study we use the same information. However, some 

of the data has been revised based on the information received from field engineers for some 

of the selected equipment. These data are presented in Table 5-4. Further, we have 
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considered 24 months of planning horizon to develop maintenance scheduling optimization 

strategy for the selected units. 

Table 5-4: Failure Data  

m 

Equipment requiring  

non-shutdown maintenance 

strategy 

λm 

(failure/hr) 

βm αm 

1 Wash water circulation pumps 0.000436 1.2 0.4 

2 Skim oil pumps 0.00029 1.9 0.6 

3 Makeup water pumps 0.000152 2.5 0.6 

4 AFA pumps 0.0001316 1.7 0.5 

5 Drain pumps 0.0001104 1.8 0.4 

6 Rich sulfinol pumps 0.00066 2.1 0.3 

7 Lean sulfinol pumps 0.00075 1.9 0.3 

5.7.3 Inspection and Maintenance Cost: 

Majority of the published maintenance optimization model considers a time-based 

maintenance regardless of the condition of the equipment and follows a predefined interval 

by original equipment manufacturers. These pre-defined intervals set up set of activities in 

the form of work orders which is triggered automatically without considering the available 

resources and the shutdown of the system. In some cases multiple activities overlap and 

result in scheduling problems as well. Generally in Computerized Maintenance Management 

System (CMMS), data such as time required for completing a pre-defined inspection, 

maintenance, and replacement, as well as the cost of all associated skilled worker and 

required equipment is also stored and readily available for references. Table 5-5 present the 
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estimated cost ($/event) related to failure (CFm), repair (CRm), maintenance (CMm) and 

inspection (CIm) for all considered equipment. These values are estimated using Eq. (5-8) to 

Eq. (5-11) and plant specific CMMS data and field personnel.   

Table 5-5: Inspection and Maintenance Cost Data 

M 

CFm 

($/event) 

CRm 

($/event) 

CMm 

($/event) 

CIm 

($/event) 

1 970 480 190 20 

2 1900 1080 190 20 

3 1850 1050 190 48 

4 1050 480 240 36 

5 1000 450 240 36 

6 800 320 180 45 

7 800 320 200 40 

5.7.4 Numerical results: 

Selected results of the solution run for developed model on the case study is presented 

in Table 5-6 and Table 5-7. The optimal maintenance schedule for the set of equipment, 

obtained from GA optimization procedure is presented in terms of corresponding Pareto 

Front as showed in Figure 5-7 within the objective function space. Pareto Front shown in the 

referred figure is comprised of 42 points i.e. a total of 42 possible optimal solutions of the 

objective functions. The Pareto front shown in Figure 5-7 is developed based on the 42 

optimal solutions corresponding to the range of reliability from 0 to 0.99. The convergence 

graph clearly indicates that the cost increase exponentially when the target reliability is set to 

be more than 80% and is in line with the practical expectation.  Higher cost associated with 
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higher level of reliability is due to the cost of frequent replacement; this is also reflected in 

the optimal schedule where frequency of replacement increases with increased reliability 

target. Appearance of successive replacement also observed in the schedule. It is 

understandable that in the extreme scenario of 100% target reliability, replacement (R) 

becomes the only option. When a plant can be operated with lower level of reliability, regular 

maintenance can be carried out instead of replacement. In the proposed methodology, the 

maintenance schedule is developed by minimizing the cost while considering variable target 

reliability. The user can then choose from a list of alternative schemes to decide maintenance 

schedule over a period of time considering budgetary constraints. Generally gas processing 

facility target to achieve and operate with the reliability in the range of 90% to 95%. 

Considering this, two maintenance schedule obtained using Pareto-front is presented in Table 

5-6 and Table 5-7. The optimum schedule suggested by this integrated approach to achieve 

90% system reliability produces a maintenance cost of $34210 and for a 95% reliability 

results $42926.75 for two years period. The optimized schedule is an outcome while 

maximizing reliability and minimizing cost. The Pareto frontier is representative of this fact. 

The failure model is developed using expected number of failures while estimating the 

maintenance cost. The outcome of the simulation run confirms that the inspection is not 

directly affecting the reliability. Hence, at lower level of reliability we expect more 

inspections and lower cost. In other case, maintenance and replacement is dominating, as 

they affect the reliability.  

