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Abstract

Homomorphic encryption is a particular type of encryption method that enables

computing over encrypted data. This has a wide range of real world ramifications

such as being able to blindly compute a search result sent to a remote server without

revealing its content.

In the first part of this thesis, we discuss how database search queries can be

made secure using a homomorphic encryption scheme based on the ideas of Gahi

et al. Gahi’s method is based on the integer-based fully homomorphic encryption

scheme proposed by Dijk et al. We propose a new database search scheme called the

Homomorphic Query Processing Scheme, which can be used with the ring-based fully

homomorphic encryption scheme proposed by Braserski.

In the second part of this thesis, we discuss the cybersecurity of the smart electric

grid. Specifically, we use the Homomorphic Query Processing scheme to construct a

keyword search technique in the smart grid. Our work is based on the Public Key
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Encryption with Keyword Search (PEKS) method introduced by Boneh et al. and a

Multi-Key Homomorphic Encryption scheme proposed by López-Alt et al.

A summary of the results of this thesis (specifically the Homomorphic Query

Processing Scheme) is published at the 14th Canadian Workshop on Information

Theory (CWIT) [39].
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Chapter 1

Introduction

With the advent of the digital era in the 1980s, there was a rapid growth in commu-

nication and networking all over the globe. This was followed by the trend of minia-

turization of digital equipment, and current standards allow us to use a smartphone

with the same computational power as the whole of NASA back in the 1970s [29].

The fast-moving trend of digitalization has enabled access of most services from dis-

tant locations. For example, a recent study shows that 74% of smartphone users

use a location based service (such as Google Maps) to find directions and other lo-

cation based information [48]. Moreover, the adaptation of these kind of services in

healthcare are becoming increasingly common with cloud-based health recording and

genomic data management tools such as Microsoft Health. However, the widespread
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adaptation of location-based services poses a threat to users because their personal

data, such as location, health records, and sometimes even genomic data, is shared

on the web without any guarantee of privacy.

The privacy of data sent via the web can be guaranteed if they are encrypted

before sending. However, encryption also makes server side computations impossible

unless the data center is provided with the decryption key. This problem can be

addressed by fully homomorphic Encryption schemes, which enable operations on

encrypted data such that, when decrypted, will output a corresponding plaintext.

1.1 Motivation

Existing database systems use various query processing technologies to process database

queries. For example most databases use Structured Query Language (SQL) to han-

dle user defined queries, whereas query processing schemes such as Java Persistence

Query Language (JPQL) is used by database administrators for programatically han-

dle database queries. The processing of database records by users as well as admin-

istrators is subjected to a wide range of privacy issues. On the part of the user, the

most common privacy concern is that queries they send could be viewed at the server

side. For example a query that is sent to a search engine could be viewed, stored
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or manipulated by a malicious party (i.e., a malicious database administrator) after

it is received by the server. This is a major privacy concern, and currently the only

practical solution that is being used is defining strict privacy laws that govern appro-

priate usage of user data. Cryptographic solutions that are being used can protect

data during trasmit, but once it reaches its destination, to process the queries the

data packets need to be decrypted. This is the main motivation of homomorphic

encryption. As we shall discuss homomorphic encryption can be used to prevent data

breaches during storing as well as during query operations.

This work attempts to improve upon a method proposed by Gahi et al. [19] to

homomorphically encrypt database queries. Their work specifically uses the DGHV

fully homomorphic encryption scheme [15]. The DGHV scheme operates on plaintext

bits separately, and thus Gahi’s method requires a large amount of computations

to perform even a simple operation such as integer multiplication. We propose an

alternative to Gahi’s method, which we call Homomorphic Query Processing. Our

method is not restricted to the DGHV scheme and can be used with more modern

fully homomorphic encryption schemes. For example, using our Homomorphic Query

Processing technique with the more recent ring based fully homomorphic encryption

scheme proposed by Braserski et al. [12], which work on blocks of data (such as

integers) rather than single bits (as in Gahi’s scheme), the number of computations
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can be greatly reduced.

In addition to this goal, we also look at recent approaches in integrating homomor-

phic encryption schemes for aggregating measurements in the smart grid. The “smart

electric grid” can be defined as the next generation electric grid network that uses

information technology to deliver electricity efficiently, reliably, and securely. Specif-

ically we summarize the methods introduced by Garcia [21], Kursawe [31], Erkin [16]

and Ács [3]. We then discuss methods of processing queries over encrypted data in

the smart grid and propose a new keyword search scheme based on our Homomorphic

Query Processing method. The proposed method also uses Public Key Encryption

with Keyword Search (PEKS), introduced by Boneh et al. [9], and Multi-Key Ho-

momorphic Encryption introduced by López-Alt et al [33]. This scheme can be used

along with the previously mentioned aggregating schemes to make smart meter data

encrypted as well as queryable. Finally, we conclude with a brief discussion of the

challenges faced by each proposed protocol and future research directions.

1.2 Contribution and Organization

In the first part of this thesis, we focus on improving a specific database query pro-

tocol suggested by Gahi et al [19]. This scheme uses the DGHV fully homomorphic
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encryption scheme to compute encrypted database queries. The chapters are orga-

nized as follows. In Chapter 2, we summarize the background material, discuss the

notions of full and partial homomorphisms, and formally define what it means to be

fully homomorphic. In Chapter 3, we look closely at the integer based fully homo-

morphic encryption scheme (commonly known as the DGHV scheme) introduced by

Dijk et al. [15], which is a conceptually simpler version of Gentry’s original blueprint.

We also introduce Gentry’s idea of “bootstrapping”, which transforms a somewhat

homomorphic encryption scheme (such as the DGHV scheme) to a fully homomorphic

one. The DGHV scheme has a wide variety of practical applications including loca-

tion based privacy [20], database security [19], and privacy preserving in healthcare

applications [45], among many others. Chapter 4 gives a detailed description of the

models proposed by Gahi et al. [19,20] to preserve location and database privacy us-

ing the DGHV scheme. In Chapter 5, we introduce our new protocol, Homomorphic

Query Processing method, to process database queries. Our protocol does not rely

on the DGHV scheme and can be used with more modern fully homomorphic encryp-

tion schemes like the ring based fully homomorphic encryption scheme proposed by

Braserski et al [12]. In Chapter 6, we summarize recent integrations of homomorphic

encryption schemes to preserve privacy in aggregation calculations in the smart grid.

In Chapter 7, we discuss querying data in the smart electric grid and propose a new
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scheme that can be used to query smart meter data with respect to a given set of

keywords. Finally, in Chapter 8, we conclude with a discussion of challenges faced

by each proposed aggregation protocol, as well as our proposed schemes and future

research directions.

A summary of results of this thesis (specifically the Homomorphic Query Pro-

cessing scheme) is published at the 14th Canadian Workshop on Information Theory

(CWIT) [39].



Chapter 2

Background

In this section, we present the background material needed to study the DGHV

encryption scheme and Gahi’s protocol. We start with an introduction to fully and

partially homomorphic encryption schemes. Then, we define what it means to be

fully homomorphic based on the definition proposed by Rivest et al [42]. We also give

a high level overview of the construction of a fully homomorphic encryption scheme,

as proposed by Gentry [22].
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2.1 Homomorphic Encryption

Homomorphic encryption is a novel method that allows computations to be carried

out on the ciphertext such that after decryption, the result would be the same as

carrying out identical computations on the plaintext. This has novel implications

such as being able to carry out operations on database queries in the form of cipher-

text and returning the result to the user so that no information about the query is

revealed at the server’s end [10].

The idea of homomorphic encryptions is not new, and even the oldest of ciphers,

ROT13 developed in ancient Rome, had homomorphic properties with respect to

string concatenations [26]. Certain modern ciphers such as RSA and El Gamal also

support homomorphic multiplication of cipher texts [26]. The idea of a “fully” ho-

momorphic encryption scheme (or privacy homomorphism) which supports two ho-

momorphic operations was first introduced by Rivest, Adleman, and Dertouzous in

1978 [42]. After more than three decades, the first fully homomorphic encryption

scheme was founded by Gentry in 2009 with his breakthrough construction of a lat-

tice based cryptosystem that supports both homomorphic additions and multiplica-

tions [22]. Although the lattice based system is not used in practice, it paved the

way for many other simpler and more efficient fully homomorphic models constructed
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afterwards.

2.2 Fully and Partially Homomorphic Encryption

Schemes

Homomorphic cryptosystems can be broadly categorized into fully homomorphic and

partially homomorphic schemes (Figure 2.1). Partially homomorphic encryption

schemes are homomorphic with respect to one operation such as multiplication in

the case of the RSA cryptosystem. A schematic diagram of an additive homomor-

phic encryption scheme is given in Figure 2.2. Here, we have an encryption scheme

(denoted by Enc) that outputs two ciphertexts c1 and c2 when operated on the two

plaintexts x1 and x2 (with key k), respectively. Since the scheme is additively homo-

morphic, we have the following relation between the plaintexts and ciphertexts.

Enck(x1) + Enck(x2) = Enck(x1 + x2)

Fully homomorphic encryption schemes, on the other hand, support two operations

(addition and multiplication). Up to date, there is quite a number of partially homo-

morphic encryption schemes that are well understood and practically used. However,

the field of fully homomorphic encryption is quite recent, and the currently avail-

able fully homomorphic encryption schemes are mostly proof of concept and can only
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Figure 2.1: Fully and Partially Homomorphic Schemes

be carried out with respect to a small number of operations or with very high end

laboratory settings [36]. One of the main reasons for the impracticality of fully ho-

momorphic encryption schemes is that the ciphertext size and the computation time

increases rapidly as the security level increases.

As much as we would like to have a cryptosystem that is homomorphic with

respect to one operation, the application of such a scheme is limited by the fact that

not every computation of our liking can be performed with only one operation. For

example, to find the mean or average value of a sample, we would need a homomorphic

encryption scheme that supports one multiplication at the very least. Moreover, the
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Decryption

k

c1 = Enck(x1)

c2 = Enck(x2)

c1 + c2
x1 + x2

Figure 2.2: Additive Homomorphic Scheme

fact that any computation on a computational device (computers, calculators, etc.)

can be designed through a Boolean circuit (a circuit that consists of addition and

multiplication gates), makes fully homomorphic encryption schemes highly appealing.

With a fully homomorphic encryption scheme, we can outsource computations to

cloud with reasonable guarantee (upto the hardness of breaking the scheme) that

the computations will be performed blindly. For example, consider the case where

two parties, Alice and Bob, want to communicate with each other (Figure 2.3). Alice

would like to send Bob three numbers x1, x2, and x3, and get the result of a calculation

performed by Bob. However, Alice does not want Bob to know the three numbers

she sends. Therefore, she would like to encrypt these numbers using an appropriate

encryption scheme before sending it to Bob. However, Alice also want Bob to be able
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to perform the calculation even though the numbers are encrypted. This problem is

solved using a homomorphic encryption scheme. Alice encrypts her numbers using

a homomorphic encryption scheme that is then sent to Bob. Bob can perform his

calculation on the encrypted numbers as though they are not encrypted. However,

Bob will only see the ciphertexts and not the actual numbers x1, x2, and x3. Finally,

Bob will send the result of the calculation back to Alice to decrypt and obtain the

result. This process is illustrated in Figure 2.3. Currently, it is common practice

to decrypt the data at the server-side before doing any calculation. However, this

places the user’s privacy in jeopardy because the user is forced to assume that the

server is trusted. Hence, using a fully homomorphic encryption scheme is the key

to successfully ensuring many security and privacy assumptions that are prevalent in

current communication protocols.

