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ABSTRACT 

Water-alternating-gas (WAG) is an enhanced oil recovery method combining the improved 

macroscopic sweep of water flooding with the improved microscopic displacement of gas 

injection. The optimal design of the WAG parameters is usually based on numerical reservoir 

simulation via trial and error, limited by the reservoir engineer’s availability. Employing 

optimisation techniques can guide the simulation runs and reduce the number of function 

evaluations. In this study, robust evolutionary algorithms are utilized to optimise hydrocarbon 

WAG performance in the E-segment of the Norne field. The first objective function is selected to 

be the net present value (NPV) and two global semi-random search strategies, a genetic 

algorithm (GA) and particle swarm optimisation (PSO) are tested on different case studies with 

different numbers of controlling variables which are sampled from the set of water and gas 

injection rates, bottom-hole pressures of the oil production wells, cycle ratio, cycle time, the 

composition of the injected hydrocarbon gas (miscible/immiscible WAG) and the total WAG 

period. In progressive experiments, the number of decision-making variables is increased, 

increasing the problem complexity while potentially improving the efficacy of the WAG process. 

The second objective function is selected to be the incremental recovery factor (IRF) within a 

fixed total WAG simulation time and it is optimised using the same optimisation algorithms. The 

results from the two optimisation techniques are analyzed and their performance, convergence 

speed and the quality of the optimal solutions found by the algorithms in multiple trials are 

compared for each experiment. The distinctions between the optimal WAG parameters resulting 

from NPV and oil recovery optimisation are also examined.  
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This is the first known work optimising over this complete set of WAG variables. The first use of 

PSO to optimise a WAG project at the field scale is also illustrated. Compared to the reference 

cases, the best overall values of the objective functions found by GA and PSO were 13.8% and 

14.2% higher, respectively, if NPV is optimised over all the above variables, and 14.2% and 

16.2% higher, respectively, if IRF is optimised.  
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Chapter 1: Introduction 

 

1.1 Water Alternating Gas (WAG) Background 

Primary recovery is the recovery of crude oil from the reservoir by the natural energy of the 

reservoir [1]. The natural driving mechanisms providing the energy for oil recovery can be 

summarized according to their power: water drive, gas cap drive, depletion drive, rock and fluid 

expansion drive and gravity drainage drive [2]. In reality, combinations of the above natural 

drive mechanisms are at play during primary recovery. When production has dropped due to 

diminished natural drive or reduction in the reservoir pressure, secondary recovery techniques 

are employed. Typically, secondary recovery involves the injection of water or gas into the 

reservoir to re-pressurize the reservoir and force the oil to flow towards the production wells [3].  

 

In many cases, oil recovery efficiency during primary and secondary stages is low, which has led 

to the development of a variety of enhanced oil recovery (EOR) techniques to postpone the 

decline of the reserves [1]. EOR processes normally can be categorized into thermal, chemical, 

gas injection and microbial methods. Gas injection as an EOR process is widely used for 

increasing oil recovery by injecting various gases (for example, natural gas, enriched natural gas, 

carbon dioxide, nitrogen, or flue gas) into the oil reservoir [3]. A low mobility ratio between 

injected gas and displaced oil during the immiscible displacement process leads to an unstable 

zone on the front as well as early breakthrough and viscous fingering [4]. Water Alternating Gas 

(WAG) was first proposed as a method to increase sweep efficiency of gas injection processes, 



 

2 

 

where water is injected alternatively with the gas to control the mobility ratio and to stabilize the 

front.  

 

In conventional water flooding, the capillary pressure between water and oil results in low pore 

scale recovery due to bypass and snap-off mechanisms, and hence leads to high residual oil 

saturation [5]. Microscopic displacement of the oil by gas is better than by water. On the other 

hand, macroscopic displacement of the oil by water is better than by gas [6]. WAG injection 

integrates the improved displacement efficiency of the gas injection with an improved 

macroscopic sweep by water flooding to enjoy the advantages of both processes. Some other 

advantages of WAG include possible gas-oil miscibility which may provide an additional 

recovery and may affect the fluid viscosity and density [6]. In addition, the  reduction  in  

residual  oil saturation, because of the three phases and hysteresis effects, and the  decrease in 

interfacial tension (IFT) are  also  mechanisms  for  additional  oil  recovery during  immiscible  

WAG injection [7]. The lower IFT of gas-oil compared to water-oil allows the gas to displace oil 

from the small pore spaces which are not accessible by water alone. A schematic representation 

of a WAG process is illustrated in Fig. 1-1 reproduced from [8]. 
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Fig. 1-1: Schematic representation of WAG injection [8] 
 

 

1.2 Optimisation Background 

Solving an optimisation problem is the act of finding the conditions which minimize or 

maximize a function under given circumstances. This general type of problem can be stated as 

follows [9] 

 

 

subject to the constraints 
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( ) 0,      1,2,...,

                                                                                                                                                   (1.1)

( ) 0,      1,2,...,

j

j

g X j m

l X j p

 

 

 

where X  is an n-dimensional vector called the design vector, 'six  are the design or decision 

variables, ( )f X  is the objective function and ( ) and ( )j jg X l X  are known as inequality and 

equality constraints, respectively. (Refer to the Nomenclature on page xv for a full description of 

the notations/variables.) 

 

There are several ways to classify the optimisation problems. A simple categorization is based on 

the nature of the equations and variables involved [9].  

 

If all the objective and constraint functions are linear functions of the decision variables, the 

problem is called a linear programming problem. If any of the above functions is nonlinear, the 

problem is known as a nonlinear programming problem. This is the most common type of 

optimisation problem and all other problems can be regarded as special cases of nonlinear 

programming problem. If at least one of the decision variables is allowed to take only integer 

values, the problem is classified as an integer programming problem [9]. These three categories 

of optimisation problems will be reviewed with more details in Chapter 2.  

 

1.3 Introduction to the Norne Field 

The Norne field dataset, including two case studies for the whole field and the E-segment, is 

hosted and supported by the Integrated Operations (IO) center at Norwegian University of 

Science and Technology (NTNU). The Norne field on the Norwegian Continental Shelf is 
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operated by Statoil, a partner of the IO center. The data has kindly been made available by 

Statoil and license partners. Memorial University of Newfoundland is one of the partner 

universities.  

 

The Norne oil field was discovered in December 1991. The horst block is approximately 9 km x 

3 km. It is located about 80 km north of the Heidrun field in the Norwegian Sea in about 380 m 

of water. The Norne main structure (Norne C, D and E‐segments) containing 97% of the oil in 

place, and the North‐East Segment (Norne G‐segment) are the two separate oil compartments of 

the field [10]. Fig. 1-2 shows the field with all its segments. 

 

 

Fig. 1-2: The Norne field with all the segments  

 

E 

 

C 

 

D 

 

G 
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Garn, Ile, Tofte and Tilje are the four different formations of the reservoir from top to the 

bottom. Hydrocarbons in this reservoir are located in Lower to Middle Jurassic sandstones. The 

sandstones are buried at a depth of 2500 to 2700 m true vertical depth (TVD) and are affected by 

diagenetic processes. The initial reservoir pressure was approximately 273 bar in August 1996 

and the reservoir temperature is 98.3°C. The porosity is in the range of 25‐30%  and permeability 

varies from 20 to 2500 mD.  

 

The total hydrocarbon column is 135 m which contains 110 m of oil and 25 m of gas. 

Approximately 80% of the oil is located at Ile and Tofte formation and all the gas is in the Garn 

formation [11]. 

 

Development drilling began in August 1996 and oil production started on November 6
th

 1997. 

There have been 50 wells drilled in the field consisting of 33 producers (16 active wells, 2010), 

10 water injectors (8 active wells, 2010) and 7 observation wells. Water injection is used as the 

main drive mechanism for oil production. Early in the production, gas injection was also used to 

produce oil, however it was stopped in 2005 and all the gas is exported now [12]. 

 

The Norne field was expected to produce for 20 to 24 years with abandonment in 2020. The 

revenues (undiscounted) of the field were expected to be $4.4 billion during its remaining life 

(starting from January 1
st
 2010) [12], however, Statoil has made an oil discovery in the Svale 

North prospect in the Norwegian Sea about 9 km northeast of Norne field and is pushing 

operation to 2030 [13]. 
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1.4 Research Objectives  

This study aims to optimise the production performance by choosing the best operational 

parameters for the WAG process on field scale. To do so, an optimisation methodology and 

framework is developed and different optimisation techniques and WAG operating parameters 

affecting oil production are investigated. The developed methodology and chosen optimisation 

techniques are applied to maximize the net present value (NPV) and oil recovery for the WAG 

performance in the E-segment of the Norne field. The variables which are optimised include 

water and gas injection rates, bottom hole pressures of the oil production wells, cycle ratio, cycle 

time, the injection gas composition (to consider the effect of miscibility) and the total WAG 

period. The results from different optimisation techniques will be analysed and compared. 

 

1.5 Thesis Outline 

The rest of the thesis consists of four chapters. Chapter 2 is a literature review of WAG, the 

optimisation techniques used in the oil and gas industry as well as a review of WAG optimisation 

specifically. Chapter 3 presents the methodology and framework for WAG optimisation for a 

field case. Chapter 4 demonstrates the results and discussion of the WAG performance 

optimisation. Finally, the conclusions are summarized and recommendations are proposed in 

Chapter 5. 
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Chapter 2: Literature Review 

 

2.1 WAG Classification 

WAG processes are usually classified based on miscibility; whether the displacing fluid is 

miscible or immiscible with the reservoir oil. Miscibility is a function of oil and gas 

compositions as well as reservoir pressure and temperature [14].  

 

2.1.1 Immiscible WAG Injection 

Immiscible WAG occurs when the injected gas and the oil form two separate phases and a 

capillary interface exists between them. Immiscible gas injection can be used for EOR. Although 

two separate phases remain upon immiscible gas injection, some mass transfer between the two 

phases occurs [15]. Some gas vaporization from the oil or condensation of gas into the oil or a 

combination of the two mechanisms can happen. According to the amount of mass exchange, the 

process can approach miscibility and lead to favorable changes in the fluid viscosity, fluid 

density and IFT [6, 16]. 

 

Immiscible displacement in WAG processes has been utilized to improve macroscopic sweep 

efficiency by improving the frontal stability as well as contacting un-swept regions [6], and to 

enhance the microscopic sweep efficiency by some mass transfer between oil and gas.  
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2.1.2 Miscible WAG Injection 

Miscibility is defined as the property when substances mix in all proportions without the 

existence of any interface between the phases involved (i.e., zero equilibrium interfacial tension 

(IFT)) [17]. It should be noted that miscible displacement can be first contact miscible or multi-

contact miscible. In a first contact miscible displacement, the injected gas and reservoir oil mix 

instantly to create a single phase at any ratio of gas and oil [14]. However, it is often not 

economical to inject a gas which is first contact miscible with the oil [18]. This is mainly because 

the high injection pressure or the level of enrichment required for miscibility is usually costly. In 

a multi-contact miscible displacement, mass transfer between the injection gas and the reservoir 

oil leads to miscibility between the two phases after a number of contacts within a mixing zone 

of the flood front [19]. Multi-contact miscibility can develop through a vaporizing process, a 

condensing process or a combination of the processes. In the vaporizing drive process, when a 

lean solvent is injected, the intermediate hydrocarbons are vaporized from the oil and enrich the 

composition at the solvent front progressively until the solvent is miscible with the reservoir 

fluid. In the condensing drive process, condensation of the intermediate hydrocarbons from the 

solvent into the oil is the mechanism for the development of multi-contact miscibility. In this 

process, miscibility is propagated through successive contacts at the rear of the transition zone 

[20].  

 

The most important criterion for miscibility determination is the minimum miscibility pressure 

(MMP). MMP is defined as the lowest operating pressure at which the injected gas and the oil 

become miscible at reservoir temperature after dynamic multi-contact process is achieved [19]. It 

is worthwhile to note here that the MMP is a strong function of temperature and oil and gas 
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composition. Accurate determination of MMP is of a vital importance and should be taken into 

account for a precise estimation of the performance of WAG processes [21, 22]. Methods to 

predict MMP can be categorized into numerical and experimental methods. The most important 

experimental methods to determine MMP are slim tube displacement, the method of constructing 

pressure-composition (P-X) diagram, rising bubble apparatus (RBA), and the newly developed 

vanishing interfacial tension (VIT) technique [23]. 

 

The slim tube is designed to mimic a one dimensional reservoir and the length and packing 

materials of the tubing can be customized depending on the nature of analysis. The tubing is 

filled up with reservoir oil and the test gas is displaced up to 1.2 pore volumes. The test is 

conducted at four to six different pressures and oil recovery is recorded. The MMP is the 

pressure at which the break in the recovery curve occurs [24]. In RBA, a gas bubble moves 

upward in a visual high pressure cell filled with reservoir oil. The test is repeated at a series of 

pressures and the shape of the gas bubble is monitored. At or slightly above MMP, the gas-oil 

interface from the bottom of the bubble disappears [25]. In the P-X diagram, the phase 

boundaries (bubble point and dew point curves) of the reservoir fluid and injected gas mixture is 

experimentally derived relative to the mole percent of the gas, so two-phase and miscibility 

regions are distinguished [17]. In the VIT technique, the IFT of oil and gas are measured at 

pressures as high as the experimental accuracy allows and then the data are extrapolated to zero 

IFT [26]. 

 

Among the aforementioned experimental procedures, the slim tube method has been widely 

used, and is recognized as the well-accepted procedure to evaluate gas-oil miscibility. This 
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technique, however, provides neither a standard design nor a standard operating procedure and 

criterion for the measurement of miscibility [27]. Furthermore, this method is very time-

consuming, i.e., it normally takes one month to complete one miscibility measurement, therefore, 

it is very expensive [23]. The P-X diagram is also time-consuming, expensive, and cumbersome 

as well as it needs a large amount of fluid [23]. The RBA, as a fast method for the determination 

of MMP, is entirely visual and qualitative in nature, and miscibility is inferred from visual 

observation. This technique suffers from some disadvantages, for instance subjective and 

arbitrary interpretations from visual observations and lack of quantitative data to support the 

results [23]. The VIT technique has some advantages over the other existing experimental 

models, however, it is still expensive, and time consuming and it is not performed in the 

presence of porous media, so does not accurately reflect the effect of dispersion and mass 

transfer on the developing miscibility process. Rao and Lee have claimed that the VIT technique 

is a rapid, reproducible and quantitative way of determining MMP, though this technique seems 

to produce slightly lower MMP, due to the zero-interfacial tension pressures. The MMP results 

using VIT are nonetheless in excellent agreement with other methods and correlations, with the 

exception of rising bubble technique which overpredicts MMP [28]. On the other hand, 

computational procedures for calculating MMP provide fast and cheap estimation.  

 

In this study, the effect of miscibility will be examined in terms of the injection gas composition. 

The gas composition will be linked with immiscible/miscible WAG as an optimisation variable. 
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2.2 Factors Affecting the Success of a WAG Process 

It is crucial to develop various WAG scenarios to determine the optimum operational parameters 

based on economics, such as net present value, overall project economics, and oil recovery [29]. 

The parameters which affect a WAG process are classified in several ways. The following 

parameters are often the most important ones: reservoir characteristics and heterogeneity, rock 

and fluid characteristics, injection pattern, WAG ratio, injection rates, bottom  hole pressure and 

slug size [6, 30-34]. These parameters, in general, can be categorized into two main categories, 

namely reservoir parameters and operational parameters, as described below. The effect of these 

parameters on the success of a WAG process along with some examples in the literature are 

discussed further in sections 2.3 and 2.4. 

 

2.2.1 Reservoir Parameter Definitions 

Reservoir parameters can be divided into three categories including reservoir heterogeneity, 

petrophysical properties and fluid properties.  

 

Reservoir heterogeneity: One of the most important factors affecting the water/gas 

displacement process is reservoir heterogeneity and stratification [32, 35]. In fact, the efficiency 

of recovering oil from the reservoir is influenced by how well the layers communicate with each 

other [36]. The existence of barriers to fluid flow such as lenses, unconformities, faults and 

lateral facies variation bring about some difficulties for effective communication. One of the 

most important reasons of the failure of most EOR projects is reservoir heterogeneity [37]. 
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Reservoirs with higher vertical permeability are affected by cross-flow vertical to the bulk flow 

direction [38]. Cross-flow may enhance the vertical sweep, however, the gravity segregation and 

decreased flood velocity in the reservoir, in general, reduce oil recovery. As gas flows 

preferentially to the top section of thick, high permeability zone, injected water may flow 

preferentially to the lower section of the zone. Injection and sweep patterns in the flood are 

controlled by reservoir heterogeneity [29]. Bunge and Radke [39] conducted 2D and 3D 

simulation studies on the effect of crossflow between sublayers of a dolomite reservoir during 

alternate injection of CO2 and water and the results of the simulations demonstrated that the 

higher ratio of vertical to horizontal permeability adversely impact oil recovery in a WAG 

process. The most permeable layer has the greatest fluid contribution because of the cyclic nature 

of the WAG, however, as water is injected, it rapidly displaces the highly mobile gases and all 

the layers achieve an effective mobility almost equal to the initial value [40]. It is worth noting 

that in highly stratified reservoirs, the layers with higher permeability always respond first, 

which leads to an early breakthrough as well as poor sweep efficiency [29].  

 

Random heterogeneity exists in both carbonate and sandstone reservoirs. The reservoir may be 

comprised of layers of diverse permeable zones separated by thin deposits of shale. The thin 

shale deposits, which separate the layers, assist the recovery process by impeding the injected 

fluid from crossing over to the most permeable layers, helping the injected fluid to successfully 

sweep each stratified layer, and as a result, enhance the sweep and recovery efficiency [37]. 

 

Petrophysical properties: Porosity, saturation, permeability and wettability are the most 

influencing petrophysical properties in the WAG process [36]. 
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Porosity: the ratio of the pore volume to the bulk volume [41]. Reservoirs with higher porosity 

have higher potential to store fluids, and are mostly good candidates for a wide range of EOR 

projects. Effective porosity, which is formed by the interconnected pores in rock, is important in 

petroleum engineering.  

 

Saturation: the fraction of the pore volume occupied by a given fluid [41]. In a reservoir, often 

there are three phases; oil, water, and gas. The saturation of each phase is in the range of 0 to 1 

and by definition the phase saturations add up to 1. 

 

Permeability: a measure of connectivity in the porous medium [41] and a higher value of 

permeability shows that the reservoir has high potential to pass on fluids through the pores. 

Permeability plays a key role in reservoir characterization and is a required reservoir property for 

reserve estimation, numerical reservoir simulation, injection and production calculations, 

reservoir engineering calculations, mapping reservoir quality, and drilling planning [42]. 

Absolute permeability is the permeability of a rock sample fully saturated with one fluid, while 

the permeability of one fluid at a specific saturation in the presence of other fluid(s) is called the 

effective permeability. The ratio of the effective permeability of one fluid to the absolute 

permeability gives the relative permeability of the fluid [43].  

 

Wettability: the tendency of a fluid to adhere to or spread on a solid surface when another 

immiscible fluid is present [44]. In fact, wettability is responsible for the way that fluids are 

distributed in a porous medium. In the porous medium, the wetting phase occupies the smaller 

pores, while the bigger pores are filled up by non-wetting phase [41]. 
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Wettability preference can be evaluated in terms of the contact angle when two immiscible fluids 

are present on a rock surface. In Fig. 1-2, the balanced interfacial forces between water, oil and 

rock are shown. The contact angle ( )  is measured through the water phase. If it is less than 90 

degrees, the rock is said to be water wet; otherwise, the rock is known as an oil wet sample. A 

contact angle near 90 degrees is an indication of intermediate or neutral wettability [45]. 

 

 

Fig. 2-1: Balanced interfacial forces between water, oil and rock in a water-wet system [45] 

 

Wettability plays a significant role in the reservoir response to gas and water injection, for 

example, oil connectivity in oil-wet reservoirs improves the mass transfer between oil and gas 

during gas injection [46]. The optimum relative volumes of gas and water to be injected during a 

WAG process strongly depends on the wetting state of the rock [47]. 

 

Rock-fluid interactions such as wettability influence the displacement efficiency in the reservoir. 

In reservoir simulators all of these interactions are lumped into one parameter, namely relative 

permeability. Relative permeability is an important petrophysical parameter, as well as a critical 

input parameter, in the predictive simulation of miscible floods. It is a lumping parameter that 

Water   

Oil   

Solid   
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includes the effects of wetting characteristics, heterogeneity of reservoir fluids, reservoir rock 

and fluid saturation and describes the relative connectivity to a given fluid phase [48]. 

 

Fluid properties: Fluid properties can be divided into density, viscosity and interfacial tension. 

 

Density: a physical property of crude oil which is a measure of heaviness of oil components and 

is a function of pressure, temperature and oil composition. It is usually expressed in terms of 

˚API, which is the ratio of oil to water density at standard conditions and is called specific 

gravity. The lower the density of oil, the lower the residual oil saturation provided that 

everything else is the same in two reservoirs. 

 

Viscosity: the viscosity of a fluid is defined as the internal resistance of the fluid to flow [43]. 

Viscosity is a fundamental physical property of crude oil, and plays an important role in reservoir 

evaluation, reservoir simulation, forecasting production, designing production facilities, and 

planning any enhanced oil recovery methods. Viscosity of crude oil is strongly dependent on 

temperature, pressure, solution gas oil ratio, and composition [49-51]. The lower the viscosity, 

the easier the fluid flows through the porous medium. 