One of the outputs of the Pareto Front is that the analyst can select externally the best 

maintenance strategies considering various possible restrictions imposed over the solution 

simultaneously. Hence the analyst can analyze afterword every solution of each Pareto front 
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score based on reliability and cost. Additionally each of the 500 generation calculated in the 

front is related to specific schedule, so the decision maker can select a schedule of the Pareto 

front according to his or her preference knowing that the elected solution will accomplish all 

the imposed constraints. Maintenance and reliability team can effectively utilize the 

presented model to design maintenance activities such as inspection, maintenance and 

replacement to meet their organizational goals. Further in case of an equipment unexpected 

failures, the model need to be updated to develop a revised schedule for the remaining 

period. 

 

Figure 5-7: Pareto Front - Total Maintenance Cost Subject to Reliability Constraints 
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Table 5-6: Inspection and Maintenance Schedule for Target Reliability of 90% 

Total Cost = $ 34210.55 and Reliability = 90.0% 

m Planning Horizon (Month) 

  1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 

           0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 

1 I M M I I R R R M M M M M R M M R M M I M R M M 

2 I M M I I M I I I R M M M R M I M M I I M I M I 

3 I R I M R M M I I M M R M M I I R M I M M M M M 

4 I M M M I M M I I M I R M I I I I I I I M I I I 

5 I I R M M I I I M M M M M M M M M I M M M I I M 

6 I M M M I R M I R M R M M M M M R M R M M R R M 

7 I M R M M M R M R M M I R M M M I M R R M I M M 

 

 

Table 5-7: Inspection and Maintenance Schedule for Target Reliability of 95% 

Total Cost = $ 42926.75 and Reliability = 95.0% 

m Planning Horizon (Month) 

  1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 

           0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 

1 I R M M M M I R M M M R M R I M R I R M M M M M 

2 I R M M M M M R M R M I I I R M M R M M M I I M 

3 I M M M M M R M M R I M R I R I M R M M R R M M 

4 I M R I M I M M I M I M R M M M M I I I I M I I 

5 I I R I R M I I M M M M R M M I M M I R M I I I 

6 I M M R M M M M R R M M M R R M M R R I R M M M 

7 I M R R M R M M R M R R R M M M R M M I R M M M 
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5.8 Conclusions 

This paper proposes a multi-constrained, bi-objective non-linear optimization models 

using GA for maintenance scheduling for a section of a sweetening unit of a hydrocarbon 

processing facility. The proposed simulation based approach presented in the study, provides 

an optimal schedule for inspection, maintenance and replacement activities to achieve a 

reliable performance of the facility considering the facility shutdown. A well planned 

maintenance schedule generated from the Pareto-optimal solution, such as presented here 

will not only help to reduce the overall maintenance cost, increase the reliability of the 

facility but also minimize unnecessary shutdown of the facility. Typically a shutdown of a 

LNG producing facility generates a significant financial impact, resulting in millions of 

dollars in loss of production. The developed risk-based equipment selection strategy helps to 

minimize such event of loss production due triggered from the shutdown for maintenance of 

the unit. 

The proposed model has been successfully applied to obtain and optimize 

maintenance schedule for a gas sweetening unit, without provoking the facility shutdown. 

The proposed methodology, when extended to the complete plant will multiply the savings 

further, due to reduction in number of planned facility shutdown to maintain the desired 

reliability. Overall this methodology helps in developing an effective resource utilization 

planning. Pareto-optimal model provides flexibility to engineers and planners to develop 

maintenance schedules considering different conflicting objectives.  

The overall results derived from the proposed optimization models confirm the 

applicability of the approach to real world maintenance scheduling optimization problem and 

its application to other asset intensive industries where these actions are important to ensure 
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safety, availability and reliability of the facilities. The proposed optimization methodology 

can be applied to any facility such as process or non-process.  