We will first look at the RSA cryptosystem as a typical example of a partially

homomorphic encryption scheme.

2.3 Partial Homomorphism - RSA Cryptosystem

The RSA Cryptosystem was introduced by Ron Rivest, Adi Shamir, and Leonard

Adleman in 1977. Although not intentionally introduced as a homomorphic encryp-
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c1 = Encpk
(x1),

c2 = Encpk
(x2),

c3 = Encpk
(x3)

c1 × (c2 + c3)

Decsk(c1 × (c2 + c3)) = x1 × (x2 + x3)

Alice
Bob

c1 × (c2 + c3)

Figure 2.3: Alice, Bob, and Fully Homomorphic Encryption

tion scheme, the RSA scheme shows homomorphic qualities with respect to multipli-

cation. The RSA scheme operates as follows:

• KeyGen: Select two random large prime numbers, p and q. Compute their

product, n = pq. Choose e such that 1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1, where

ϕ is the Euler’s Totient function. Compute d such that ed ≡ 1(mod ϕ(n)).

Public Key: (e, n), Private Key: (d, ϕ(n))

• Enc: For a message m, compute c = me (mod n).

• Dec: For a ciphertext c, compute m = cd (mod n).

where KeyGen, Enc, and Dec denote the key generation, encryption, and decryp-

tion algorithms, respectively. Now, consider two plaintexts x1 and x2 encrypted by
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the RSA scheme.

Enc(x1) = xe1 (mod n) and Enc(x2) = xe2 (mod n)

Therefore,

Enc(x1)× Enc(x2) = xe1 × xe2 (mod n) = (x1x2)
e (mod n) = Enc(x1 × x2)

Therefore, the RSA scheme is clearly homomorphic with respect to multiplication.

2.4 Fully Homomorphism

The importance of fully homomorphic encryption schemes and the question of whether

such schemes actually exist was first proposed by Ronald Rivest, Len Adleman, and

Michael Dertouzos in 1978, immediately following the introduction of the RSA cryp-

tosystem [42]. In their own words the question statement was as follows.

“A scheme E with an efficient algorithm EvaluateE such that, for any valid

public key pk, any circuit C, and any ciphertexts ψi ← EncryptE(pk, πi)

outputs,

ψ ← EvaluateE(pk, C, ψ1, . . . , ψt)

where ψ is a valid encryption of C(π1, . . . , πt) under pk.”
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Here, πi denotes the plaintext. For more than three decades, it was an open problem

whether such schemes exist. However, as we will see in the next chapter, this problem

was answered by Craig Gentry in 2009.

2.4.1 Overview of Fully Homomorphic Encryption

At a high level, Gentry’s idea can be described by the following general model. This

is the blueprint that is used in all homomorphic encryption schemes that followed.

1. Develop a Somewhat Homomorphic Encryption Scheme that is restricted to

evaluating a finite number of additions or multiplications. In other words, the

somewhat homomorphic encryption scheme that we construct is only limited to

evaluating low-degree polynomials.

2. Modify the somewhat homomorphic encryption scheme to make it Bootstrap-

pable, that is, modifying it so that it could evaluate its own decryption circuit

plus at least one additional NAND gate.

The somewhat homomorphic encryption scheme usually introduces a noise when-

ever a homomorphic operation is carried out, and when the noise exceeds a certain

threshold, the scheme loses its homomorphic ability. The idea behind constructing a

bootstrappable scheme is that whenever the noise level is about to reach the thresh-
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old, we can bootstrap it so that the resulting ciphertext will give the same encrypted

value but with a lower noise. In this way, if the ciphertext is bootstrapped from time

to time, an arbitrary number of operations can be carried out.

In the next chapter, we will define a fully homomorphic encryption scheme com-

monly known as the DGHV scheme, which is used to process database queries se-

curely.



Chapter 3

Integer Based Fully Homomorphic

Encryption (DGHV Scheme)

3.1 DGHV Scheme

The DGHV scheme was introduced by Marten van Dijk, Craig Gentry, Shai Halevi,

and Vinod Vaikuntanathan in 2010, and this scheme operates on integers as opposed

to lattices in Gentry’s original construction. The scheme follows Gentry’s original

blueprint by first constructing a somewhat homomorphic encryption scheme. The

key generation, encryption and decryption algorithms of the DGHV scheme are given

below.
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Let λ ∈ N be the security parameter and set N = λ, P = λ2 and Q = λ5. The

scheme is based on the following algorithms;

• KeyGen(λ): The key generation algorithm that randomly chooses a P -bit

integer p as the secret key.

• Enc(m, p): The bit m ∈ {0, 1} is encrypted by

c = m′ + pq,

where m′ ≡ m (mod 2) and q, m′ are random Q-bit and N -bit numbers, re-

spectively. Note that we can also write the ciphertext as c = m+ 2r + pq since

m′ = m+ 2r for some r ∈ Z.

• Dec(c, p): Output (c mod p) mod 2 where (c mod p) is the integer c′ in (−p/2, p/2)

such that p divides c− c′.

The value m′ is called the noise of the ciphertext. Note that this scheme, as it is given

above, is symmetric (i.e., it only has a private key). We can define the public key as

a random subset sum of encryptions of zeros, that is, the public key is a randomly

choosen sum from a predefined set of encryptions of zeros: S = {2r1 + pq1, 2r2 +
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pq2, . . . , 2rn + pqn}. A typical encryption of the plaintext m would be,

c = m+
∑

i∈T

(2ri + pqi)

= m+ 2
∑

i∈T

ri + p
∑

i∈T

qi,

where T ⊆ S. From here on we shall use m′ to denote m +
∑

i∈T ri and q to denote

∑
i∈T qi.

This scheme is homomorphic with respect to addition and multiplication and

decrypts correctly as long as the noise level does not exceed p/2 in absolute value.

That is, |m′| < p/2. Let c1 and c2 be two ciphertexts obtained using the DGHV

scheme, that is,

c1 = m′
1 + pq1 and c1 = m′

2 + pq2,

where m′
1 = m1(mod 2) and m′

2 = m2(mod 2). Addition of c1 and c2 results in,

c1 + c2 = (m′
1 +m′

2) + p(q1 + q2).

Thus,

Enc(m1, p) + Enc(m2, p) = Enc(m1 ⊕m2, p).

Decryption works as long as,

|m′
1 +m′

2| <
p

2
.
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Similarly, multiplying c1 and c2 results in,

c1c2 = (m′
1 + pq1)(m

′
2 + pq2)

= m′
1m

′
2 + p(m′

1q2 +m′
2q1 + pq1q2)

Hence,

Enc(m1, p)× Enc(m2, p) = Enc(m1 ×m2, p)

Here, decryption works as long as,

|m′
1m

′
2| <

p

2
.

Hence, this is a somewhat homomorphic encryption scheme in the sense that once the

noise level exceeds p/2, the scheme loses its homomorphic ability. In other words, this

scheme can evaluate any function that is composed of a collection of additions and

multiplications as long as the p/2 threshold is not reached. Since any computation

can be expressed as a collection of additions and multiplications (i.e., a Boolean

Circuit), this would imply that extending this scheme to perform an arbitrary amount

of additions and multiplications would allow us to compute any Boolean function

without decrypting the ciphertext. This is the breakthrough idea of Gentry called

Bootstrapping, discussed in the next section.

We shall illustrate the DGHV scheme mentioned previously through a small ex-

ample. Let N = λ = 2. Then, P = λ2 = 4 and Q = λ5 = 32. Suppose the plaintext
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bit that we would like to encrypt is 1. Choose p = 10 as the secret key, q = 15 and

m′ = 3 so that,

c = 3 + (10× 15) = 153.

Thus the ciphertext for this particular choice of parameters is 153. The decryption is

given by,

(c mod p) mod 2 = (153 mod 10) mod 2 = 3 mod 2 = 1.

And therefore we can see that decryption works as expected.

3.2 Bootstrapping

Suppose we have two ciphertexts c1 and c2 encrypted using the DGHV scheme. That

is,

c1 ← Enc(m1, pk1) and c2 ← Enc(m2, pk1)

where m1,m2 ∈ {0, 1} are the corresponding plaintexts and pk1 is the public key that

has the corresponding secret key sk1. Encrypt the secret key sk1 by a second public

key pk2. We will denote the vector of encrypted bits of sk1 by sk1. That is each bit

sk1i of sk1 is encrypted by the DGHV scheme:

sk1i ← Enc(sk1i, pk2)
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Denote the decryption function augmented by an addition as DecAdd and the decryp-

tion function augmented by a multiplication as DecMult. The two functions DecAdd

and DecMult can be defined as follows:

DecAdd(c1, c2) = m1 +m2

and

DecMul(c1, c2) = m1m2

Encrypt each ciphertext c1 and c2 by the second public key pk2. Since c1 and c2 are

integers we have to perform the encryption over each bit separately as before.

c1i ← Enc(c1i, pk2) and c2i ← Enc(c2i, pk2)

Finally output,

c← Evaluate(pk2,DecAdd, sk1, c1, c2),

where Evaluate denotes evaluating the DecAdd function homomorphically (in other

words, evaluating the Boolean circuit corresponding to the DecAdd function). Note

that sk1, c1, and c2 are all encrypted by pk2. Since the Evaluate algorithm can evaluate

DecAdd, it will take the cipher texts c1, c2, and sk1 and evaluate the function DecAdd
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homomorphically. Therefore,

c = c1 + c2

= Enc(m1, pk1) + Enc(m2, pk1)

= Enc(m1 ⊕m2, pk1)

Similarly the function DecMul can be evaluated homomorphically to obtain,

c′ ← Evaluate(pk2,DecMult, sk1, c1, c2),

where c′ = Enc(m1m2, pk1). Hence, whenever the noise level is about to reach its

threshold value (i.e. p/2) we can perform a homomorphic decryption on the cipher-

text, which will give us a re-encryption of the same ciphertext with a lower noise

level. Thus, any arbitrary function (precisely a Boolean function) can be evaluated

by bootstrapping the ciphertext periodically.

In the next chapter, we look at how the DGHV scheme can be used to process

queries in a database. This is useful when queries have to be processed secretly such

that only the user knows what he is searching for. For example, a typical application

of this kind of scheme would be a medical database, where the database should not

know what the user is searching for in order to preserve privacy of the users.



Chapter 4

Query Processing Using the

DGHV Scheme

The DGHV scheme can be used to create a protocol that establishes blind searching

in databases. This method was proposed by Gahi et al. [19].

Suppose we need to retrieve a particular record(s) from the database. Typically,

we send a query to the database encrypted using the DGHV scheme. Let vi be the

ith bit of the query v and ci be the ith bit of a record R in database D. Both the

query and the database record is encrypted using the DGHV scheme. Suppose the

plaintext bit corresponding to vi is mi and the plaintext bit corresponding to ci is m
′
i.



