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Abstract 

 How experience alters neuronal ensemble dynamics and how locus coeruleus-mediated 

norepinephrine release facilitates memory formation in the brain are the topics of this thesis. Here 

we employed a visualization technique, cellular compartment analysis of temporal activity by 

fluorescence in situ hybridization (catFISH), to assess activation patterns of neuronal ensembles 

in the olfactory bulb (OB) and anterior piriform cortex (aPC) to repeated odor inputs. Two 

associative learning models were used, early odor preference learning in rat pups and adult rat go-

no-go odor discrimination learning.  

With catFISH of an immediate early gene, Arc, we showed that odor representation in the 

OB and aPC was sparse (~5-10%) and widely distributed. Odor associative learning enhanced the 

stability of the rewarded odor representation in the OB and aPC. The stable component, indexed 

by the overlap between the two ensembles activated by the rewarded odor at two time points, 

increased from ~25% to ~50% (p = 0.004-1.43E-4; Chapter 3 and 4). 

 Adult odor discrimination learning promoted pattern separation between rewarded and 

unrewarded odor representations in the aPC. The overlap between rewarded and unrewarded odor 

representations reduced from ~25% to ~14% (p = 2.28E-5). However, learning an odor mixture as 

a rewarded odor increased the overlap of the component odor representations in the aPC from 

~23% to ~44% (p = 0.010; Chapter 4). 

Blocking both α- and β-adrenoreceptors in the aPC prevented highly similar odor 

discrimination learning in adult rats, and reduced OB mitral and granule ensemble stability to the 

rewarded odor. Similar treatment in the OB only slowed odor discrimination learning. However, 

OB adrenoceptor blockade disrupted pattern separation and ensemble stability in the aPC when 

the rats demonstrated deficiency in discrimination (Chapter 5).  
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In another project, the role of α2-adrenoreceptors in the OB during early odor preference 

learning was studied. OB α2-adrenoceptor activation was necessary for odor learning in rat pups. 

α2-adrenoceptor activation was additive with β-adrenoceptor mediated signalling to promote 

learning (Chapter 2). 

 Together, these experiments suggest that odor representations are highly adaptive at the 

early stages of odor processing. The OB and aPC work in concert to support odor learning and 

top-down adrenergic input exerts a powerful modulation on both learning and odor representation. 
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Chapter-01: Introduction 

1.1 Overview 

Memories connect the past with the present and influence our decisions about the future – 

both consciously and unconsciously. In doing this, memories allow for the uninterrupted 

continuation of life. Without memories, an individual’s existence can be jeopardized. For example, 

a dementia patient who forgets to turn off a stove can place him and his family in a life-or-death 

situation. In the last 50 years, we have witnessed an unprecedented “explosion” in memory 

research. With a simple flash of light, we can now recapitulate a fear memory in rodents with more 

precision (Liu et al., 2012) than a science fiction writer would have dared to dream of a century 

ago. We are also now able to implant artificial memories (de Lavilléon et al., 2015; Ramirez et al., 

2013), enhance existing memories, and add new information during sleep (Arzi et al., 2012; Ngo 

et al., 2013; Oudiette and Paller, 2013; Barnes and Wilson, 2014). To conceptualize this last point, 

imagine the PhD student who wakes up one morning with all the memories which can be utilize 

to write comprehensive exam that same day. The in-depth understanding of memory at the cellular, 

molecular, and circuit level is not only necessary to understand how a PhD student’s dreams will 

be realized, but it is also necessary to delineate the neurobiology of disease conditions.  

Studying memory presents a daunting task. Being continuously bombarded with 

information, our brains have the capacity to store many different memories throughout our lives; 

yet, perhaps even more remarkable is that they have the ability to recall these same memories 

decades after they were originally formed. It takes a fraction of a second for a coffee connoisseur 

to tell the difference between a Tim Horton’s and a Starbuck’s coffee. A proud parent of twin 

babies is able to detect the subtle differences between the twins which might otherwise place a 

stranger in an embarrassing situation. Despite the fact that we have had much success in inducing, 
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manipulating, implanting, and retrieving a specific memory event in the rodent, the following 

mechanisms have remained elusive: (1) how the brain encodes and stores different events and (2) 

how the circuit dynamics of multiple memory engrams within the brain are modified and 

interleaved following learning. Moreover, how the brain distinguishes very similar objects from 

each other, how it recalls memory from degraded input, and how different brain regions 

complement each other during encoding and the modifying of sensory representations following 

learning requires further investigation.   

 Memory researchers have been using different sensory modalities to investigate the 

neurobiological underpinnings of learning and memory. To investigate complex, but interesting 

questions like those mentioned above, an experimentally tractable sensory model is necessary. The 

olfactory system offers a unique sensory platform for studying the neurobiology of learning and 

memory (Davis, 2004). Unlike other sensory modalities, the design and function of the olfactory 

system is preserved between species (Brennan and Keverne, 1997; Hildebrand and Shepherd, 

1997; Laberge and Hara, 2001; Laurent et al., 2001; Mombaerts, 2001; Eisthen, 2002). Moreover, 

the circuitry involved in processing odor information is well established, which is particularly 

important for researchers who wish to document the corresponding changes at each level of 

computation that occurs following learning (i.e., from the periphery to the cortex). Furthermore, 

odors are believed to be a powerful cue for autobiographical experiences (Chu and Downes, 2000, 

2002).   

Evolutionarily speaking, the sense of smell has been imperative to mammalian survival, 

including that of humans. Although we human beings do not rely on our sense of smell as much 

as other mammals, we can certainly all share poet Diane Ackerman’s sentiment that “nothing is 

more memorable than smell.” This becomes especially apparent when we visit our parents and the 
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smell of mother’s cooking elicits vivid memories of childhood. Even science supports Ms. 

Ackerman’s statement as it has been shown that memories evoked by odor cues are more vivid 

than those triggered by corresponding words (Chu and Downes, 2002). But, for the human, odor 

memories serve more functions than simply creating sentimental value. Memories of the smell of 

smoke alert us to the presence of fire before we see a flame, which induces a fight-or-flight 

response. Memories of the smells of food allow us to distinguish safe food from that which is 

spoiled. For the rodent, olfaction is particularly vital for many reasons. For example, in the rodent, 

olfaction plays key roles in reproductive function (Brennan and Keverne, 1997), mother-infant 

interaction (Kendrick et al., 1992; Leon, 1992; Wilson and Sullivan, 1994; Fleming et al., 1999; 

Sullivan et al., 2000a), physiological regulation (Leon and Moltz, 1971; Pager, 1974; Leon et al., 

1977; Alberts, 1978; Galef and Kaner, 1980; Alberts and May, 1984; Coopersmith and Leon, 1986; 

Fillion and Blass, 1986; Moore et al., 1996b; Shah et al., 2002; Lledo et al., 2005; Galef, 2013); 

finding food (Doty, 1986; Leon, 1992; Sullivan, 2003), locating mom for shelter (Doty, 1986; 

Leon, 1992; Sullivan, 2003) and avoiding predators (Doty, 1986; Leon, 1992; Sullivan, 2003). 

Thus, studying olfaction is not only necessary for exploring the basic science of sensory 

processing, but it is also important for other biological reasons. 