 

Interfacial tension: Interfacial tension (IFT) is defined as the energy required to create a unit 

surface area at the boundary of two immiscible phases. It is temperature dependent. It is also a 

measure of miscibility, and IFT becomes zero when the two phases become completely miscible 

[17]. The lower the IFT, the easier the fluids move together.  
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The microscopic and macroscopic displacement efficiencies determine the overall efficiency of 

an EOR process. The density and viscosity difference of the reservoir and injected fluids 

influence the macroscopic sweep, while microscopic displacement is affected by IFT and 

dynamic contact angles [40]. 

  

2.2.2 Operational Parameters 

The most important operational parameters are injection pattern, WAG (cycle) ratio, slug size, 

cycle time and conformance control. 

 

Injection Pattern: The well injection pattern and well spacing have a significant role in the 

sweep efficiency in a WAG process. Well spacing is a strong indicator of the average reservoir 

pressure (the greater the ratio of injectors to producers, the greater the average reservoir 

pressure) [52]. The five-spot injection pattern (a square of four injection wells placed at the 

corners with a producer well in the middle) seems to be the well-accepted onshore with a 

moderately close well spacing. In offshore operations, due to the high cost of drilling new wells, 

the wells are usually placed according to the geological factors and do not use fixed injection 

patterns [53] and well pairs are often used. Since many of the field applications are miscible 

operations, many wells give a good control of the field pressure, and consequently, the WAG 

injection performance improves [6]. 

 

Injection rate: Injection rates should be adjusted with regard to the fracture pressure, 

injectivity and formation flow capacity and the necessity of voidage balance [54]. Assigning 

suitable injection rates to each injector has a strong effect on the recovery and the success of the 
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WAG process. A reservoir-by-reservoir study is required to properly assign injection rates to the 

injection wells.  

 

Bottom hole pressure: Bottom hole pressure at the producers should be adjusted with regard 

to the pipe flow conditions through the wellbore and the constraints involved in the surface 

facilities. This parameter has a direct effect on the production rate and miscibility through the 

reservoir [54]. Due to higher oil recovery from miscible WAG, it is preferred for the bottom hole 

pressures to be set at or higher than MMP if a sufficient drawdown can be applied in the 

reservoir. Therefore, the assignment of bottom hole pressures to each producer depends on the 

reservoir characteristics and production facilities and is a case-specific task. Normally, injection 

wells operate at fixed injection rates and producers are kept at fixed bottom hole pressures. 

 

WAG (cycle) ratio: The WAG ratio is the ratio of injected water to gas and is expressed in 

terms of reservoir injection (volume of water per volume of gas injected at reservoir conditions) 

or in terms of duration or cycle ratio (the time over which injection takes place) [52]. For 

example, a WAG ratio of 0 refers to continuous gas injection and WAG ratio of 1 indicates that 

the same reservoir volumes of gas and water are injected during a cycle. Different WAG ratios 

create different structures of mixture zones and different displacement mechanisms [30]. The 

results of a previously published work [30] illustrate that injecting high rates of water (high 

WAG ratio) results in a more favorable mobility ratio. However, a lower WAG ratio diminishes 

the residual oil saturation as well as the velocity of the front, which increases the waterless 

production period. Therefore, the optimum WAG ratio for each WAG process should be 

carefully determined to improve the efficiency of WAG process. In field applications, a WAG 
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ratio of 1 is the most popular but it might vary up to 4 in some fields. A WAG ratio smaller than 

1 has rarely been used [6]. 

 

Cycle time: Cycle time refers to the length of time of an injection cycle. It is actually the sum 

of the time for water injection (water half cycle) and the time for gas injection (gas half cycle) in 

a single injection cycle [52]. During the total economic WAG duration, varying the cycle time 

evidently varies the number of cycles and this might affect the ultimate recovery. The WAG 

(cycle) ratio determines what proportion of a cycle is allocated to water or gas injection. A cycle 

time of two or three months is reasonable in normal operations, however the scheduled cycle 

time may not be practical due to operational constraints or the limitations on gas export. Some 

authors believe that oil recovery is not very sensitive to the duration of cycles and the amount of 

the injected gas has a greater effect on oil production [55, 56]. 

 

Slug size: The slug size refers to the cumulative gas injected in a single cycle of gas injection. 

Normally, the slug volume is reported as a percentage of the hydrocarbon pore volume 

(%HCPV) [52]. Economic sensitivities should be conducted to find the optimum gas slug size. 

The optimum gas slug size for a given project mainly depends on economic factors such as crude 

oil price, gas cost, and the amount of the incremental recovery [57]. Total slugs of gas equal to 

about 20% to 50% HCPV have been used in diverse projects in the U.S.A [57]. It was also 

reported that the total slug sizes of the gas volume are normally in the range of 0.1 to 3 pore 

volumes (PV). When hybrid WAG injection is applied, the initial slug size can be up to 40% 

HCPV. In hybrid WAG, a large amount of gas is initially injected and then the operation is 

followed by normal WAG injection [6]. Slug size should be optimised independently of WAG 
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(cycle) ratio as large slug sizes may lead to channeling and small slug sizes might not be 

operationally feasible [58].  

 

Conformance control: Conformance is a measure of the uniformity of the injected fluids 

(water or gas), as entering the pay zone. Ideally, injected fluids enter the formations only at pay 

zones, and spread out regularly across these zones to prevent early breakthrough. When a WAG 

process cannot successfully be applied to control sweep efficiency, other EOR techniques such 

as gel polymers, surfactant foams and conventional plugging methods can be used to enhance 

sweep efficiency of the injection process [52]. 

 

In the following diagram (Fig. 2-2), the influencing factors on WAG process have been 

categorized based on their controllability. As can be seen, altering reservoir heterogeneities and 

petrophysical properties is either impossible or too difficult, so they are categorized as 

uncontrollable parameters, while factors such as fluid properties and operational parameters can 

be changed and possibly optimised to increase the probability of the success of a WAG process. 

The above mentioned operational parameters, with the exception of injection pattern and 

conformance control, along with miscibility of the gas are investigated as part of the optimisation 

framework in this study. 
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Fig. 2-2: Factors affecting WAG 

 

2.3 WAG Review and Screening Criteria 

The first reported WAG project was conducted in the North Pembina oil field in Alberta, Canada 

in 1957 by Christensen et al [6]. In 1958, Caudle and Dyes [59] proposed and carried out 

laboratory experiments of simultaneous water and gas injection on core plugs, and the results 

demonstrated an ultimate sweep efficiency of about 90% compared to 60% sweep efficiency of 

gas flooding alone. The WAG process has been conducted with success in most field trials. The 

majority of the fields subjected to WAG are located in Canada and the U.S., however, there are 

also some fields in the former USSR. Both miscible and immiscible injections have been applied, 

and many different types of gas including CO2, N2, and hydrocarbon gases have been used [6].  
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A comprehensive literature review of WAG field applications around the world was reported by 

Christensen et al. [6]. In their study, 59 field cases were reviewed, and it was found that most of 

WAG processes have been successful. Incremental recovery due to WAG processes are reported 

to be in the range of 5% to 10%, however, increased recovery has reached up to 20% in several 

fields, including Rangely Weber in Colorado, Dollarhide and Slaughter Estate in Texas, all of 

which implemented CO2 miscible WAG [6]. Almost all of the WAG processes were applied as a 

tertiary recovery method, and only in newer applications in the North Sea has WAG been 

established earlier in the field life. For example, WAG was started at the Brage field early in its 

life after primary production [60]. Among the 59 reviewed projects, 47 were designed to be 

miscible and 10 were designed to be immiscible, while two have not been classified. As 

expected, the average incremental recovery from miscible WAG (9.7%) is reported to be higher 

than that of the immiscible case (6.4%) among the 59 investigated WAG applications [6].  

 

Christensen et al. [6] classified the WAG field applications based on rock type, and the results 

showed that the high-permeability reservoirs are in the majority, however, the WAG process has 

been applied to rocks from very low-permeability chalk (Daqing, China) [61] up to high-

permeability sandstone (Snorre, North Sea) [62]. Among these projects, thirty-three projects 

were carried out in reservoirs with sandstone as the main rock type, twelve fields were 

characterized as chiefly dolomite, five fields were mainly limestone, and six WAG field 

applications were in carbonate rock [6]. 

 

WAG performance was also compared in different fields according to the type of the injected 

gas. It was found that CO2 improved oil recovery on an average of 10%, whereas nitrogen and 
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hydrocarbon gas had an improved oil recovery of 8%. The higher recovery by CO2 may be 

attributed to the fact that most CO2-WAG projects were miscible, whereas the hydrocarbon gas 

and N2 WAG field tests are mostly immiscible. All the offshore WAG projects have used 

hydrocarbon gas since it is readily available from the production and is cheaper than CO2 [6].  

 

Fig. 2-3 to Fig. 2-6 show the distribution of WAG based on process type, rock type, location and 

injection gas for the 59 projects, respectively. As shown in these figures, 79% of the WAG 

projects are miscible indicating the popularity of miscible floods. WAG has been applied to a 

wide range of reservoir rock types from carbonate (10%) to sandstone (57%). Onshore reservoirs 

have utilized WAG about seven times more than offshore reservoirs (88% onshore compared to 

12% offshore) and CO2 has been used the most in WAG applications (47%), closely followed by 

hydrocarbon gas (42%).  

 

Fig. 2-3: WAG classification based on process type (totally 59 projects) [6] 
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Fig. 2-4: WAG classification based on rock type (totally 59 projects) [6] 

 

Fig. 2-5: WAG classification based on location (totally 59 projects) [6] 
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Fig. 2-6: WAG classification based on injection gas (totally 59 projects) [6] 

 

In a more recent publication by Awan et al. [53], the results of 12 offshore WAG projects in the 

North Sea have been reported. 48% of EOR methods in the North Sea (nine out of 19) were 

WAG processes, 1/3 of which were miscible. Apart from the immiscible WAG in Ekofisk which 

was a failure because of hydrate formation in the pilot well, all other WAG projects in the North 

Sea have been successful. 

 

In the North Sea, water flooding is the main recovery method after primary depletion due to its 

favorable mobility ratio, however, waterflooding alone cannot access the attic oil. Downdip 

WAG injection is the normal injection scheme of WAG which helps displace the attic oil by gas 

and the bottom oil by water through segregation of gas to the top and accumulation of water at 

the bottom. This leads to increase in oil recovery by contact of unswept zones in the reservoir 

[53]. In the following paragraphs, a few of WAG projects in the North Sea will be reviewed.  
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The most successful WAG is found in the Brent sandstone formation of Statfjord field [63]. 

Statfjord is a light-oil field with permeabilities in the range of 10 to 1000 mD in the lower Brent. 

Fluid laboratory tests had reported an MMP of about 414 bar which was far above the reservoir 

pressure at the start of the project (330 bar), so the process is supposed to have been immiscible 

although indications of swelling/vaporization and multi-contact miscibility were observed. At the 

time of full field WAG initiation, the recovery factor and water cut were approximately 56% and 

70%, respectively. Horizontal WAG injectors were perforated deep in the formation to help gas 

displace as much oil as possible through its upward movement and the producers were 

sidetracked to hinder excessive gas or water production. Despite the success of this project, poor 

volumetric sweep of the gas due to its vertical migration were attributed to high permeability 

channels which resulted in low gas efficiency and considerable gas back production (up to 45% 

of the injected gas). The promising results of this project were the reduction in water cut (from 

90% to 20% in some of the wells) and the increase in oil rate up to three times in many of the 

producers.  

 

At Gullfaks [64, 65], Snorre [66] and Brage [67], the WAG ratio was planned to be 1:1. For 

other fields in the North Sea such as Statfjord, Brae South, Magnus, Thistle and Ekofisk, the 

WAG ratio was not reported. Christensen et al. [6] reports 1:1 as the optimum WAG ratio based 

on the WAG field experiences. Two or three months is the normal length of WAG cycle in most 

of the fields. A general trend is to decrease the length of gas cycle as gas breaks through [53]. 

For example, at Snorre, the initial cycle time was three months and then it was reduced to one 

month per well after the gas broke through [66]. Some authors believe that oil recovery does not 

depend on the length of the gas cycle and is mainly sensitive to the quantity of the gas injected 
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[55, 56]. The scheduled WAG cycle may not be executed in practice due to operational 

constraints and the restrictions on sales and export. In the North Sea, generally more gas is 

injected during summer and less during winter [53]. 

 

A miscible WAG pilot was conducted in Snorre field by Statoil [66]. The reservoir mainly 

consists of sandstone with permeabilities in the range of 200 to 2000 mD. The reservoir fluid is 

an undersaturated light oil with a saturation pressure between 90 and 130 bar and the initial 

reservoir pressure of 383 bar. The MMP has been estimated at 283 bar based on slim tube 

experiments and to ensure miscibility, the operating pressure in the WAG pilot has been kept 

above 300 bar for the first year of gas injection. Early gas breakthrough was reported in one of 

the wells which was attributed to high permeability layers. Other producers did not experience 

much gas-oil ratio (GOR) development and a small reduction in water cut development was also 

observed in the first year of WAG injection in the Snorre field. Gas was initially injected with a 

rate of 61.1 10  Sm
3
/day with a cycle time of three months to maintain the voidage replacement 

and was reduced to 60.8 10  Sm
3
/day after the early gas breakthrough. 

 

An immiscible WAG injection started in the Fensfjord reservoir of the Brage field in 1994 [67]. 

The Fensfjord is a highly stratified reservoir with layers less than 5 m thick and permeabilities in 

the range of less than 1 mD to more than 200 mD with high permeability streaks and calcite 

layers. Cyclic gas and water injection started initially in two wells with a WAG ratio of 1:1 and 

cycle length of three months. The WAG injection was then expanded to six injection wells. The 

gas and water injection rates were 600,000 Sm
3
/day and 3800 Sm

3
/day, respectively [67]. 

Although it is recommended to start WAG as early as possible in some literature [53, 68], early 
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gas breakthrough occurred in the Brage field after three months and GOR increased from an 

initial value of 93 Sm
3
/Sm

3 
to 480 Sm

3
/Sm

3
 [60]. This was attributed to a high permeability 

streak which acted as a thief zone between the injector and the producer and resulted in WAG 

termination in 2000 [53]. 

 

The Gullfaks field [64, 65] is a large oil field in the Norwegian sector of the North Sea. The main 

reservoir is in the Brent group which is comprised of four formations with thicknesses from 15 m 

to 110 m mostly made of sandstone with a dense faulty pattern and permeabilities in the Darcy 

range except for some little areas which have permeabilities down to 10 mD. Immiscible WAG 

injection started when all the producers had a water cut exceeding 50%. A total volume of 

65.6 10  Rm
3
 or 91.5 10  Sm

3
 gas and 71.59 10  Rm

3
 water were injected in cycles of two-three 

months long from November 1987 to December 2000. The gas efficiency was pretty high in this 

field compared to the Statfjord, although it had less incremental oil recovery [53]. Gas back 

production was quite low (around 15% of the injected gas). No well went through significant 

increase in GOR and water cut development was also reduced in some of the wells. The vertical 

migration of injected gas and the formation of a secondary gas cap against the faults was 

observed. This resulted in a faster production of the attic oil [64].  

 

Based on the literature reviewed above, it can be stated that WAG has been largely successful 

and resulted in incremental oil recovery by controlling gas mobility and integrating favorable 

volumetric sweep of water with microscopic sweep of gas. Before designing an experimental 

plan that is time consuming and costly, WAG screening criteria of simulations, pilot studies and 

field experiences need to be considered. For miscible and immiscible gas flooding, several 
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screening criteria have been suggested in literature [69-71], however little research exists 

specifically on WAG screening [72].  

 

Manrique et al. [72] reported some of the main WAG screening criteria based on 56 projects in 

literature. More than half of successful WAG field projects have oil viscosities lower than 2 cP. 

Oil gravity is usually more than 30°API with an average of 45°API and a viscosity ratio of oil to 

gas in the range of 10 to 30. Water flooding is the preferred recovery method prior to WAG, 

however WAG has been applied in reservoirs produced by natural depletion or gas injection with 

success. Permeability is not a critical parameter and WAG field projects show high permeability 

contrast in the range of 50 mD up to 3 D, however most of the successful WAG projects have 

been applied in reservoirs with permeabilities less than 100 mD. The desirable net thickness is 

below 100 ft unless the reservoir presents high dip angles. The formation can be of any type and 

there are examples of successful WAG applications in sandstone, carbonate, dolomite and 

limestone. Temperature and depth of the reservoir are not critical parameters, however 

temperature is preferred to be between 100 and 200°F and depths of greater than 4000 ft are 

usually found in successful WAG applications.  

 

Table 2-1 compares the above screening criteria against the Norne field characteristics, (NC 

stands for not critical). WAG was applied in the Norne field from 1998 to 2007 by Statoil and 

since 2007 there has been only sea water injection [73]. No information has been released on the 

WAG performance in the Norne field to the best of the author’s knowledge. Nangacovie [12] 

conducted a black-oil simulation study on the E-segment of the Norne field and showed a 
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maximum recovery of 73% at a 1:3 simultaneous WAG (SWAG) ratio compared to 68% 

recovery from WAG injection technique. 

Table 2-1: Suggested WAG criteria along with the Norne field characteristics 

Fluid and reservoir characteristic Suggested WAG criterion  Norne characteristic 

Oil viscosity [cP] < 2  0.58  

Oil gravity [°API] 30-45 32.7 

Preferred production method prior to WAG Water flooding Water flooding 

Temperature [°F] NC (100-200) 209 

Depth [ft] NC (> 4000) 8200-8860 

Net thickness [ft] < 100 unless dipping 440 (not highly dipping) 

Average permeability [mD] NC (< 100) 20-2500  

Formation type NC Sandstone 

 

As shown above, the Norne field approximately meets all the criteria except the net thickness. 

Reservoirs with higher net thickness are subject to increased gravity override which adversely 

impacts oil recovery and the success of WAG [58]. The notes on the suggested screening criteria 

do not necessarily mean that WAG cannot be performed in a reservoir which does not meet the 

mentioned criteria and conversely, if the above criteria exist in a reservoir, the success of the 

WAG would not be guaranteed in spite of its technical feasibility [72].  

 

2.4 Operational Challenges 

Some operational problems cannot be avoided during the production life of an oil field. Since the 

injection fluids must be changed repeatedly, WAG injection is more challenging than a pure gas 

or water flooding [6]. Gravity override and segregation and reduction in the sweep efficiency 
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farther from the injection well are usually observed in WAG projects. Moreover, since gas 

injection is usually applied after a secondary waterflood, high water saturation and the water 

shielding effect might shield the residual oil from the injected gas, especially in water-wet 

reservoirs [47].  

 

Christensen et al. [6] summarized a number of routine operational problems reported in WAG 

applications. Some of the most severe operational problems are as follows 

 

Early Breakthrough in Production Wells: Poor knowledge of the reservoir or an insufficient 

reservoir description can result in unexpected events such as early gas breakthrough. Channeling 

and overriding can cause early gas breakthrough in several fields. This might lead to shut in of 

the wells much earlier than scheduled, which is more critical in offshore projects due to the 

limited number of the wells [6].  

 

Reduced Injectivity: Reduced injectivity leads to a more prompt pressure drop in the reservoir, 

which influences displacement and production. Three-phase flow and wellbore heating cause 

reduction in relative permeability which subsequently leads to reduced injectivity [6]. Reduced 

water injectivity after a gas slug sometimes occurs, however reduction in the injectivity of gas is 

not a major concern and gas injectivity after a water slug might even increase [74]. 

 

Corrosion: This problem exists in almost all WAG injection projects usually due to the fact that 

injection and production facilities are not originally designed for WAG injection. It must be 
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solved by means of high quality steels, pipe coating or changes in equipment. Only WAG 

projects using CO2 as injection gas have reported severe corrosion problems [6]. 

 

Scale Formation: When CO2 is the injected gas source, the formation of scales in WAG field 

trials usually happens, which might stress the pipeline and lead to failure [6]. 

 

Asphaltene Formation: Several fields have encountered problems due to asphaltene 

precipitation (East Vacuum in New Mexico, Wertz Tensleep in Wyoming and Mitsue in 

Alberta). East Vacuum and Wertz Tensleep applied miscible CO2-WAG and the WAG in Mitsue 

was miscible hydrocarbon [75-77]. In fact, asphaltene precipitation during gas injection can 

cancel out the success of this method, and cause severe problems such as wettability alternation, 

formation damage, relative permeability reduction, and flow interruption in the reservoir as well 

as surface facilities [78-80]. In many cases, the asphaltene precipitation problem can be solved 

with solvent treatment at adequate intervals of the wells. In some cases wells have been shut in, 

however, in a majority of the cases reported production has not been severely influenced. 

 

Hydrate Formation: Recently, a WAG pilot was postponed on Ekofisk (an immiscible 

hydrocarbon WAG project in the North Sea) due to plugging of the injector [81]. This was 

brought about by hydrate formation, due to low temperature in the injector. Another hydrate 

formation problem was reported by Wasson Denver (miscible CO2-WAG in Texas). In this case, 

hydrate formation in wells resulted in freezing of the wellhead during the nights and periods of 

cold weather [82]. 
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Most of these operational problems are a part of the daily routine for the operators and are 

usually handled successfully through close monitoring and good management [6]. 

 

The operational challenges and flow assurance is not part of the scope of this study and will not 

be investigated in the thesis.  

 

2.5 Fundamental Equations of Fluid Flow in Porous Medium 

In this section, the fundamental equations of three-phase flow through a porous medium are 

briefly reviewed. Darcy’s law for a three-phase system of fluids is written as follows for each of 

the three phases [83]. We use the subscripts g, o and w to refer to the gas, oil and water phases, 

respectively. 
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The conservation equation for each component is written as follows [83] 
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Substitution of conservation equation into Darcy’s law gives the following set of N  differential 

equations for N  components [83]. 
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There are 3N  dependent variables for the mass fractions in the three phases, three phase 

pressures, three densities, three viscosities, three saturations and three relative permeabilities. 