Query Processing Using the DGHV Scheme 25

Then,

vi = mi + 2ri + pqi

and

ci = m′
i + 2r′i + pq′i,

where ri, r
′
i, qi and q

′
i are random numbers and p is the secret key. The server shall

compute the following sum for each record:

Ir =
∏

i

(1 + ci + vi), for every R ∈ D, (4.1)

where r denotes the index of record R. If mi = m′
i, then mi +m′

i = 0 or mi +m′
i = 2

since mi,m
′
i ∈ {0, 1}:

1 + ci + vi = 1 + (m′
i + 2r′i + pq′i) + (mi + 2ri + pqi)

= 1 + (mi +m′
i) + 2(ri + r′i) + p(qi + q′i)

Case 1: mi +m′
i = 0,

1 + ci + vi = 1 + 2(ri + r′i) + p(qi + q′i)

= Enc(1)

Case 2: mi +m′
i = 2,

1 + ci + vi = 1 + 2(1 + ri + r′i) + p(qi + q′i)

= Enc(1)
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(v1, v2, v3, v4, v5)

“Query”→ (m1,m2,m3,m4,m5)

Alice
Bob

(c1, c2, c3, c4, c5)

(m1,m2,m3,m4,m5)
DGHV−−−−→ (v1, v2, v3, v4, v5) Calculates

5∏

i=1

(1 + vi + ci)

Figure 4.1: Calculation of Ir values

This results in Ir = Enc(1). On the other hand, if mi ̸= m′
i, then mi +m′

i = 1 since

mi,m
′
i ∈ {0, 1}. Therefore,

1 + ci + vi = 1 + (m′
i + 2r′i + pq′i) + (mi + 2ri + pqi)

= 1 + (mi +m′
i) + 2(ri + r′i) + p(qi + q′i)

= 1 + 1 + 2(ri + r′i) + p(qi + q′i)

= 2(1 + ri + r′i) + p(qi + q′i)

= Enc(0)

This results in Ir = Enc(0). Hence, for each record in the database we will have an

Ir value that is equal to Enc(1) or Enc(0) depending on whether the search query

matches the corresponding record or not (Figure 4.1). Secondly, we calculate the

partial sums of the Ir values (Table 4.1).
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Table 4.1: Example database and corresponding Ir and Sr values

Database Records Ir Sr

(1, 1, 0, 0) Enc(1) Enc (1)

(1, 0, 1, 0) Enc(0) Enc (1)

(1, 1, 0, 0) Enc(1) Enc (2)

(1, 1, 0, 1) Enc(0) Enc (2)

(1, 0, 0, 0) Enc(0) Enc (2)

Sr =
∑

i≤r

Ii. (4.2)

As an example, let us consider a database that has five records, each encoded with

4 bits. If the query sent by the user is (Enc(1),Enc(1),Enc(0),Enc(0)), we obtain

the corresponding Ir and Sr values, as shown in Table 4.1. Using these partial sums,

we can then calculate the sequence (I ′r,j) for every record R with index r and every

positive integer j ≤ r:

I ′r,j = Ir
∏

i

(1 + j̄i + Sr,i) for every R ∈ D, (4.3)

where Sr,i is the ith bit of Sr and j̄i represents the ith bit of the encryption of j,

where j ≤ r. Hence, these sequences have the property that whenever Ir = Enc(1)

and Sr = Enc(j), we have I ′r,j = Enc(1). Otherwise, I ′r,j = Enc(0). In our previous
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example, we would have,

(I ′1) = (Enc(1))

(I ′2) = (Enc(0),Enc(0))

(I ′3) = (Enc(0),Enc(1),Enc(0))

(I ′4) = (Enc(0),Enc(0),Enc(0),Enc(0))

(I ′5) = (Enc(0),Enc(0),Enc(0),Enc(0),Enc(0))

Finally, we calculate,

(R′) =
∑

k

Enc(Rk)(I
′
k), (4.4)

where Rk is the kth record in D. So, (R′) is a sequence containing only the encrypted

records that matches our search query. Note that the definition of (R′) relies on

adding vectors of different lengths. This is done in the natural way, whereby all the

vectors are made the same length by padding with zeros prior to addition. In the

above example, we obtain,

(R′) = (Enc(R1),Enc(R3),Enc(0),Enc(0))

At this point the sequence (R′) will contain all the records that match our query, but

with trailing encryptions of zeros we do not need. Hence, a second sum is calculated



Query Processing Using the DGHV Scheme 29

(v1, v2, v3, v4, v5)

“Query”→ (1, 1, 0, 0, 0)

Alice

Bob

(1, 1, 0, 0, 0)
DGHV−−−−→ (v1, v2, v3, v4, v5)

∑

r

Ir

Dec

(∑

r

Ir, sk

)
= 2

(Enc(R1),Enc(R3))

Figure 4.2: Alice, Bob, and Gahi’s Protocol

at the server side to determine the number of terms that are useful in the sequence:

n =
∑

r

Ir

This result can be returned to the user and decrypted to obtain the number of records

that match the search query. Hence, the sequence (R′) can be truncated at the

appropriate point and returned to the user for decryption. The whole process is

illustrated in Figure 4.2. An update query can be performed by,

Rnew = (1 + Ir)R + IrU, for every R ∈ D,

where U is the new value that we wish to insert whenever the query matchesR (or Ir =

Enc(1)). A deletion of a record can be performed by,

Rnew = (1 + Ir)R for every R ∈ D.
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To perform all these operations without exceeding the maximum noise permitted

(p/2), it is necessary to choose the parameters N,P, and Q appropriately.

Remark

Although according to Gahi’s original paper [19] both the query and the database

records are encrypted when calculating Ir in equation 4.1, we note that it is not

strictly necessary. We show below that only encrypting the query is sufficient. Let vi

be the ith bit of the query v, and let the plaintext bit corresponding to vi is mi. Now

suppose only the query is encrypted:

vi = mi + 2ri + pqi,

where ri, qi are random numbers and p is the encryption key. Let ci be the ith bit of

the database record. Now, the database is not encrypted and therefore if ci = mi,

then ci +mi = 0 or ci +mi = 2.

Case 1: ci +mi = 0,

1 + ci + vi = 1 + ci + (mi + 2ri + pqi)

= 1 + 2ri + pqi

= Enc(1)
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Case 2: ci +mi = 2,

1 + ci + vi = 1 + ci + (mi + 2ri + pqi)

= 1 + 2(1 + ri) + pqi

= Enc(1)

On the other hand, if ci ̸= mi then ci +mi = 1, since ci,mi ∈ {0, 1},

1 + ci + vi = 1 + ci + (mi + 2ri + pqi)

= 1 + (ci +mi) + 2ri + pqi

= 2(1 + ri) + pqi

= Enc(0)

Therefore, we note that for the purpose of equation 4.1, the database records need

not be encrypted.

Gahi’s method works on plaintext bits and thus requires significant computational

ability on the part of the server. This is due to the fact that it is restricted to the

DGHV scheme which processes plaintext bits separately. In the next chapter we

propose an alternative protocol called the Homomorphic Query Processing Scheme.

This protocol enables us to process database queries using more modern fully homo-

morphic encryption schemes such as the ring based scheme proposed by Braserski et

al. [12], which act on blocks of plaintext rather than single bits.



Chapter 5

Homomorphic Query Processing

The main drawback in Gahi’s method is that it requires an enormous number of ho-

momorphic operations because it employs the DGHV encryption scheme, which uses

bitwise encryption. We propose an alternative protocol called Homomorphic Query

Processing that is compatible with the more recent ring-based fully homomorphic

encryption scheme introduced by Braserski et al. [12]. The major advantage is that

Braserski’s method works on plaintext and ciphertext blocks and thus the number of

homomorphic operations required can be greatly reduced.

We first give a brief introduction to the ring based fully homomorphic Encryption

Scheme proposed by Braserski, and then proceed to define our Homomorphic Query

Processing method.
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5.1 Ring Based Fully Homomorphic Encryption

This encryption scheme was introduced by Braserski, et al [12] and operates on the

polynomial ring R = Z[X]/ ⟨f(x)⟩; the ring of polynomials with integer coefficients

modulo f(x), where f(x) =
∏

1≤k≤n
gcd(k,n)=1

(
x− e2iπ k

n

)
is the nth cyclomatic polynomial.

The plaintext is defined on the ring Rt = Zt[x]/ ⟨f(x)⟩, where t is an integer. The

key generation and encryption functions make use of two distributions χkey and χerr

on R for generating small elements. The uniform distribution χkey is used in the key

generation, and the discrete Gaussian distribution χerr is used to sample small noise

polynomials. Specific details can be found in [11] and [12]. The scheme is based on

the following algorithms.

• KeyGen(n, q, t, χkey, χerr): Operating on the input degree n and moduli q and

t, this algorithm generates the public and private keys (pk, sk) = (h, f), where

f = [tf ′ + 1]q and h = [tgf−1]q. Here, the key generation algorithm samples

small polynomials from the key distribution f ′, g → χkey such that f is invertible

modulo q and [.]q denotes coefficients of polynomials in R reduced by modulo

q.

• Encrypt(h,m): Given a message m ∈ R, the Encrypt algorithm samples small

error polynomials s, e→ χerr and outputs, c = [⌊q/t⌋[m]t + e+ hs]q ∈ R, where
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⌊.⌋ denotes the floor function.

• Decrypt(f, c): Given a ciphertext c, this algorithm outputs,m =
[⌊

t
q
[fc]q

⌉]
t
∈

R.

• Add(c1, c2): Given two ciphertexts c1 and c2, this algorithm outputs cadd(c1, c2) =

[c1 + c2]q.

• Mult(c1, c2): Multiplication of ciphertexts is performed in two steps. First,

compute c̃mult =
[⌊

t
q
c1c2

⌉]
q
. However, this result cannot be decrypted to the

original plaintext using the decryption key f . Therefore, a process known as

key switching is done to transform the ciphertext so that it can be decrypted

with the original secret key. For more details, we refer to [11].

This encryption scheme is homomorphic with respect to addition and multipli-

cation of plaintexts modulo t. The main advantage in using Braserski’s encryption

scheme is that it can be used to encrypt blocks of plaintext instead of dealing with

single bits, as in the DGHV scheme [15]. For example, consider the block of plaintext

bits, 10100. The integer representation of this block is the value 20. We can represent

this integer using the polynomial X2+X4 =
∑4

i=0 2
izi, where zi is the i

th bit of 10100.

In general, if z is an integer and its binary representation is, z = (±1)∑l
i=0 2

izi, where

zi ∈ {0, 1} and l = ⌈log2 |z|⌉, then we can encode the number z as
∑l

i=0 ziX
i ∈ R.
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5.2 Converting the Plaintext Space into a Field

As we shall see, in our Homomorphic Query Processing method, we invert certain

plaintext elements and thus the plaintext space should be a field. Therefore, we

now discuss how to convert the plaintext ring in Braserski’s method to a field. Note

that the plaintext space in Braserski’s method is defined on the polynomial ring,

Rt = Zt[x]/ ⟨f(x)⟩. We shall select t = p, where p is a prime number. Then Rp is

a field if and only if f is irreducible over Zp. Recall that f is the nth cyclomatic

polynomial defined as follows:

f(x) =
∏

1≤k≤n
gcd(k,n)=1

(
x− e2iπ k

n

)

Let f(x) = (x − α1)(x − α2) . . . (x − αn) be a polynomial defined on Q[x]. The

discriminant of f , denoted by ∆(f), is defined [25] as,

∆(f) =
∏

i<j

(αi − αj)
2

It has been proved in [25] that the nth cyclotomic polynomial reduces modulo all

primes if and only if the discriminant of the nth cyclotomic polynomial is a square in

Z. Hence, by choosing a cyclotomic polynomial whose discriminant is not a square we

can find a prime p such that f is irreducible over Zp. Furthermore, it is shown in [25]

that whenever the discriminant of a cyclotomic polynomial f is not a square in Z, there
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exist infinitely many primes such that f is irreducible over Zp. Thus, we can choose a

cyclotomic polynomial with non-square discriminant and check for irreducibility using

a standard polynomial irreducibility test such as Rabin’s test, until we obtain a prime

for which the cyclotomic polynomial is irreducible. For example, even if we consider

a large cyclotomic polynomial with non-square discriminant like the 107th cyclotomic

(which has degree 106), and consider the primes less than 100, it can be seen that it

is irreducible over many primes: Z2,Z5,Z7,Z17,Z31,Z43,Z59,Z67,Z71,Z73 and Z97.