One of the most important features of the olfactory system is that it is enriched with 

centrifugal inputs from multiple classical neuromodulatory centres such as cholinergic and GABA-

ergic inputs from the basal forebrain (Ichikawa and Hirata, 1986; Ojima et al., 1988; Nunez-Parra 

et al., 2013; Rothermel and Wachowiak, 2014), serotonergic inputs from the raphe (McLean and 

Shipley, 1987c; Petzold et al., 2009), and noradrenergic inputs from the locus coeruleus  

(LC;(Halasz et al., 1977; Shipley, 1985; McLean et al., 1989; Shea et al., 2008)). These 

neuromodulators, by virtue of their widespread efferent projections, influence information 
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processing throughout the central nervous system. These centrifugal inputs have been proposed to 

be involved in decision making, motivation, general arousal, vigilance, prediction errors or 

unexpected uncertainty, attention, and learning and memory (Robbins, 1997; Schultz et al., 1997; 

Saper, 2000; Doya, 2002; Bouret and Sara, 2005; Hasselmo, 2006; Doya, 2008; Bethus et al., 

2010; Tully and Bolshakov, 2010; Noudoost and Moore, 2011). Mechanistically, they alter 

functional cortical networks by manipulating synaptic efficacy (i.e., excitatory and inhibitory 

synaptic transmission), intrinsic properties of neurons, adaptability of cortical pyramidal cells, 

membrane potential of neurons, rates of synaptic modification, and many other cortical parameters 

(Frey et al., 1990; Hasselmo and Barkai, 1995; Berridge and Waterhouse, 2003; Tully and 

Bolshakov, 2010). As in other sensory modalities, these neuromodulators play a major role in odor 

information processing itself in addition to olfactory learning and memory (Matsutani and 

Yamamoto, 2008; Shea et al., 2008; Petzold et al., 2009; Fletcher and Chen, 2010; Kato et al., 

2012; Nunez-Parra et al., 2013; Wachowiak et al., 2013; Nunez-Parra et al., 2014; Rothermel and 

Wachowiak, 2014). Among all of these neuromodulators, however, the role of the LC-

noradrenergic (LC-NE) system has been the most intensely studied in all sensory modalities, 

including the olfactory system. It was the first neuromodulator to be characterised both 

anatomically and neurochemically (Reil, 1809; Maeda, 2000; Sara, 2009). Consequently, it is not 

surprising that the LC-NE system is also the most well-defined neuromodulatory system in 

olfaction. Interestingly, Shipley et al (1985) has shown that the olfactory bulb (OB) receives the 

densest projections from LC (40% of LC neurons (Shipley et al., 1985)), suggesting a prominent 

role for this neuromodulator in olfactory-mediated tasks. LC-NE fibers also innervate other 

olfactory structures such as the piriform cortex (PC), anterior olfactory nucleus, and olfactory 
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tubercle (Sara, 2009). Thus, one might suspect a concerted influence of the LC- NE system on all 

olfactory structures to facilitate olfactory learning and perception. 

The LC nucleus is situated deep in the pons and is comprised of 1,500 neurons in the rat, 

several thousands in the monkey, and 10,000-15,000 in the human (Berridge and Waterhouse, 

2003). Almost half a century ago, Kety proposed that emotional arousal activates the LC resulting 

in the diffuse release of NE to different brain regions where it exerts its actions via β-

adrenoreceptors (kety, 1970). Since then, the pharmacological activation and blockade of different 

adrenoreceptor sub-types has been a useful tool in delineating the role of the LC-NE system in 

different sensory modalities.  

Odor learning alters odor representations in the OB and PC, the two most studied regions 

in the olfactory system (Yuan and Harley, 2014; Yuan et al., 2014). The results of numerous 

experiments have shown unique cellular and behavioral functions of the LC-NE system for each 

receptor sub-type in neonate and adult rat odor learning (Fletcher and Chen, 2010; Yuan et al., 

2014). One learning model that is responsible for many contributions in the field is early odor 

preference learning. This model takes advantage of the altricial rat’s limited sensory and motor 

functions and its nearly-exclusive reliance on olfaction during post-natal day (PND) ages 1-9. With 

this model, researchers have been able to trace the plastic changes at the physiological, cellular, 

and molecular level in the OB and PC (Yuan et al., 2014). Interestingly, the heightened sensitivity 

of the LC-NE system in neonates makes this model particularly useful in understanding how NE 

manipulates olfactory processing in both OB and anterior piriform cortex (aPC) in the developing 

brain. In adult rodents, it has been shown that adrenoreceptors play a major role in odor habituation 

(Guerin et al., 2008; Mandairon et al., 2008b; Escanilla et al., 2010), spontaneous odor 

discrimination (Escanilla et al., 2010) and forced choice odor discrimination learning (Doucette et 
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al., 2007; Mandairon et al., 2008b). Currently, there is a pressing demand for understanding how 

multiple adrenoreceptors act in concert to influence adaptive behavior. Moreover, much of the 

previous research was focused on studying the physiological changes at the cellular level following 

odor-guided behavior, but how noradrenergic modulation influences odor representation at the 

systems’ level to support adaptive behavior has not yet been addressed. Before we decipher how 

noradrenergic modulation affects networks, it is important to understand how the olfactory circuit 

represents odors and how odor representation is altered to support behavior. Thus, this thesis aims 

to clarify the following phenomena in the neonate and adult rat: (1) how multiple adrenoreceptors 

act concomitantly in odor learning; (2) how odor information is processed via activity of neuronal 

ensembles in the OB and PC; (3) how odor associative learning modifies ensemble activities in 

both neonate and adult rats; (4) how noradrenergic modulation influences odor discrimination 

learning and shapes odor representations in both the OB and PC. Elucidating these mechanisms 

will provide fundamental insights into how the brain represents sensory information and forms 

memories.  

 According to Crick “In biology, if seeking to understand function, it is usually a good idea 

to study structure”(Crick and Koch, 2005). In the following sections of the introduction, I will first 

discuss the neuroanatomy of the olfactory system particularly focusing on the OB and PC.   
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1.2  Olfactory System focusing on the OB and PC 

Historically, the journey to anatomically trace the olfactory circuitry began more than a 

century ago. Camilo Golgi and Cajal were the first investigators to visualize the olfactory circuitry 

in various species using the Golgi staining method (Ramón y Cajal, 1890; Shepherd et al., 2011; 

Figueres-Onate et al., 2014; Imai, 2014). A century later, the discovery of the genes that encode 

olfactory receptor proteins by Buck and Axel (1991) paved a way for pursuing the organization of 

the olfactory pathway in the brain (Buck and Axel, 1991). Invisible odor becomes a meaningful 

substance when its odorant molecules first come in contact with odorant receptors that reside in 

the nasal epithelium. Volatile odorant molecules first dissolve in the nasal mucosa and then initiate 

odor information processing by binding to one of the thousand different odorant receptors (ORs) 

(Buck and Axel, 1991; Reed, 1992; Ressler et al., 1993; Krautwurst et al., 1998). These ORs give 

rise to a multidimensional odor map in the brain (Amoore, 1970, 1971; Buck and Axel, 1991; 

Reed, 1992; Ressler et al., 1993; Krautwurst et al., 1998). This is made possible by the fact that 

one odor can activate multiple ORs and one OR can interact with multiple odors, giving the 

olfactory system the capacity to detect and discriminate the thousands of different odors that exist 

in nature (Ressler et al., 1994; Malnic et al., 1999; Shepherd, 2004; Hallem and Carlson, 2006).  

 Although other sensory systems maintain a spatially segregated input, the OR coding 

patterns of odorant molecules are not topographically segregated in each of the four broad 

circumscribed zones of the olfactory epithelium (Strotmann et al., 1992; Ressler et al., 1993; 

Vassar et al., 1993; Strotmann et al., 1994). Once the molecular features of an odor are encoded 

by ORs, unique olfactory-specific bipolar cells called olfactory sensory neurons (OSNs) transmit 

this information centrally (Fig-1.1) (Pinching and Powell, 1971a; Morrison and Costanzo, 1990).  
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Figure 1.1 Simple schematic of olfactory circuitry involving the olfactory bulb and piriform   

cortex 

Olfactory sensory neurons (OSN) first received odor information from the external world by 

interacting with odorant molecules in the air. Then the OSN send that informatin to glomeruli 

where the principle neurons of the olfactory bulb (OB) receive the information and relay it to 

the piriform cortex (PC) via the lateral olfactory tract (LOT). Odor information is subject to 

modulation by two types of interneurons in the OB which include granule cells (GC) and 

juxtaglomerular (JG) cells. Drawing courtesy of Christine Fontaine and usage permitted by her. 
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This transduction process occurs by conformational changes of ORs, a family of G-protein-

coupled receptors (GPCR), which then initiates a cascade of intracellular molecular events to 

generate an action potential in the OSN (Jones and Reed, 1989; Bruch and Teeter, 1990). This 

action potential then propagates via the unmyelinated axon of the OSN to the OB – the first relay 

station of the central olfactory system (Fig-1.1) (Cajal, 1911b; Pinching and Powell, 1971c; Mori 

et al., 1999; Shepherd et al., 2004). OSNs synapse with the principle neurons of the OB in a 

spherical structure called a glomerulus, which is encompassed by glial sheets (Pinching and 

Powell, 1971a; Bailey et al., 1999; Kasowski et al., 1999). Glomeruli are hubs for the first synapses 

to occur between OSNs and the principle neurons of the OB, namely Mitral/Tufted (M/T) cells 

(Fig 1.1 & 1.2). Each OSN expresses only one type of OR and projects to a few topographically-

fixed glomeruli (Fig-1.1& 1.2; Vassar et al., 1994; Mori and Yoshihara, 1995; Buck, 1996; 