Therefore, there are totally 3 15N   dependent variables, hence 3 15N   independent relations 

are required in order to obtain a solution to the above system [83]. 

 

The saturations and mass fractions must add up to 1. Densities and viscosities are functions of 

phase pressures and compositions and relative permeabilities are functions of saturations [83]. 

There are two independent relationships for capillary pressures which are given below [43]. 
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So there are already 15N   independent relations. Finally, there is a distribution constant for 

each component as a function of pressure, temperature and composition for each pair of phases 

which yields the 2N  remaining required relations [83]. 
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2.6 Production Optimisation Techniques 

In reservoir management, the objective is to find the optimal production and injection settings to 

minimize the residual oil saturation and displace the oil to the production wells by means of a 

displacing agent. The injected and produced fluids should be properly adjusted in order to 
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control the displacement process. The recovery factor can be improved by 3-25% through steady 

and monitored optimisation [84]. 

 

As the main goal of production optimisation, the optimisation approaches should be investigated 

to help the reservoir engineers make operational decisions to improve and enhance oil recovery 

while considering the operational and economic constraints.  

 

Applications of optimisation techniques in the oil industry were initiated in the early 1940's and 

are still expanding. Optimisation techniques have been applied for well placement, history 

matching, drilling, facility design and operation, recovery processes, planning, etc. [85]. Linear, 

integer and nonlinear programming techniques have been widely used to optimise oil and gas 

production [86]. In the rest of this section, we briefly review the optimisation strategies which 

appear in the literature review of oil production and WAG optimisation. 

 

2.6.1 Linear Programming Technique  

The optimisation problem (equation (1.1)) is a linear one when both the objective function and 

the constraints are linear. Linear programming techniques have been in use in the oil and gas 

industry since the 1950's [87]. Linear programming is widely used in business and economics, 

for example to find the optimal distribution plan for the shipment of a product from several 

manufacturing plants to different places. It is also utilized to solve several types of engineering 

design problems, such as the design of frame structures [9]. There are mainly two kinds of 

techniques, i.e., the simplex algorithm and the interior point algorithm, which can be employed 

to solve a linear programming problem. The classical simplex algorithm was proposed and 
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developed by Dantzig [88]. A sequence of bases is generated in this method and the algorithm 

moves along the vertices of the feasible region to find the optimum solution. This indicates that 

the optimum found by this method is always an extreme point of the feasible region. Klee and 

Minty [89] mentioned that the simplex algorithm can be quite effective although it might require 

many iterations to converge in some cases. 

 

The interior point algorithm or the polynomial-time algorithm was proposed by Karmarkar in 

1984 [90]. It works based on continual centering through a projective scaling transformation. 

This algorithm always looks for the optimal solution in the interior of the feasible region and 

therefore, contrary to the simplex algorithm, the optimum found by this method is not an extreme 

point of the region. When the objective and/or constraint functions are not linear, a system of 

linear functions can be employed for finding the optimum. 

 

2.6.2 Integer Programming Technique 

When all the components of the unknown vector are discrete, the problem is an integer 

programming one. When only some of the components are discrete (such as coupled well control 

and placement optimisation), the problem is a mixed integer programming one. There does not 

exist a universal algorithm which can solve all the linear integer programming problems. The 

solution of such problems is usually time consuming or approximate. Two widely used solution 

algorithms are the cutting plane technique and the branch and bound method [91, 92].  

 

In the cutting plane technique, an initial linear programming relaxation has to be established by 

assigning real values to each discrete component. After that, the constraints are added to a series 
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of linear programming relaxations of the linear integer problem until the optimal solution of a 

relaxation problem takes integer values [91]. On the other hand, the branch and bound method 

approach breaks an optimisation problem iteratively into multiple sub-problems to examine the 

set of feasible integer solutions. Instead of taking account of all the sub-problems, the method 

uses bounds on the optimal objective value of a sub-problem to avoid forming and solving other 

sub-problems [92]. 

 

2.6.3 Nonlinear Programming Technique 

When either of the objective or constraint functions are nonlinear, the optimisation problem is a 

nonlinear one. Due to diverse structures of nonlinear programming problems, various techniques 

have been developed for different classes of the problems. The two main classes of nonlinear 

optimisation techniques are the derivative or gradient-based algorithms and the direct or 

derivative-free optimisation algorithms. Some commonly used algorithms are briefly presented 

below. 

 

Derivative-based optimisation algorithms: In derivative-based optimisation algorithms, the 

steepest decent direction is looked for and the function extremes are usually found through 

analytical or numerical differentiation of the function. The numerical finite difference methods 

are based on Taylor series expansions. The steepest decent method, Newton's method, quasi-

Newton method and sequential quadratic programming technique are examples of this type of 

optimisation algorithm. They are deterministic and converge quickly if the starting point is not 

too far from the true solution [93]. Derivative-based optimisation algorithms have also some 

disadvantages [94]. For example, the Newton-type methods might not be able to find the optimal 
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solution if the response surface is not smooth. Furthermore, the computation of the derivatives 

with finite difference approximations is expensive and time consuming. 

 

Direct optimisation algorithms: The direct or derivative-free optimisation algorithms do not 

require the objective function derivatives required in gradient-based methods. This makes them 

suitable for situations when the derivatives of the function either do not exist or are too difficult 

or costly to compute. Currently, many direct optimisation algorithms are being used in the oil 

and gas industry. 

 

Derivative-free optimisation approaches can be divided into deterministic (e.g., generalized 

pattern search) and stochastic (e.g., genetic algorithm) techniques. Stochastic approaches can be 

useful for dealing with rough functions with multiple local optima [95]. 

 

Extracting the gradient information requires in-depth knowledge of how the reservoir simulator 

works, hence may be challenging. Using “black box” optimisation algorithms, which deal only 

with inputs and outputs to the simulator, is a way to remove this requirement [96]. 

 

Recently, optimisation techniques based on evolutionary algorithms have attracted many 

researchers from various fields. Among these, genetic algorithms (GAs) have achieved more 

popularity and have been used extensively in petroleum engineering problems [97]. However, 

other evolutionary algorithms have emerged as very promising tools for optimisation problems in 

the oil industry. Some of the most important ones are particle swarm optimisation (PSO), ant 

colony optimisation and simulated annealing. In the following sections, we first introduce the 
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principles of GA and PSO and present some of their applications in the oil industry. Later on, the 

discussion focuses on the methods specifically used for WAG optimisation and the applications 

of optimisation algorithms for the purpose of WAG optimisation are reviewed.  

 

Fig. 2-7 shows a classification of the optimisation techniques with a few examples for each and 

summarizes the above notes. Linear, integer and nonlinear programming are the three main 

categories of optimisation techniques. Nonlinear programming techniques are classified into 

derivative based and derivative free and derivative free techniques can be either deterministic or 

stochastic. The focus in this study is on stochastic derivative free nonlinear programming 

techniques such as GA and PSO. 

 

Fig. 2-7: Classification of optimisation techniques 
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2.6.3.1 Genetic Algorithm (GA) 

In 1975, Holland [98] proposed genetic algorithms as motivated by biological evolution. The 

idea behind this algorithm is natural evolution and genetics with emphasis on the design of 

robust adaptive systems. Over the last 20 years, this algorithm has attracted much attention from 

various fields due to its high capability as an optimisation technique to solve complex and 

nonlinear problems [99]. 

 

This algorithm is recognized as an efficient, robust, parallel, and global randomized searching 

algorithm for managing combinatorial optimisation problems. GA has received extensive 

attention in the fields of natural science and engineering technology because of the biological 

background and the applicability for a variety of functions. GA copes with a given problem by 

investigating and exploiting the search space, and solves the problem through the processing of 

an aggregation of encoded variable strings (chromosomes). A large number of chromosomes, 

which comprise the individuals of a population of GA, are processed. To conduct its optimisation 

process, GA produces its population from one generation (parents) to the next (offspring). The 

offspring are generated by means of the operations of selection, mutation and crossover [100].  

 

The offspring is selected from the parents through a selection process which plays an important 

role in the GA method. It is more probable for the chromosomes with higher fitness values to be 

chosen and they might be selected more often [100]. 

 

In the second step (crossover) two parent chromosomes are combined and part of their genetic 

information is exchanged to produce the offspring. The crossover operator is applied on all the 
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selected chromosomes around a crossover point which is chosen randomly along their length. 

After children are produced, those with best calculated fitness values are inserted back into the 

original population with the remaining parents. 

 

Before inserting the produced offspring back into the initial population, a mutation process based 

on a mutation operator is completed which causes the GA method to span the search space more 

thoroughly and bring variety in the population. This process is done through changing the genes 

of each chromosome sporadically using a small mutation probability. Generally speaking, 

selection gives higher chance of reproduction to individuals with higher fitness values, crossover 

speeds up the method’s convergence to the optimum, whereas mutation creates variety in the 

population. Fig. 2-8 shows the evolution flow of GA. Members of a population of GA are 

evaluated based on their fitness values and through operations of selection, crossover and 

mutation, the next population is generated. This operation continues until a user-defined stopping 

criterion is met. It is expected that GA reaches the optimal solution through the combination of 

these three steps (selection, crossover and mutation) [100]. The operations of crossover and 

mutation prevent the genetic algorithm from being trapped in one region of the search space 

[101].  

 

GA has also some disadvantages. There is no guarantee that the algorithm finds the best solution 

like in any other stochastic method. GA needs a large number of function evaluations depending 

on the number of individuals and generations and it can be sensitive to the initial guess [101]. 

Nevertheless, GA has been used in the oil industry more than other evolutionary algorithms [97]. 

Some of the applications of GA in the oil industry are chronologically reviewed here. 
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Fig. 2-8: Evolution flow of genetic algorithm [102] 

 

In 1996, Bush and Carter [103] tried to match a simulation model to the production history of a 

reservoir by adjusting some of the model parameters using a GA. They showed that more than 

one optimum existed and more than one set of parameters reproduced the production history of 

the reservoir. The challenge is to identify all the optima by using as few function evaluations as 

possible. 

 

In 1999, Soleng [104] presented a genetic algorithm that was applied to the problem of 

modifying the petrophysical rock properties of a reservoir model to match the model with the 

historical production data. He applied a genetic algorithm to the difficult optimisation problem 

where each evaluation of the objective function required a flow simulation of the whole 
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reservoir. Ten independent runs were used to give a prediction with an uncertainty estimate for 

the total future oil production using two different production strategies. 

 

The work of Romero et al. [105] in 2000 describes the implementation of a GA to carry out 

hydrocarbon reservoir characterization by conditioning the reservoir simulation model to 

production data (history matching) on a predefined geological and structural model. They 

defined the objective function as the weighted sum of the squared errors. The oil production and 

water injection rates were kept fixed at their measured values and the difference between the 

measured bottom hole pressures and the simulated values was taken as the error. They tried 

different operators for crossover and mutation and finally compared the results of their modified 

GA with simulated annealing which showed the superior performance of GA.  

 

In 2001, Rahman et al. [106] presented an integrated novel model for hydraulic fracturing design 

optimisation, which recognizes complex interactions between a hydraulically coupled fracture 

geometry module, a hydrocarbon production module and an investment-return cash flow module. 

The paper of Tu´pac et al. [107] in 2002 presents a genetic algorithm application for selecting the 

best alternative for oil field development under uncertainty. In 2003, Yu et al. [108] presented a 

hybrid GA-fuzzy approach to model reservoir permeability. This approach uses a two-step 

divide-and-conquer process for modeling.  

 

In 2005, Emera and Sarma [109] developed a new correlation for prediction of the MMP of pure 

and impure CO2 streams based on GA. In fact, in this correlation, the constants were obtained 
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using a GA. The results showed that the proposed correlation outperformed other existing 

correlations in literature.  

 

In 2007, a new algorithm for  the auto-design of neural networks based on GA was used [110]. 

The new proposed method was evaluated by a case study in South Pars gas field in Persian Gulf. 

The design of topology and parameters of the artificial neural networks (ANN) as decision 

variables was done first by trial and error, and then using a genetic algorithm in order to improve 

the effectiveness of forecasting when ANN is applied to a permeability prediction problem from 

well logs. Using GA resulted in better performance in terms of prediction error compared to the 

conventional trial and error method for the ANN model development. In 2008, Mousavi et al. 

[111] proposed a hybrid neural genetic algorithm (GA-ANN) with the purpose of automating the 

design of a neural network for a dissimilar type of structures. The results illustrated that the 

neural genetic model can be applied successfully and afford high accuracy and dependability for 

MMP forecasting.  

 

In 2009, AlQuraishi [112] proposed a new model to estimate crude oil saturation pressure using 

linear genetic programming (GP) technique. A total of 131 crudes covering wide ranges of 

composition and reservoir temperature and different geographic origins were used to build and 

test the model. In 2013, an integrated framework was constructed to attain the optimal locations 

of infill wells in coal bed methane reservoirs [113]. This framework consists of a flow simulator 

(ECLIPSE E100), an optimisation method (genetic algorithm), and an economic objective 

function. The objective function used was the net present value of the infill project based on an 

annual discount rate.  
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In 2014, Ahmadi et al. [114] evaluated and compared the performance of a correlation developed 

by multivariable regression, back propagation ANN (BP-ANN) and GA-ANN to predict the 

recovery rate of vapor extraction in heavy oil reservoirs using data obtained from experiments 

along with additional data in literature. It was claimed that GA-ANN is able to search in different 

directions simultaneously and this increases the probability of finding the global optimum. The 

predictions of the three mentioned models were compared with the experimental data in terms of 

statistical error measures and it was found that the predictive performance of the proposed GA-

ANN was better than conventional BP-ANN and regression correlation.  

 

In 2015, Xu et al. [115] developed a modified GA by altering the crossover and mutation rates to 

history match the simulation data with the experimental results of vapour extraction (VAPEX) 

heavy oil recovery process. The computational time of the modified approach was reduced by 

71% compared to the conventional GA and an excellent match with the error less than 1% was 

obtained. 

 

The application of GA to the optimisation of WAG performance will be reviewed in the section 

of WAG optimisation.  

 

 

 

2.6.3.2 Particle Swarm Optimisation (PSO) 
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In 1995, Eberhart and Kennedy [116] introduced particle swarm optimisation (PSO) which was 

inspired by social behavior and movement dynamics of insects, birds and fish. PSO is a random 

and probabilistic algorithm and an optimisation technique based on a population which tries to 

find optimal solutions to problems which have a continuous search space. The original form of 

PSO was formed through modification of initial simulations [117] and later, Shi and Eberhart 

produced the standard PSO by introducing the inertia weight [118]. They summarized the swarm 

adaptation in terms of evaluation, comparison and imitation. A particle in PSO evaluates its 

surrounding particles, makes a comparison with them and imitates the behavior of those which 

are better. Hence, the particle's own position and the performance of the particles around it are 

the two types of information which form its behavior [119]. PSO is designed to find the global 

optima of possibly nonlinear functions or systems in multidimensional space [117]. 

 

PSO is similar to GA, however, PSO uses a collaborative approach rather than a competitive one 

used in GA [120]. PSO is a swarm intelligence algorithm and follows its basic principles [116, 

121]. The particles form a population of random solutions and are stochastically distributed all 

over the search space. Each particle of the swarm can be a solution to the optimisation problem 

and the swarm moves towards the global optimum of a function or system. Each particle 

remembers its position in the search space and its best ever position (called personal best value 

or pbest by Eberhart and Kennedy) and the swarm remembers its best ever global solution (called 

global best solution or gbest) as well as the index of the particle which yields the global best 

solution. In the optimisation process, and while looking for the optimum in the search space, the 

velocity of each particle in the next iteration is computed by gbest (as the social component), pbest 
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(as the cognitive component) and its current velocity. These components randomly determine the 

particle position in the next iteration [117]. 

 

In the PSO algorithm, a position in the D-dimensional space is allocated to each individual, and 

the status of each particle is determined by its location and velocity. The position and velocity of 

particle i  at iteration t  are specified by [116] 
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Care should be taken that in conventional PSO, no information about the previous velocities of 

the particles is available. Afterwards, Shi and Eberhart [118] proposed a new parameter, termed 

inertia weight (ω), to overcome this shortcoming. In this PSO algorithm, each individual 

modifies its velocity to find the most promising solution based on the following relationship 

[118] 
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where   shows the inertia weight and 1C  and 2C  are the cognitive and social learning 

coefficients, respectively. The quantities 1r  and 2r  represent two random parameters in the range 

of 0-1. Moreover, t

iP  and 
t

gP  stand for the local and global best solutions, respectively, and are 

presented as [118] 
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The linear function of the inertia weight is represented by [118] 

  

 max min

max

max

,                                                                                                          (2.6)
t

t

 
 


 

 

where max  expresses the maximum magnitude of the inertia weight, min  is the minimum 

magnitude of the inertia weight, t  represents the current iteration, and maxt  stands for the total 

number of iterations. 

 

The range of the particle velocity (e.g., max max[ , ])v v  is prescribed in PSO to keep the velocity at 

a reasonable level [118]. 

 

The relationship between the previous particle position ( )t

ijx  and the new position 
1( )t

ijx 
 is 

presented by [118] 

  
1    1,2,... .                                                                                                        (2.7)t t t

ij ij ijx x v j D   

   

 

Fig. 2-9 shows how the velocity and position of particles are updated in PSO algorithm. As 

shown, the velocity of a particle is the resultant of three vectors: its current velocity, its velocity 

toward the global best and its velocity toward the local best and the resultant velocity determines 

the particle position at the next iteration. 
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Fig. 2-9: Updating velocities and positions of the particles in PSO [122]  

 

PSO has shown a high search speed in optimisation problems, is easy to implement, has only a 

few algorithmic parameters and can be efficiently parallelized. On the other hand, the swarm can 

become trapped in local optima and sometimes suffers from premature convergence [123]. We 

herein briefly report some of the applications of PSO in oil industry.  

 

In spite of the fact that PSO was first proposed in 1995, its application in oil industry goes only 

back about five years. In 2010, Onwunalu and Durlofsky [124] applied PSO for determination of 

the optimal well type and location. The performance of PSO was compared with GA, which 

showed the superior performance of PSO. Assareh et al. [125] investigated application of PSO 

and GA to estimate oil demand in Iran in 2010. Both PSO and GA could satisfactorily predict oil 

demand, however, the results of PSO were more accurate. 
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In 2012, Zendehboudi et al. [126] proposed an intelligent model based on a feed forward 

artificial neural network optimised with particle swarm optimisation technique to predict 

condensate to gas ratio in retrograde gas condensate reservoir. Statistical and graphical error 

analyses indicated that the proposed PSO-ANN is superior over conventional ANN and 

empirical correlations. 

 

In 2013, Wang and Qui [127] employed three different PSO algorithms to optimise the ultimate 

oil recovery of a giant heavy oil reservoir. The performance of these algorithms was evaluated in 

terms of convergence behavior and the final optimisation results. Conventional PSO gave the 

best objective function.  

 

In 2013, Humphries et al. [96] investigated the application of PSO combined with the 

generalized pattern search (GPS) both in a coupled and decoupled (sequential) manner on the 

joint optimisation of well placement and control problem. They mentioned the possible 

superiority of decoupling over a fully simultaneous approach although the efficiency of 

decoupling would depend on the assumed fixed control scheme during the initial stage of well 

placement optimisation. 

 

In 2014, Zendehboudi et al. [128] linked ANN to PSO for predicting the performance of steam 

assisted gravity drainage (SAGD) in fractured and unfractured petroleum reservoirs. The results 

indicated that the developed PSO-ANN can satisfactorily predict the cumulative steam oil ratio 

and recovery factor of petroleum reservoirs.  



 

52 

 

In 2015, Jesmani et al. [129] applied PSO to find the optimal location of wells for two simple 

production cases subjected to realistic field constraints including a minimum inter-well distance, 

a minimum or maximum well length and orientation of the wells. The net present value (NPV) 

was selected as the objective function. They used two constraint handling methods, namely a 

decoder procedure and the penalty method. The decoder procedure was realized to be faster than 

the penalty method since it does not evaluate infeasible solutions. They also conducted a 

sensitivity analysis on different field constraints with respect to the optimal solution.  

 

No application of PSO to the problem of WAG optimisation could be found in literature by the 

author of this thesis. 

 

In the following sections, we briefly introduce some of the other methods which have been used 

for the optimisation of WAG performance. These methods include optimal control, decision tree 

analysis, expert systems, design of experiments, Monte Carlo method, Ensemble Kalman filter, 

simulated annealing and Tabu search. The application of these methods to the optimisation of 

WAG performance will be reviewed in the section of WAG optimisation. 

 

2.6.3.3 Optimal Control 

Optimal control, as a branch of calculus of variations, is a mathematical optimisation method in 

control theory for calculating control laws. This method is mainly due to the work of Lev 

Pontryagin [130] and Richard Bellman [131].  
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In this method, first a desired cost function is defined according to state and control variables and 

then a set of differential equations is solved to derive the control policies which minimize the 

cost function. Optimal control finds the control laws for a given system such that a certain 

optimality criterion is obtained. The optimal control can be either derived from Pontryagin’s 

maximum principle (a necessary condition also known as Pontryagin's minimum principle or 

simply Pontryagin's Principle) [132], or by solving Hamilton-Jacobi-Bellman equation as a 

sufficient condition [133].  