We now propose our Homomorphic Query Processing scheme, which is compati-

ble with the Braserski’s ring based fully homomorphic encryption scheme mentioned

previously.

5.3 Homomorphic Query Processing

We begin by defining the value Fi for the i
th record (denoted by Ri) in the database.

We write Enc(m) for the Enc(m, pk), where pk is the public key of the user. Then

the user sends Enc(m) to the server to search for the records that match m. Now,

the server computes the following:

Fi =

( ∏

Rk ̸=Ri

Enc(m−Rk)

)( ∏

Rk ̸=Ri

Enc (Ri −Rk)
−1

)
, (5.1)
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where each of the products above is over all the records Rk such that Rk ̸= Ri.

Since we are dealing with a fully homomorphic encryption scheme, we can compute

Enc(m−Rk) values by computing Enc(m)−Enc(Rk). Also, since all the Ri values are

known to the server, the term
∏

Rk ̸=Ri
Enc (Ri −Rk)

−1 can be reduced to a simpler

form using the homomorphic property of the encryption scheme in order to perform

a single encryption. Hence,

Fi =

( ∏

Rk ̸=Ri

Enc(m−Rk)

)
Enc

( ∏

Rk ̸=Ri

(Ri −Rk)

)−1

.

Note that whenever m = Ri (query being equal to the record we are comparing),

we have Fi = Enc(1) and Fi = Enc(0), otherwise. Note that here we are assuming

that the query is contained somewhere in the database. If the query is not contained

anywhere in the database, an encryption of something other than 1 or 0 will be the

output. This special scenario is discussed later.

Now, we define Gi’s, the partial sums of the Fi values, as follows:

Gi =
∑

j≤i

Fj. (5.2)

Using these partial sums, we can then calculate the sequence (F ′
i,k) corresponding

to each record as follows,

F ′
i,k = (Fi)

(∏

j ̸=k

(Gi − Enc(j))

)⎛
⎝Enc

(∏

j ̸=k

(k − j)
)−1

⎞
⎠ , (5.3)
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where 1 ≤ k ≤ i. It can be seen that F ′
i,k = Enc(1) if Fi = Enc(1) and Gi = Enc(k)

are both satisfied. Hence, the sequences (F ′
i,k) have the property that whenever

Fi = Enc(1) (i.e., the ith record matches the query), we have an Enc(1) at the kth

position of the sequence where Gi = Enc(k). All other entries of the sequence are

encryptions of zero. Therefore,

(R′) =
∑

k

Enc(Rk)(F
′
k), (5.4)

where Rk is the k-th record in D will give us a sequence containing only the encrypted

records that match our search query. Note that the definition of (R′) relies on adding

vectors of different lengths. This is done in the natural way, whereby all the vectors

are made the same length by padding with zeros prior to addition.

To further illustrate our scheme, let us consider an example where the database

contains five records, each with 4 bits of data. Also, let our encryption scheme encrypt

2 bits at a time. Then, if the search query is (Enc(2), Enc(3)), the corresponding Fi

and Gi values are given in Table 2.

The resulting sequences (F ′
i ) would be similar as in Gahi’s scheme,

(F ′
1) = (Enc(0))

(F ′
2) = (Enc(1),Enc(0))

(F ′
3) = (Enc(0),Enc(0),Enc(0))
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Table 5.1: Example database and corresponding Fi and Gi values

Database Records Fi Gi

(0, 0, 1, 0) Enc(0) Enc (0)

(1, 0, 1, 1) Enc(1) Enc (1)

(1, 0, 0, 1) Enc(0) Enc (1)

(1, 0, 1, 1) Enc(1) Enc (2)

(1, 1, 0, 0) Enc(0) Enc (2)

(F ′
4) = (Enc(0),Enc(1),Enc(0),Enc(0))

(F ′
5) = (Enc(0),Enc(0),Enc(0),Enc(0),Enc(0))

Therefore, the sequence (R′) would be,

(R′) = (Enc(R2),Enc(R3),Enc(0),Enc(0),Enc(0))

At this point, the sequence (R′) will contain all the records that match our query

but with trailing encryptions of zeros which we do not need. Hence, a second sum is

calculated at the server side to determine the number of terms that are useful in the

sequence:

n =
∑

r

Fr.
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Then n will be returned to the user and decrypted to obtain the number of records

that match the search query. Hence, the sequence (R′) can be truncated at the

appropriate point and returned to the user for decryption.

It should be noted that the server will know the number of records that match the

user’s query. We believe that this information is not sufficient for the server to gain

any additional information about the search query. Alternatively, we could return the

whole sequence without truncation, keeping the number of matching records private

from the server. However, the communication overhead will be increased significantly

in this case, since the length of the sequence will be equal to the number of records

in the database.

As promised previously, we now look at the special case where the record that

is searched for is not contained anywhere in the database. In this case the value

Fi will be something other than an encryption of 1 or 0. These garbage encrypted

values will carry themselves into the rest of the protocol, resulting in equation 5.4

with a nonsensical sequence. Hence, if the user receives a nonsensical sequence as

the final result, it implies that the record that was searched is not contained in the

database. As an alternative approach, we can compute
∏

i (Enc(m)− Enc(Ri)) prior

to computing Fi (equation 5.1) and send it to the user to decrypt. If the result is zero

then m is contained in the database, and if it is non-zero, m is not contained in the
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database and therefore the user can send a message to the server to abort the search.

5.4 Comparison of Our Scheme vs. Gahi’s Scheme

Our scheme has the main advantage of having the potential to be used with more

recent fully homomorphic encryption schemes rather than being restricted to the

DGHV scheme. This gives the flexibility to use our method with block based en-

cryption schemes such as Braserski’s [12], which reduces the number of encryption

steps. For example, referring back to equation 4.1, we can see that the Ir values are

calculated by comparing the query with each record bit-wise. If there arem records in

the database and each of them are encrypted using n bits, the number of operations

that are required to calculate all the Ir values will be O(nm). In our Homomorphic

Query Processing method, equation 5.1 acts as the analog of equation 4.1. How-

ever, the encryptions are done block-wise in our scheme, and hence the number of

operations it would take to calculate the Fi value in equation 5.1 will be O(m). For

equation 4.2 in Gahi’s method, the number of operations that should be performed to

calculate all the partial sums will be O(nm2), since there are O(m2) multiplications

and each multiplication should be done bit-wise; whereas the calculation of partial

sums in our scheme (equation 5.2), the number of operations is reduced to O(m2).
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Similarly, equations 4.3 and 4.4 in Gahi’s method use O(nm) and O(nm2) number

of operations, respectively, but their counterparts in our scheme, (equations 5.3 and

5.4) have O(m) and O(m2) operations, respectively. Thus, it can be seen that in each

step of our scheme, the number of operations performed is reduced by a factor of n

compared to Gahi’s method.



Chapter 6

Homomorphic Encryption and

Smart Grid

In this chapter, we give an introduction to the smart electric grid as well as the

cryptographic protocols that are being used in it. We look at several proposed cryp-

tographic schemes that can be used to compute the total consumption function which

is the commonly needed calculation on the part of the utility provider.
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6.1 Smart Grid and Cybersecurity

Smart grids are a new class of communication grids that has recently gained widespread

attention, mainly in the field of electricity distribution. Conventional power grids con-

sist of two main components: the infrastructure that make up the electric network

and the manpower needed to carry out the associated operations. The infrastruc-

ture consists of physical components that makes up the nuts and bolts of the grid

such as power plants, cable lines, transformers, substations, etc. Along with these

components workers are needed for metering and to collect data to adjust tariff rates

accordingly. However, with the surge of complex consumption patterns, mainly due

to the wide range of electric devices that are commonplace in modern households,

appropriate billing according to the level of consumption of users is necessary. The

fixed tariff scheme that is commonplace was no longer suitable to meet the demands

of highly variable consumption patterns.

Due to these insufficiencies, a new innovative electric grid, emerged during the 21st

century, commonly known as the “smart grid.” It can be defined as an electric grid

with embedded digital processing and communications. Rather than the traditional

one-way electricity distribution from the power plant to consumers, the smart grid

acts more like a communication network that automatically collects user data and
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sends it to the distributor, where the distributor adjusts the tariffs and loads according

to the collected data [37]. In addition, the ultimate goal of implementing the smart

grid is that it will possess the following qualities [13]:

• Intelligent: The capability to sense system failure and perform automated

prevention measures. It is also believed that the smart grid will be able to

respond to these situations faster than a human operator.

• Efficient: Due to optimization of load balancing, it will have the capacity to

meet increased consumer demand without additional infrastructure.

• Accommodating: The ability to easily integrate and include different energy

sources to the grid. This is very important since there is evidence that new

energy sources, such as solar and wind energy, are rapidly coming online.

• Motivating: The ability to connect the consumer and utility in real time so

that users can fine-tune their energy usage based on individual preferences. For

example, having the ability to track daily energy usage informs the consumer

about where most of the energy is spent, and the consumer may opt to change

their lifestyle accordingly.

• Opportunistic: The ease of integration into the market with capabilities such

as plug-and-play devices (e.g., smart meters).
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• Quality Focused: The ability to provide power with the desired quality stan-

dards. For example, with the increasing trend in using electronic devices, con-

sumers demand uninterrupted and very stable power signals without any spikes

and disturbances.

• Resilient: The smart grid is more distributed and hence there is a need for

increased resilience to attacks and disaster recovery measures.

• Green: More environmentally friendly and providing an optimized power man-

agement scheme which contributes to a greener economy.

Although the smart grid is an innovative technological breakthrough, there are many

challenges associated with the collection and dissemination of user data. Most of the

data sent are related to usage patterns of electricity. For example, a household can

have a certain pattern of electricity usage, and this can be used to determine personal

behavioral patterns [6]. This idea is explained in more detail in the following example.

Figure 6.1, taken from [6], shows how the power usage of a typical household

fluctuates in accordance with personal activity. The spikes in the graph represent

occasions where the greatest amount of power is used. Looking at the intensity and

the distribution of energy fluctuations, the devices in operation at that specific time

can be inferred. This is possible because each device that uses a significant amount
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Figure 6.1: Residential Power Usage to Personal Activity Mapping

of power has its own signature power fluctuation. This type of load monitoring is

known as non-intrusive load monitoring (NALM) and it can be used to infer the

number of consumers living within a household and their behaviors [2]. The privacy

risk associated with this kind of load monitoring process is immense, as it provides

an attacker a chance to predict things such as the time at which people are present

in the house and an estimate of the number of people present.