Mombaerts et al., 1996). Thus, a "one glomerulus—one receptor rule" is used by the OB to detect 

molecular features of odorants (Mori et al., 1992; Chess et al., 1994; Mori et al., 1999). Such 

precise axonal projections of OSNs to glomeruli form spatial OR maps in the glomerular layer 

(GL) of the OB (Mori et al., 2006; Imai et al., 2010; Mori and Sakano, 2011). Initially Laurent 

(1997) demonstrated an apparent spatial organization of glomerular odor maps in the OB, which 

later has been widely accepted (Rubin and Katz, 1999; Xu et al., 2000; Wachowiak and Cohen, 

2001; Leon and Johnson, 2003; Soucy et al., 2009). However, recent precise imaging techniques 

with single glomerular resolution (Ma et al., 2012) together with theoretical analyses (Cleland, 

2010) challenge the idea of chemotopic mapping existing in the glomerular layer. 
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Figure 1.2 Organization of neuronal circuitry in the olfactory bulb  
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1.2.1 The olfactory bulb 

The OB is an allocortex that comprises the most rostral part of the brain. In humans, it lies 

on the ventral aspects of the frontal lobes. The cribriform plate of the ethmoid holds the two bulbs 

inside the skull (Fig 1.1 &1.2). The typical volume of an eight-week-old mouse OB has been 

measured to be 7.53 mm3 (Parrish-Aungst et al., 2007). The volume of the rat OB has been 

measured to be approximately 3 times that of the mouse (Frazier and Brunjes, 1988).  Using the 

nuclear dye Sytox Green, Parrish-Aungst and colleagues (2007) histologically estimated the 

number of cells present in the mouse OB: an eight-week-old mouse main OB was found to contain 

approximately 3.22 X 106 cells.   

Similar to other cortical structures, the OB has a characteristic laminar organization (Fig 

1.3). Although Golgi (1875) originally considered the OB to be a three layered structure, Cajal and 

colleagues eventually showed that the bulb consists of seven layers using histological methods 

(Schwalbe, 1881; Ramón y Cajal, 1890; Blanes, 1898; Shipley and Ennis, 1996; Figueres-Onate 

et al., 2014; Nagayama et al., 2014). These seven layers, organized superficial to deep, are: the 

olfactory nerve layer (ONL), GL, the external plexiform layer (EPL), the mitral cell layer (MCL), 

the internal plexiform layer (IPL), and the granule cell layer (GCL) (Price and Powell, 1970b, a; 

Pinching and Powell, 1971a, c, b). The deepest layer of the bulb is referred to as the subependymal 

layer (SEL).  

 Each OB contains several thousands of glomeruli and each glomerulus allows synaptic 

communication to take place between thousands of OSN axons and the dendritic branches of 

approximately 10-70 M/T cells (Mori et al., 2006; Sosulski et al., 2011; Ke et al., 2013). 

Glutamatergic synapses between OSNs and M/T cells are subject to modulation by three types of 

neurons present in the GL: periglomerular cells (PG), short axon cells (SA), and external tufted 
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cells (ET) (Pinching and Powell, 1971a,b,c). These neurons are collectively known as 

juxtaglomerular cells (JG; Fig-1). Another cell type called the granule cell, which outnumbers the 

excitatory M/T cells by roughly 30:1, also greatly shapes odor representation in the OB via two-

way dendrodendritic GABAergic modulation (Allison, 1953; Shepherd, 1972; Woolf et al., 1991). 

All of the aforementioned local bulbar circuitry dynamically tune olfactory information and 

convert it into a spatiotemporal neural code. M/T cells then directly or indirectly relay that 

information for higher-order information processing, culminating in odor object perception (Price 

and Sprich, 1975; Miyamichi et al., 2011; Sosulski et al., 2011; Igarashi et al., 2012). 

The GL and GCL account for the highest percentage volume of the bulb; in fact, 

approximately 50% of the bulb is composed of GL and GCL (GL: ~26%; GCL: ~29%). SEL 

accounts for the lowest percentage volume of the bulb (~1%); EPL and ONL account for ~19% 

and ~16%, respectively; and MCL and IPL account for ~10% (MCL: ~6%; IPL: ~ 4%). The 

number of cells in each layer also varies according to the size (percent volume of the bulb) of each 

layer. As such, the GL and GCL contain the highest number of cells – ~1.23 x 106and 0.87 x 106, 

respectively – while the remaining cell layers contain cell numbers ranging from 0.05 x 106 – 0.66 

x 106 (Parrish-Aungst et al., 2007).  

 Each bulb consists of heterogeneous populations of cell types that include principle 

neurons (M/T cells), interneurons (PG, SA, ET, Granule cells, Van Gehuchten cells, and Blanes 

cells), and glial cells (astrocytes, oligodendrocytes, olfactory ensheathing cells, NG2, and 

microglia). An extensive review of the diverse cell populations of the OB is provided in a recent 

paper by Nagayama and colleagues (2014). 
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1.2.1.1 The olfactory nerve layer 

The ONL is the most superficial layer of the OB (Fig 1.3). It consists of axons from the 

OSN and glial cells. One interesting cell type that is also found in this layer is the olfactory 

ensheathing cell (Doucette, 1989, 1990; Valverde and Lopez-Mascaraque, 1991). Additionally, 

the presence of   astrocytes in the ONL has also been confirmed from several studies (Doucette, 

1990; Bailey and Shipley, 1993; De Carlos et al., 1996; Blanchart et al., 2011). It is important to 

note that olfactory ensheathing cells possess progenitor characteristics that allow for the 

continuous turnover of these cell types (90 day half-life) throughout a rodent’s lifespan and that, 

despite this regeneration, OSNs have the ability to precisely reconnect with their target glomeruli 

to maintain olfactory topographic maps (Gogos et al., 2000; Schwarting et al., 2007). 

 

1.2.1.2 The glomerular layer 

The immediate deep layer to the ONL is the GL (Fig 1.3). This layer contains the most 

diverse cell population within the OB. In rodents, it is composed of approximately 2000-6300 

spherical-to-ovoid glomeruli per bulb (Shipley and Ennis, 1996; Mori et al., 2006). Each mouse 

bulb contains approximately 1800 glomeruli (Allison, 1953; White, 1972; Brunjes, 1983; Royet et 

al., 1988), whereas numbers in the rat and rabbit have been estimated to be ~2,400-4,200 (Allison 

and Warwick, 1949; Meisami and Safari, 1981; Meisami et al., 1990; Royet et al., 1998). The 

process of glomerulus formation involves heterogeneous cell types such as radial glia, astrocytes, 

OSNs, JG cells, M/T cells, and olfactory Schwann cells throughout the embryonic and early 

postnatal development stages (Bailey et al., 1999). Structurally, the spheroid-shaped glomeruli are 

surrounded by a shell of small neurons and astrocyte cell bodies. Their centres are enriched with 

neuropil and the thick processes of wedge-shaped astrocytes, one of the principle astrocyte 
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subtypes in the GL (Bailey and Shipley, 1993; Shipley and Ennis, 1996). Neuropil accommodates 

synapses among the axons of OSNs, the apical dendrites of M/T cells, and the dendrites of JG. The 

size of an individual glomerulus may vary from 40-190 µm (Royet et al., 1988) and there are, on 

average, 680 cells per glomerulus (Parrish-Aungst et al., 2007). Interestingly, the number of OSN 

axonal arbors that penetrate each glomerulus outnumbers that of any other cell type that exists 

within glomeruli by 1-2 orders of magnitude (Schoenfeld and Knott, 2004). 

 Glomeruli are anatomically and functionally unique network units in the bulb that are 

proposed to be very similar to “barrels” and “columns” present in the cerebral cortex (Shepherd et 

al., 2004). Using early Golgi and electron microscopy techniques, classical neuroanatomists 

postulated the presence of three morphologically distinct interneurons – PG, SA, and ET – within 

each glomerulus (Golgi, 1875; Blanes, 1898; Cajal, 1911b; Pinching, 1970; Price and Powell, 

1970a; Pinching and Powell, 1971a, c, b, 1972b, a). Modern techniques such as chemoanatomical 

methods, in vitro slice preparation, and whole-cell recording have revealed that these cells can also 

be equally distinguishable in terms of their physiological properties such as receptor expression 

pattern, types of neurotransmitter they release, calcium binding proteins, and synaptic 

characteristics (Kosaka et al., 1995; Nickell et al., 1996; Kosaka et al., 1997; Kosaka et al., 1998; 

Toida et al., 1998; Toida et al., 2000; Beck et al., 2001; Hayar et al., 2004a; Hayar et al., 2004b; 

Shipley et al., 2004; Hayar et al., 2005).  