 

2.6.3.4 Decision Tree Analysis 

A decision tree is composed of different tests on a feature (for example, what comes next in a 

coin flip) in a flowchart-based structure [134]. The leaf node of the tree is a class label (decision 

generated after computing all attributes), the branch is the test result and classification rules 

connect root to leaf. A decision tree and a related influence diagram provide a visual and 

analytical support tool in decision analysis in which desired values of competing alternatives are 

calculated. There are three types of nodes in decision tree: decision nodes, chance nodes and end 

nodes. Decision trees are very common in operations research and management along with other 

methods such as risk and uncertainty analysis, influence diagrams, utility functions and other 

decision analysis tools. In case we have incomplete knowledge in online decisions, a probability 

model or online selection model algorithm is paralleled by the decision tree. This method can 

also be used as a descriptive tool to calculate conditional probabilities.  
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2.6.3.5 Expert Systems 

An expert system is a decision-making computer system that reproduces the function of a human 

expert [135]. Instead of using standard procedural code, expert systems utilize the primary 

knowledge as if-then rules to solve complex problems. They were initiated in the 1970’s and 

their application increased rapidly in the 1980’s. Expert systems were considered as one of the 

first successful methods of artificial intelligence (AI) software [136]. 

 

An expert system can be categorized into two sub-systems known as the inference engine and the 

knowledge base. The facts and rules are provided by the knowledge base while the inference 

engine obtains new facts by applying the rules to the known facts. Inference engines are also 

capable of explanation and debugging [137]. 

 

2.6.3.6 Design of Experiments 

The design of experiments (DOE, DOX or experimental design) is the design of any task which 

tries to describe the change of information under hypothetical conditions and predict the outcome 

by introducing a variation in the predictor [138]. Among different methods of design of 

experiments, we briefly introduce response surface methodology (RSM), optimal design and 

fractional factorial design. 

 

Response surface methodology (RSM) is a statistical approach introduced by Box and Wilson 

[139] in 1951 in order to explore the relationships between explanatory and response variables. 

In this method optimal response is obtained from a sequence of designed experiments using a 
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polynomial model as an approximation when there is little information available about the 

process.  

 

Optimal designs are a class of experimental designs in which parameters are being estimated 

without bias and with minimum variance [140]. This requires a smaller number of experimental 

runs for estimating statistical models than non-optimal design and practically reduces the costs of 

experimentation.  

 

In fractional factorial designs, in order to reveal information about the most important features of 

a problem studied, a fraction of the effort of a full factorial design in terms of experimental runs 

and resources is used [141]. In this approach, after the experimental runs of a full factorial 

design, a subset (fraction) of it is carefully chosen to utilize the sparsity-of-effects principle. 

 

2.6.3.7 Monte Carlo Methods 

Monte Carlo methods are a broad class of computational algorithms that obtain numerical results 

by means of repeated random sampling. They are mostly used when other mathematical methods 

are difficult or impossible to apply to physical or mathematical problems. The applications of 

these methods can be classified into three categories of optimisation, numerical integration, and 

generating draws from a probability distribution [142]. If any problem has a probabilistic 

interpretation, it can be solved by Monte Carlo methods. By the law of large numbers, the 

empirical mean (the sample mean) of independent samples of some random variable is an 

approximation to the integrals described by the expected value of the random variable [143]. 
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In oil and gas industry, Monte Carlo simulation has found applications in reserve estimation, 

production and revenue forecast from a field and comparison of net present values or cash flow 

from different investments [144]. The most challenging aspect of Monte Carlo simulation is 

selecting statistical distributions for the input parameters [145]. 

 

2.6.3.8 Ensemble Kalman Filter (EnKF) 

Bayes theorem is used to obtain the probability density function (PDF) of the state of the 

modeled system after data likelihood is taken into account. The Monte Carlo implementation of 

the Bayesian update problem is called Ensemble Kalman Filter (EnKF). As new data is included 

in the system from time to time, the Bayesian update is combined with advancing the model in 

time. The original Kalman Filter  uses the Bayesian update to formulate the change of the mean 

and the covariance matrix and advance the covariance matrix in time by assuming Gaussian 

distribution for linear systems [146]. EnKFs were developed because it was not computationally 

practical to maintain the covariance matrix for high-dimensional systems. The distribution of the 

system state is represented by a set of state vectors or an ensemble and EnKF substitutes the 

covariance matrix by the sample covariance. The ensemble members of a random sample are not 

independent and the EnKF advances each member of the ensemble to advance the PDF in time 

[147].  

 

The EnKF recently found application in petroleum science [148] and is mostly used for history 

matching. The first application was introduced by Lorentzen et al. [148]. In their paper, they 

tuned the model parameters for a dynamic two-phase fluid flow in a well and improved the 

predictions of the well pressure behavior. Naevdal at al. [149] used EnKF to update the 



 

57 

 

permeability field for near-well region of a reservoir model and improvement in the quality of 

the evaluated permeability was observed as more data was assimilated.  

 

2.6.3.9 Simulated Annealing (SA) 

In order to approximate the global optimum of a given function in a large search space (mostly 

discrete search spaces), a probabilistic technique called simulated annealing was first proposed 

by Kirkpatrick et al. [150]. This method is preferable to alternatives such as gradient descent 

when the goal is to find an acceptable local optimum in a limited amount of time instead of the 

precise global optimum. The method is inspired from annealing in metallurgy as a means to 

reduce the state of a system to its minimum energy. Slow cooling is similar to a slow reduction 

in the probability of accepting worse solutions in the search space, which allows for a more 

exhaustive search for the optimal solution.  

 

2.6.3.10 Tabu Search 

Tabu search was first proposed by Glover [151] as a metaheuristic which uses local search for 

mathematical optimisation. Local search methods check the neighborhood of their current 

location in the hope of finding a better solution. Tabu search improves the performance of local 

searches by accepting worse solutions if no better solution is available in the neighborhood. In 

addition, the points in the search space which have already been checked are marked as tabu 

(forbidden) in the memory of the algorithm and would not be visited repeatedly. 
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2.7 WAG Optimisation  

In 1988, Mehos and Ramirez [152] used optimal control theory on a simplified black oil model 

for a two-dimensional flow in a homogeneous porous medium. The theory was applied to 

optimise the net profit for CO2 miscible flooding in the three cases of a single slug, simultaneous 

injection of CO2 and water and WAG injection. They found wellbore pressure as an important 

design parameter for carbon dioxide miscible flooding and claimed that the optimal total slug 

volume of CO2, the cumulative recovery of oil and the optimal net profit value are nearly the 

same for all the three cases. They suggested optimal control theory as a good candidate for 

qualitative discussions on an optimal injection plan. 

 

In 1992, Mackowski et al. [153] employed decision tree analysis to choose the best possible 

investment and operational plan which would maximize net present value and they found this 

approach to be more organized and much less time consuming than the cumbersome economic 

assessment of many single cases. The decision tree was stated to have the ability of involving 

uncertainties and statistical analysis which would give a range of possible outcomes. They 

recommended WAG tapering (increasing the WAG ratio), especially at the patterns with the 

highest incremental GOR. 

 

In 1996, Bedrikovetsky et al. [154] proposed an analytical model for the hyperbolic system of 

continuity equations (mass conservation). They assumed one-dimensional fractional flow in a 

three-component two-phase system of oil-water-CO2 in a homogeneous porous medium and 

disregarded capillary and diffusive forces, however, they took into account viscous fingering and 

gravity segregation. Apart from the simplifications, they achieved some semi-qualitative results 
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on the range of WAG ratio and slug size. The two objectives of maximum displacement 

efficiency and minimum mobility ratio narrow down the range of the suitable WAG ratio. They 

also recommended a critical minimum slug size, based on their analytical model, at which the 

gas becomes unstable, hence the slug size should be selected slightly larger. 

 

Several previous studies only conducted a limited number of simulation runs and suggested field 

performance surveillance as the means to determine optimal WAG parameters [29, 155-158]. In 

2003, Johns et al. [159] completed compositional simulation runs to optimise WAG recovery for 

gas floods above the minimum miscibility enrichment (MME) and analyzed the influence of 

WAG parameters, numerical dispersion caused by over-refining the grid-block sizes, the degree 

of enrichment above the MME and reservoir heterogeneity on displacement and sweep 

efficiency. They suggested use of coarser grids for estimating the recovery difference between 

two levels of enrichment above the MME. For heterogeneous reservoirs, when the most 

permeable layers are at the bottom of the reservoir, over-enrichment above the MME acts best 

and continuous slug gas injection outperforms WAG with richer gases and lower ratio of vertical 

to horizontal permeability.  

 

In 2005, Gharbi [160] utilized expert systems, as a subclass of Artificial Intelligence, combined 

with an economic package, to select the suitable EOR process for a field. Then the method was 

applied to design the process and optimise the project profitability by sensitivity analysis for 

chemical as well as WAG flood. WAG ratio, slug size per WAG cycle and then the total slug 

size were optimised respectively in an iterative manner by changing the variables incrementally 

in small ranges. They used UTCOMP and UTCHEM as the simulators implemented in the expert 
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system and also did sensitivity analysis for NPV with respect to its parameters (such as oil price, 

WAG ratio, etc.).  

 

In 2006, Esmaiel and Heeremans [161] developed a response surface proxy model using optimal 

design, which reduces the high number of required simulation runs, and then used Monte Carlo 

simulation to introduce uncertainty in the calculation of NPV and converted the uncertainty to 

utility for the decision making purpose. This response surface is stated to be fast (although of a 

polynomial form) compared to the simulator and can be employed for sensitivity analysis and 

optimisation over the entire design space. In 2008, Ghomian et al. [162] investigated the effect of 

relative permeability hysteresis based upon correlations, as well as WAG ratio, slug size and 

heterogeneity on CO2-WAG recovery and carbon dioxide sequestration via a compositional 

simulator. The influence of hysteresis is emphasized due to its effect on trapping for the aim of 

storage and its effect on mobility ratio and sweep efficiency. They did a sensitivity analysis by 

means of a two-level factorial design and measured the effect of different parameters on the 

objectives (recovery, storage and NPV) separately and optimised them through response 

surfaces. In 2012, Ghaderi et al. [163] did similar work on a tight formation, which is a candidate 

for hydraulic fracturing, however, they neglected hysteresis and quantified the effect of 

development pattern, fracturing parameters, WAG parameters and the time to switch from 

primary or water flood to WAG by means of response surfaces. The response surfaces were 

employed to optimise different combinations of objectives by applying desired weighting 

multipliers.  
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In 2010, Odi and Gupta [164] simulated the carbon dioxide core flood results and modeled field 

scale carbon dioxide WAG on a simple cubic reservoir model. They applied non-adjoint based 

optimisation algorithms (algorithms which do not need the access to the simulator code) by 

means of an Ensemble Kalman filter approach to find the optimal WAG configuration (only 

injection rates) and maximized stored CO2 and the cumulative oil produced. Their work shows 

the viability of Ensemble Kalman filter and the importance of WAG design and optimisation in 

complex reservoir models due to substantial amount of stored carbon dioxide and increase in oil 

recovery in a simple model. In 2012, Jahangiri [165] developed a new co-optimisation 

framework based on Ensemble Kalman filter to both take into account the reservoir uncertainties 

by representing the probability distribution of the model parameters through an ensemble of 

reservoir trials. The net present value was optimised through coupling the ensemble-based 

optimisation method with the reservoir trials and controlling the injection rates, bottom hole 

pressures of the producers and injection pattern as the variables. This method is claimed to be 

computationally cheap and flexible in the choice of simulator and economic model as a non-

adjoint algorithm. 

 

In 2013, Rahmawati et al. [166] solved the mixed-integer nonlinear problem optimisation for 

different flooding strategies. This problem was a combination of integer variables (choice of 

injection phases composed of (water/gas)-alternating-(gas/water), continuous gas/water injection 

and natural depletion) and continuous variables (well pressures, rates and injection volumes). A 

heuristic simplex algorithm was used to find the maximum NPV and the best injection scenario. 

This algorithm is a direct search method which does not require the derivatives and can be 

coupled with the simulator and economic model. They started the iterations with various random 
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initial guesses and increased the number of the starting guesses with an increased complexity of 

the injection scenario to avoid the local optimum. They mentioned that the NPV should be tested 

and maximized for the optimum field production life time (before the negative return of 

cumulative NPV versus time). 

 

The first application of a genetic algorithm to a WAG optimisation was in 2000 by Daoyong et 

al. [167]. They optimised the multivariate production-injection system for WAG miscible 

flooding using net present value as the objective function. They only assumed two cycles of 

WAG injection and linked the economic model, reservoir model, production well and choke 

model for the optimisation task. Their decision variables included bottom hole pressures of the 

producers and gas/water injection rates. They put some constraints on pressures, material balance 

calculations and development strategies such as the ultimate recovery and the average rate of oil 

production. They claimed that GA showed stability and efficiency for their optimisation purpose. 

In a similar work in 2002 [168], they tried simulated annealing as well as GA and mentioned the 

capability of both of the techniques for WAG process optimisation. The results with optimisation 

showed more stable flooding front, improved sweep efficiency and a delayed high water-cut 

stage by up to 5 years compared to the unoptimised case. In 2010, Chen et al. [54], used a 

genetic algorithm hybridized with Tabu search method and an experimental design technique to 

optimise the controlling variables (WAG ratio, cycle time, injection rates and bottom hole 

pressures of the producers) of a CO2-miscible flooding in field scale. The genetic algorithm was 

criticized for its low convergence speed in their research. Hence an orthogonal array was used to 

obtain a better initial generation for the optimisation process and Tabu search was applied 

through a mutation operator, which helps the procedure avoid the local optimum, and this was 
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mentioned to have increased the convergence speed to a large extent. Their optimal WAG design 

could increase recovery factor and NPV by 9.9% and 11.4%, respectively. 

 

The above applications of different optimisation methods for the purpose of WAG optimisation 

are listed in Table 2-2. For each reference investigated in this study, the optimisation method, the 

decision making variables included and the main observations are tabulated.  

 

Table 2-2: WAG optimisation methods, the optimisation variables and observations found in the literature 

Reference Optimisation method WAG Optimisation variables Main observations 

Mehos and Ramirez [152] Optimal control Injection rates Importance of wellbore pressure 

as a design parameter 

Applicability of optimal control 

to optimise injection plan 

Mackowski et al. [153] Decision tree analysis WAG ratio, Slug size Organization and speed of 

decision tree analysis 

Ability of involving uncertainties 

Recommendation of WAG 

tapering, especially for high 

incremental GOR 

Bedrikovetsky et al. [154] Analytical model WAG ratio, Slug size Deriving ranges for WAG ratio 

and slug size 

Recommendation of a critical 

minimum slug size 

Johns et al. [159] Trial and error WAG ratio, number of cycles Applicability of coarser grids for 

estimating recovery above MME 

Superiority of continuous gas 

injection over WAG when 

permeability is higher at the 

bottom layers of the reservoir 

Gharbi [160] Expert system WAG ratio, Slug size per WAG 

cycle, Total slug size 

Applicability of expert systems to 

select the suitable EOR process 

and optimise its parameters  
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Esmaiel and Heeremans 

[161] 

DOE + Monte Carlo 

simulation 

Status of completions, Slug size Speed of DOE and its 

applicability to sensitivity 

analysis and optimisation 

Ghomian et al. [162] DOE WAG ratio, Slug size Influence of hysteresis on 

mobility ratio and sweep 

efficiency 

Ghaderi et al. [163] DOE Development pattern, Hydraulic 

fracture geometry, WAG ratio, Slug 

size, WAG timing 

Applicability of response 

surfaces to optimise different 

combinations of objective 

functions 

Odi and Gupta [164] EnKF Injection rates Viability of EnKF to optimise 

WAG recovery and carbon 

storage 

Jahangiri [165] EnKF Injection rates, bottom hole pressures 

of producers, Injection pattern 

Flexibility of EnKF in the choice 

of simulator and economic model 

and its low computational cost 

Rahmawati et al. [166] Mixed-integer nonlinear  

programming 

Recovery method, Injection 

pressures, Oil production rates, Time 

to switch between  recovery methods, 

Total time  

Necessity of NPV optimisation 

for the optimum field production 

life time 

Daoyong et al. [167] GA Bottom hole pressures of producers, 

Injection rates 

Stability and efficiency of GA for 

NPV optimisation 

Daoyong et al. [168] SA Bottom hole pressures of producers, 

Injection pressures 

more stable flooding front, 

improved sweep efficiency and a 

delayed high water-cut stage 

compared to the unoptimised 

case 

Chen et al. [54] GA + Tabu search Bottom hole pressures of producers, 

Injection rates, WAG ratio, Cycle 

time 

Low convergence speed of GA 

without hybridizing with Tabu 

search 

Increase in NPV and oil recovery 

by 9.9% and 11.4%, respectively, 

compared to the reference case 
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2.8 Summary  

WAG performance needs to be optimised to obtain either the maximum oil recovery or NPV 

within the economic limits and the problem of WAG optimisation in the field scale needs to be 

investigated more thoroughly under field constraints. 

 

 The problem of WAG optimisation on field scale is a complex nonlinear problem with a rough 

surface and probably multiple local optima. A genetic algorithm (GA) and a particle swarm 

optimisation (PSO) are employed as the optimisation techniques. These techniques are derivative 

free, non-invasive (non-adjoint) or black box global randomized search strategies which do not 

require access to the simulator code and gradient information. These algorithms have the 

potential of leaving the local optima in the search space and finding the global optimum. GA and 

PSO both have proved their capability in the area of optimisation in petroleum science which 

was supported by literature. GA has already been used for the purpose of WAG optimisation on 

field scale, however PSO is tested on this type of problem for the first time. 

 

In this study, we optimise over bottom hole pressures of the producers, injection rates, cycle 

ratio, cycle time, total WAG time and the injection gas composition. The gas composition, which 

involves the effect of miscibility on production performance, is included for the first time in the 

area of WAG optimisation research to the best of the author’s knowledge. 
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Chapter 3: Methodology 

 

A methodology for a WAG optimisation on the E-segment of the Norne field is presented in this 

chapter. The presented methodology includes a brief description of the field and the rock and 

fluid properties, optimisation framework, history matching, definition of the objective functions, 

along with the optimisation variables and constraints and the design of the experiments which 

will be conducted in this study. 

 

3.1 Norne Field 

In this section, the E-segment and the rock and fluid properties are briefly described. A short 

explanation on the geological simulation model of the E-segment as well as the description of the 

active wells are presented. Then fluid properties, relative permeabilities and the results of slim 

tube tests are discussed.  

 

3.1.1 Field description 

The Norne field, located about 80 km north of the Heidrun field in the Norwegian Sea, is 

composed of two separate oil compartments, namely Norne main structure (C, D and E-

segments) which contains 97% of the oil in place and the North‐East Segment (Norne 

G‐segment). 

 

In this thesis, we only consider the E‐segment where we separate it from the rest of the field. 
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The E‐segment contains 8733 active cells. The sizes of the blocks are between 80 m to 100 m in 

the horizontal direction. In total, 8 wells have been drilled in the E‐segment. These include one 

observation well, two injection wells and five production wells. The reservoir initial pressure 

was about 273 bar at 2639 m TVD. The rock is of mixed wettability and pore compressibility is 

54.84 10  1/bar at 277 bar [11]. 

 

At the end of 2006, the E-segment contains two active injectors, namely F-1H and F-3H, and 

three active producers, namely E-2AH, E-3CH, and E-3H as shown in Fig. 3-1. The description 

of the wells in the E-segment is included below. 

 

 

Fig. 3-1: The E-segment of the Norne field at the end of 2006  

 

 

Injector Well 6608/10-F-1 H: Well 6608/10‐F‐1 H was the fourth water injector to be drilled, 

located in the north of the Norne E‐Segment. The well was designed to inject water in the water 

leg of the northern part of the field. All wells on the F‐template can easily be converted from 

F-3H 

E-2AH E-3CH 
E-3H 

F-1H 
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water to gas injection. The well was perforated approximately 23 m TVD below the oil‐water 

contact in the Ile and Tofte formations. Injection into this well started in September 1999 [169].  

Injector Well 6608/10‐F‐3H: This was the sixth water injector drilled on the field, located in the 

south‐western part of the E‐segment. The well was drilled with an angle of up to 50° in the top-

hole section and less than 20° in the reservoir. It was perforated in the Tofte and Tilje 

Formations. Injection started in September 2000. It is easy to convert well F-3H from water to 

gas injection. 

Well 6608/10‐E‐2AH: The objective for this well was to drain the remaining oil from the E-

segment. The well trajectory was planned as a horizontal section below the top Ile Formation, 

over the oil-water contact (OWC) at approximately 2606 m TVD mean sea level (MSL). It was 

drilled deeper than planned and penetrated higher than the anticipated OWC, before it was 

steered back through Ile 2.1 Formation. The well started to produce oil in August 2005. 

Well 6608/10‐E‐3CH: This well was perforated in Ile formation and started oil production in 

April 2005. 

Well 6608/10‐E‐3H: Well 6608/10‐E‐3 H was the eighth development well and first production 

well planned in the northern part of segment E. The central part of the E-segment was the target 

for draining. The well was designed to contribute to a low GOR oil production and provide a 

reference point in the northern part of the field to confirm reservoir communication. Well 

completion has been done in Ile and upper Tofte formations [169]. 

 

3.1.2 Rock and Fluid Properties 

The composition of the Norne oil and gas as reported by Statoil are presented in Table 3-1 [170]. 

Fig. 3-2 shows the P-T diagram of the oil with the above composition obtained from PVTsim 
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with the three-parameter Peng-Robinson equation of state (PR-Peneloux EOS) before any 

regression and tuning.  

 

Table 3-1: Compositional analysis of the reservoir oil and gas 

Component Reservoir oil 

(mol%) 

Reservoir gas 

(mol%) 

 N2 0.272 0.027 

CO2 0.874 1.306 

C1 47.749 89.242 

C2 3.921 4.850 

C3 2.085 1.940 

i-C4 0.445 0.361 

n-C4 0.878 0.609 

i-C5 0.429 0.131 

n-C5 0.467 0.128 

C6 0.871 0.161 

C7 2.505 0.282 

C8 4.071 0.319 

C9 2.992 0.185 

C10+ 32.441 0.459 
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Fig. 3-2: P-T diagram of Norne reservoir oil with PR-Peneloux EOS (before tuning) 

 

As can be seen from the above figure, PR-Peneloux EOS predicts a bubble point pressure of 

about 227 bar at the reservoir temperature (98.3°C) which is below the actual value (251 bar). 