Hence, the need for smart grid cyber security arises. The smart grid consists of

millions of electronic devices that have varying levels of hardware and software con-

straints. Thus blindly applying protocols of IT security may not prove to be useful.

For example, a typical encryption scheme used in IT such as the Advanced Encryp-
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tion Standard (AES) might be too cumbersome for smart grid devices with limited

computational ability. The AES was originally designed for 8-32 bit processors, mak-

ing it less effective when used with constrained devices [7]. Thus, it is necessary to

have dedicated protocols that are tailored specifically for the smart grid. The security

challenges of the smart grid are based on the following properties [6]:

• Scalability: The size of smart grid grows and involves cross linking of multiple

diverse networks. Compatibility issues integrating such diverse protocols is an

ongoing challenge.

• Mix of legacy and modern devices: The smart grid consist of many devices that

are used not only in the generation and distribution of electricity but also in

communication networks. Therefore, all devices used in the smart grid might

not correspond to the same level of functionality as a modern device. Hence, it

is important that protocols are designed in a way that unifies all the new and

old devices.

• Hybrid model of management: The security of the grid should be distributed

and centralized, that is, a device should have the ability to locally authenticate

if the communication network fails for some reason. Hence, a local authenti-

cation system is necessary, along with a centralized database that synchronizes
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credentials.

• Evolving standards and regulations: The standards and regulations that are

currently in place for smart grid cybersecurity are rapidly changing in accor-

dance with new innovations and technologies. Hence, building utilities with

implementation standards that are valid for prolonged periods of time is a chal-

lenge.

In addition to these challenges, the current security goals for the smart grid have

been outlined by the National Institute of Standards and Technology (NIST) smart

grid interoperability panel [2]. Smart grid security goals can be condensed into three

main categories: Confidentiality, Integrity, and Availability.

• Confidentiality: Confidentiality refers to using access controls to restrict data

access by unauthorized entities. For example, smart meter data should only be

accessed by the grid operators, not other consumers.

• Integrity: Integrity is the prevention of unauthorized modification of data.

Loss of integrity can lead to incorrect decisions regarding power management.

• Availability: Availability is the reliable and timely access to information by

authorized entities. Denial of Service (DOS) attacks attempt to block or corrupt
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communication in the smart grid. Loss of availability can lead to incorrect tariff

calculations and power failures.

Thus, it is evident that there is a need for smart grid security protocols that

allow secure transmission and storage of data. In the next section, we examine a

few recently proposed encryption protocols that offer improvements to smart grid

cybersecurity.

6.2 Cryptography-Based Data Exchange Schemes

for Smart Grid

The transmission of information in the smart grid makes it susceptible to information

leakage and to unauthorized access to sensitive information. To know more about

where information leakage can occur, we consider the parties involved in a smart

grid [16].

• Consumers/Customers: The consumers of a smart grid are its end users.

Each customer has a Smart Meter, which is used to measure their energy usage

and report it to the energy supplier at a specified frequency. For example, the

smart meters implemented by Hydro One send measurements hourly [38]. Smart

meters should be cost efficient and thus have limited computational power.
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Consumers should have access to their energy usage patterns via smart meter

readings.

• Grid Operators: Grid operators are the companies that manage the distri-

bution of electricity. Operators can be part of an energy producer or separate

entities. The distributor will use the smart meter data to efficiently distribute

electricity to its consumers. Electricity distribution uses smart meter data for

load balancing.

• Communication Network: This is the network in which all parties involved

exchange data. The communication channel should be secured to maintain the

privacy of data.

• Electricity Producer: This is the company that produces electricity and dis-

tributes it via the grid operator’s infrastructure. The producer should manage

power production according to the demand and also set tariffs according to

customer usage patterns.

• Aggregator: The aggregator collects all the smart meter data from consumers

and aggregates it to obtain values that the electricity producer can use. For

example, the aggregator can compute the average power consumption of con-

sumers in a certain area at a given time frame. This will help the producer and
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Figure 6.2: Smart Grid and its Stockholders

the distributor to balance the loads efficiently. A schematic representation of

the contributing parties is shown in Figure 6.2 (taken from [16]).

One of the obvious ways to entrust security in the smart grid is to have a cen-

tralized grid management system where the smart meters only measure and send the

data in an encrypted format to a centralized server. The centralized server acts as the

aggregator and communicates with each smart meter to calculate total consumption,

handle load balancing, etc. Since the grid operator controls the cryptographic keys

for each smart meter, it is free to perform any function on the data. However, this

places a universal trust on the grid operator/aggregator, which is undesirable [21].
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If the grid operator is compromised, the whole smart grid will be compromised as

well. Hence, recent proposals focus on grid management that is more widely dis-

tributed [14,40]. Rather than relying on a centralized grid operator for total security,

the goal is to distribute trust to smart meters and substations and to design them to

be independent of the grid operator.

One of the novel methods of preserving privacy in the smart grid is to use homo-

morphic encryption schemes. Since homomorphic encryption schemes allow comput-

ing on encrypted data, the grid operator does not require handling of smart meter

data in plaintext format. Before looking into how homomorphic encryption schemes

can be used in the smart grid context, we specify the types of statistical functions that

the grid operator wants to compute. The most typical and important calculations

that any grid operator wants to perform is the total consumption CT (t) and billing

B(t) at a given time t. Both values can be represented by the general summation of

the smart meter readings mi,t:

GS(t) =
∑

Ms

f(mi,t),

where i indicates the smart meter index and t indicates the time slot. Here, Ms rep-

resents index i or time t, depending on whether the total consumption or the billing

function is being calculated. In the case of the total consumption, we are interested

in calculating the summation over all smart meters and therefore the summation
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becomes
∑

i f(mi,t). For billing of a single household over a given time t, the sum-

mation is
∑

t f(mi,t). In the case of total consumption, f is the identity function

(i.e., f(mi,t) = mi,t); for billing, f is an appropriate billing function [16]. Typically,

the billing function is calculated by multiplying the energy rate designated by the

power provider with the total consumption during the given period. We now look

into privacy preserving schemes that aim to compute these aggregation functions.

6.2.1 Encryption Schemes for Total Consumption

In this section, we examine several encryption protocols that aim to protect privacy

in calculating the total consumption, namely:

CT (t) =
∑

Ms

f(mi,t) =
∑

i

mi,t

We assume that smart meters have the following capabilities.

• The ability to communicate with the utility provider as well as each other.

The connections can be wired or wireless. For example, currently implemented

smart meter protocols use Bluetooth and ZigBee [5, 47].

• Every smart meter on the network has the ability to provide a valid digital cer-

tificate for authentication. This automatically assumes that there is a certificate

authority.
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• Smart meters can perform cryptographic operations. Due to hardware con-

straints, it is generally agreed that they can only perform fairly simple cryp-

tographic protocols. The exact type of cryptographic protocols that a smart

meter is allowed to carry out varies according to different sources, but they

can typically perform hash functions, pseudorandom number generators, sym-

metric (e.g., Advanced Encryption Standard), and asymmetric encryption (e.g.,

Rivest-Sharmir-Adleman (RSA), Paillier, and El Gamal) [16].

Secret Sharing, first proposed by Shamir [43], is one of the first methods for preserving

privacy in smart meter data. Its basic operating principle is to divide a secret S into

n pieces such that, with all n pieces, the secret can be reconstructed, but any number

of pieces less than n is inadequate to find the secret. The method that we are going

to look into was proposed by Garcia and Jacobs and it uses Shamir’s Secret Sharing

as well as the Paillier additive homomorphic encryption scheme [21].

First, we briefly describe the Paillier cryptosystem. The Paillier encryption scheme

consist of the following algorithms:

• KeyGen(p, q, g): The key generation phase takes two large primes p and q as

inputs and computes n = pq and λ(n) = lcm(p−1, q−1), where lcm(p−1, q−1)

denotes the least common multiple of p − 1 and q − 1. Then, select a random

integer g ∈ Z∗
n2 , where Z∗

n2 denotes the invertible elements of Zn2 and the order
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of g is a multiple of n. Note that since g ∈ Z∗
n2 , g and n2 are relatively prime.

Therefore g is relatively prime to n. Thus by Carmichael’s Theorem, gλ(n) ≡

1 mod n. For calculating the decryption function the value gλ(n) mod n2 is

necessary. Note that, gλ(n) mod n2 ≡ gλ(n) mod n and therefore by the previous

result, gλ(n) mod n2 ≡ 1 mod n. Thus, subtracting one from gλ(n) mod n2 will

give a number divisible by n. Define,

L(u) = u− 1

n
,

and compute L(gλ(n) mod n2). Notice that since gλ(n) is calculated in mod n2,

it is greater than zero and strictly less than n2. Thus dividing gλ(n) mod n2

by n results in a value greater than or equal to zero, but strictly less than n.

That is, L(gλ(n) mod n2) ∈ Zn. Since n = pq, as long as L(gλ(n) mod n2) is not

congruent to a multiple of p or q mod n, then L(gλ(n) mod n2) has an inverse.

This existence of inverse is crucial for decryption, and therefore if the inverse

does not exist, choose a new value for g before proceeding further. Finally

calculate µ = (L(gλ(n) mod n2))−1 mod n. The public key of this scheme is

(n, g) and the private key is (λ, µ).

• Enc(m, r): The encryption phase takes a message from the message space Zn
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and a random number r ∈ Z∗
n and computes the ciphertext,

E(m, r) = gmrnmod n2

• Dec(c, p, q): The decryption of the ciphertext c is given by,

m = L(cλ mod n2).µ mod n

The Paillier scheme is additively homomorphic since E(m1, r)E(m2, r) = gm1+m2r2n =

E(m1 +m2, r). Further details on this scheme can be found in [41].

The basic goal of Garcia’s protocol is to divide a smart meter measurement into

shares that are equal to the number of participants in the protocol. We will explain

the protocol using a three party scenario. Suppose Alice, Bob, and Charles have smart

meters and their smart meter readings are mA,mB, and mC , respectively. Each party

will acquire three shares from their measurements. For example, Alice will have the

shares mA(1),mA(2), and mA(3).

Alice: mA = mA(1) +mA(2) +mA(3)

Bob: mB = mB(1) +mB(2) +mB(3)

Charles: mC = mC(1) +mC(2) +mC(3)

Then, Alice will keep one share and encrypt the other two shares with the Paillier

encryption scheme using the public keys of Bob and Charles, respectively (Figure
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Figure 6.3: Partitioning the Smart Meter Readings

6.3). Each party then sends their encrypted shares to the utility provider/aggregator,

keeping the unencrypted value to themselves. The aggregator will multiply the shares,

which are encrypted using the same key and due to the homomorphic nature of the

Paillier encryption scheme, we have,

Alice: EPA
(mB(1)).EPA

(mC(1)) = EPA
(mB(1) +mC(1))

Bob: EPB
(mA(2)).EPB

(mC(2)) = EPB
(mA(2) +mC(2))

Charles: EPC
(mA(3)).EPC

(mB(3)) = EPC
(mA(3) +mB(3))

The aggregator sends these values to the respective party that owns the correspond-

ing private key, who then decrypts the value and adds their share to it (Figure 6.4).
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Figure 6.4: Calculation of Partial Aggregations

Finally, each party sends their value to the aggregator to calculate the total consump-

tion value by adding all the values it receives. This protocol can be extended to n

parties easily. Let mi denote the smart meter value of the ith party and let pi denote

his public key. Let mj,i denote the jth share of mi. That is, mi =
∑

j mj,i. The

aggregator will calculate,

Ei =
∏

j ̸=i

Epi(mj(i)) = Epi

(∑

j ̸=i

mj(i)

)
,

which he sends to the ith party for decryption. Upon decryption he can add mi(i) as

usual to obtain the sum of all the values encrypted under pi.