In the future work, proposed methodology can be extended to solve non-linear 

optimization problem for maintenance scheduling with many other meta-heuristics such as 

Harmony Search algorithm, Tabu Search, and Simulated Annealing.  This can assist in 

benchmarking the performance of the proposed GA with the other meta-heuristics. This 

problem of scheduling can also be revisited considering inflationary conditions as well.  The 

current model has risk-neutral analysis to the problem, and interesting future work could be 

used to customize the schedule, based on the firm’s risk tolerance attitude.
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6 Chapter6 

 

Conclusion, Contributions and future work 

6.1 Introduction 

The development of an optimal shutdown interval for inspection and maintenance 

considering the uncertainty surrounding the age-based wear-out or degradation of systems or 

equipment is vital for the safe operation of a processing plant. A carefully planned inspection 

and maintenance strategy not only mitigates the effect of age based degradation but also 

reduces the threat of risk exposure. During the operational life of a facility, the only way to 

prevent component failure is through optimal maintenance strategy which can facilitate 

inspection, repair, overhaul or replacement. Some of the maintenance and inspection 

activities can be completed while the processing unit is in operations; however some of the 

equipment requires the processing unit to be in a non-operational state, usually called 

shutdown. These maintenance and inspection activities involve cost, shutdown, and a 

likelihood of having a reduced life due to induced human error. If the interval between 

subsequent shutdown, maintenance and inspection tasks is too long, it may result in a number 

of premature failures of components, which will result in higher economic consequences. On 

the other hand, if the shutdown maintenance and inspection is performed very often, it will 

not only increase the overall cost but also the possibility of induced human error. This is why 

a careful inspection and maintenance shutdown interval is required. Finding an optimal 
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shutdown interval, after taking into consideration the uncertainty, is a challenging task. 

Failures due to wear-out, corrosion, erosion etc., can be modeled stochastically. Existing 

maintenance strategies e.g., preventive maintenance, and condition based maintenance are 

formulated on the probability of component failure only. However, the risk-based 

maintenance and inspection strategy is a new paradigm change. A risk-based methodology 

not only considers the probability of a failure of the equipment but also the possible 

consequences of the failure. The economic consequences of a failure include the cost of 

breakdown, production loss due to facility shutdown, consequence of environmental damage, 

consequence of asset damage and cost of liability. Inspection and maintenance tasks 

inherently have economic consequences such as cost of inspection, cost of repair, cost of 

technical support, cost of replacement parts, labor and equipment cost. Keeping in mind the 

importance of the probability of failure and its consequences, the risk based inspection and 

maintenance strategy proposed  in this thesis provides a legitimate choice for the decision 

making process regarding the shutdown interval. In this proposed work, the reduction of risk 

to a reasonably low and practicable level is considered to ensure that the risk-based shutdown 

inspection and maintenance strategy maintains the safety of operations through the optimal 

utilization of resources. The proposed optimization methodology is a trade-off between the 

cost of failure, shutdown and the benefits of risk reduction, achieved by the optimal 

shutdown interval in terms of increased safety, availability and reliability. 

6.2 Research Contributions 

In this proposed research, a methodology is developed and presented to estimate and 

manage the shutdown of complex processing units or facilities which operate on a 24 hours 
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and 365 days basis.  The decision to shut-down a unit or facility is an important and a key 

decision for operating companies as this may produce a severe negative impact on their 

financial health. However, the benefits of having a best planned shutdown strategy will not 

only help to achieve high availability and reliability, low maintainability, and low overall 

cost but importantly will also minimize the operational risk. The availability of very limited 

shutdown modeling for inspection and maintenance for processing facilities provides us an 

opportunity to work on this topic, and to develop methodologies that can be applied and used 

to benefit operating companies in achieving their financial objectives. As discussed earlier, 

reliability, availability and cost are the three facet of risk. 

The major contributions of this research are summarized as follows: 

 A framework to estimate the risk-based shutdown interval for a processing plant 

Asset intensive industries such as oil and gas and petrochemical plants operate 

on a continuous basis. Planning inspection on maintenance on individual equipment 

will result in a significant impact on the operability as well as financial losses to the 

shareholders. In order to minimize these impacts, a frame work to estimate shutdown 

inspection and maintenance interval estimation on risk-based strategy is developed. 