This indicates the necessity of tuning of the EOS for improvement in the predictions of 

compositional simulations.  

 

Fig. 3-3 and Fig. 3-4 regenerated from [169] represent the oil-water and gas-oil relative 

permeability curves of the E‐Segment, respectively. Connate water saturation varies from 0.05 to 

0.38 among different curves. 
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Fig. 3-3: Oil-water relative permeability for the E-segment of the Norne field [169] 

 

 

Fig. 3-4: Gas-oil relative permeability for the E-segment of the Norne field [169] 
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The minimum miscibility pressure (MMP) is a function of reservoir pressure and temperature as 

well as the injected gas composition. Usually, the separator gas is re-injected into the reservoir 

for pressure maintenance and EOR purposes. Since no data could be found in literature on the 

composition of the separator gas for the Norne field, the normalized composition of the reservoir 

gas containing only C1 to C4 (92% C1, 5% C2, 2% C3 and 1% C4) was chosen as the base 

injecting gas. The MMP between the crude oil with the base injecting gas and with the enriched 

gas containing 65% C1, 20% C2, 10% C3 and 5% C4 was obtained by means of PVTsim [171] 

and the results are shown in Tables 3-2 and 3-3, respectively. 

 

Table 3-2: Slim tube results using the base injecting gas (92% C1, 5% C2, 2% C3 and 1% C4) 

Slim Tube Recovery at 98 °C 

Pressure (bar) Recovery (%) 

270 12.87 

300 18.90 

350 30.23 

400 44.06 

450 62.01 

500 86.38 

550 96.92 

600 98.19 

 

 

Table 3-3: Slim tube results using the enriched gas composition (65% C1, 20% C2, 10% C3 and 5% C4) 

Slim Tube Recovery at 98 °C 

Pressure (bar) Recovery % 

270 73.23 

300 89.12 

350 95.65 

400 98.24 

450 99.46 

500 99.79 
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MMP is usually defined as the pressure at which approximately 95% of the oil is recovered 

during slim tube test [172]. The effect of enrichment on the results of slim tube tests is quite 

clear. Enriching the gas from 8% to 35% of the intermediate components, the MMP is reduced 

from about 550 bar to about 350 bar. Since the initial reservoir pressure of the Norne field is 

about 273 bar, miscible and near miscible injection might occur in some portions of the reservoir 

if the injecting gas is enriched enough and the injection pressure and bottom hole pressure of the 

producers are kept sufficiently high.  

 

3.2 Optimisation 

In this section, the optimisation framework is detailed. The methodology used for history 

matching of the reservoir model is discussed. The objective functions used in this study are 

introduced. The optimisation variables, constraints and techniques employed to solve the WAG 

optimisation problem are presented. Finally, the detailed optimisation procedure and the 

experiments conducted in this study are described.  

 

3.2.1 Optimisation Framework 

Fig. 3-5 shows the flowchart for the WAG optimisation framework in this study. After the 

reservoir model is history matched, the initial guesses of well control parameters for starting the 

optimisation technique(s) are generated. Then the reservoir simulator is called to run the 

simulation data file and calculate the production profiles. The results of production are read from 

the output of the simulator and the objective function(s) are computed for each particle (point in 

the solution space). A stopping criterion (usually based on the computational budget or 
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maximum CPU time) is defined. If the criterion is not met, the optimisation techniques generate 

the particles for the next iteration according to their built-in rules and theories and the above 

process of simulation runs and objective function calculations continues until the stopping 

criterion is met. Then the process is terminated and the saved results can be viewed. 

 

Fig. 3-5: Flowchart of the WAG optimisation process 

 

No 

Yes 
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3.2.2 Reservoir Simulation 

Reservoir, production and injection subsystems must be taken into account as a whole for the 

purpose of production optimisation. 

 

The reservoir simulator is generally regarded as a black box with the injected fluids as the input 

and the produced fluids as the output. Due to the complexities of fluid flow in porous media, 

reservoir simulation has to be employed as an inseparable part of the production forecast and 

optimisation. In this study, the compositional simulator, module E300 of Schlumberger reservoir 

simulation software, has been used. Unlike the black oil simulator, the compositional simulator 

takes into account the changes in the composition of the fluids as the field is produced. PVT 

properties of oil and gas are fitted to an equation of state (EOS) and the tuned EOS is used to 

dynamically track the movement of phases and components in the reservoir [173]. 

 

The production subsystem starts with the inflow performance relationship (IPR) between the 

bottom hole pressure (BHP) and the production rate and continues with multiphase flow 

calculations in the production string. The BHP of the producer will be selected as an optimisation 

variable in this study. 

 

In the injection subsystem, the injection rates of gas and water, cycle (WAG) ratio, the injection 

period (cycle time and total WAG duration) and composition of the injected gas can be regarded 

as the optimisation variables. 
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3.2.2.1 History Matching 

The first step to have a reliable prediction of the performance of various EOR methods during 

reservoir simulation is history matching. Due to errors and uncertainties in the simulation model, 

the simulated results rarely match with reality [174]. The errors usually result from the 

uncertainties in the description data (such as the geological model) and the inaccuracies in the 

historical production and injection data [175]. In history matching, reservoir engineers try to 

adjust the reservoir parameters with a higher degree of uncertainty, such as permeabilities, 

layering structure, fault transmissibilities, etc., to match the simulation results (usually 

production rates) with the production history during a specific period of time [174]. 

 

This task can be complex and time consuming. Reservoir engineers usually perform this task by 

means of trial and error. Initially, a sensitivity study is conducted and then one or more of the 

most sensitive reservoir parameters are changed and modified during several iterations to match 

the simulation and history as closely as possible. History matching is usually performed 

manually in the industry although automatic methods are gaining attention and popularity 

nowadays [12]. A few examples of the application of optimisation techniques to history 

matching are briefly mentioned in sections 2.6.3.1 and 2.6.3.8. 

 

In this study, history matching is conducted up to December 2006 (on the available data) by 

adjusting the relative permeabilities in order to match the simulated oil production rates of the 

wells with the history. History matching can be regarded as an optimisation problem. A genetic 

algorithm (GA) is used to solve this optimisation problem. Only one set of oil-gas and one set of 

oil-water relative permeability has been used for the whole field. A Corey model  is fitted to the 
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relative permeability data. Corey correlations for two-phase oil-water and gas-oil relative 

permeabilities are presented below [176, 177] 
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= Normalized water saturation

= Water saturation

= Critical (irreducible) water saturation

= Residual oil saturation.

wn

w

wc

or

S

S

S

S

  

 Then the correlations of water and oil relative permeability in a two-phase oil-water system are 

defined as below 
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where 

= Water relative permeability

= Oil relative permeability (in a two-phase oil-water system)

= The endpoint of water relative permeability

= The endpoint of oil relative permeability (in a
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Similar correlations were defined for oil and gas relative permeabilities in a two-phase gas-oil 

system as below 
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 Then the correlations of gas and oil relative permeability in a two-phase gas-oil system are 

defined as below 
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= Gas relative permeability

= Oil relative permeability (in a two-phase gas-oil system)

= The endpoint of gas relative permeability

= The endpoint of oil relative permeability (in a two-p
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The endpoint values and exponents of the model are selected for optimisation. The objective 

function is defined to be the square of the weighted sum of the differences between the history 

and the simulated oil production rates of the wells and higher weights are applied to the 

simulated rates which are further from the history. To minimize the error between the simulated 

and historical total oil production data is one of the main concerns of reservoir engineers in 
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history matching, so the objective function (Error) was selected to be defined in the following 

form 

2

10
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 total simulation time [day]

= Number of production wells (3 in this study)
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The initial population (vectors of the coefficients and exponents) are generated randomly by 

means of GA. The oil-water and gas-oil relative permeability data required for the reservoir 

simulation are provided using equations (3.2) and (3.4) and then written in a file included in the 

main simulation data file. The oil production rates are then read for each particle in an iteration 

from the simulation output. The objective function is calculated for each of the particles. The 

next population is generated by the operators of selection, crossover and mutation of GA. This 

process is set to 2000 simulation runs. The results of the history matching are presented in 

Chapter 4. 

 

Water flooding is performed on the history matched model with sufficiently low rates in the two 

injectors to reach the value of 90% for the field water cut in May 2015. The production wells are 

kept at bottom hole pressures of 240 bar which is a little less than the bubble point pressure (the 
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bubble point pressure of the reservoir oil is 251 bar) since production with a pressure much lower 

than the bubble point pressure leads to early gas breakthrough and oil recovery reduction. The 

end of water flood up to May 1
st
 2015 is used in the form of restart file as the initial point for all 

WAG simulations for optimisation in this study. 

 

3.2.3 Objective Functions for WAG Optimisation 

It is necessary to choose a suitable objective function for the optimisation procedure. In 

production optimisation, the ultimate recovery factor or NPV is usually chosen as the objective 

(fitness) function which needs to be maximized. In this study, we optimise both of the NPV and 

recovery factor separately. Although NPV, as an economic measure, is not the only influencing 

factor, it is a proper indication of the project’s profitability and helps in decision making. 

 

NPV is defined as the sum of the present values of incoming and outgoing cash flows over a 

period of time. NPV for a WAG process can be calculated as follows: 
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where n  is the total number of evaluation years, i  is the year number, oc  is the price of produced 

oil, gc  and wc  are the price for purchasing gas and water for injection, 
'

gc  and '

wc  are the cost of 

treating and recycling the produced gas and water, Q  is the total volume of the produced or 
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injected fluid and r  is the interest rate. Clearly, the volumes are functions of the optimisation 

vector .X   

 

NPV is highly affected by the assumed prices. Different economic models would greatly 

influence the results. Operators define their economics differently and the prices also depend on 

the source and availability of the injection fluids. In spite of these differences, the optimisation 

procedure remains the same. Table 3-4 shows the economic parameters used in this study along 

with their values. To study the effect of assumed prices on the NPV to some extent, a sensitivity 

analysis on the economic parameters will be conducted in Chapter 4. 

 

Table 3-4: Economic parameters used in the simulations 

Parameter Value 

Oil price [$ / Sm
3
] 377 

Methane price [$ / Sm
3
] 0.1 

Ethane price [$ / Sm
3
] 0.21 

Propane price [$ / Sm
3
] 0.79 

Butane price [$ / Sm
3
] 1.7 

Gas recycling cost [$ / Sm
3
] 70% of gas price 

Water price [$ / Sm
3
] 6 

Water recycling cost [$ / Sm
3
] 38 

Interest rate [-] 5% 

 

The oil price used in this study is $377 / Sm
3

 ($60 / STB) which is based on WTI crude oil price 

in May 2015. The injection gas is composed of methane (C1) plus different percentages of 

ethane, propane and butane (C2, C3 and C4). The prices used are $0.1, $0.21, $0.79 and $1.7 per 

Sm
3
 for C1, C2, C3 and C4, respectively, based on [178]. The cost of gas recycling is roughly 
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assumed to be 70% of the gas purchase price. The price of water purchase is $6 / Sm
3
 ($1 / STB) 

and the cost of water recycling and disposal is $38 / Sm
3
 ($6 / STB).  

 

In addition to NPV, the total oil production in terms of incremental recovery factor (IRF) after 

the start of WAG is the second objective function in this study. IRF is defined in the following 

form. 
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3.2.4 Optimisation Variables and Constraints 

The decision variables, which should be optimised, are the production and injection settings. 

They usually consist of surface and reservoir variables. Wellhead pressure, injection and 

production rates are the surface variables [179]. The net to gross ratio of reservoir rock, fluid 

saturations, reservoir architecture, faults and fractures parameters, reservoir properties, pressure-

volume-temperature (PVT) relation, relative permeability, compaction and compressibility of the 

reservoir rock compose the reservoir variables. 
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In this study, total WAG duration, WAG cycle time, cycle ratio, injection rates and bottom 

hole pressure (BHP) for the producers as well as the composition of the injected gas can be 

potentially chosen as the decision variables to achieve the optimal production (See Table 3-5 

below). 

 

Table 3-5: Variables of WAG process 

Decision Variables Controllability Type 

Total WAG duration Y Discrete 

WAG cycle time Y Discrete 

Cycle ratio Y Discrete 

Injection rate Y Continuous 

BHP Y Continuous 

Gas composition Y Continuous 

 

As shown above, all the input (decision variables) are controllable. The total WAG duration, 

cycle time and cycle ratio are chosen as discrete variables in the WAG simulations. The number 

of WAG cycles is the ratio of the total WAG duration to the cycle time. In this study, the cycle 

ratio is defined as the ratio of the time of water injection to the cycle time. So, the to-be-

optimised variables in this study consist of water and gas injection rates for the two injectors, 

bottom hole pressures for the three producers, cycle ratio, cycle time, total WAG duration, mole 

fractions of ethane, propane and butane added to the base injectant. This gives 13 possible 

variables in total. 

 

The ranges of the input variables in optimisation are chosen based on physical and/or economic 

constraints. Selecting a wider range for the variables increases the chance of not missing the 
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optimal solution, however, it makes the optimisation more expensive and may not be even 

physically feasible. 

 

The minimum and maximum water injection rates are selected as 500 and 2700 Sm
3
/day in the 

injectors. Gas injection ceased in the field in 2005 and there has been no gas injected into either 

of these wells. According to a previous simulation study [12] on the Norne field, 1000 and 

1,000,000 Sm
3
/day are the minimum and maximum limits for gas injection rates.  

 

The upper limit for bottom hole pressures is set a little lower than the bubble point pressure (240 

bar) and the lower limit is set equal to 150 bar to cover a wide range. Too low of a limit value for 

BHP might lead to early gas breakthrough and oil recovery reduction. It is expected that the 

optimisation algorithms will find the optimal bottom hole pressure for each producer.  

 

The cycle ratio is between 0 and 1 and is discretized into steps of 0.05. A cycle ratio of 0 

indicates a gas flood which might result in gas breakthrough. A cycle ratio of 1 indicates a water 

flood which may cause oil trapping, insufficient contact of solvent with oil and high water cut 

[12]. So, finding the optimal cycle ratio is obviously of importance.  

Cycle time is set between two and 12 months in steps of 1 month. The lower limit for the total 

WAG duration is set at 30 months and since the field is to be abandoned in 2020, 60 months is 

selected as the upper limit.  

 

The mole fractions of C2-C4 are the three remaining variables. The ranges for the optimisation 

variables in this study have been tabulated in Table 3-6. 
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Table 3-6: The optimisation variables along with their ranges in this study 

Optimisation Variable Range 

Water injection rates [Sm
3
/day] 500-2700  

Gas injection rates [Sm
3
/day] 1000-10

6
  

Producers bottom hole pressures [bar] 150-240  

Cycle ratio [-] 0-1 in steps of 0.05 

Cycle time [month] 2-12 in steps of 1 month 

Mole fraction of C2 [-] 0.05-0.2 

Mole fraction of C3 [-] 0.02-0.1 

Mole fraction of C4 [-] 0.01-0.05 

Total WAG duration [month] 30-60 in steps of 1 month 

 

There are numerous safety, capacity and economic constraints on the operations of oil and gas 

production. For safety reasons, a maximum/minimum pressure constraint may be required at the 

bottom of a well due to injectivity and fracture pressure. An upper or lower limit for the flow rate 

might have to be imposed on some of the production wells or facilities for economic reasons. 

The economic reasons may include the volume of gas available or the gas composition and 

enrichment and the control of fluid velocities to avoid excessive corrosion or erosion. The 

capacity constraints mainly include the processing capacities of surface facilities like surface 

pumps and separators for handling the water and gas produced with the hydrocarbons [180]. 

 

There are two types of constraints within this optimisation problem, namely general bound and 

economic (and/or safety) constraints. The bound constraints are of the simple inequality type as 

shown in Table 3-6. The economic constraints consist of lower limit on oil production (10 

Sm
3
/day) and upper limits on water cut (95%) and GOR (500 Sm

3
/Sm

3
) for all the production 

wells’ perforations. If the limits are violated, the worst offending perforation will be shut and the 
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simulation continues until at least one perforation is open. The maximum liquid production rate 

of 6000 Sm
3
/day (in each producer) and maximum injection pressure of 600 bar (in each 

injector) are also placed in the reservoir simulation data file. The limits of these safety and 

economic constraints are shown in Table 3-7. 

 

Table 3-7: Upper and lower limits of economic constraints 

Parameter Limit 

Well oil production rate [Sm
3
/day] 10 (min) 

Well water cut [-] 95% (max) 

Well GOR [Sm
3
/ Sm

3
] 500 (max) 

Well liquid production rate [Sm
3
/day] 6000 (max) 

Well injection pressure [bar] 600 (max) 

 

 

3.2.5 Optimisation Techniques 

Due to the complexities of the field-scale WAG optimisation, powerful optimisation techniques 

should be employed. Among the direct optimisation algorithms we will use GA and PSO. A brief 

description of these optimisation techniques has already been presented in Chapter 2. These are 

global derivative free optimisation techniques which do not need to extract the gradient 

information from the simulator code and have shown their capability in the optimisation area for 

different objectives in oil and gas engineering. 
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3.2.6 Experimental Setup 

Two issues are discussed in this section. The first is to describe the different experiments which 

will be conducted in this study and the second is how to obtain the initial guesses for starting the 

optimisation process. Three experiments are designed for optimisation of NPV in this study. 

 

In experiment 1, two water and two gas injection rates, three BHPs of the production wells, cycle 

ratio and cycle time (nine variables) are optimised. The mole fractions of injecting gas 

components are fixed at their lower bounds. The gas injection is immiscible in this case since the 

minimum miscibility pressure of the reservoir oil and injecting gas is calculated to be about 550 

bar using PVTsim software, which is far above the reservoir pressure. In experiment 2, the 

injecting gas composition (mole fractions of C2, C3 and C4) are added to the optimisation 

variables giving a total of 12 variables. The MMP between the reservoir oil and the most 

enriched gas is calculated to be about 330 bar, so miscibility could be achieved in the reservoir. 

In experiments 1 and 2, the total WAG simulation time is fixed at 30 months. We include it as a 

variable in experiment 3, that is we optimise over all  13 variables. 

 

The decision and fixed variables for the three NPV optimisation experiments are shown in Table 

3-8. The rationale behind the progressive experiments is to investigate the effect of increasing 

the number of variables on the quality of the resulting optimal solution and to evaluate and 

compare the efficiency of the two optimisation techniques.  
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Table 3-8: Optimisation and fixed variables for the three different experiments of NPV optimisation 

 Experiment 1 Experiment 2 Experiment 3 

Optimisation 

variables 

 2 water injection rates 

 2 gas injection rates 

 3 BHPs 

 Cycle ratio 

 Cycle time 

 2 water injection rates 

 2 gas injection rates 

 3 BHPs 

 Cycle ratio 

 Cycle time 

 Mole fractions of 

C2,C3 and C4 

 2 water injection rates 

 2 gas injection rates 

 3 BHPs 

 Cycle ratio 

 Cycle time 

 Mole fractions of 

C2,C3 and C4 

 Total time 

Fixed variables 
 Mole fraction of C2=0.05 

 Mole fraction of C3=0.02 

 Mole fraction of C4=0.01 

 Total time=30 months 

 Total time=30 months None 

 

For the purpose of oil recovery optimisation, only one experiment is conducted with the 12 

decision variables of experiment 2 at the fixed total WAG simulation time of 60 months.  

 

In this study, design of experiments (DOE, see section 2.6.3.6) is used to obtain the initial guess 

for the optimisation algorithms. DOE is a widely used method to specify the optimum input 

vectors in order to span the search space with considerably fewer runs than a full factorial design 

[163]. Optimal design (as a class of experimental designs) allows the parameters to be estimated 

without bias and with minimum variance and can reduce the cost of experimentation compared 

to a non-optimal design [140]. In experiment 3, for example, there are 10 variables with two 

levels (two gas injection rates, two water injection rates, three BHPs and mole fractions of C2, C3 

and C4) and three discrete variables with three levels (cycle ratio, cycle time and total WAG 

duration), hence a full factorial design requires 
10 32 3 27648   simulation runs. Optimal design 

is able to search the solution space with only 110 runs. For experiments 1 and 2, with nine and 

12 variables, respectively, optimal design only requires 60 and 96 simulation runs. The best run 
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for each experiment will be selected as the reference (unoptimised) case to be compared with the 

optimisation results, and the runs from each experiment which result in higher objective function 

values will be used as the initial guess for that experiment to improve the convergence speed of 

the algorithms. 

 

3.2.7 Optimisation Procedure 

In this study, model-based production optimisation (optimisation on a fixed history-matched 

reservoir model) as shown in the flowchart (see Fig. 3-5) will be conducted. The best simulation 

runs from the design of experiment results are used to initialize the search process. The variables 

will be written in a file included in the main simulation data file and the reservoir simulator 

(E300) will be called to calculate the oil recovery and profiles of cumulative oil, gas and water 

for each scheme by integrating over the field production and injection rates. Cumulative oil 

production is calculated directly for the purpose of oil recovery optimisation. NPV for each 

individual scheme will be computed using equation (3.6) coded in the economic module. GA 

generates the next population by means of selection, crossover and mutation operators and PSO 

updates the velocity and position of the particles using equations (2.3) and (2.7). The 

aforementioned process will be iterated for the new population until the number of iterations 

reaches a pre-defined value. The whole optimisation process will be done automatically and 

without any manual interruption.  