This method uses a simple protocol to establish smart data privacy; however, in

the case of n parties, each party will have to perform n− 1 encryptions and therefore

the total number of encryptions will be n(n− 1) = O(n2). Similarly, it can be shown
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that the number of multiplications for an n-party protocol is also O(n2). Due to this

quadratic running time, this protocol is not quite scalable.

Hence, a second approach is presented by Kursawe et al. [31]. Kursawe’s approach

is based on comparison protocols where the aggregator knows a rough estimate of the

total consumption (e.g., from past measurements). Each of the parties computes

gm1+r1
i , gm2+r2

i , gm3+r3
3 and so forth, where gi is a unique identifier based on a serial

number or the date and time of the measurement. The values r1, r2, and r3 are

computed in random such that their sum is equal to zero. The aggregator can take

the product of all the smart meter outputs to obtain,

∏

j

g
mj+rj
i = g

∑
j(mj+rj)

i = g
∑

j mj

i .

Since the aggregator has an approximate value, CTot of the total consumption he can

now compute gCTot
i , gCTot−1

i , gCTot+1
i , . . . and compare for equality. The authors also

propose several protocols that describe ways to generate rj and gi. We consider a

protocol that is based on the Diffie-Hellman Key Exchange scheme.

In this scheme, we assume that each meter j has a secret key X = Rj and a

corresponding public key Pubj. For each round i, a generator gi of the Diffie-Hellman

group is chosen.

• First, each smart meter j computes a round-specific public key, Pubi,j = g
Rj

i
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based on its secret key and the generator.

• The round keys are certified and distributed among all the smart meters in-

cluded in the aggregation.

• Each smart meter computes the value,

g
rj
i =

∏

k ̸=j

Pub
(−1)k<jRj

i,k ,

where k < j takes the value 1 if k is less than j, and is 0 otherwise. It can be

seen that the summation of all rj values is equal to zero:

∑

j

rj =
∑

j

∑

k ̸=j

(−1)k<jRkRj = 0

Thus, each smart meter can calculate g
mj

i g
rj
i to obtain g

mj+rj
i , as required by the

protocol. A summary of this protocol is depicted in Figure 6.5. As before, the

number of messages exchanged between n parties is O(n2) because each smart meter

must distribute its Diffie Hellman key to every other smart meter. The number of

multiplications isO(n); thus, this protocol has fewer multiplications than the previous

scheme. Furthermore, in Kursawe’s original paper [31], it is suggested that a key size

of 256 bits should be used for the Diffie Hellman algorithm, which is significantly

smaller compared to the key size of the Pallier encryption scheme proposed earlier by

Garcia and Jacobs [21].
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Figure 6.5: Kursawe’s Protocol for Data Aggregation

The third approach is by Erkin and Tsudik and uses a slightly altered version of

the Paillier encryption scheme [17]. The idea behind Erkin and Tsudik’s scheme is

to break n into shares n1, n2, n3 . . . and distribute one share per smart meter. Each

smart meter will then encrypt their consumption value as,

E(mi, r) = gmirnimod n2,

where i denotes the ith smart meter. These values are then sent to the aggregator.

Note that the aggregator cannot decrypt these values, even if he has the secret key,

since in order for decryption to work, the random numbers rni should be of the form

rn. However, after receiving all the shares, the aggregator can add them together to
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obtain the total consumption value, which he can now decrypt (see Figure 6.6).

∏

i

E(mi, r) =
∏

i

gmirnimod n2

= g
∑

i mir
∑

i nimod n2

= g
∑

i mirnmod n2

= E

(∑

i

mi, r

)

This method assumes that every party has the same random number, r. One way of

achieving this is to take r as a hash of the time stamp. The main advantage of Erkin

and Tsudik’s protocol is that smart meters only need to perform one encryption.

However, each smart meter must have the ability to perform Paillier encryption, a

hash function, and random number generation (for r). Hence, the number of encryp-

tions is reduced at the cost of introducing several different cryptographic algorithms.

The major downside of this protocol is that the smart meters have to perform Paillier

encryption as well as computing hashes and random numbers. To mitigate this issue,

Ács and Castelluccia [3] proposed a very simple protocol that does not use compu-

tationally intensive schemes such as Paillier encryption. The encryption function of

the cryptosystem that Ács and Castelluccia introduced is given by,

E(m, k, n) = m+ k mod n

where m is the message to be encrypted, k is the key and n is a large integer. Note
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Figure 6.6: Erkin and Tsudik’s Protocol for Data Aggregation

that this scheme is homomorphic with respect to addition.

E(m1, k1, n) + E(m2, k2, n) = (m1 + k1) mod n + (m2 + k2) mod n

= m1 +m2 + k1 + k2 mod n

= E(m1 +m2, k1 + k2, n)

The protocol starts by choosing a subset of smart meters. Let us walk through an

example with three consumers: Alice, Bob, and Charles. Each user shares a random

number with every other user in a cyclic fashion, as shown in Figure 6.7.

In our example, Alice sends r1 to Bob, Bob sends r2 to Charles, and Charles sends

r3 to Alice. Let us also assume that each participant shares a secret key with the

aggregator: KA, KB and KC respectively. Alice adds to her measurement what she
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Figure 6.7: Ács and Castelluccia’s Protocol for Data Aggregation

sends (in this case r1), while subtracting what she receives (in this case r3). Bob

and Charles do the same. Finally, all participants encrypt their values using the

aforementioned encryption scheme. The results are given below.

Alice: E(m1, KA, n) = m1 + r1 − r3 +KA mod n

Bob: E(m2, KB, n) = m2 − r1 + r2 +KB mod n

Charles: E(m1, KA, n) = m1 + r3 − r2 +KC mod n

Each smart meter sends these encrypted values to the aggregator, which adds every-

thing together so that the random numbers are canceled out. It can then decrypt

the result using the sum of the shared secret keys. This scheme can be extended
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to N parties easily, in which case the sharing of random numbers will be given by a

directed cycle graph of length N . Thus, for a scheme involving N parties, the number

of communications will be O(N).

In the next chapter, we discuss data querying techniques in the smart grid. We

also construct a keyword data querying technique based on the Homomorphic Query

Processing Scheme that was introduced in Chapter 5. We also use the principles of

Public Key Encryption with Keyword Search (PEKS) and Multi-Key Homomorphic

Encryption to construct this method. This scheme can be used in combination with

any of the data encryption techniques discussed in this chapter making smart meter

data encrypted as well as queryable.



Chapter 7

Query Processing in the Smart

Grid

All of the aforementioned techniques that use homomorphic encryption in the smart

grid focus on securing data aggregation. Although there is a substantial amount

of literature on data protection and encryption in the smart grid, there are very

few studies on querying encrypted data. The need for more research in this area

has been emphasized by the cybersecurity working group in the NIST Smart Grid

Interoperability Panel in their Guidelines for Smart Grid Cybersecurity [2]. Alongside

protecting data privacy through cryptographic countermeasures, when using smart

meter data for decision making and price predicting, it is critical that the encrypted
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data is queried in encrypted form. Therefore, designing encrypted data querying

techniques for the smart grid is essential while preserving the formal security goals

(i.e., confidentiality, integrity, and availability). In this manner, utility companies can

extract data based on their individual needs.

In this chapter, we look at existing techniques for querying encrypted data and use

our Homomorphic Query Processing method in conjunction with a keyword search

technique proposed by Boneh [10] to propose a new method for keyword searching

in the smart grid. Smart meter data is usually collected by service providers for

statistical purposes such as computing the total consumption function, as explained

in Chapter 6. Our keyword search technique will help categorize smart meter data

prior to their use.

7.1 Encrypted Data Querying Techniques

The problem of querying over encrypted data has been extensively studied by cryp-

tographic and database communities [28]. There are several techniques available,

depending on the type of query and the type of data that need to be supported. We

give a summary of some of these proposed techniques.
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7.2 Order-Preserving Encryption

Ideally, we want a cryptographic scheme that allows comparison-predicate evaluation

over encrypted data. That is, an efficient scheme that can evaluate comparison oper-

ators such as “less than” (<), “greater than” (>), and “equality ” (=) over encrypted

data. The first order-preserving encryption scheme was introduced by Agrawal et

al [4]. This scheme allows the execution of range queries over encrypted data as

well as maintain indexes for efficient access. However, Agrawal’s scheme only works

for numeric data. A more efficient, order preserving encryption scheme was found by

Boldyreva et al. [8]; they also provided a security analysis of Agrawal’s scheme. In ad-

dition, Boldyreva’s analysis suggests that the disadvantage of using order-preserving

schemes is that they need to be deterministic. That is, all encryptions of a given

plaintext are identical. This makes order-preserving schemes susceptible to statistical

attacks.

7.3 Searchable Encryption Techniques

As its name suggests, “searchable encryption” techniques have the ability to search

or categorize encrypted data. The first searchable encryption scheme was introduced

by Boneh et al [9]. This scheme is commonly known as “Public Key Encryption with
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Keyword Search” (PEKS), and it can support the equality query over encrypted data

restricted to a particular collection of keywords. Then Golle et al. [24] proposed a

scheme that supports conjunctive keyword search over encrypted data. Furthermore,

Shi et al. [44] proposed an encryption scheme that supports multidimensional range

queries over encrypted data (MRQED). This technique uses an interval tree data

structure to construct a representation of intervals along each dimension. The authors

show that the time complexity of the MRQED scheme is O(D log T ), where D is the

number of dimensions, and T is the number of discrete values for each dimension.

7.4 Keyword Search in the Smart Grid

In Chapter 6, we discussed several proposed approaches to aggregate data in the

smart grid. Although these methods provide novel techniques to calculate the total

consumption, utility providers oftentimes require the ability to categorize data before

doing any calculation. Most energy providers have customer categories, and each

category has different tariff rates. For example, BC Hydro, the main energy provider

in British Columbia, has two customer categories, Residential customers and Business

customers, where business customers are sub-categorized into Small General Service

customers, Medium General Service customers, and Large General Service customers.
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In addition, both residential and business customers are categorized into Irrigation

Rate and Transmission Rate customers depending on their needs and consumption

habits. Each of these categories have different tariff rates; thus, as a utility provider,

it is essential that, for example, the smart meter data sent from a residential customer

is handled differently than the smart meter data sent from a business customer.

We propose a new method to categorize smart meter data based on a collection

of keywords. This method works alongside the aggregation protocols discussed in

Chapter 6, allowing the utility provider the ability to categorize smart meter data

before computing total consumption for each category. We demonstrate this concept

in the following example. Considering the customer categories of BC Hydro, let us

assume the set of keywords is {residence, smallbusiness, mediumbusiness, largebusi-

ness, irrigation, transmission}. We encrypt each of these keywords with a multi-key

homomorphic encryption scheme and send them to the utility provider, along with the

smart meter data encrypted by a suitable scheme. The utility provider will be able

to search the encrypted keywords, and would be able to know whether a particular

keyword of his choice is included in the keyword set or not. We employ several ideas

in constructing this method: our Homomorphic Query Protocol proposed in Chapter

5, Boneh’s Public Key Encryption with Keyword Search (PEKS) scheme [9], and the

multi-key fully homomorphic encryption scheme proposed by López-Alt et al. [33].
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First, we take a closer look at Boneh’s PEKS scheme [9].