 The PG cells are the smallest in size (5-20 µm) and the highest in number in the GL. 

Normally, they project their dendrites to a single glomerulus, but they have the capacity to extend 

their axons as far as 600 µm, enabling them to project to 5-6 glomeruli (Pinching and Powell, 

1971a; Parrish-Aungst et al., 2007). Axonless PG cells also exist in the GL (Kosaka and Kosaka, 

2011). The superficial SA (sSA) cells are smaller (8-12 µm) than ET cells, but slightly larger than 



15 
 

those of the PG cells. Although, traditionally, the so-called “short axon cells” were believed to 

project to a maximum of 1-2 glomeruli (Pinching and Powell, 1971a), a study by Aungst and 

colleagues (2003) suggests that SA cells can extend their axons so far as to include 20-30 

glomeruli(Aungst et al., 2003). Among all of the JG cells, ET cells have the largest soma (10-15 

µm) and although their primary dendrites are mostly confined to a single glomerulus, a few 

subpopulations have been proposed to be di-glomerular (Pinching and Powell, 1971a; Ennis and 

Hayar, 2008). The neurites of ET cells ramify in a larger volume of the glomerulus than those of 

PG cells.  

 OSNs form glutamatergic synapses with two types of excitatory principle OB neurons 

within a single glomerulus, mitral cells and ET (Berkowicz et al., 1994; Ennis et al., 1996). 

GABAergic SA and PG cells also receive direct excitatory input from OSN axons in the 

juxtaglomerular area. Additionally, PG cells can be directly activated by M/T cells and OSNs, 

resulting in the inhibition of M/T cells, OSNs, and neighbouring PG cells via GABA release 

(Murphy et al., 2005). Whereas these synaptic modulations take place within a single glomerulus, 

excitatory ET cells can act on distal glomeruli through a network of sSA cells.  

Based on the current understanding of the synaptic relationships among OSNs, sSA cells, 

ET cells, PG cells, and M/T cells within the GL, Wachowiak and Shipley (2006) postulated 4 

functional microcircuits in the glomerulus:  (1) the OSN → M/T circuit (2) the OSN → PG circuit, 

(3) the OSN → ET → PG circuit, and (4) the OSN → ET → SA circuit (Wachowiak and Shipley, 

2006).  

 



16 
 

 

Figure 1.3 Laminar organization of the olfactory bulb  
 
ONL-Olfactory Nerve Layer; GL-Glomerular layer; EPL-External plexiform layer; MCL-Mitral cell layer 
IPL- Internal plexiform layer; GCL- Granule cell layer 
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1.2.1.3 The external plexiform layer 

The second level of olfactory synaptic processing occurs in the EPL, which lies deep to the 

GL (Fig 1.3). Although the EPL has a lower cell density than the GL, the dendrites of M/T and 

GC cells in this layer form a very dense neuropil. The EPL is also enriched with a significant 

number of interneurons and different tufted cell and astrocyte subtypes (Schneider and Macrides, 

1978; Macrides and Schneider, 1982; Bailey and Shipley, 1993; Kosaka et al., 1994; Mirich et al., 

2002). Three types of multipolar neurons have been identified in the EPL: Van Gehuchten, SA, 

and parvalbumin-expressing interneurons (Gehuchten and Martin, 1891; Schneider and Macrides, 

1978; Gall et al., 1986; Scott et al., 1987; Brinon et al., 1992; Kosaka et al., 1994; Huang et al., 

2013; Kato et al., 2013; Miyamichi et al., 2013). These GABAergic interneurons provide feedback 

inhibition to OB projection neurons through the activation of their AMPA/kainate receptors 

(Hamilton et al., 2005).  

 

1.2.1.4 The mitral cell layer 

In comparison with the other olfactory bulb layers, the MCL is the narrowest. It is situated 

directly below the EPL (Fig 1.3) and is mainly composed of mitral cell (MC) somata (25-30 µm 

diameters). Tufted cell somata also exist in the EPL, but are sparsely distributed. This contrasts 

with MC somata, which are located in close proximity with one another (Mori et al., 1983; Orona 

et al., 1983). This close proximity of MC somata increases their vulnerability to GC inhibition via 

reciprocal synapses (Nagayama et al., 2014).  In terms of projections, the primary (apical) dendrites 

of both mitral and tufted cells extend to a single glomerulus. Thus, both of these OB projection 

neurons receive odor information exclusively from a single odorant receptor and therefore support 

the "single cell-single odorant receptor" rule. Interestingly, recent studies reveal that tufted cells 
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have shorter response latency and are more robust than MCs in detecting a wide range of odor 

concentrations (Fukunaga et al., 2012; Gire et al., 2012; Igarashi et al., 2012). Furthermore, it has 

been suggested that only tufted cells are directly activated by OSNs; whereas MCs receive strong 

OSN input via the dendrites of external tufted cells (De Saint Jan et al., 2009; Gire et al., 2012). 

However, it is widely believed that MCs also receive direct input from OSN. In support of this 

idea recent ultrastructural studies reveal OSN-to-MC direct synaptic contact (Kosaka et al., 2001; 

Najac et al., 2011). It is still under debate whether such limited synaptic contact can elicit spikes 

in MC (Gire et al., 2012).  

Unlike their primary dendrites, the secondary dendrites of both mitral and tufted cells 

project to different subdivisions of the EPL. The secondary dendrites of tufted cells extend to the 

superficial/outer EPL, while those of MCs extend to the deep/inner EPL. As opposed to tufted 

cells, the lateral dendrites of MCs are much more elongated and thus subjected to more inhibition 

from GCs (Nagayama et al., 2004). Once the odor information is partially refined in the glomeruli, 

it is then extracted by the cell bodies of mitral and tufted cells in the EPL and MCL. This 

information is then horizontally propagated via secondary dendrites of the EPL and undergoes 

GABAergic lateral inhibition exerted by GCs in the EPL (Xiong and Chen, 2002). Some unique 

physiological properties that distinguish tufted cells from MCs are a low spike threshold, highly 

sensitive and plastic responses to sensory deprivation, a weak and narrow tuning range of lateral 

inhibition, high firing frequency, strong respiratory phase locking activity, and the ability to 

respond to a broad range of odorants (Schneider and Scott, 1983; Ezeh et al., 1993; Nagayama et 

al., 2004; Imamura et al., 2006; Griff et al., 2008; Fukunaga et al., 2012; Igarashi et al., 2012; 

Kikuta et al., 2013). Mitral and tufted cells also differ in terms of their axonal targets in other brain 

structures (Haberly and Price, 1977; Skeen and Hall, 1977; Scott et al., 1980; Scott, 1981; 
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Schneider and Scott, 1983). Although MC axons project predominately to the entire piriform 

cortex, tufted cell axons are restricted to the aPC and more rostral structures (Haberly and Price, 

1977; Nagayama et al., 2010; Igarashi et al., 2012). It is to be noted that M/T cells are not 

morphologically well segregated and hence are considered as a single group of projection neurons 

in most olfactory research (Satou, 1990; Bargmann, 2006). 

 

1.2.1.5 The internal plexiform layer 

 Immediately deep to the MCL is another thin layer called the IPL (Fig 1.3). This layer 

contains the axons of M/T cells; the dendrites of GCs; and axons arising from the LC 

(noradrenergic), the raphe nuclei (serotonergic), and the nucleus of the diagonal band (cholinergic) 

(Price and Powell, 1970a, b; Shipley et al., 1986; McLean and Shipley, 1987c, b; McLean et al., 

1989). 

 

1.2.1.6 The granule cell layer 

 The GCL is the innermost neuronal layer of the OB (Fig 1.3) and is mostly occupied by 

small, spiny, ovoid granule cell (GC) – one of the most abundant inhibitory interneurons in the OB 

(6–8 μm in diameter; (Golgi, 1875; Blanes, 1898; Price and Powell, 1970a)). Granule cells (GCs) 

send thick, long apical dendrites into the EPL and ramify extensively in that layer. Their basal 

dendrites bifurcate in the GCL (Price and Powell, 1970a; Orona et al., 1983). In 1983, Mori et al. 

classified a subclass of GCs near the MCL (Mori et al., 1983). These cells have short dendrites 

and project to the deep EPL. In addition to GCs, the GCL contains deep SA cells (dSA). The axons 

of dSA project to different layers of the OB, while Golgi studies show that GCs are axonless. 