 

Due to the stochastic nature of the optimisation techniques, multiple trials are required for each 

experiment. The compositional simulations are time consuming, so the objective function 

calculations are costly and demanding. Four trials with 2000 function evaluations (simulation 
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runs) will be performed for each experiment of NPV optimisation and three trials with the same 

number of function evaluations for oil recovery optimisation using both GA and PSO. Each trial 

will be run with 50 particles for 40 iterations. For experiment 3, an exhaustive search on only the 

discrete variables (cycle ratio, cycle time and the total WAG time) requires about 6000 function 

evaluations. 

 

The global optimisation toolbox of MATLAB R2012a is used for GA. For PSO, the following 

parameters (see equations (2.3) and (2.6)) are selected. These parameter values have shown good 

convergence results in literature [181, 182]. 
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Chapter 4: Results and Discussion 

 

The optimisation methodology explained in the Chapter 3 is utilized here to optimise the well 

control parameters in a field-scale hydrocarbon WAG process on the E-segment of the Norne 

field. Three experiments for NPV optimisation with different numbers of controlling variables 

sampled from the set of gas and water injection rates, bottom hole pressures of the producers, 

cycle ratio, cycle time, total WAG duration and mole fractions of C2, C3 and C4 added to the base 

injectant are considered. One experiment for IRF optimisation including the same variables with 

a fixed total WAG duration is also investigated. GA and PSO algorithms are used to optimise 

NPV/IRF for each experiment. The results from the two algorithms are analyzed and compared 

within and among the experiments. As the global optimality cannot be guaranteed for stochastic 

methods such as GA and PSO, multiple trials are required to yield an estimate of the optimal 

solution. The multiple trials also allow us to assess the reliability of the optimisation methods. 

Hence we will conduct four trials for each of the experiments of NPV optimisation and three 

trials for the experiment of IRF optimisation. 

 

Field operations far from an optimal point or inappropriate selection of the well control 

parameters may result in operational difficulties such as early gas breakthrough, increase in the 

cost of facilities and lower ultimate recovery factor. This leads to a reduction in NPV causing the 

project to be less economical. In other words, an optimisation algorithm is designed to help us 

find the operational point which results in more oil production from the point of oil recovery 
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optimisation or earning more money in a shorter period of time from the point of NPV 

optimisation. WAG optimisation on a field scale including all the above parameters has never 

been done before to the best of the author’s knowledge. We will discuss the performance of the 

optimisation algorithms (GA and PSO) for the optimisation of NPV and oil recovery factor. 

 

4.1 Fluid Characterization 

All the simulation studies already done on the Norne field have been run in Black Oil mode 

(E100). The fluid properties presented in Table 4-1 are the only data which could be found in 

literature [139]. These data points were used for the PVT regression and match with the module 

PVTi of Eclipse and then the output file was included in the reservoir simulation data file for 

compositional simulation runs using module E300 of the Schlumberger reservoir simulation 

software Eclipse. The critical temperature of the plus fraction was selected as the regression 

parameter and PR-Peneloux EOS was used for tuning purposes. 

 

Table 4-1: Characteristic fluid properties for the Norne field 

Fluid property Value 

Pb [bar] 251 

GOR at Pb [Sm
3
/Sm

3
] 111  

Bo at Pb [Rm
3
/Sm

3
] 1.347  

Oil density at Pb [g/cm
3
] 0.712  

Oil viscosity at Pb [cP] 0.58 

Bo at Pi [Rm
3
/Sm

3
] 1.3185  

Bg [Rm
3
/Sm

3
] 0.0047  
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Fig. 4-1 shows the P-T diagram of the reservoir oil before and after tuning of the EOS. After the 

regression and tuning, PR-Peneloux EOS predicts a bubble point pressure of about 250.8 bar 

which is quite close to the actual value (251 bar) and this shows the improvement in the EOS 

prediction after the tuning. 

 

Fig. 4-1: P-T diagrams of Norne reservoir oil with PR-Peneloux equation of state (before and after tuning) 

 

4.2 History Matching  

History matching is a means for reducing the uncertainty between the reservoir simulator’s 

predicted production and actual field production (history). This work is done on a fixed history 

matched model and multiple reservoir realizations are not considered in this study. The 
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methodology explained in Chapter 3 (see section 3.2.1) was used to reduce the discrepancy 

between the simulation results and the history. The coefficients and exponents of Corey models 

were optimised using a genetic algorithm. The Corey models obtained by curve fitting before the 

history matching are as follows 
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The following Corey models are the results of history matching. 

4.9140

2.3976

3.8121

1.7102

0.9507

0.8577(1 )

0.5773

0.7922(1 ) .

rw w

row w

rg g

rog g

K S

K S

K S

K S



 



 

 

The relative permeability curves before and after history matching are shown versus normalized 

water and normalized gas saturation in Fig. 4-2 and 4-3 for oil-water and oil-gas system, 

respectively. As shown, after history matching the reservoir rock wettability has changed from 

neutral wet to water wet since the endpoint value of water relative permeability has increased 

and the intersection of relative permeability curves of oil and water has shifted to the right 

(greater water saturation) in Fig. 4-2 and also the residual oil saturation shows reduction in Fig. 

4-3.  
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Fig. 4-2: Oil-water relative permeability curves before and after history matching 
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Fig. 4-3: Oil-gas relative permeability curves before and after history matching 

 

The plots of oil production rates from the three active producers of the E-segment (E-2AH, E-

3CH and E-3H) are presented in Fig. 4-4 to 4-6. In each figure, the simulation results before and 

after history matching as well as the historical recorded production rates are plotted. It is 

expected that by adjusting the reservoir parameters (relative permeabilities in this work) during 

history matching and making the simulation results closer to the history, more reliable 

predictions would be achieved. Fig. 4-4 to 4-6 show that in general the simulated wells’ oil 

production rates have approached the historical data after history matching.  
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Fig. 4-4: History matching results of well E-2AH 

 

 

 

 Nov1997    Mar1999     Jun2000   Sep2001   Dec2002   Apr2004    Aug2005    Nov2006  
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Fig. 4-5: History matching results of well E-3CH 

 

 Nov1997    Mar1999     Jun2000   Sep2001   Dec2002   Apr2004    Aug2005    Nov2006  
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Fig. 4-6: History matching results of well E-3H 

 

As mentioned, the objective function for history matching was defined to be the square of the 

weighted sum of the differences between the history and the simulated oil production rates of the 

wells (see equation (3.5)). Therefore, as expected, the simulated oil production rates of the wells 

have in general approached the recorded data after history matching. The effect of adjusting the 

relative permeabilities (history matching) on water and gas cumulative productions are shown in 

Fig. 4-7 and Fig. 4-8, respectively. These figures indicate that the degree of adjustment to the 

 Nov1997    Mar1999     Jun2000   Sep2001   Dec2002   Apr2004    Aug2005    Nov2006  
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relative permeabilities is in an acceptable range since the cumulative production curves follow 

the same trend as the history and the total gas and water production at the end of simulation time 

have approached the history for both gas and water. History matching can be improved taking 

into account other tuning parameters such as fault transmissibilities, flow capacity (product of 

horizontal permeability and thickness), vertical to horizontal permeability ratio, etc. For the 

purpose of developing this optimisation methodology, the history match is considered adequate. 

 

 

Fig. 4-7: History matching results of cumulative water production 

 Nov1997    Mar1999     Jun2000   Sep2001   Dec2002   Apr2004    Aug2005    Nov2006  
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Fig. 4-8: History matching results of cumulative gas production 

 

4.3 Optimisation of NPV 

The three experiments already described in Chapter 3 are discussed and the results are presented 

in this section. For each experiment, four trials are run. The performance of the optimisation 

techniques are analyzed and compared among and within the experiments. 

 

 

 Nov1997    Mar1999     Jun2000   Sep2001   Dec2002   Apr2004    Aug2005    Nov2006  
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4.3.1 Experiment 1 

In experiment 1, two water injection rates, two gas injection rates, three BHPs of the producers, 

cycle ratio and cycle time are the nine optimisation variables. The total WAG duration is fixed at 

30 months and the mole fractions of C2 to C4 are fixed at 0.05, 0.02 and 0.01, respectively. The 

top 50 results out of 60 simulation runs from the design of experiments are used as the initial 

guess for both of the optimisation algorithms (GA and PSO) and the best of the 50 (the best 

vector of the initial guess matrix) is chosen as the reference (unoptimised) case for comparison. 

Each row of the initial guess matrix corresponds to a particle and the columns in that row are the 

different variables of that particle. 

 

4.3.1.1 Reference Case 

The reference case for experiment 1 has the maximum water injection rates, minimum gas 

injection rates, minimum BHPs in the producers, a cycle ratio of 0.65 and a cycle time of 4 

months. These values as well as the NPV calculated from the start of the WAG (as time zero) are 

shown in Table 4-2. 
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Table 4-2: Variables of the reference case with their values for experiment 1 

Variable Reference case  

Qw (F-1H) 

[Sm
3
/day] 

2700  

Qg (F-1H) [Sm
3
/day] 1000 

Qw (F-3H) 

[Sm
3
/day] 

2700  

Qg (F-3H) [Sm
3
/day] 1000  

BHP (E-2AH) [bar] 150  

BHP (E-3CH) [bar] 150  

BHP (E-3H) [bar] 150  

Cycle ratio [-] 0.65 

Cycle time [month] 4  

NPV [$ million] 135.45  

 

 

4.3.1.2 Optimisation Results 

The optimisation results for the four trials of GA and four trials of PSO for experiment 1 are 

presented in Fig. 4-9 and 4-10, respectively. In Fig. 4-10 the results of iterations 11 to 40 of PSO 

are plotted as an inset for better visualization. The results of all the eight trials of GA and PSO 

are shown in Fig. 4-11. In these figures, the best NPV of each iteration (among the 50 particles) 

is plotted versus the iteration index.  
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Fig. 4-9: NPV vs. iteration index per trial for GA (experiment 1) 
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Fig. 4-10: NPV vs. iteration index per trial for PSO (experiment 1) 
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Fig. 4-11: NPV vs. iteration index per trial for GA and PSO (experiment 1) 

 

Fig. 4-9 shows that the best NPVs found by GA are steadily increasing, however GA does not 

converge to the same solution in all the trials. Fig. 4-10 shows the convergence of PSO to the 

same optimal solution in its four trials and the inset magnifies its fluctuations. Fig. 4-11 

represents the superiority of PSO over GA in most of the trials. 
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The values of the variables for the reference case and the best operational points from each trial 

of the two algorithms and the values of the maximum NPVs found for experiment 1 are shown in 

Table 4-3 and 4-4 for GA and PSO, respectively. The values of the optimised variables which 

differ from the reference case have been asterisked for each trial. 

 

Table 4-3: The reference case and best operational points of four trials of GA (experiment 1) 

Variable Reference  

case 

GA Trial 1 GA Trial 2 GA Trial 3 GA Trial 4 

Qw (F-1H) [Sm
3
/day] 2700  2700 2700 2700 2700 

Qg (F-1H) [Sm
3
/day] 1000  1000  1000  1000  1000  

Qw (F-3H) [Sm
3
/day] 2700  2700  2700  2700  2700  

Qg (F-3H) [Sm
3
/day] 1000  1000  1000  1000  1000  

BHP (E-2AH) [bar] 150  155.8* 171* 158.8* 156* 

BHP (E-3CH) [bar] 150  150  150  150  150  

BHP (E-3H) [bar] 150  150  150  150  150  

Cycle ratio [-] 0.65 0.9* 0.9* 0.9* 0.9* 

Cycle time [month] 4 4 4 5* 4 

NPV [$ million] 135.45  146.29  146.20  146.56  146.29  
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Table 4-4: The reference case and best operational points of four trials of PSO (experiment 1) 

Variable Reference  

case 

PSO Trial 1 PSO Trial 2 PSO Trial 3 PSO Trial 4 

Qw (F-1H) [Sm
3
/day] 2700  2700 2700 2700 2700 

Qg (F-1H) [Sm
3
/day] 1000 1000 1000 1000 1000 

Qw (F-3H) [Sm
3
/day] 2700 2700 2700 2700 2700 

Qg (F-3H) [Sm
3
/day] 1000 1000 1000 1000 1000 

BHP (E-2AH) [bar] 150 158.8* 158.8* 158.8 * 158.8* 

BHP (E-3CH) [bar] 150 150 150 150 150 

BHP (E-3H) [bar] 150 150 150 150 150 

Cycle ratio [-] 0.65 0.9* 0.9* 0.9* 0.9* 

Cycle time [month] 4 5* 5* 5* 5* 

NPV [$ million] 135.45 146.56 146.56 146.56  146.56 

 

As indicated by asterisks in Table 4-3 and 4-4, one of the BHPs (well E-2AH) has changed from 

150 bar to 158.8 bar, the cycle ratio has changed from 0.65 to 0.9 and the cycle time has changed 

from 4 months to 5 months in the optimal configuration found by the algorithms compared to the 

initial reference case. The overall optimal solution is about 8.2% higher in NPV. 

 

As can be seen from Fig. 4-9 to Fig. 4-11 and Table 4-3 and 4-4, PSO converges to the same 

optimal solution in all the four trials which shows its consistency, while GA has only been able 

to find the same optimal solution in the third trial. While the NPV found by the GA is always 

increasing throughout its search, it usually converges to a marginally lower solution. The inset in 

Fig. 4-10 shows small fluctuations in the performance of PSO. This could be a feature of PSO by 

which it tries to escape from local optima. 
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GA finds a solution with an NPV in the vicinity of 0.01% of the optimum solution for the first 

time in iteration 9 of the third trial and fails to find such an answer in the other trials. PSO gives 

a solution in the specified range for the first time in iteration 7 of trials 1 to 3 and iteration 8 of 

trial 4. 

 

To compare GA and PSO from the perspective of average performance, the average NPVs of the 

four trials of GA and four trials of PSO versus the iteration index are plotted in Fig. 4-12. The 

figure also shows error bars indicating the standard deviations. The average shown here is the 

average over all particles and all trials (200 particles in total).  

 

Fig. 4-12: Average performance of GA and PSO for all the four trials (experiment 1) 
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As can be seen from Fig. 4-12, the average NPV found by PSO for every iteration of the four 

trials is higher than the corresponding value found by GA. The standard deviations of PSO are 

lower than the standard deviations of GA indicating that the particles of PSO are closer to the 

average values. Since the average values of PSO are greater than those of GA, particles of PSO 

are always closer to a better point in the search space.  

 

To realize which of the algorithms finds a better solution within a limited number of iterations, 

the residual NPV is defined as below 


1

max

max
1 ,                                                                                                   (4.1)

n

i
residual

NPV
NPV

NPV

 

  

where n  is the number of iterations of a trial included in the calculations and maxNPV  is the 

maximum overall NPV.  

 

Residual NPVs of the first 10, 20, 30 and all the 40 iterations ( 10,20,30 and 40)n   for each 

trial of GA and PSO are shown in the form of bar charts in Fig. 4-13 to Fig. 4-16. A smaller 

value on the vertical axis is an indication of better performance of the algorithm since it shows 

that the maximum NPV found by the algorithm is closer to the best overall NPV.   
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Fig. 4-13: Residual NPV comparisons per trial for iterations 1 to 10 (experiment 1) 

 

 

Fig. 4-14: Residual NPV comparisons per trial for iterations 1 to 20 (experiment 1) 
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Fig. 4-15: Residual NPV comparisons per trial for iterations 1 to 30 (experiment 1) 

 

 

Fig. 4-16: Residual NPV comparisons per trial for iterations 1 to 40 (experiment 1) 
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As shown in Fig 4-13 to 4-16, in trials 1, 2 and 4, PSO shows a better performance than GA and 

in trial 3, GA acts better only in the first 10 and 20 iterations. For example, as represented in Fig. 

4-13, the best NPV found by PSO in the first 10 iterations is closer to the optimal solution of 

experiment 1 than any NPV found by GA for trials 1, 2 and 4. A value of 4×10
-5

, for example, 

for residual NPV of PSO in Fig. 4-13 indicates that the best NPV found by PSO in its first 10 

iterations is 99.995% of the best overall NPV for experiment 1. So, if there is a restriction due to 

computational time or resources, trying PSO would appear to be a better approach since it could 

find a solution closer to the optimum sooner. 

 

4.3.2 Experiment 2 

In experiment 2, two water injection rates, two gas injection rates, three BHPs of the producers, 

cycle ratio, cycle time and mole fractions of C2 to C4 added to the base injecting gas are the 12 

optimisation variables. The total WAG duration is fixed at 30 months. The top 50 results out of 

96 simulation runs from the design of experiments are used as the initial guess for both of the 

optimisation algorithms (GA and PSO) and the best of the 50 is chosen as the reference 

(unoptimised) case for comparison.  

 

4.3.2.1 Reference Case 

The operational point which results in the highest NPV among the 96 simulation runs of design 

of experiments is the reference case. The values of the variables for the reference case and the 

resulting NPV are shown in Table 4-5. The reference case of experiment 2 yields a lower NPV 

compared to experiment 1. In spite of the fact that in experiment 2 more simulation runs are 

conducted for the design of experiments than in experiment 1 (96 compared to 60), the design of 
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experiments is not effectively able to cover the search space and provide a good initial guess 

since experiment 2 is more complex and has a higher dimensional search space (12 variables in 

experiment 2 compared to nine variables in experiment 1). 

 

Table 4-5: Variables of the reference case with their values for experiment 2 

Variable Reference case  

Qw (F-1H) [Sm
3
/day] 2700  

Qg (F-1H) [Sm
3
/day] 380620  

Qw (F-3H) [Sm
3
/day] 2700  

Qg (F-3H) [Sm
3
/day] 1000  

BHP (E-2AH) [bar] 150  

BHP (E-3CH) [bar] 150  

BHP (E-3H) [bar] 201.3  

Cycle ratio [-] 0.7 

Cycle time [month] 2  

Mole fraction of C2 [-] 0.05 

Mole fraction of C3 [-] 0.1 

Mole fraction of C4 [-] 0.05 

NPV [$ million] 132.09  

 

 

4.3.2.2 Optimisation Results 

The results of the performance of GA and PSO for the four trials of experiment 2 are shown in 

Fig. 4-17 and 4-18, respectively. In Fig. 4-18 the results of iterations 11 to 40 of PSO are plotted 

as an inset for better visualization. The results of all the eight trials of the optimisation 

algorithms  are presented in Fig. 4-19. In these figures, the best NPV of each iteration (among 
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the 50 particles) is plotted versus the iteration index for all the iterations from the four trials of 

the algorithms.  

 

Fig. 4-17: NPV vs. iteration index per trial for GA (experiment 2) 
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Fig. 4-18: NPV vs. iteration index per trial for PSO (experiment 2) 
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Fig. 4-19: NPV vs. iteration index per trial for GA and PSO (experiment 2) 

 

Fig. 4-17 shows that the best NPV found by GA is steadily increasing and except for trial 4, GA 

converges to approximately the same optimal solution. Fig. 4-18 shows that PSO converges to 

the same optimal solution in all the four trials, however it shows fluctuations and sometimes 

finds lower NPVs compared to its prior iterations. Fig. 4-19 shows the better performance of 

PSO compared to GA for all the trials of experiment 2.  
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The values of the variables for the reference case and the best operational points and 

corresponding NPVs found from each of the four trials of GA and PSO for experiment 2 are 

given in Table 4-6 and 4-7, respectively. The values of the optimised variables which differ from 

the reference case have been asterisked for each trial. 

 

Table 4-6: The reference case and best operational points of four trials of GA (experiment 2) 

Variable Reference  

case  

GA Trial 1 GA Trial 2 GA Trial 3 GA Trial 4 

Qw (F-1H) [Sm
3
/day] 2700 2700 2700 2700 2700 

Qg (F-1H) [Sm
3
/day] 380620 1000* 1000* 1000* 110768* 

Qw (F-3H) [Sm
3
/day] 2700 2700 2700 2700 2700 

Qg (F-3H) [Sm
3
/day] 1000 1000 1000 1000 1000 

BHP (E-2AH) [bar] 150 159.4* 158.9* 158.9* 152* 

BHP (E-3CH) [bar] 150 150 150 150 150 

BHP (E-3H) [bar] 201.3 150* 150* 150* 150* 

Cycle ratio [-] 0.7 0.9* 0.9* 0.9* 0.9* 

Cycle time [month] 2 2 2 2 2 

Mole fraction of C2 [-] 0.05 0.2* 0.2* 0.2* 0.2* 

Mole fraction of C3 [-] 0.1 0.1 0.1 0.1 0.1 

Mole fraction of C4 [-] 0.05 0.05 0.05 0.05 0.05 

NPV [$ million] 132.09  148.65  148.66  148.66  146.69  

 

 

 

 



 

119 

 

Table 4-7: The reference case and best operational points of four trials of PSO (experiment 2) 

Variable Reference 

 case 

PSO Trial 1 PSO Trial 2 PSO Trial 3 PSO Trial 4 

Qw (F-1H) [Sm
3
/day] 2700  2700 2700 2700 2700 

Qg (F-1H) [Sm
3
/day] 380620 1000* 1000* 1000* 1000* 

Qw (F-3H) [Sm
3
/day] 2700 2700 2700 2700 2700 

Qg (F-3H) [Sm
3
/day] 1000 1000 1000 1000 1000 

BHP (E-2AH) [bar] 150 158.8* 158.8* 158.8* 158.8* 

BHP (E-3CH) [bar] 150 150 150 150 150 

BHP (E-3H) [bar] 201.3 150* 150* 150* 150* 

Cycle ratio [-] 0.7 0.9* 0.9* 0.9* 0.9* 

Cycle time [month] 2 5* 5* 5* 5* 

Mole fraction of C2 [-] 0.05 0.2* 0.2* 0.2* 0.2* 

Mole fraction of C3 [-] 0.1 0.1 0.1 0.1 0.1 

Mole fraction of C4 [-] 0.05 0.05 0.05 0.05 0.05 

NPV [$ million] 132.09 148.76 148.76 148.76 148.76 

 

As indicated by asterisks in Table 4-7, PSO has been able to reduce the gas injection rate of well 

F-1H to its minimum (1000 Sm
3
/day), increase the BHP of well E-2AH from 150 to 158.8 bar 

and decrease the BHP of well E-3H to the minimum (150 bar), change the cycle ratio from 0.7 to 

0.9 and increase the mole fraction of ethane in the injecting gas from 0 to the maximum (0.2). 