7.4.1 Public Key Encryption with Keyword Search (PEKS)

The PEKS scheme was initially introduced as a mechanism to search encrypted data

for specific keywords. The following example, as well as the definitions accompany it,

are taken from [9].

Suppose a user (Alice) wants to read her email on different devices: her laptop,

desktop, pager, etc. Alice’s email server will route the email to the appropriate device

based on certain keywords that the email contain. For example, if Bob sends an email

with the keyword “urgent,” the email is routed to Alice’s pager, and when Bob sends

an email with the keyword “lunch,” it will be routed to Alice’s desktop. Each email

is expected to contain a small number of keywords in the header or subject line. The

Mobile People Architecture [34] provides a prototype of this type of email routing.

However, the above scheme is only possible if the emails are not encrypted. The

mail server will have to make decisions according to the keywords that it sees, and if

the emails are encrypted, this is not possible. In email as well as other communica-

tion networks (such as the smart grid), this ability to process unencrypted data is a

violation of privacy. The goal of PEKS is to solve this issue by enabling the server to

check whether certain keyword(s) are contained in the data without learning anything
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about the data itself. In the above example, Alice should be able to specify some

keywords that the mail server will check in the mail it receives; however, the server

should not learn anything about the content of the messages nor the keywords they

contain.

We begin by defining the Public Key Encryption with Keyword Search (PEKS)

scheme, similar to [9]. For the purpose of explanation, suppose Bob wants to send

an email to Alice with the keywords W1,W2, . . . ,Wk. Bob encrypts the email using

Alice’s public key. Bob sends the following message:

[Epk(M),PEKS(pk,W1), . . . ,PEKS(pk,Wk)] ,

where pk is Alice’s public key, M is the email body, and PEKS is the encryption

scheme that allows searching of specific keywords. More details of the PEKS algorithm

is given in Definition 7.1-7.2. The goal of this scheme is to allow Alice to send a

secret trapdoor, TW , to the server, which enables the server to check whether Bob’s

message contains the keyword W or not. The server should only learn whether W is

contained in Bob’s message and nothing else. The server can check for all such emails

that contain the keyword W and send them back to Alice. This kind of scheme is

called a “non-interactive public key encryption with keyword search” or in shorthand,

a “searchable public key encryption” scheme. Note that in this protocol, Alice and

Bob never interact with each other, hence the term “non-interactive” is used.
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Definition 7.1 A non-interactive public key encryption with keyword search (some-

times abbreviated it as “searchable encryption”) scheme consists of the following

polynomial time randomized algorithms:

1. KeyGen(s): Takes a security parameter, s, and generates a public/private key

pair pk, sk.

2. PEKS(pk,W ): For a public key pk and a word W , a searchable encryption of

W is produced.

3. Trapdoor(sk,W ): Given Alice’s private key and a word W a trapdoor TW is

produced.

4. Test(pk, S, TW ): Given Alice’s public key, a searchable encryption S = PEKS(pk,W0),

and a trapdoor TW = Trapdoor(sk,W ), the output is “yes” if W = W0 and

“no” otherwise.

First, Alice runs the KeyGen algorithm and generates her public and private keys,

pk and sk, respectively. Then, she creates the trapdoor TW for each keyword W that

she wants the server to search for. The server uses the trapdoor TW as input to the

test algorithm to determine if the message contains W as a keyword.

The security of the PEKS scheme is defined as follows. All the PEKS(pk,W )

values should not reveal any information about W unless TW is available. Also, it is
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assumed that the attacker is able to obtain TW for any W of his choice. Furthermore,

the attacker should not be able to distinguish an encryption of W0 from W1 for which

he did not obtain the trapdoor. Let A be an active attacker. Then the security of

the PEKS scheme is defined by the following game between A and a challenger. The

security parameter s is provided to both the attacker and the challenger.

Definition 7.2 PEKS Security Game:

1. The challenger runs the KeyGen(s) algorithm to generate pk and sk. It assigns

pk to the attacker.

2. The attacker can adaptively ask the challenger for the trapdoor TW for any

keyword W ∈ {0, 1}∗ of his choice.

3. At some point, the attacker A sends the challenger two words W0,W1 on which

he wishes to be challenged. The only restriction is that the attacker did not

previously ask for the trapdoors TW0 or TW1 . The challenger picks a random

b ∈ {0, 1} and gives the attacker C = PEKS(pk,Wb). We refer to C as the

challenge PEKS.

4. The attacker can continue to ask for trapdoors TW for any keyword W of his

choice as long as W ̸= W0,W1.
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5. Eventually, the attacker A outputs b′ ∈ {0, 1} and wins the game if b = b′.

In summary, the attacker wins the security challenge if he correctly guesses whether

he was given the PEKS for W0 or W1. The attacker’s advantage in breaking the

PEKS is given by,

AdvA(s) =

⏐⏐⏐⏐Pr[b = b′]− 1

2

⏐⏐⏐⏐ .

We propose a new method of processing queries with respect to keywords in the

smart grid using this PEKS scheme along with the notion of multi-key fully homo-

morphic encryption proposed by López-Alt et al [33]. In the next section, we give a

brief introduction to multi-key fully homomorphic encryption.

7.4.2 Multi-Key Fully Homomorphic Encryption

Fully homomorphic encryption schemes such as Gentry’s original lattice based con-

struction [23] and Braserski’s ring-based construction [12] successfully outsource com-

putations while keeping the data encrypted. However, these fully homomorphic en-

cryption schemes focus on a single user. That is, if Alice wants to upload her data

to a remote server, she can encrypt her data using a fully homomorphic encryption

scheme before uploading so that the server can perform computations. However, the

server can compute on these encrypted data only if all the data uploaded by Alice is
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encrypted via a single key. This is exactly what we want in a scenario where compu-

tations involve the data of a single user, but there are scenarios where computations

should be carried out on data belonging to multiple users. A perfect example of this is

the smart grid. Each user will upload data encrypted by their private key, and ideally

we want the server to compute functions on these encrypted data without decrypting

them. Furthermore, the server should be able to independently carry out the function

of its choosing without consulting the users (non-interactively), and the result should

be encrypted. Finally, in the decryption phase, the users who collaborated in the

encryption will interact with the server to perform the decryption. This is what we

hope to achieve by a multi-key fully homomorphic encryption scheme.

In the next section, we outline the multi-key fully homomorphic encryption scheme

proposed by López-Alt et al. [33], which is derived from the modified NTRU encryp-

tion scheme [46].

Definition 7.3 Modified NTRU Encryption Scheme: This scheme was derived from

the original NTRU encryption scheme by Hoffstein et al [27]. The scheme is parametrized

by the ring R = Z/ ⟨xn + 1⟩, where n is a power of two, q is an odd prime number,

and X is a B-bounded distribution over R for B ≤ q. Here “B-bounded” means that

the magnitude of the coefficients of a polynomial sampled from X is less than B.

Also, we define Rq = R/qR and use [ . ]q to denote coefficient-wise reduction modulo
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q into the set {−
⌊
q
2

⌋
, . . . ,

⌊
q
2

⌋
}. The scheme consists of the following algorithms.

• Keygen: Key generation samples “small” polynomials f ′, g ← X and sets

f = 2f ′ + 1 such that f(mod 2) = 1. If f is not invertible in Rq, it resamples

f ′. Otherwise, it computes the inverse f−1 of f in Rq and sets,

sk = f and pk =
[
2gf−1

]
q
,

where sk and pk stand for secret key and public key, respectively.

• Enc(m, pk): To encrypt a bit m ∈ {0, 1}, the encryption algorithm samples

“small” polynomials s, e← X , and outputs the ciphertext,

c = [hs+ 2e+m]q ,

where h = pk.

• Dec(c, sk): To decrypt a ciphertext c, the decryption algorithm computes µ =

[fc]q and returns µ(mod 2).

The correctness of this scheme is verified by observing that,

[fc]q = [fhs+ 2fe+ fm]q

= [2gs+ 2fe+ fm]q .
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Note that since the elements g, s, f, and e are sampled from the B-bounded distri-

bution, and B ≤ q, the magnitude of the coefficients in 2gs + 2fe + fm are less

then q/2 and hence there is no reduction modulo q. That is, [2gs+ 2fe+ fm]q =

2gs+ 2fe+ fm. Therefore, µ = 2gs+ 2fe+ fm, which implies that µ(mod 2) = m

since f(mod 2) = 1.

In the following section, we give a brief summary of the multi-key homomorphic

properties of this scheme.

Let c1 = [h1s1 + 2e1 +m1]q and c2 = [h2s2 + 2e2 +m2]q be ciphertexts under the

keys h1 =
[
2g1f

−1
1

]
q
and h2 =

[
2g2f

−1
2

]
q
, respectively. Then [c1 + c2]q and [c1c2]q

decrypts to m1 +m2 and m1m2, respectively, under the joint key f1f2, as follows:

f1f2 (c1 + c2) = 2(f1f2e1 + f1f2e2 + f2g1s1 + f1g2s2) + f1f2(m1 +m2)

= 2eadd + f1f2(m1 +m2),

where eadd = f1f2e1 + f1f2e2 + f2g1s1 + f1g2s2 is the noise of the resulting ciphertext.

Similarly,

f1f2(c1c2) = 2(2g1g2s1s2 + g1s1f2(2e2 +m2) + g2s2f1(2e1 +m1) +

f1f2(e1m2 + e2m1 + 2e1e2)) + f1f2(m1m2)

= 2emult + f1f2(m1m2),
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where emult = 2g1g2s1s2+g1s1f2(2e2+m2)+g2s2f1(2e1+m1)+f1f2(e1m2+e2m1+2e1e2)

is the noise of the resulting ciphertext. Therefore, the ciphertexts [c1 + c2]q and [c1c2]q

decrypt to m1 + m2 and m1m2 as long as the noise elements eadd and emult do not

become too large. This scheme can be made fully homomorphic using Gentry’s boot-

strapping technique and is thus able to evaluate any Boolean circuit. After evaluating

the required circuit at the server, the parties involved in the encryption collaborate

to run a secure multi-party computation protocol to evaluate the decryption circuit.

For further details about this scheme we refer to [33].

Now we will see how the PEKS scheme and the multi-key homomorphic encryption

scheme can be used with the Homomorphic Query Processing method to evaluate

database queries.

7.5 Query Processing Scheme for Smart Grid

In this section, we describe how the PEKS scheme (Section 7.4.1) can be used to

construct a model that allows query processing of keywords in the smart grid. For

this task, we use the Homomorphic Query Processing method that we introduced in

section 5.3, along with the multi-key homomorphic encryption scheme mentioned in

section 7.4.2.
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Ideally, the server/utility company will want to categorize smart meter data into

sections according to various characteristics. For example, querying and separating

data by user type (i.e., household, business etc.), or by users that belong to different

payment plans, might be some examples where this might be useful. In this scheme,

the smart meters send their meter readings appended by a collection of keywords.

Suppose the number of smart meters communicating with the utility provider is n

and denote these smart meters by SM1, . . . , SMn. Furthermore, the readings of the

smart meters are m1,m2, . . . ,mn, respectively.