This research analyzes the unit or facility by developing a risk-based equipment 

selection considering risk. The proposed research outlines the risk by estimating 

consequences considering various hazards. The proposed methodology is applied to 

develop shutdown interval for a LNG producing unit.  

 A risk-based methodology to estimate shutdown interval considering system 

availability  
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A novel risk-based approach to estimate the shutdown inspection and 

maintenance interval considering system availability using Markov process is 

presented. The proposed methodology reduces the risk of exposure to the operating 

company and shareholders for planning facility shutdown by maintaining the desired 

availability. This methodology ensures that the unit or plant is not only available for 

production but also the overall risk exposure meets the acceptance criteria. 

Considering and minimizing risk while planning for shutdown interval not only 

enhances the availability but also the safety and operation of the facility. The 

proposed methodology minimizes the financial consequences for an operating 

company due to production loss, loss of assets, safety (e.g., injury or loss of life) and 

environmental consequences.  

 A risk-based shutdown inspection and maintenance interval considering human 

error for a processing facility  

Repair is the maintenance action that restores the equipment to its operating 

conditions. Some repair actions restore equipment to a new condition while others are 

classed as minimal repair, i.e., they restore equipment to the condition prior to its 

failure. However, in reality, an equipment is likely to be restored to a condition 

between these two states. Occasionally, repairs may introduce faults in the equipment. 

A majority of the maintenance models find the optimum maintenance and inspection 

interval under the assumption that after maintenance action, the system or equipment 

state will be as good as new. Other researchers have studied the impact of imperfect 

maintenance while optimizing the maintenance and inspection interval. However, in 

both the cases the optimization is performed considering individual equipment and 
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the impact of facility shutdown while optimizing the maintenance and inspection 

interval is not taken into account. The novel idea presented in this work is to link 

various mechanics which can induce human error during inspection and maintenance 

activities. SLIM methodology is deployed to estimate HEP for each set of inspection 

and maintenance activities. Estimated HEP is then integrated in the probability of 

system failure. Shutdown inspection and maintenance consequences of selected 

equipment are determined and expressed in financial values ($). Integration of HEP 

results in obtaining a better risk profile, which is later used to optimize the shutdown 

interval. 

 Risk-based maintenance scheduling for a LNG gas sweetening unit 

The previous three proposed articles help to develop an optimized shut down 

inspection and maintenance interval for the operating facility. In this paper, a multi-

constrained, bi-objective maintenance scheduling optimization model is proposed 

using genetic algorithms. The genetic algorithm model was developed using 

MATLAB (Version 2015b) to solve this non-linear optimization problem. The 

proposed simulation based approach presented in the study, provides an optimal 

schedule for inspection, maintenance and replacement activities to achieve a reliable 

performance of the facility considering, the facility shutdown. Inspection, 

maintenance and replacement are considered as the three possible sets of activities to 

develop the schedule. Overall, this methodology helps in developing an effective 

planning for resource utilization. The developed Pareto-optimal model provides 

flexibility to engineers and planners to develop maintenance schedules considering 

different conflicting objectives.  
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6.3 Conclusions 

Inspection and maintenance optimization using mathematical modeling and 

simulation of the stochastic process is a growing area of research. A critical review of 

literature shows that there is a need for a robust risk-based inspection and maintenance model 

considering the process plant shutdown to help make an informed decision. In this 

dissertation, new models, approaches and algorithms have been explored to estimate and 

manage the shutdown interval for complex hydrocarbon processing units.  

The risk of equipment failure and its consequences on availability and reliability are 

vital for the hydrocarbon industry. In order to achieve a desired reliability and availability, 

these units are mostly taken out of service, i.e., put on “shutdown”. If the shutdown of the 

unit or facility is not planned considering the risk, it will produce a severe negative financial 

impact on the operating companies and their shareholders. By combining the probability of 

failure and the consequences of failure, an optimal strategy is proposed for developing 

shutdown interval. 