The optimal NPV (found by PSO) is about 12.6% higher compared to the NPV value of the 

reference case. 

 

Table 4-6 shows that GA fails to change the cycle time in all the four trials and gets stuck at the 

value of the reference case. GA is not able to find a solution comparable in quality to the solution 

found by PSO. PSO, unlike GA, gives the same optimal solution in all the trials. However, the 
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difference between the best answers of GA and PSO is negligible and mainly due to the effect of 

different cycle times. The NPV of the optimal point from the first trial of GA is a little lower 

than the solutions found in trials 2 and 3.This is due to the higher value of BHP for well E-2AH. 

In trial 4, GA changes the value of the gas injection rate of well F-1H and the BHP of well E-

2AH to the values which result in the lowest NPV of all the trials of the optimisation techniques. 

In other words, GA has the worst performance in trial 4.  

 

The first nine variables of the optimal solution of experiment 2 are the same as those from 

experiment 1, while a better NPV has been achieved due to enriching the gas and a more 

miscible injection which increases oil recovery. The optimal NPV of experiment 2 is about 1.5% 

higher than the value for experiment 1. So even though the reference case for experiment 2 has a 

lower NPV compared to experiment 1, the optimisation techniques, especially PSO, have been 

able to find an optimal solution better than that of experiment 1. 

 

PSO finds a solution with an NPV in the vicinity of 0.01% of the optimal solution for the first 

time in iteration 24, 7, 24 and 25 of trials 1 to 4, respectively. GA totally fails to achieve such a 

solution. A worse initial guess compared to the optimum definitely influences the number of 

iterations required to find a solution closer to the optimal solution, hence the effect of problem 

complexity by adding more variables is difficult to discern. 

 

The average NPV versus the iteration index for the four trials of GA and four trials of PSO (200 

particles in each iteration of each algorithm) with the standard deviations is shown in Fig. 4-20 

for GA and PSO. PSO always shows a better performance and a lower standard deviation than 
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GA in every single iteration. A lower standard deviation for PSO indicates the closeness of its 

particles to its higher average value. PSO is monotonically increasing, while GA shows some 

reductions in the average value of NPV before the final increase and convergence. Fluctuations 

are observed in the best values for PSO and in the average values for GA. This could be 

attributed to the basic differences in the random structures of the optimisation algorithms.  

 

Fig. 4-20: Average performance of GA and PSO for all the four trials (experiment 2) 

 

Bar charts of residual NPV (see equation (4.1)) for the first 10, 20, 30 and 40 iterations of the 

four trials of GA and PSO are presented in Fig. 4-21 to 4-24. These figures help choose the better 
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algorithm if there is a restriction in computational time and the best possible solution would be 

required with the fewest possible number of function evaluations.  

 

Fig. 4-21: Residual NPV comparisons per trial for iterations 1 to 10 (experiment 2) 

 

 

Fig. 4-22: Residual NPV comparisons per trial for iterations 1 to 20 (experiment 2) 
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Fig. 4-23: Residual NPV comparisons per trial for iterations 1 to 30 (experiment 2) 

 

 

 

Fig. 4-24: Residual NPV comparisons per trial for iterations 1 to 40 (experiment 2) 
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As shown in Fig. 4-21 to 4-24, GA outperforms PSO only in the first 20 iterations of trials 1 and 

3 and after the 20
th

 iteration, PSO always gives a solution closer to the optimum. The random 

structure of the algorithms is definitely an influencing parameter on the performance of the 

algorithms. It is worth recalling that the maximum NPV found by GA in all the trials is less than 

the optimal solution found by PSO and PSO has been able to find the same answer in every trial. 

 

4.3.3 Experiment 3 

In experiment 3, two water injection rates, two gas injection rates, three BHPs of the producers, 

cycle ratio, cycle time, mole fractions of C2 to C4 added to the base injecting gas and the total 

WAG duration are chosen as the optimisation variables. This gives 13 variables in total. The top 

50 results out of 110 simulation runs from the design of experiments are used as the initial guess 

for both of the optimisation algorithms (GA and PSO) and the best of the 50 is chosen as the 

reference (unoptimised) case for comparison.  

 

4.3.3.1 Reference Case 

The operational point which results in the highest NPV among the 110 simulation runs is the 

reference case. The variables along with their values and the NPV for the reference case of 

experiment 3 are shown in Table 4-8. The reference case for experiment 3 gives a higher NPV 

than experiments 1 and 2. This is mainly due to a longer total WAG duration and a higher total 

oil production. 
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Table 4-8: Variables of the reference case with their values for experiment 3 

Variable Reference case  

Qw (F-1H) [Sm
3
/day] 2700  

Qg (F-1H) [Sm
3
/day] 1000  

Qw (F-3H) [Sm
3
/day] 2700  

Qg (F-3H) [Sm
3
/day] 1000  

BHP (E-2AH) [bar] 150  

BHP (E-3CH) [bar] 150  

BHP (E-3H) [bar] 150  

Cycle ratio [-] 0.55 

Cycle time [month] 2  

Total time [month] 60  

Mole fraction of C2 [-] 0.2  

Mole fraction of C3 [-] 0.02 

Mole fraction of C4 [-] 0.05 

NPV [$ million] 194.72  

 

 

4.3.3.2 Optimisation Results 

The best NPV of each iteration (among the 50 particles) from the four trials of experiment 3 

tested with GA and PSO are plotted versus the iteration index for all the iterations in Fig. 4-25 

and Fig. 4-26, respectively. The results of iterations 11 to 40 of PSO are plotted as an inset in 

Fig. 4-26 for better visualization. The results of all the eight trials of the optimisation algorithms 

are presented in Fig. 4-27. 
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Fig. 4-25: NPV vs. iteration index per trial for GA (experiment 3) 
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Fig. 4-26: NPV vs. iteration index per trial for PSO (experiment 3) 
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Fig. 4-27: NPV vs. iteration index per trial for PSO (experiment 3) 

 

Fig. 4-25 shows the monotonic behaviour of GA and its convergence to different solutions. Fig. 

4-26 shows the consistency of PSO in converging to the same optimal solution and fluctuations 

in its performance. Fig. 4-27 indicates the better performance of PSO in all the trials compared to 

GA.  

 



 

129 

 

The values of the variables for the reference case of experiment 3 along with the optimal 

solutions and the corresponding NPVs from each of the four trials of GA and PSO are presented 

in Table 4-9 and 4-10, respectively. The values of the optimised variables which differ from the 

reference case have been asterisked for each trial.  

 

Table 4-9: The reference case and best operational points of four trials of GA (experiment 3) 

Variable Reference  

case 

GA Trial 1 GA Trial 2 GA Trial 3 GA Trial 4 

Qw (F-1H) [Sm
3
/day] 2700 2700 2700 2700 2700 

Qg (F-1H) [Sm
3
/day] 1000 1000 1000 1000 1000 

Qw (F-3H) [Sm
3
/day] 2700 2700 2700 2700 2700 

Qg (F-3H) [Sm
3
/day] 1000 1000 1000 1000 1000 

BHP (E-2AH) [bar] 150 150 150 150 150 

BHP (E-3CH) [bar] 150 150 150 150 150 

BHP (E-3H) [bar] 150 237* 237.5* 239.8* 240* 

Cycle ratio [-] 0.55 0.9* 0.9* 0.9* 0.9* 

Cycle time [month] 2  5* 7* 3* 3* 

Total time [month] 60  60 60 60 60 

Mole fraction of C2 [-] 0.2 0.2 0.2 0.2 0.2 

Mole fraction of C3 [-] 0.02 0.1* 0.1* 0.1* 0.1* 

Mole fraction of C4 [-] 0.05 0.05 0.05 0.05 0.05 

NPV [$ million] 194.72 221.55  221.65 220.98 220.98 
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Table 4-10: The reference case and best operational points of four trials of PSO (experiment 3) 

Variable Reference  

case 

PSO Trial 1 PSO Trial 2 PSO Trial 3 PSO Trial 4 

Qw (F-1H) [Sm
3
/day] 2700 2700 2700 2700 2700 

Qg (F-1H) [Sm
3
/day] 1000 1000 1000 1000 1000 

Qw (F-3H) [Sm
3
/day] 2700 2700 2700 2700 2700 

Qg (F-3H) [Sm
3
/day] 1000 1000 1000 1000 1000 

BHP (E-2AH) [bar] 150 150 150 150 150 

BHP (E-3CH) [bar] 150 150 150 150 150 

BHP (E-3H) [bar] 150 226.2* 226.2* 226.2* 226.2* 

Cycle ratio [-] 0.55 0.9* 0.9* 0.9* 0.9* 

Cycle time [month] 2 8* 8* 8* 8* 

Total time [month] 60 60 60 60 60 

Mole fraction of C2 [-] 0.2 0.2 0.2 0.2 0.2 

Mole fraction of C3 [-] 0.02 0.1* 0.1* 0.1* 0.1* 

Mole fraction of C4 [-] 0.05 0.05 0.05 0.05 0.05 

NPV [$ million] 194.72  222.29 222.29 222.29 222.29 

 

As shown in the Fig. 4-25 to 4-27 and Table 4-9 and 4-10, GA always converges to a suboptimal 

solution and is never able to find the solution found by PSO in any of the trials. GA has found 

quite different values for the cycle time in the trials, neither of which yields the optimum NPV 

found by PSO. However, the best NPV found by PSO is only 0.29% higher than the optimal 

NPV of GA and this is due to different BHPs for well E-3H and different cycle times. In the 

optimal solution found by PSO, the BHP of well E-3H has increased from 150 bar to 226.2 bar, 

cycle ratio has changed from 0.55 to 0.9, the cycle time has shifted from 2 months to 8 months 

and the mole fraction of C3 has changed from 0 to 0.1. This has resulted in about 14.2% increase 

in NPV compared to the reference case. PSO converges to the same solution in all the trials. 
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PSO finds a solution with an NPV in the vicinity of 0.01% of the optimum solution for the first 

time in iteration 27, 22, 26 and 18 of trials 1 to 4, respectively. GA never finds such a point in 

any of the trials.  

 

After three experiments, fluctuations in the best solutions found by PSO seem to be a feature of 

this technique, while GA has usually proved to be continuously increasing in the value of the 

objective function. GA keeps the best ever solution and if the GA operations (selection, 

crossover and mutation) do not result in a better solution, the global best solution would be 

transferred to the next iteration. In PSO, however, the positions of all the particles are updated by 

a random factor of the position of the global best solution, hence the best found solution may not 

carry over to the next iteration. These fluctuations probably help PSO escape from local optima.  

 

The main difference between experiment 3 and experiments 1 and 2 is the addition of the total 

time as a variable and setting 60 months as its upper bound. This has resulted in two major 

differences in the optimal operational points. In experiments 1 and 2, the optimal BHP of well E-

2AH is about 158.8 bar and wells E-3CH and E-3H would give a higher NPV if produced at the 

lower pressure bound (150 bar). In experiment 3, the optimal BHP of well E-2AH and E-3CH is 

the minimum (150 bar) and well E-3H would produce optimally at around 226.2 bar. The other 

distinction is the cycle time. The optimal cycle time of experiments 1 and 2 lies at 5 months, 

while it was found to be 8 months for experiment 3. The optimal NPV of experiment 3 is about 

49.4% and 51.7% higher in value compared to the optimal NPVs of experiments 1 and 2, 

respectively. 
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The average NPV of the 200 particles in each iteration of all the four trials of GA and four trials 

of PSO are plotted versus the iteration index in Fig. 4-28 for both of the algorithms along with 

the error bars showing the standard deviations. 

 

Fig. 4-28: Average performance of GA and PSO for all the four trials (experiment 3) 

 

As shown in Fig. 4-28, the average NPV of all the four trials of GA is lower than the 

corresponding average NPV found by PSO for every iteration which indicates the superior 

performance of PSO. The solutions found by PSO are also located closer to their average 

indicated by the lower standard deviations of PSO. We see monotonicity in the PSO results and 

fluctuations in the GA results from the perspective of average performance. 
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The bar charts in Fig. 4-29 to 4-32 show the relative difference between the best NPV found in 

the first 10, 20, 30 and 40 iterations and the maximum overall NPV of the problem (see equation 

(4.1))  for the four trials of GA and PSO.  

 

 

Fig. 4-29: Residual NPV comparisons per trial for iterations 1 to 10 (experiment 3) 
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Fig. 4-30: Residual NPV comparisons per trial for iterations 1 to 20 (experiment 3) 

 

 

Fig. 4-31: Residual NPV comparisons per trial for iterations 1 to 30 (experiment 3) 
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Fig. 4-32: Residual NPV comparisons per trial for iterations 1 to 40 (experiment 3) 

 

For this experiment, PSO always outperforms GA in all the trials regardless of the number of 

iterations. PSO shows better performance and a greater improvement compared to GA as the 

number of iterations increases. Since this experiment was designed to be the most complex, this 

indicates the general superiority of PSO over GA for the case of NPV optimisation for WAG on 

this field. 

 

The bar charts show that the best solution of PSO in most iterations of each trial is better than the 

corresponding value found by GA and the plots of average NPV demonstrate that the particles in 

each single iteration of PSO are always located closer to the optimum than the individuals in the 

same iteration of GA.  
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4.3.4 Sensitivity Studies on NPV 

A sensitivity analysis is a means to measure the effect of independent parameters on the 

objective function. In this study, to examine the effect of one WAG operational parameter on 

NPV, all the other parameters are kept constant at their optimal values. This method is called 

one-factor-at-a-time and is the most common approach to investigate the effect of input variables 

on the output. This method does not take into account the interactions between the input 

variables [183]. Other methods such as local methods, scatter plots, regression analysis, 

variance-based methods and screening, to name a few, can be used for sensitivity analysis. We 

limit ourselves to one-factor-at-a-time in this study. The normalized NPV (the ratio of NPV to 

the maximum NPV found by the optimisation algorithms for experiment 3) is plotted versus the 

normalized variables (the ratio of each variable to its optimal value). The trend and slope of each 

curve shows how that parameter affects the objective function. 

 

In Fig. 4-33, we consider the normalized water injection rate on the interval [0.8, 0.95] in steps 

of 0.05 and the normalized gas injection rate on the interval [1.05, 1.2] in steps of 0.05.  
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Fig. 4-33: Effect of water and gas injection rates on NPV 

 

As shown in Fig. 4-33, at low injection rates of gas and high injection rates of water, the effect of 

change in water injection rates on NPV is much higher than that of the gas injection rates which 

indicates the better response of the reservoir to water injection and its greater effect on oil 

recovery as compared to gas injection. The slope of the line related to well F-1H is greater than 

that of well F-3H which means that water injection in well F-1H is more influential on NPV and 

likely oil recovery. The slopes of the lines related to gas injection rates are negative but very 

small for both wells. This shows that increasing the gas injection rate is not cost effective and the 

increase in oil recovery due to enhancing the gas injection rates is not justified economically.  
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In Fig. 4-34 the effect of the BHP of the producers on NPV is shown.  

 

Fig. 4-34: Effect of BHP on NPV 

 

The optimal BHP of well E-3H is about 226.2 bar. The normalized BHP of well E-3H is changed 

on the interval [0.8, 1.05] in steps of 0.05 for the sensitivity study. Increasing the BHP below the 

optimal value delays and reduces water production and enhances the NPV, while increasing the 

BHP above its optimal value causes the oil production to fall below the economic limit. The 

optimal BHP of wells E-2AH and E-3CH is 150 bar. The normalized BHPs of these two wells 

are changed on the interval [1.05, 1.2] in steps of 0.05 for the sensitivity analysis. These two 

wells behave normally in the sense that by increasing the BHP the oil production reduces 

significantly which affects the NPV. This indicates that well E-3H is the most sensitive well to 

water production.  
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Fig. 4-35 presents the effect of cycle ratio on NPV. The optimal cycle ratio is 0.9 which means 

that in each cycle water is injected for 90% of the time and the rest is allocated to gas injection. It 

is worth recalling that cycle ratio was changed in steps of 0.05 through the search process of the 

optimisation. For the sensitivity analysis, this parameter was changed from 0.7 to 1 in steps of 

0.05. A cycle ratio of 1 refers to water flood.  

 

As can be seen in Fig. 4-35, for a cycle ratio less than 0.9 (when gas is injected for more than 

10% of a cycle), the NPV is lower than the optimum. This implies that increasing the gas 

injection period above that threshold does not result in enough oil production to make up for the 

cost of gas injection. When water is injected for more than 90% of a cycle the cost of water 

handling reduces the NPV below the optimum. The optimal cycle ratio depends strongly on the 

prices assumed for the NPV calculations. 
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Fig. 4-35: Effect of cycle ratio on NPV 

 

The effect of cycle time on NPV is shown in Fig. 4-36. The cycle time is changed from 2 to 10 

months in steps of 1 month to examine its influence on the NPV. 8 months is the optimal cycle 

time for a 5-year WAG process and cycle times of 7 and 4 months are ranked second and third. 

This means that the most efficient WAG injection scenario for a period of 5 years is to inject gas 

for 24 days and then inject water for 216 days (based on the cycle ratio of 0.9) cyclically.  
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Fig. 4-36: Effect of cycle time on NPV 

 

The effect of the total WAG time is shown in Fig. 4-37. The normalized total time is changed on 

the interval [0.8, 1.2] in steps of 0.05. As can be seen, the NPV is monotonically increasing 

versus the total WAG time. This suggests that WAG has the potential of being extended for at 

least one more year and would still be economical. However, the optimal operational WAG 

parameters for the 5-year period may not result in the highest NPV for a longer period and the 

optimal WAG for a longer period would have to be specified in a separate optimisation process. 
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Fig. 4-37: Effect of total WAG time on NPV 

 

And finally, the effect of the amount of enriching components on the NPV is shown in Fig. 4-38. 

The optimal mole fractions of C2 to C4 are 0.2, 0.1 and 0.05, respectively and their normalized 

values are changed on the interval [0.8, 0.95] in steps of 0.05 for the sensitivity study. The 

highest change in NPV happens by changing the amount of C4 in the injection gas as its curve 

shows the highest slope and the amount of C2 has the least effect on the NPV. This means that 

with the prices assumed in this study enriching the injecting gas in such a way that contains more 
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butane is justified economically and the increase in oil recovery due to a miscible injection is 

worth the enrichment. 

 

Fig. 4-38: Effect of the amount of enriching components on NPV 

 

4.3.5 Sensitivity Analysis of Economic Parameters 

The economic parameters of oil price, gas injection cost, water injection cost and water recycling 

cost are selected for the sensitivity study to investigate their effect on NPV. When the effect of 

one economic parameter on NPV is examined, the other parameters are set at the values shown 
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in Table 3-4. The gas injection cost is $0.271 / Sm
3
 which is the unit price of gas containing 65% 

C1, 20% C2, 10% C3 and 5% C4 with the prices assumed for each of the components (see Table 

3-4). Fig 4-39 shows the ratio of NPV to the overall maximum NPV of experiment 3 versus the 

normalized prices (the ratio of each price to its corresponding value in Table 3-4). The 

normalized oil price is varied on the interval [0.8, 1.2] in steps of 0.05. The other normalized 

prices are changed on the interval [0, 1.2] to consider the assumption of zero cost for them. 

 

Fig. 4-39: Effect of economic parameters on NPV 

 

As shown in Fig. 4-39, the relative change of NPV versus the relative change of the economic 

parameters clearly indicates that the NPV of WAG significantly changes as the oil price varies 

and oil price is the most influential economic parameter on the NPV. Water recycling cost has 
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the second highest effect on the NPV and gas injection and water injection costs are ranked third 

and fourth, respectively. The effect of gas and water injection costs are much smaller than that of 

oil price indicated by much smaller absolute values for their slopes. Evidently, oil price has a 

positive effect and the costs have negative effects on the NPV as the line slope of oil price is 

positive and the line slopes of the costs are negative. 

 

4.4 Optimisation of Oil Recovery 

In this section, GA and PSO are used to optimise the incremental recovery factor (IRF, see 

equation (3.7)) or the recovery factor from the start of WAG process on the E-segment of the 

Norne field. The optimisation variables include two water and two gas injection rates, three 

BHPs of the oil producers, cycle ratio, cycle time and the mole fractions of C2, C3 and C4 added 

to the base injection gas. The total WAG time is fixed at 60 months. The top 50 results out of 96 

simulation runs from the design of experiments are used as the initial guess matrix for the 

optimisation techniques and the best of the 50 (the one with maximum oil recovery) is chosen as 

the reference case for comparison. Three trials of GA and PSO with the same initial guess matrix 

are run. 