Hence, the output of GCs exclusively relies on dendrodendritic synapses. Other than these two 
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major neurons, the GCL also accommodates Golgi cells, Cajal cells, and Blane cells (Schneider 

and Macrides, 1978; Shepherd et al., 2004; Eyre et al., 2008). One very important bulbar 

information processing function known as contrast enhancement occurs in the synaptic 

arrangement of MC-GC-MC microcircuits (Yokoi et al., 1995; Mori et al., 1999); however, the 

first level of contrast enhancement occurs in the glomerulus microcircuit. The synaptic 

arrangements of the OSN-ET-sSA is thought to mediate pattern normalization and initial contrast 

enhancement in the OB (Aungst et al., 2003; Wachowiak and Shipley, 2006).  

 

1.2.1.7 The subependymal cell layer 

 The SEL is the deepest cell layer of the OB and contains considerably lower cell numbers 

than the other cell layers. This layer is a harbour for ependymal cells, glial cells, and the dendrites 

of the deepest GCs (Price and Powell, 1970a). Cells in this layer have the characteristics of 

progenitor cells and, hence, are a source of adult-born GCs and PG cells in the OB (Lois and 

Alvarez-Buylla, 1993; Luskin, 1993).  

 

1.2.2 The piriform cortex 

 The word “piriform” is derived from the Latin word “pirium,” meaning “pear-shaped,” and 

it is for this appearance that the PC is named. The pear-shaped cortex is located on the ventrolateral 

aspect of the brain next to lateral olfactory tract (LOT) (Loscher and Ebert, 1996). The LOT is a 

conglomerate of myelinated M/T axon bundles of the M/T cells that convey odor information from 

the OB to the PC (Haberly and Price, 1977; Haberly, 1985). It is suggested that the LOT consists 

solely of two types of axon bundles: a thinner bundle and a thicker bundle (Price and Sprich, 1975; 

Bartolomei and Greer, 1998). The thinner bundle originates from tufted cells and projects to 
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multiple rostral olfactory cortices; the thicker bundle originates from mitral cells and projects 

throughout the entire PC (Nagayama et al., 2010; Igarashi et al., 2012). In stark contrast to other 

sensory cortices, the PC is only two synapses away from the external world and thereby receives 

odor information from the OB without any thalamic interventions. Being a phylogenetically 

ancient paleocortex and the largest recipient of bulbar projections, the PC has long been considered 

the “primary” olfactory cortex (Haberly and Bower, 1989; Wilson et al., 2006; Isaacson, 2010; 

Wilson and Sullivan, 2011). Unlike other primary cortical areas, which are typically six-layered, 

the cytoarchiteture of the PC reveals a trilaminar organization similar to that of the hippocampus. 

Morphological studies show that the PC is reciprocally and extensively connected to other higher 

order cortical structures, including the endo-piriform nucleus, anterior olfactory nucleus, olfactory 

tubercle, prefrontal cortex, entorhinal cortex, perirhinal cortex, and cortical amygdala (de Olmos 

et al., 1978; Luskin and Price, 1983b; Carmichael et al., 1994; Haberly, 1998; Johnson et al., 2000; 

Haberly, 2001; Chen et al., 2003; Cleland et al., 2003; Wilson et al., 2003; Neville  and Haberly, 

2004; Lundstrom et al., 2011; Hagiwara et al., 2012). Interestingly, the PC not only receives 

information from the OB and relays it to higher-order cortices, but it also influences bulbar output 

by modulating granule cell activity through pyramidal cell feedback (de Olmos et al., 1978; 

Haberly and Price, 1978b; Kay and Freeman, 1998; Boyd et al., 2012; Boyd et al., 2015). Such a 

distributed bidirectional link of the PC between the periphery and higher cortical networks that 

regulate cognition, emotion, memory and behavior highlights the importance of the PC in 

regulating many physiological and emotionally arousing events in mammals.  

Early studies have described the PC as a non-homogeneous structure. Due to anatomical, 

physiological, and functional differences, it is commonly divided into two segments named for 

their anatomical relationship: the aPC and posterior piriform cortex (pPC) (Brodmann, 1909; 
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Cajal, 1911a; Rose, 1912; de Olmos et al., 1978; Haberly and Price, 1978b; Luskin and Price, 

1983b; Litaudon et al., 1997; Chabaud et al., 2000; Mouly et al., 2001; Gottfried et al., 2002; 

Litaudon et al., 2003; Martin et al., 2004a; Zelano et al., 2005; Calu et al., 2007; Roesch et al., 

2007).  As opposed to the pPC, the aPC receives relatively more afferent inputs from the OB and 

fewer associational inputs. This suggests that the aPC decodes odor identity and the pPC is for 

content addressable memory e.g., odor object identification (Barkai et al., 1994; Johnson et al., 

2000; Haberly, 2001; Litaudon et al., 2003; Gottfried et al., 2006; Kadohisa and Wilson, 2006; 

Rennaker et al., 2007; Barnes et al., 2008; Gottfried, 2010; Nagayama et al., 2010; Chapuis and 

Wilson, 2012; Hagiwara et al., 2012; Luna and Morozov, 2012). 

 In recent years, the PC has received significant attention as an ideal model system for 

studying how the brain recognizes, categorizes, and discriminates odor objects (Suzuki and 

Bekkers, 2006; Barnes et al., 2008; Poo and Isaacson, 2009; Stettler and Axel, 2009; Isaacson, 

2010; Stokes and Isaacson, 2010; Suzuki and Bekkers, 2010a; Wilson, 2010; Wilson and 

Rennaker, 2010; Wilson and Sullivan, 2011; Wilson et al., 2014). This is because of its (1) 

comparatively simple anatomy; (2) high-level synthetic role in odor perception; (3) lack of 

thalamic relays from the periphery; (4) anatomical location; (5) laminar organization; (6) afferent, 

efferent, and auto-associative connectivities; and (7) accessibility for physiological and behavioral 

studies (Shepherd, 1970; Kauer, 1987, 1991). It is the largest and best studied sub-region of the 

olfactory cortex. A detailed anatomical description of the PC is provided by Neville and Haberly 

(Neville  and Haberly, 2004). In brief: as mentioned earlier, the PC is a three-layered structure. 

From superficial to deep, these layers have been named layer I, II, and III; however,  the first two 

layers – layers I and II – have been further subdivided into layers Ia, Ib, IIa, and IIb. Layer Ia 

contains the axonal fibres of M/T cells, horizontal interneurons (HZs), and neurogliaform cells 
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(NG). The neurons in this layer are thought to mediate dendritic feedforward inhibition to the 

apical dendrites of semilunar and superficial pyramidal cells in layers IIa and IIb, respectively. In 

contrast to this feedforward inhibition, the interneurons deep to this layer – multipolar cells, 

Chandelier cells, bitufted cells, fast-spiking interneurons, regular-spiking interneurons, and deep 

neurogliaform cells– provide feedback inhibition (Neville  and Haberly, 2004; Luna and Schoppa, 

2008; Stokes and Isaacson, 2010; Suzuki and Bekkers, 2010a, b, 2012; Bekkers and Suzuki, 2013). 

Interestingly, the pyramidal cell-like semilunar cells of layer IIa lack basal dendrites and do not 

project back to the OB. Their main inputs are from M/T cells and, to a lesser extent, association 

fibres (Suzuki and Bekkers, 2006, 2011; Bekkers and Suzuki, 2013). Layer III contains deep 

pyramidal cell bodies and at least five types of interneurons (Young and Sun, 2009; Suzuki and 

Bekkers, 2010a, b; Bekkers and Suzuki, 2013). In all three layers, interneurons are uniformly 

distributed, and exert GABAergic inhibition – either feedforward or feedback – on principal PC 

neurons (Price, 1973; Haberly, 1983; Kapur et al., 1997; Ekstrand et al., 2001; Suzuki and Bekkers, 

2007). M/T cells project to the PC in such a way that they create a diffuse map of the dissolved 

odorant (Wachowiak and Cohen, 2001) and, hence, odor representation in the PC is highly 

dispersed without any spatial preference (Illig and Haberly, 2003; Litaudon et al., 2003; Rennaker 

et al., 2007; Yoshida and Mori, 2007; Poo and Isaacson, 2009; Stettler and Axel, 2009; Ghosh et 

al., 2011; Miyamichi et al., 2011; Sosulski et al., 2011). 