• The smart meter readings m1,m2, . . . ,mn will be encrypted by a suitable en-

cryption scheme, as discussed in section 6.2.1. The choice of this encryption

depends on the relative strengths and weaknesses of the methods discussed

and the given smart grid requirements. We denote these encrypted values by

E(m1), . . . , E(mn), where the encryption keys are the relevant public keys of

the smart meters.

• The keywords are encrypted by a multi-key homomorphic encryption scheme

(such as 7.3) and appended to E(m1), . . . , E(mn), respectively. Let us denote

the keywords belonging to smart meter i by Ki
1, . . . , K

i
m and the encryptions of

these values by MKHhi
(Ki

1), . . . ,MKHhi
(Ki

m), where hi denotes the public key
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of SMi. Then, each smart meter sends the following data blocks to the server:

SM1 : [E(m1),MKHh1(K
1
1), . . . ,MKHh1(K

1
m)]

SM2 : [E(m2),MKHh2(K
2
1), . . . ,MKHh2(K

2
m)]

. . . . . . . .

. . . . . . . .

. . . . . . . .

SMn : [E(mn),MKHhn(K
n
1 ), . . . ,MKHhn(K

n
m)]

• The server will query the data sent by the smart meters and see whether they

contain certain keywords. Suppose the server wants to search the data sent by

SMi for the keyword K. The server can use the same general principle of our

Homomorphic Query Processing method (equation 5.1) to check which keyword

matches K.

Let g and h be the secret key and the public key of the server, respectively, and

gi and let hi be the secret key and public key of SMi, respectively. Define,

Pj =
∏

Kl ̸=Kj

MKHh(K)−MKHhi
(Kl)

and

Qj =
∏

Kl ̸=Kj

MKHhi
(Ki)−MKHhi

(Kl),
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where MKHx(m) denotes thatm is encrypted under the multi-key homomorphic

encryption scheme with public key x. Also, let m be the number of keywords

sent by SMi. Notice that the combined decryption key of the Pj is (ggi)
m−1 since

P involves a product ofm−1 ciphertexts, each with decryption key ggi, whereas

the combined decryption key of the Qj is g
2(m−1)
i since Q involves a product of

m−1 ciphertexts, each with decryption key g2i . The server can calculate Pj and

Qj given all the encrypted keywords sent by the user. However, the server is

unable to decrypt the results because it does not have the combined decryption

keys.

• Finally the smart meter (SMi) and the server collaborate to compute Fi, defined

as follows:

Fj =
Pj

Qj

=

∏
Kl ̸=Kj

MKHh(K)−MKHhi
(Kl)∏

Kl ̸=Kj
MKHhi

(Ki)−MKHhi
(Kl)

The numerator (Pj) and denominator (Qj) calculated in the preceding step by

the server are sent to SMi, where they are multiplied by gm−1
i and g

2(m−1)
i ,

respectively. Then, these values are sent back to the server securely, where the

server can multiply Pj with its part of the secret key, gm−1. Hence the server

will have both Pj and Qj in plaintext and can calculate Fj by taking the division

of the two results. This would result in a table of Fj values similar to Table

5.1, except the fact that each value is in plaintext. For example, if K matches
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the 5th, keyword F5 would be equal to 1, whereas all the other Fj values would

be zero. Hence, the server would know whether the keyword is contained in the

data sent by SMi. This process is repeated for each smart meter.

This scheme has the advantage that homomorphic encryption is only used in the

querying and keyword encrypting processes, thereby reducing the computational over-

head. In the next chapter, we assess the relative strengths and weaknesses of these

protocols, the challenges in implementing them, and future research directions.

Remark:

It should be noted that we can use our Homomorphic Query Processing method

(section 5.3) with Boneh’s PEKS scheme (section 7.4.1) to propose an alternative

approach to keyword search in emails. Recall that Boneh’s scheme applies to the case

where two users, Alice and Bob, wish to communicate with each other through email.

Bob sends an email to Alice, who would like to route the email to the appropriate

device depending on the keywords it contain. Alice achieves this by sending a trapdoor

function to the server, enabling the server to search for a particular keyword. In

place of the trapdoor function, Alice can send the keyword (say K) that she wishes

to search, encrypted by Bob’s public key. If we use Braserski’s encryption scheme
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in encrypting all the keywords, the server can use the keywords sent by Bob, along

with the encrypted keyword sent by Alice, to compute Fi values for each keyword

(in other words, compare K with each keyword) using equation 5.1. The server can

then collaborate with Alice to decrypt the result, which will indicate whether K is

contained in the set of keywords.



Chapter 8

Challenges and Future Research

Directions of the Smart Grid

Most of the implementation challenges faced by the smart grid today boils down

to three main categories: hardware limitations, cryptographic protocols, and signal

processing. In this section, we examine each of these challenges and show how the

previously discussed protocols fall into these categories.
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8.1 Hardware Limitation Challenges

One of the most essential elements of a smart grid is its scalability. Most smart grids

consist of tens of thousands of consumers and the cryptographic protocols that are

used should be scalable to this size. For example, Garcia/Jacob’s protocol [21] and

Kursawe’s [31] approach employ a quadratic complexity of communication for the

aggregator (the number of messages that should be exchanged for N smart meters is

O(N2)) and a linear complexity for each smart meter (since each smart meter should

distribute O(N) number of messages). In comparison, Erkin/Tsudik’s protocol [16]

and Ács/Castellucia’s protocol [3] have a linear communication complexity for the

aggregator and constant complexity for the smart meters. Hence, it is more desirable

to use the latter two protocols in terms of their scalability.

From the point of view of the grid operators, smart meters should be cheap and eas-

ily replaceable. Therefore, most smart meters used today have limited computational

power that is insufficient to carry out complex homomorphic encryption schemes. For

example, the Open Smart Grid Protocol and the smart metering protocols used in

the Netherlands employ symmetric encryption schemes such as RC4 and DES [18,30].

Although weaknesses in these protocols have been reported (see [32]), they remain in

use due to their high usability.



8.2 Cryptographic Protocol Challenges 88

8.2 Cryptographic Protocol Challenges

Almost all the protocols presented here are designed with the assumption in mind

that consumers and smart meters are not malicious. However, the real-world situation

is quite different. Apart from the privacy concerns associated with consumer data,

there is also a possibility that users might act maliciously to alter or sabotage the

correct behavior of smart meters. Although challenges that are faced by tampering

smart meters have been discussed in [1,35], there appears to be a lack of research on

protocols that achieve both the privacy goals related to aggregation of measurements

as well as smart meter tamper proofness.

Another challenge faced in aggregation protocols is that every participant should

use the same key in order for the measurements to be homomorphically combinable.

Most well known homomorphic encryption schemes work in this manner. For example,

the same public and private keys should be used in Erkin and Tsudik’s protocol [16]

for Pallier encryption scheme to work in the desired manner. This creates a problem

in terms of key distribution: If one party is malicious or compromised, there is a risk

of exposing the private keys used by all the other parties and the aggregator. One

measure towards resolving this problem is to use encryption schemes such as the one

used by Ács and Castelluccia [3], where each pair of parties uses their own secret
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key. However, these schemes have a high communication overhead due to the huge

amount of key distribution.

Most cryptographic protocols depreciate due to increasing processing power and

newer attacking algorithms. Therefore, it is necessary that the devices that are con-

nected to the smart grid should have some secure means of upgrading their crypto

algorithms. In the case of fully fledged computers, this is quite easy to implement, for

example, through a software or driver update. Similarly, smart grid devices should

be designed with future upgrades to crypto algorithms in mind.

8.3 Future Research Directions

It is evident that the consequences of smart grid cybersecurity can be quite significant.

Deploying a smart grid without proper security mechanisms in place would result in

utility fraud, loss of user consumption data etc. One of the most critical issues of

smart grid cybersecurity is the problem of key distribution. The simplest method

is to use a single key that is shared by all the users of the smart grid. However,

this approach has the potential to fail catastrophically because a breach at a single

node will compromise the security of the entire grid. The main challenges associated

with the smart grid are due to its stringent security requirements and limited com-
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putational resources. Although many Cryptographic solutions have been proposed

both by academia and industry, most of these involve an unrealistic communication

overhead for smart devices with limited computational power.

In this work, we have discussed several proposed methods to aggregate smart me-

ter measurements using homomorphic encryption. The first approach by Garcia and

Jacobs [21] uses the concept of secret sharing to break each smart meter reading into

several parts and to distribute these parts among other participants. However, the

number of homomorphic encryptions of this protocol grows quadratically with the

number of smart meters, making it unsuitable for large-scale smart grids. On the

other hand, Kursawe’s [31] approach using the Diffie Hellman key exchange protocol

reduces the number of homomorphic encryptions at the cost of introducing a large

communication overhead. The third approach by Erkin and Tsudik [16] solves both

of these problems, but it assumes the smart meters are capable of performing several

computationally expensive cryptographic schemes (i.e., Paillier encryption, a hash

function, and random number generation). The final protocol proposed by Ács and

Castelluccia [3] introduces a lightweight additive homomorphic cryptosystem that

mitigates the problems associated with secret sharing and computationally intensive

cryptosystems like Paillier. Therefore, from a practical standpoint, the best scheme

currently available for secret aggregation is Ács and Castellucia’s scheme. However,
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further research has to be carried out especially in order to determine how the ran-

dom values between the smart meters (r1, r2 and r3 in Figure 6.7) can be securely

distributed.

8.3.1 Improvements to Homomorphic Query Processing

In addition to these challenges that are inherently present in the smart grid, there is

also room for improvement in our proposed methods: the Homomorphic Query Pro-

cessing (section 5.3) and the encrypted keyword technique in the smart grid (section

7.5). The Homomorphic Query Processing method uses plaintext inverses to calculate

the value of Fi in equation 5.1, essentially requiring the plaintext space in the fully

homomorphic encryption scheme to be a field. It would be a major improvement if our

scheme could be made independent of plaintext inverses, thus providing more flexibil-

ity to the user in choosing the plaintext space. One of the approaches that can be used

to construct an alternative method to calculate Fi is to use homomorphic subtraction

of the two multiplicands of equation 5.1. For example, Enc(a)−Enc(b) = Enc(a− b)

will be equal to an encryption of zero if a and b are equal and an encryption of

some other value if not. We believe this idea can be developed further to create an

alternative to our proposed method.

In addition, a next logical step is to improve this method to process conjunctive
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queries, which involve comparison of two or more values of the table simultaneously.

A typical solution to this problem is to compare each individual predicate of the

conjunct separately, but this has efficiency drawbacks.

Finally it would be interesting to look at avenues in which our homomorphic query

processing scheme can be implemented, so as to obtain experimental results.

8.3.2 Query Processing in the Smart Grid

In this thesis, we have investigated the problem of querying encrypted data in the

smart grid. We have proposed a method using PEKS [9] and multi-key homomorphic

encryption [33] to tackle this problem. The amount of research done in the area of

multi-key homomorphic encryption schemes seems to be quite limited, and to our

knowledge, the only multi-key encryption scheme currently available is the one intro-

duced by López-Alt et al. [33] (section 7.4.2). Thus, it will be a major improvement

if our query processing method can be extended to any fully homomorphic encryp-

tion scheme. In addition, users will typically want to perform multi-keyword search

queries with logical operations such as AND, OR and NOT; therefore, the question

of providing more query functionality that supports these operations is also an open

area of research.
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