 

4.4.1 Reference Case 

The operational point which results in the highest oil recovery among the 96 simulation runs is 

chosen as the reference case. The variables along with their values and the IRF calculated from 

the start of the WAG (as time zero) for the reference case of oil recovery optimisation are shown 

in Table 4-11. 
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Table 4-11: Variables of the reference case with their values for oil recovery optimisation 

Variable Reference case  

Qw (F-1H) [Sm
3
/day] 500 

Qg (F-1H) [Sm
3
/day] 10

6
 

Qw (F-3H) [Sm
3
/day] 500 

Qg (F-3H) [Sm
3
/day] 10

6
 

BHP (E-2AH) [bar] 150 

BHP (E-3CH) [bar] 150 

BHP (E-3H) [bar] 240 

Cycle ratio [-] 0.1 

Cycle time [month] 2 

Mole fraction of C2 [-] 0.2 

Mole fraction of C3 [-] 0.1 

Mole fraction of C4 [-] 0.01 

IRF [-] 4.45% 

 

 

4.4.2 Optimisation Results 

The maximum IRF of each iteration (among the 50 particles) from the three trials of GA and 

PSO are plotted versus the iteration index for all the iterations in Fig. 4-40 and Fig. 4-41, 

respectively. The results of iterations 11 to 40 of PSO are plotted as an inset in Fig. 4-41 for 

better visualization. The results of all the six trials of GA and PSO are shown in Fig. 4-42. 
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Fig. 4-40: IRF vs. iteration index per trial for GA (oil recovery optimisation) 
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Fig. 4-41: IRF vs. iteration index per trial for PSO (oil recovery optimisation) 
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Fig. 4-42 IRF vs. iteration index per trial for GA and PSO (oil recovery optimisation) 

 

 

Fig. 4-40 shows the convergence of the GA to different solutions and its monotonic increase. 

Fig. 4-41 shows small fluctuations in the performance of the PSO and its convergence to the 

same optimal solution in all the three trials. Fig. 4-42 represent the superior performance of PSO 

compared to GA in all the trials. 
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The values of the variables for the reference case of oil recovery optimisation along with the 

optimal solutions and the corresponding IRFs from each of the three trials of GA and PSO are 

presented in Table 4-12 and 4-13, respectively. The values of the optimised variables which 

differ from the reference case have been asterisked for each trial.  

 

Table 4-12: The reference case and best operational points of three trials of GA (oil recovery 

optimisation) 

Variable Reference  

case  

GA Trial 1 GA Trial 2 GA Trial 3 

Qw (F-1H) [Sm
3
/day] 500  2700* 2700* 2700* 

Qg (F-1H) [Sm
3
/day] 10

6
 10

6
 10

6
 10

6
 

Qw (F-3H) [Sm
3
/day] 500  2700* 2700 * 2700* 

Qg (F-3H) [Sm
3
/day] 10

6
 10

6
 10

6
 968781* 

BHP (E-2AH) [bar] 150 150  150  167* 

BHP (E-3CH) [bar] 150 150  150  158* 

BHP (E-3H) [bar] 240 240  237.5* 238* 

Cycle ratio [-] 0.1 0.1 0.1 0.1 

Cycle time [month] 2 4 * 8* 3* 

Mole fraction of C2 [-] 0.2 0.2 0.2 0.2 

Mole fraction of C3 [-] 0.1 0.1 0.1 0.1 

Mole fraction of C4 [-] 0.01 0.05* 0.05* 0.05* 

IRF [-] 4.45% 5.08% 5.08% 5.04% 
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Table 4-13: The reference case and best operational points of three trials of PSO (oil recovery 

optimisation) 

Variable Reference  

case 

PSO Trial 1 PSO Trial 2 PSO Trial 3 

Qw (F-1H) [Sm
3
/day] 500  2700* 2700* 2700* 

Qg (F-1H) [Sm
3
/day] 10

6
 10

6
 10

6
 10

6
 

Qw (F-3H) [Sm
3
/day] 500 2700* 2700* 2700* 

Qg (F-3H) [Sm
3
/day] 10

6
 10

6
 10

6
 10

6
 

BHP (E-2AH) [bar] 150  150  150  150  

BHP (E-3CH) [bar] 150  150  150  150  

BHP (E-3H) [bar] 240  209* 209* 209* 

Cycle ratio [-] 0.1 0.15* 0.15* 0.15* 

Cycle time [month] 2  12* 12* 12* 

Mole fraction of C2 [-] 0.2 0.2 0.2 0.2 

Mole fraction of C3 [-] 0.1 0.1 0.1 0.1 

Mole fraction of C4 [-] 0.01 0.05* 0.05* 0.05* 

IRF [-] 4.45% 5.17% 5.17% 5.17% 

 

As Fig. 4-40 to 4-42 and Table 4-12 and 4-13 show, PSO has converged to the same optimal 

solution in all the three trials. In the optimal solution found by PSO, the values of the variables 

for the reference case have changed as follows. The water injection rates have increased to their 

maximum value, the BHP of well E-3H has decreased from 240 bar to 209 bar, the cycle ratio 

has changed from 0.1 to 0.15, the cycle time has shifted from 2 months to 12 months and the 

mole fraction of C4 has increased to 0.05. This has resulted in about 16.2% increase in the IRF 

compared to the reference case. GA is not able to find the optimal set of BHPs and optimal cycle 

time found by PSO and reduces one of the gas injection rates to a non-optimal value in one of the 

trials. GA finds quite different solutions in the three trials, the best of which is about 1.7% lower 
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than the optimal solution of PSO. As observed in the experiments for NPV optimisation, the 

global best solutions of PSO fluctuate as a function of the number of iterations, however, those 

of GA steadily improve. 

 

PSO finds a solution with an IRF in the vicinity of 0.01% of the optimal solution for the first 

time in iteration 28 of the three trials. GA never finds a solution in the specified range in any of 

the trials.  

 

The curves of average IRF versus the iteration index for the three trials of GA and the three trials 

of PSO (150 particles in each iteration of each algorithm) are shown in Fig. 4-43 for both of the 

algorithms. The error bars present the standard deviations which is a measure of the closeness of 

the particles of an iteration to their average value. As can be seen, the average IRF for PSO 

increases monotonically before convergence. GA always shows a lower average value than PSO 

and in addition to fluctuations, GA does not show convergence in the final iterations. The 

standard deviation of PSO is steadily decreasing and it is lower than the standard deviation of 

GA for every iteration. The standard deviation of GA versus the iteration index does not show a 

monotonic behaviour. 
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Fig. 4-43: Average performance of GA and PSO for all the three trials (oil recovery optimisation) 

 

Residual IRF is defined in the same way as residual NPV (the relative difference between the 

maximum overall IRF and the maximum IRF found within the first n iterations). The following 

bar charts (Fig. 4-44 to Fig. 4-47) show the residual IRF for the first 10, 20, 30 and all 40 

iterations for the three trials of GA and PSO.  
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Fig. 4-44: Residual IRF comparisons per trial for iterations 1 to 10 (oil recovery optimisation) 

 

 

 

Fig. 4-45: Residual IRF comparisons per trial for iterations 1 to 20 (oil recovery optimisation) 



 

155 

 

 

Fig. 4-46: Residual IRF comparisons per trial for iterations 1 to 30 (oil recovery optimisation) 

  

 

Fig. 4-47: Residual IRF comparisons per trial for iterations 1 to 40 (oil recovery optimisation) 
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Fig. 4-44 to 4-47 show that the best solution found by PSO is always closer to the optimal 

solution of the problem than the best answer found by GA regardless of the trial number and the 

number of iterations included. The curves of the best solutions found by the optimisation 

algorithms and the average performance versus the iteration index and the bar charts show the 

general superiority of PSO over GA for the case study of oil recovery optimisation from WAG 

on the E-segment of the Norne field. 

 

4.4.3 Sensitivity Studies on Oil Recovery 

In this section, a sensitivity analysis is conducted to quantify the effect of individual WAG 

operational parameters on IRF. To investigate the sensitivity of one parameter, all the other 

variables are kept fixed at their optimal values. The normalized IRF (the ratio of IRF to its 

maximum value or IRF/IRFmax) is plotted versus the normalized variables (the ratio of each 

variable to its optimal value) and the trend and slope of each curve shows the effect of the 

corresponding variable on the oil recovery. 

 

In Fig. 4-48, the normalized water and gas injection rates are changed on the interval [0.8, 0.95] 

in steps of 0.05. As can be seen, at high injection rates of gas and water, the effect of gas 

injection rate on oil recovery is higher than that of water injection rate. In addition, the injection, 

whether gas or water, in well F-1H has a greater effect on oil recovery than injection in well F-

3H. This indicates that the mobile oil saturation in the zone of the reservoir which is swept by 

well F-1H is higher than that of well F-3H. 
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The optimal water injection rates are the same (2700 Sm
3
/day) for the experiments of NPV and 

IRF optimisation, however, the optimal gas injection rates are set at the lower bound (1000 

Sm
3
/day) for NPV optimisation and at the upper bound (1,000,000 Sm

3
/day) for IRF 

optimisation. When there is no restriction on the injection rates from the point of view of 

economic benefit (in the case of IRF optimisation), a higher injection rate would probably result 

in more oil production. 

 

 

Fig. 4-48: Effect of water and gas injection rates on IRF 
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The effect of BHPs of the producers on oil recovery is shown in Fig. 4-49. 

 

Fig. 4-49: Effect of BHP on IRF 

 

As shown in Fig. 4-49, the optimal BHP for well E-3H is about 209 bar and the other two 

production wells (E-2AH and E-3CH) would produce the most oil at their lower bounds of BHP 

(150 bar). For the sensitivity study, the normalized BHP of well E-3H is changed on the interval 

[0.8, 1.15] in steps of 0.05 and the normalized BHPs of E-2AH and E-3CH are varied on the 

interval [1.05, 1.2] in steps of 0.05. The oil production of wells E-2AH and E-3CH reduces as 

their BHP increases and well E-3CH is more sensitive to changes in the BHP. Well E-3H 
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behaves normally below and above its optimal BHP, in the sense that by increasing the BHP the 

oil production decreases. As the BHP of well E-3H increases from below the optimal value, 

water production also decreases and this causes the water cut to reduce and some of the well 

connections to reopen, so the oil production increases. Although the optimal BHP of well E-3H 

is a little different for NPV optimisation (226.2 bar) and oil recovery optimisation (209 bar) due 

to the relative prices of oil and water handling, these results are compatible with the results of 

NPV optimisation and show the highest sensitivity of well E-3H to water production.  

 

Fig. 4-50 shows the effect of cycle ratio on the IRF. The optimal cycle ratio for the case of oil 

recovery optimisation is 0.15 which means that in each cycle water is injected for 15% of the 

time and the rest is allocated to gas injection. It is worth recalling that cycle ratio was changed in 

steps of 0.05 through the search process of the optimisation. For the sensitivity analysis, this 

parameter was changed from 0 to 0.3 in steps of 0.05. A cycle ratio of 0 refers to gas flood.  

 

As can be seen in Fig. 4-50, for a cycle ratio less than 0.15 (when gas is injected for more than 

85% of a cycle), the oil production reduces because of excessive gas production. When water is 

injected for more than 15% of a cycle, the longer period of water cannot make up for the shorter 

period of gas injection from the point of view of oil recovery.  

 

The optimal cycle ratio for the experiments of NPV optimisation is 0.9 which means that longer 

periods of water injection are more beneficial, however, an optimum of 0.15 for the case of IRF 

optimisation indicates the greater effect of longer periods of gas injection on the oil recovery. 
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Fig. 4-50: Effect of cycle ratio on IRF 

 

The effect of cycle time on the oil recovery is shown in Fig. 4-51. The cycle time is changed 

from 2 to 12 months in steps of 1 month to examine its influence on the oil recovery. 12 months 

yields the highest oil recovery as the optimal cycle time for a 5-year WAG process and cycle 

times of 10 and 8 months are ranked second and third. This means that the most efficient WAG 

injection scenario to produce the most oil in a 5-year period is to inject gas for 306 days and then 

inject water for 24 days (based on the cycle ratio of 0.15) cyclically.  
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The optimal cycle time for experiment 3 of NPV optimisation is 8 months. This indicates that if 

more oil recovery is required then less alternation between gas and water injection is necessary. 

 

Fig. 4-51: Effect of cycle time on IRF 

 

To investigate the effect of the amount of enriching components on the oil recovery, the mole 

percentages of C2, C3 and C4 are reduced from 20% to 16% in steps of 1%, from 10% to 8% in 

steps of 0.5% and from 5% to 4% in steps of 0.25%, respectively. As already mentioned, when 

each of the mole percentages is altered for the sensitivity study, the rest are kept fixed at their 

optimal values (20% C2, 10% C3 and 5% C4) and the mole percentage of methane is the free 
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variable with the obvious constraint of mole fractions sum to unity. Fig. 4-52 and Fig. 4-53 show 

the effect of the variation in the mole percentages of enriching components on the oil recovery 

and on the minimum miscibility pressure (MMP) of the Norne oil with the injection gas, 

respectively. The optimum (minimum) MMP is about 342 bar for the most enriched gas of the 

optimal solution (65% C1, 20% C2, 10% C3 and 5% C4). As can be seen, the presence of C4 in the 

injection gas has the largest effect on MMP and therefore oil recovery, however, the composition 

of the injection gas is mainly dictated by the economics and source and availability of the gas.  

 

The richest gas composition is the optimal solution of the experiments of NPV and IRF 

optimisation. This means that the richest injecting gas yields the most oil recovery as well as the 

most economic benefit. 
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Fig. 4-52: Effect of variation of the amount of enriching components on IRF 
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Fig. 4-53: Effect of variation of the amount of enriching components on minimum miscibility pressure 

 

The oil recovery factors from different recovery methods are presented in Fig. 4-54 from the start 

of the WAG project to the end of 5-year period. The recovery methods under investigation 

include the optimal WAG (from the point of NPV), water flooding with minimum and maximum 

injection rates, gas flooding with minimum and maximum injection rates and optimal WAG 

(from the point of oil recovery). The oil recovery at the start of the project is about 49.15%. The 

ultimate recoveries from the optimised-recovery WAG, gas flooding with the maximum injection 

rate (1,000,000 Sm
3
/day), the optimised-NPV WAG, water flooding with the maximum injection 
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rate (2700 Sm
3
/day), water flooding with the minimum injection rate (500 Sm

3
/day) and gas 

flooding with the minimum injection rate (1000 Sm
3
/day) are 54.31%, 54.04%, 52.57%, 52.17%, 

51.53% and 51.22%, respectively. The optimised-NPV WAG process is ranked third after the 

optimised-recovery WAG and gas flooding with the maximum injection rate. Continuous gas 

flooding with the minimum injection rate yields the lowest recovery.  

 

 

Fig. 4-54: Comparison of the oil recovery among different recovery methods 
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Chapter 5: Conclusions and Recommendations 

 

5.1 Summary and Conclusions 

Two evolutionary algorithms, a genetic algorithm (GA) and particle swarm optimisation (PSO) 

were employed to develop an optimisation methodology and determine the optimal production-

injection parameters in a hydrocarbon WAG process on the Norne E-segment to achieve the 

highest NPV and highest oil recovery. A compositional simulator, Schlumberger Eclipse E300, 

was used in this study. The reservoir model was first history matched to reduce the uncertainty in 

the prediction of the simulations. The full set of optimisation variables consisted of water and gas 

injection rates, bottom hole pressures of the production wells, cycle ratio, cycle time, total WAG 

time and composition of the injection gas. Three experiments on the optimisation of NPV with 

different numbers of controlling variables (9, 12 and 13) and one experiment on the optimisation 

of oil recovery (with 12 variables and a fixed total WAG time) were defined. A reference case 

was first obtained for each experiment by means of design of experiments (DOE) and then both 

GA and PSO were tried four times on each of the NPV optimisation experiments and three times 

on the experiment of oil recovery optimisation with the same initial guesses for each experiment. 

A sensitivity analysis was also done to investigate the effect of controlling variables on the 

objective functions and also the effect of economic parameters on the NPV.  

 

 Both of the optimisation techniques were found capable of improving the values of the objective 

functions (NPV and oil recovery) compared to the reference case and the difference in the values 

of their optimal solutions was not significant, however, PSO converged to the same optimal 
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solution in all the trials for each experiment and the optimal solutions found by PSO, except for 

experiment 1 in which GA converged to the same optimal solution as PSO in only one of the 

trials, were better than those found by GA. GA usually converged to different solutions in 

different trials of the same experiment and yielded an inferior solution compared to PSO.  

 

The NPV optimisation for experiment 1 results in optimal NPVs of GA and PSO being 8.2% 

higher than the NPV of the reference case. In experiment 2, the optimal NPVs of GA and PSO 

were 12.5% and 12.6% respectively higher than the NPV of the reference case. In the third 

experiment (including all the 13 variables), the optimal NPVs found by PSO and GA were 

14.2% and 13.8% higher than the NPV of the reference case, respectively. The rate of 

convergence of the optimisation techniques depends on two factors, the problem complexity (the 

number of decision variables) and the initial guess. It is difficult to isolate the effect of problem 

complexity on the rate of convergence of optimisation techniques due to the effect of the initial 

guess. Nevertheless, PSO on average finds a solution in the vicinity of 0.01% of the optimal 

solution for the first time in iteration 7 of experiment 1, iteration 20 of experiment 2 and iteration 

23 of experiment 3. GA finds such an answer only in iteration 9 of one of the trials of experiment 

1. In the experiment of oil recovery optimisation, PSO and GA showed an improvement of about 

16.2% and 14.2%, respectively, in the value of the incremental recovery factor compared to the 

reference case.  

 

The conclusions drawn above are based on limited number of trials due to the high 

computational cost of the reservoir simulations. More trials are required to help us claim the 

accuracy and reliability of the method, however, the framework was tested successfully and 
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improvement in the value of the objective functions was observed for the designed WAG 

experiments. 

 

For the few trials conducted in this study, PSO in general showed better performance than GA 

from point of overall best solution, best solution found before the termination of the algorithms 

and the average value of the objective functions in the same iteration of all the trials. However 

drawing a definite conclusion from the comparison of the performance of stochastic optimisation 

techniques is problem dependent; PSO would be a better option than GA as a first approach to 

search for the optimal operational WAG parameters on the field scale in the opinion of the author 

of this dissertation.  

 

5.2 Recommendations for Future Research 

The optimisation process in this study was based on a fixed well pattern. The optimisation of 

well placement can be further investigated for a WAG process by placing new injection or 

production wells, shut-in or doing new completions in the existing wells. Further improvement in 

the production performance is expected via the integrated optimisation of well control and well 

placement. 

 

The reservoir model was history matched and then water flooded up to a specific point in time. 

The time to initiate WAG could be added to the optimisation variables. However WAG is 

usually performed as a tertiary recovery method, the time to start WAG is a matter of discussion 

and can be included as a parameter to investigate for WAG optimisation. 
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The use of proxy models or surrogates for reservoir simulator is another field of research which 

has been fairly well investigated in literature. The surrogates are expected to mimic the 

performance of the reservoir simulator and yield acceptable results after being trained and tested, 

however they are computationally cheaper, so a greater number of function evaluations can be 

included in the search process of optimisation techniques and the chance of finding better results 

would be improved. 

 

History matching could be investigated more thoroughly to reduce the uncertainty of the 

simulation predictions. Other parameters including fault transmissibilities, flow capacity and the 

ratio of vertical to horizontal permeability, etc. could be added to the tuning parameters to obtain 

a better match. The effect of geological uncertainty can also be investigated by using multiple 

realizations of the reservoir. 

 

A better compositional PVT model could be achieved by means of laboratory test data on fluid 

properties. 

 

More realistic economic parameters, especially for gas and water injection costs could be 

assumed. This of course depends on the time of study, the field location and availability of the 

injection materials. Financial uncertainty could be considered in a future work. 

 

Only four trials for each experiment of NPV optimisation and three trials for IRF optimisation 

were conducted in this study due to the computational limitations. This might reduce the 
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reliability of the optimisation results. Running more trials is recommended to help draw 

statistically sound conclusions. 

 

And last but not least, other optimisation techniques, especially those of stochastic nature which 

do not need access to the simulator code and gradient information, can also be tested on the same 

problem. In this study, we selected GA and PSO off the shelf to optimise over all the variables 

simultaneously. Differential Evolution (DE) and Covariance Matrix Adaptation Evolution 

Strategy (CMA-ES), to name a few, are in the category of stochastic optimisation techniques 

which have been used in the optimisation of well control and placement [184, 185]. In addition, 

the application of deterministic optimisation approaches such as generalized pattern search 

(GPS) and Hooke-Jeeves directed search can be evaluated. Trying a sequential approach to 

optimise variables sequentially and in a decoupled manner due to the different nature of the input 

variables (continuous versus discrete) may also be of interest.  
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Appendix A 

Example: If the total volumes of produced oil, gas and water and the total volumes of injected 

gas and water for two years of WAG injection are as shown in Table A-1, the NPV using 

equation (3.6) with the prices assumed in Table 3-4 for the most enriched injection gas is 

calculated as follows 

Table A-1: The total volumes of injected and produced fluids for a two-year WAG process 

Year number Qo
prod

 [Sm
3
] Qg

prod
 [Sm

3
] Qw

prod
 [Sm

3
] Qg

inj
 [Sm

3
] Qw

inj
 [Sm

3
] 

1 2.2217×10
5 

2.5998×10
7 

1.1315×10
6
 1.02×10

5
 1.6659×10

6
 

2 1.7662×10
5 

2.1667×10
7 

1.1284×10
6
 4.9×10

4
 1.8117×10

6
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1

' ' 2

' ' 2

(1) (1) (1) (1 ) ...

(2) (2) (1) (1) (2) (1) (1) (1 ) ...

[ (2)( ) (2)( )](1 )   

prod inj inj

o o g g w w

prod inj prod prod inj prod prod

o o g g g g g w w w w w

prod prod

g g g w w w

NPV Q c Q c Q c r

Q c Q Q c Q c Q Q c Q c r

Q c c Q c c r







        

           

   

 

 5 5 6 1

5 4 7 7

6 6 6 2

7

2.2217 10 377 1.02 10 0.271 1.6659 10 6 1.05 ...

{1.7662 10 377 4.9 10 2.5998 10 0.271 2.5998 10 0.271 0.7 ...

1.8117 10 1.1315 10 6 1.1315 10 38}1.05 ...

2.1667 10 (0.271 0.

NPV 



             

            

        

  6 2271 0.7) 1.1284 10 (6 38) 1.05 $58.7 million      

 