 Two important characteristics of the PC that enable it to act as a context addressable 

memory device are (1) dense associative connectivity (Johnson et al., 2000; Haberly, 2001; 

Chapuis and Wilson, 2012) and (2) sparse coding resulting from global inhibition (Poo and 

Isaacson, 2009; Isaacson and Scanziani, 2011). Furthermore, the highly plastic nature of auto-

associative fibers allow for the complete reconstruction of a piriform cortical odor engram in the 
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face of degraded input (Kanter and Haberly, 1990; Wilson, 2009). These features ensure the 

perceptual stability of an odor object in an ever-changing olfactory environment. It has been 

estimated that each pyramidal cell receives roughly 2000 recurrent inputs from other pyramidal 

cells (auto-associative connections) compared to 200 afferent inputs (Davison and Ehlers, 2011). 

It has also been shown that the pPC receives more associational connections than the aPC 

(Hagiwara et al., 2012). Sparse coding enhances overall computational power and is an energy 

efficient way to represent sensory stimuli in the cortex (Barlow, 1972; Attwell and Laughlin, 2001; 

Laughlin and Sejnowski, 2003; Lennie, 2003; Olshausen and Field, 2004; Shoham et al., 2006; 

Wolfe et al., 2010; Barth and Poulet, 2012). The sparse coding properties of the PC have been 

confirmed by many different techniques such as 2-deoxyglucose (Cattarelli et al., 1988), single-

unit electrode arrays (Rennaker et al., 2007), voltage-dependent dye imaging (Litaudon et al., 

1997), immediate early gene mapping  (Illig and Haberly, 2003), optogenetics,(Choi et al., 2011) 

and optical imaging (Stettler and Axel, 2009; Mitsui et al., 2011). Quantitatively, as few as 300 

cells (~0.5% of a piriform cortical odor engram) have been reported to be sufficient to induce 

learned olfactory behavior (Choi et al., 2011). Such sparse coding allows the PC to store numerous 

possible odor objects with a distinct pyramidal network for each individual object. The ultimate 

result of sparse coding is an extremely sensitive ability to discriminate odors –even very similar 

odors.  

 

1.2.3 Centrifugal inputs to the OB and PC 

A contributing factor to the remarkable plasticity of the olfactory system is its vulnerability 

to centrifugal modulation at its early stages of processing, such as at the OB and the PC. Both the 

OB and PC are innervated by major neuromodulators in the brain, serotonin, acetylcholine, and 
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the catecholamines: dopamine and noradrenaline. These cortical inputs originate from the 

brainstem, the midbrain and the basal forebrain – regions of the brain known to be involved in 

mood, attention, motivation, arousal, and learning. Once activated, these neuromodulators reach 

their neuronal targets via their widespread axonal projections and alter the efficacy of synaptic 

communication. Released neuromodulators act on their respective receptors situated on both 

excitatory and inhibitory neurons to initiate a series of intracellular cascades that contribute to 

synaptic change and subsequent learning. Slice physiology, in vivo recording, and behavioral 

experiments have advanced our understanding of how these neuromodulators mechanistically 

promote experience-dependent plasticity in multiple brain regions and govern how we adapt to our 

environment (Berridge and Waterhouse, 2003; Hasselmo, 2006; Robbins and Roberts, 2007; Sara, 

2009; Fletcher and Chen, 2010; Meneses and Liy-Salmeron, 2012; Puig et al., 2014a, b; Mather et 

al., 2015). Similarly, neuromodulators also play a major role in odor learning from infancy to 

adulthood. A significant amount of work has shown a critical role for neuromodulators in inducing 

olfactory plasticity in both the OB and the PC to support odor-guided behavior (Fletcher and Chen, 

2010).  The following sections will individually address the role of each neuromodulator in 

olfactory learning.  

 

1.2.3.1 Norepinephrine  

NE is produced by dopamine β-hydroxylase and can be released either as a hormone into 

the blood or a neuromodulator into the brain. Although some of the brain’s NE is produced by 

cells in the lateral tegmental field, the majority is produced by the LC (Jones and Moore, 1977; 

Smythies, 2005). Medium-sized NE-producing LC neurons are located within the dorsal wall of 

the rostral pons in the lateral floor of the fourth ventricle (Jones and Moore, 1977). Historically, 
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the LC-NE system was the first neuromodulatory system to be delineated both anatomically and 

neurochemically (Dahlstroem and Fuxe, 1964; Maeda, 2000). The LC is comprised of 1,500 

neurons in the rat and their axonal projections spread to all areas of the brain except to the basal 

ganglia (Jones et al., 1977; Foote and Morrison, 1987). Its ubiquity in the brain sparked much of 

the early interest and speculation about its role in cognitive processing (Amaral and Sinnamon, 

1977; van Dongen, 1981). As a result of this interest, a large body of information has been garnered 

within the last fifty years regarding the LC-NE system’s role in different brain functions – arousal, 

attention, emotional state, motivation, learning and memory – in different brain regions – OB, PC, 

hippocampus, amygdala, prefrontal cortex – through manipulating synaptic efficacy (Harley, 

1987; Wilson and Sullivan, 1994; Cahill and McGaugh, 1996; Berridge and Waterhouse, 2003; 

Harley, 2007; Robbins and Roberts, 2007; Sara, 2009).  

LC efferent projections heterogeneously innervate all layers of both the OB (Fallon and 

Moore, 1978; Macrides et al., 1981; Shipley et al., 1985) and the PC (Fallon and Moore, 1978; 

Loughlin et al., 1982; Datiche and Cattarelli, 1996; Shipley and Ennis, 1996). Similar to other 

sensory modalities, the LC-NE system has been shown to influence different types of odor learning 

such as adult odor discrimination learning, early odor preference learning, habituation, associative 

learning, and non-associative learning (Doucette et al., 2007; Guerin et al., 2008; Mandairon et al., 

2008b; Escanilla et al., 2010; Yuan and Harley, 2014; Yuan et al., 2014).  

As previously discussed, numerous studies have suggested that NE-dependent modulation 

alters synaptic communication between neurons, gene transcription within individual cells, and 

many other processes that ultimately impact overall neural function and, consequently, behavior. 

Activity-dependent NE acts on the adrenoreceptors at their target sites to modulate signal 

processing of both principal neurons and interneurons. As both α- and β - adrenoreceptors are 
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present in the OB, NE-dependent plasticity likely occurs via these adrenoreceptors sub-types. 

More specifically, α1, α2, β1, and β2 adrenoreceptors exist in the OB. Both α1 and α2 adrenoreceptors 

have been found to be localized to MCs and GCs (McCune et al., 1993; Pieribone et al., 1994; Day 

et al., 1997; Winzer-Serhan et al., 1997a, b; Winzer-Serhan and Leslie, 1999; Hayar et al., 2001; 

Nai et al., 2010). Radiographic techniques have identified β1-adrenoreceptors in the granule cell, 

internal plexiform, and glomerular layers and β2-adrenoreceptors in the external plexiform layer 

(Woo and Leon, 1995). A later study by Yuan and colleagues demonstrated a β1-adrenoceptor 

distribution in MCs, PGs, and – to a lesser extent – GCs (Yuan et al., 2003a). The details 

surrounding the role of the LC-NE system in mediating odor learning together with its cellular 

mechanisms will be discussed in later sections. 

 

1.2.3.2 Serotonin (5-HT) 

 Serotonin, also known as 5-hydroxytryptamine or 5-HT, is a monoamine neurotransmitter 

that is produced near the midline of the brainstem in cell groups called the raphe nuclei. Like other 

neuromodulators, it is produced by a small number of neurons whose efferent fibers project 

throughout the brain. Also like other neuromodulators, serotonin can act as either a neuro-hormone 

or a neuromodulator. It has been widely studied in the peripheral system due to its importance in 

functions such as intestinal motility (Foxx-Orenstein et al., 1996), immune and inflammatory 

responses (Ahern, 2011), and nociception (Cervantes-Duran et al., 2013). In the brain, serotonin, 

with the exception of at the 5-HT3 subtype, acts on GPCR to enhance or inhibit neurotransmitter 

release from target synapses. Through such synaptic changes, the serotonergic system has the 

capacity to modulate many brain functions, including: sensations related to environmental stimuli; 

nociception (Viguier et al., 2013); learning and memory (King et al., 2008; Meneses and Liy-
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Salmeron, 2012); sleep (Monti and Jantos, 2008); mood (Young and Leyton, 2002; Meneses and 

Liy-Salmeron, 2012); stress and anxiety (Lowry et al., 2005); circadian rhythms (Morin, 1999); 

hormone secretion (Valverde et al., 2000); and feeding behavior (Magalhaes et al., 2010). 