The inspection and maintenance management and optimization is encouraging 

operating companies and engineers to invest efforts in this domain to meet the availability 

and reliability of the facilities. However, the emphasis is found to be very limited when 

planning for shutdown of the facility and is generally based on Original Equipment 

Manufacturer (OEM) suggested intervals. The aim of this proposed risk-based shutdown 

strategy for a processing facility is to provide an optimal interval. This optimal shutdown 

interval will not only improve the reliability and availability of the plant but will also protect 

human life, financial investment and the environment. 
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The key areas covered in this research include efforts to develop a risk-based frame 

work for shutdown interval modeling, risk-based shutdown interval optimization considering 

required availability, integrating human errors in shutdown interval optimization model, and 

finally developing a risk-based maintenance schedule for the facility, considering shutdown.  

In conclusion, the proposed methodologies will contribute to processing plant 

industries in providing a methodology for shutdown interval optimization. Most important, 

the proposed methodology not only takes account the uncertainty and variability by using 

stochastic modeling but also the economic consequence of failure.  

 In conclusion, it is envisaged that this research will effectively contribute to the field 

by providing a wide range of solutions to industry in terms of shutdown interval estimation 

and management. This proposal is an attempt to overcome the shortcomings of the existing 

methodologies published in the literature, which fail to capture the impact of overall facility 

shutdown in long duration operations. In this work an attempt has been made to overcome 

the said limitation and provide a novel solution to optimize shutdown interval with a risk-

based approach. 

6.4 Recommendations for future research work 

Inspection and maintenance optimization is in focus since the last few decades. 

However, consideration of shutdown interval for inspection and maintenance is found to be 

very limited in literature. In this proposed research, a methodology to develop shutdown 

interval for a processing facility is presented considering the risk, availability, reliability,  

imperfect maintenance and finally genetic algorithms are applied to develop a maintenance 
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schedule.  Along with the key development, there is always an option to enhance or extend 

the proposed work. Some of the suggestions are discussed in this section. 

1. In the presented research, a risk profile is developed considering the 

consequences due to safety hazards, production loss and inspection and maintenance costs. 

Generally, operating companies operate with the resources which can meet their ongoing 

operations, however for shutdown they need to hire additional manpower, tools and purchase 

spares. This work can be extended to optimize shutdown interval optimization including 

other constraints such as inspection and maintenance manpower, tools and spares availability 

and their financial impact on shutdown planning. Consideration of these in generating a risk 

profile will provide a better insight into the optimization problem. 

2. In the present work a risk-based shutdown interval methodology is explored 

considering the availability of the facility. Here, the proposed methodology has considered a 

constant failure and repair rate in determining a steady state availability to obtain the risk-

based shutdown interval. This work can be extended to develop state dependent models with 

different failure behaviors. The flexibility of state-dependent models will help to develop 

various failure modes that will result in obtaining a better representation of the situation.   

3.  A planned shutdown helps in utilizing the available resources to minimize the 

operational risk. For any shutdown planning, multiple tasks can be considered such as no 

action can be planned on certain equipment of the facility, and/or the equipment is left to 

operate and continues to age with the same failure rate. An inspection, maintenance and 

repair action may be scheduled and in some cases a decision may be made to replace the 

equipment. These tasks will generate a detailed shutdown schedule for the considered 

equipment. Developing a detailed time schedule for a specific shutdown will help taking 
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account the uncertainties in completing these tasks and will lead to forecasting the actual 

shutdown duration. This in turn will help the operating companies to adjust their risk 

tolerance considering the impact of their delivery schedule and commitments. 

4. Shutdown interval optimization for inspection and maintenance is considered 

to ensure the safety, reliability, and availability of the units and the facility. In this research, a 

simulation based Pareto-optimal solutions using genetic algorithms for multi-constrained 

maintenance scheduling optimization are discussed for the equipment which can be inspected 

and maintained without taking the facility in shutdown. The proposed methodology can be 

extended to solve non-linear optimization problems for shutdown maintenance scheduling 

with meta-heuristics such as Harmony Search algorithm (Geem, Kim, & Loganathan, 2001), 

Tabu Search (Glover, 1998), and Simulated Annealing (Kirkpatrick, 1984), etc.   

5. Further, the shutdown interval optimization problem can be coupled with 

inflationary conditions to generate a risk profile for shutdown interval planning and decision 

making. 
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