Serotonin exerts its diverse action in different cell types via seven families of 5-HT receptors – 5-

HT1 through 5-HT7 – including their distinct subtypes (Kitson, 2007). Serotonin also plays an 

important role in olfactory learning, as has been shown using paradigms such as early odor 

preference learning, adult odor learning, associative conditioning, and short term memory 

(McLean et al., 1993; Moriizumi et al., 1994; McLean et al., 1996; Langdon et al., 1997; Price et 

al., 1998; Marchetti et al., 2000; Yuan et al., 2003b). 

 Whereas the OB receives its serotonergic innervation from both the dorsal and median 

raphe nuclei (de Olmos et al., 1978; Macrides et al., 1981; Shipley and Adamek, 1984; McLean 

and Shipley, 1987a, c), the PC receives its serotonergic innervation from the dorsal raphe nuclei 

only (Azmitia and Segal, 1978; De Olmos and Heimer, 1980; Vertes, 1991; Datiche et al., 1995). 

Raphe projection patterns to the different layers of both of these structures (i.e., the OB and PC) 

are not homogeneous.  

 All five layers of the OB receive raphe fiber innervations, but these fibers project most 

densely to the GL; here, their primary target is PG cells (Halasz et al., 1978; McLean and Shipley, 

1987b). The GL is also the primary recipient of thicker 5-HT fibers; thinner fibers primarily 

innervate the deeper layers of the OB (McLean and Shipley, 1987b; Gomez et al., 2005). 

Heterogeneous projections of raphe fibers can also be seen within the GL. For example, dorsal 

glomeruli are more heavily innervated than lateral glomeruli (Vertes, 1991; Shipley and Ennis, 

1996; Gomez et al., 2005). In the PC, innervations were observed to be densest in both the rostral 



29 
 

part and in deeper layers compared with the caudal part and superficial layers, respectively 

(Datiche et al., 1995).  

 Although three 5-HT receptors subtypes (5-HT1A, 5-HT2A, and 5-HT2C) have been 

identified in the OB, only two (5-HT1A, 5-HT2A) are prominent. These two subtypes are present in 

the EPL, MCL, and– to a lesser extent – GCL (Pompeiano et al., 1992; McLean et al., 1995). As 

in the OB, three 5-HT receptors subtypes (5-HT1A, 5-HT2A, and 5-HT2C) have been identified in 

the PC; all three of these subtypes have been observed in layers I and II (Pompeiano et al., 1992, 

1994).  

Although the OB and PC receive heavier serotonergic innervations than they do NE and 

dopaminergic (DA) fibers, the role of serotonergic modulation in olfactory learning has historically 

received relatively less attention (Shipley and Ennis, 1996). Early studies by McLean and 

colleagues found that early odor preference learning could be prevented by either depleting 5-HT 

input to the bulb or by blocking the 5-HT2receptor via subcutaneous injection of an antagonist 

drug for this receptor (McLean et al., 1993; McLean et al., 1996). Later studies have shown, 

however, that this preference learning can be rescued by increasing the dose of isoproterenol 

(Langdon et al., 1997). Additionally, it has been also shown that, on its own, a 5-HT2A/2Creceptor 

agonist is not sufficient to induce this learning (Price et al., 1998). Taken together, these results 

suggest that the 5-HT2A/2C receptors plays a supporting role to the β-adrenoreceptor in mediating 

early odor preference learning.  

 Multiple studies have demonstrated a role for 5-HT in adult odor learning through the 

global activation of its receptors. For example, an intraperitoneal injection of a 5HT4 antagonist 

impaired acquisition of an olfactory associative discrimination task in rats (Marchetti et al., 2000); 

co-injection of a 5HT4 agonist with an antagonist rescued the impairment on this associative 
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discrimination task (Marchetti et al., 2000); and 5HT4activation has been shown to enhance 

olfactory short-term memory in a social recognition task (Letty et al., 1997). Since intraperitoneal 

injections of 5-HT receptor agonists/antagonists have the capacity to cross the blood brain barrier 

and thus affect many brain areas, more specific investigations of 5-HT in the OB and PC are 

required before its role in olfactory learning can be clearly established. One such investigation 

does exist, however: depleting bulbar serotonergic fibers has been shown to cause glomerular 

atrophy and odor discrimination learning impairments (Moriizumi et al., 1994). 

 

1.2.3.3 Acetylcholine 

 The central nervous system is heavily innervated by two cholinergic systems: one 

originating from the basal forebrain and the other from the upper brain stem. Through its 

widespread projections, the brain’s cholinergic systems play a major role in several critical brain 

functions, including attention, learning and memory (Bear and Singer, 1986; Blokland, 1995; 

Weinberger and Bakin, 1998; Hasselmo, 1999; Himmelheber et al., 2000), cerebral blood flow 

(Biesold et al., 1989; Barbelivien et al., 1999; Sato et al., 2004), cortical activity (Detari et al., 

1999; Lucas-Meunier et al., 2003), sleep wake cycles (Jones, 2005; Lee et al., 2005), cognitive 

function, and cortical plasticity (Arendt and Bigl, 1986; Bigl and Schliebs, 1998; McKinney and 

Jacksonville, 2005).  Similar to its role in other sensory modalities, cholinergic modulation has 

also been implicated in several types of olfactory learning (Linster and Cleland, 2002).  

Both the OB and PC receive cholinergic input from the horizontal limb of the diagonal 

band of Broca (HDB) (Shute and Lewis, 1967; Wenk et al., 1980; Macrides et al., 1981; Luskin 

and Price, 1982; Carson, 1984; Woolf et al., 1984; Zaborszky et al., 1986; Lysakowski et al., 1989; 

Senut et al., 1989; Wright and Fitzgerald, 2001); however, a small amount of the OB’s cholinergic 
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input originates from the vertical limb of diagonal band of Broca (Carson, 1984; Shipley and 

Adamek, 1984). The distribution of HDB fibers are heterogeneous in the bulb with their heaviest 

innervations found in the GL and IPL (Ichikawa and Hirata, 1986; Kasa et al., 1995; Gomez et al., 

2005). In those layers, HDB fibers primarily synapse with GC and PG cells (Nickell and Shipley, 

1988; Le Jeune and Jourdan, 1993; Kasa et al., 1995). In the PC, layers II and III receive the densest 

HDB projections (Luskin and Price, 1982; Woolf et al., 1984; Lysakowski et al., 1989). Multiple 

receptor subtypes of acetylcholine (ACh), such as muscarinic (M1, M2, M3, and M4) and nicotinic 

ACh receptors, were identified in different layers (EPL, IPL, and GCL of the OB; layer I and II of 

the PC) and different cell types (PG and tufted cells) of the PC and OB (Hunt and Schmidt, 1978; 

Rotter et al., 1979; Spencer et al., 1986; Buckley et al., 1988; Zilles et al., 1989; Fonseca et al., 

1991; Levey et al., 1991; Sahin et al., 1992; Hill et al., 1993; Seguela et al., 1993).  

 Studies involving the lesioning or pharmacological blockade of cholinergic modulation 

highlight the importance of the cholinergic system in multiple olfactory learning paradigms. For 

example, some olfactory learning paradigms that have been reported to be impaired due to 

cholinergic manipulation include habituation, investigation, social recognition (Soffie and 

Lamberty, 1988; Hunter and Murray, 1989; Perio et al., 1989; Paolini and McKenzie, 1993; 

Winslow and Camacho, 1995; Paolini and McKenzie, 1996; Miranda et al., 2009), associative 

conditioning (Roman et al., 1993; Levy et al., 1997a; Saar et al., 2001; Kroon and Carobrez, 2009), 

delayed match-to-sample (Ravel et al., 1992; Ravel et al., 1994), rule learning (De Rosa and 

Hasselmo, 2000; De Rosa et al., 2001), and perceptual learning (Fletcher and Wilson, 2002; Linster 

et al., 2002; Chaudhury et al., 2009). Computational studies of the OB and PC also support the 

view that circuit-level cholinergic modulation is a necessary component of olfactory information 

processing (Hasselmo, 1993; Hasselmo and Barkai, 1995; Linster and Gervais, 1996; Linster and 
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Hasselmo, 1997; Linster and Cleland, 2002; Mandairon et al., 2006). One interesting function of 

the cholinergic system in the OB is the modulation of olfactory information transformation 

between hemispheres via the anterior commissure (Nickell and Shipley, 1993).  

 

1.2.3.4 Dopamine 

 The dopaminergic system is considered one of the key modulators in controlling 

movement, emotion, reward-seeking behavior, attention, motivation, and cognition (Nieoullon, 

2002; Nieoullon and Coquerel, 2003; Bjorklund and Dunnett, 2007; Joshua et al., 2009; Stuber et 

al., 2012; Nieh et al., 2013; Schultz, 2013). Despite the extensive knowledge of the CNS 

dopaminergic system, little attention has been paid to the role of dopamine (DA) in the OB and 

PC. The OB is known to contain a large number of intrinsic dopaminergic PG cells, but extrinsic 

DA innervations to the OB were thought to be absent (Halasz et al., 1977; Wilson and Sullivan, 

1994; Shipley and Ennis, 1996). However, a recent tracing study has shown dopaminergic 

projections from the substantia nigra pars compacta (SNc) to the MCL, EPL, and GCL, but not the 

GL (Hoglinger et al., 2015). In the PC, a clear gradient of dopamine fiber innervations along the 

rostro-caudal axis has been reported, albeit the origin of these fibers is unknown (Datiche and 

Cattarelli, 1996; Shipley and Ennis, 1996). However, Datiche and Cattarelli (1996) found ventral 

tegmental area (VTA) projections to the PC from three different nuclei, including parabrachial 

pigmented, paranigral, and inter-fascicular. The D1 receptor has been shown to be involved during 

the consolidation phase of early odor preference learning (Weldon et al., 1991). Interestingly, 

direct bulbar manipulation of dopamine suggests that D2 but not D1 receptors significantly affect 

adult rats’ odor discrimination performance (Wei et al., 2006; Escanilla et al., 2009). Meanwhile, 

slice physiology studies have revealed a mixed influence of DA on synaptic transmission in the 
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PC (Collins et al., 1985). Synaptic transmission between OSN and OB neurons has also been 

reported to be modulated via presynaptic D2 receptors (Berkowicz and Trombley, 2000).  

 

1.3 Cortical Feedback to the Olfactory Bulb 

 The OB has been shown to be heavily innervated by centrifugal projections arising 

throughout the olfactory cortex (Price and Powell, 1970b; Davis et al., 1978; de Olmos et al., 1978; 

Haberly and Price, 1978a; Luskin and Price, 1983a; Reyher et al., 1988; De Carlos et al., 1989; 

Matsutani, 2010). Orthograde and retrograde labelling studies have traced heavier feedback 

projections from the olfactory cortex to the OB, as opposed to less heavier projections vice versa 

(Shipley and Adamek, 1984; Shipley and Ennis, 1996; Neville and Haberly, 2004). These 

projections originate from the deeper layers of PC: layer IIb and layer III, and terminate in GCs of 

the GCL of the OB (Nicoll, 1971; Matsutani, 2010). The OB also receives cortical feedback from 

the lateral entorhinal cortex and some amygdaloid cells (Shipley and Adamek, 1984; Shipley and 

Ennis, 1996).  

 Centrifugal or feedback projections from the higher cortical areas can substantially alter 

sensory information even at the first stage of processing (Kay and Laurent, 1999). The functional 

significance of such feedback projections in bulbar output received recent attention (Boyd et al., 

2012; Markopoulos et al., 2012; Rothermel and Wachowiak, 2014). Selective activation of anterior 

olfactory nucleus (AON) axons via optogenetics elicits direct spikes in MCs (Markopoulos et al., 

2012). Similar in vivo optogenetics’ manipulations found that both spontaneous and odor evoked 

activity of MCs are suppressed by AON feedback projections (Markopoulos et al., 2012). 

Feedback projections from PC have also been shown to modulate diverse populations of bulbar 

interneurons (Boyd et al., 2012). However, the net effect of piriform cortical feedback on bulbar 
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output has been shown to be the augmentation of odor-evoked inhibition (Boyd et al., 2012). 

Furthermore, genetically-encoded calcium reporters (GCaMPs) were also used to study how 

neuromodulators, such as the cholinergic system, indirectly influences M/T cells output via AON 

(Rothermel and Wachowiak, 2014). Electrical stimulation of horizontal limb of the HDB 

significantly prolongs GCaMP3 fluorescence in AON axon terminals compared to control 

(Rothermel and Wachowiak, 2014). Blocking AON input by microinjecting muscimol eliminates 

HDB stimulation-evoked activity in the OB (Rothermel and Wachowiak, 2014), which suggest 

that basal forebrain nuclei, in addition to their well-known direct influence on OB (Macrides et al., 

1981; Shipley and Adamek, 1984; Rothermel et al., 2013), can also modulate bulbar output via 

increased AON inputs to the OB. Together these results indicate the richness of cortical feedback 

in modulating odor-evoked activity in the first relay station of the olfactory system.  

 

1.4 Learning-Induced Olfactory Plasticity 

 Different learning paradigms in different species have demonstrated long term plastic 

changes in the two main structures of the olfactory system: the OB and PC. Global, molecular, and 

structural changes have been observed in these structures following odor experience/conditioning. 

For example, associative learning in mice has been shown to alter neurotransmitter release patterns 

in the OB (Brennan et al., 1998). Also, associative conditioning has been shown to change the 

response patterns of M/T and glomerular cells in the OB (Coopersmith and Leon, 1984; Wilson 

and Leon, 1988a; Johnson et al., 1995; Buonviso et al., 1998; Kay and Laurent, 1999; Buonviso 

and Chaput, 2000; Yuan et al., 2002; Fletcher and Wilson, 2003; Salcedo et al., 2005; Woo et al., 

2007; Doucette and Restrepo, 2008; Fletcher et al., 2009). Studies have shown learning-induced 

plastic changes in the inhibitory GC network. For example, both associative conditioning and 
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olfactory enrichment alter immediate early gene expression patterns in GCs (Woo et al., 1996; 

Funk and Amir, 2000; Montag-Sallaz and Buonviso, 2002; Mandairon et al., 2008a). Additionally, 

olfactory enrichment has been shown to promote neurogenesis in the OB (Rochefort et al., 2002)  

or reduce GC death (Woo et al., 2006), which ultimately affects olfactory learning and memory. 

Some of the physiological changes that result from learning include enhanced synaptic 

transmission between principal neurons of the OB and PC (Roman et al., 1987; Litaudon et al., 

1997; Saar et al., 2002; Cohen et al., 2008), reduced after-hyperpolarization (Saar et al., 2002), 

increased inhibition of pyramidal cells in the PC (Brosh and Barkai, 2009), and structural 

modification of pyramidal cell dendritic spines (Knafo et al., 2001). Olfactory learning has also 

been shown to change the oscillation patterns of the OB, indicating global modification of the 

plasticity of the excitatory versus inhibitory network in the bulb (Freeman and Schneider, 1982; 

Ravel et al., 2003; Martin et al., 2004b; Beshel et al., 2007). Multi-site recording from the PC using 

voltage-sensitive dye has demonstrated significant enhancement in the activity of PC cells 

following conditioning (Litaudon et al., 1997). All of the research presented in this section supports 

the concept that learning-induced synaptic modification occurs both in the bulb and olfactory 

cortex.  

 

1.5 Animal Models of Olfactory Learning 

 Research using both vertebrates and invertebrates has advanced our understanding of how 

sensory phenomena – like olfaction – occur across species. A wide variety of species have been 

employed in olfactory research, including, but not limited to: moths (Vogt and Riddiford, 1981), 

lobsters (Wachowiak and Ache, 1994), honey bees (Menzel, 2001), mice (Brennan and Keverne, 

1997; Doucette et al., 2007), drosophila (McKenna et al., 1994; Vosshall et al., 2000), trout (Rhein 
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and Cagan, 1980), humans (Ben-Arie et al., 1994; Gottfried et al., 2006; Gottfried, 2010), rats 

(McLean and Shipley, 1987c; Lethbridge et al., 2012; Yuan et al., 2014; Grimes et al., 2015), 

turtles (Berkowicz and Trombley, 2000), rabbits (Charra et al., 2013), sheep (Burger et al., 2011), 

and zebrafish (Braubach et al., 2009). In particular, olfactory studies in rodents provide us with an 

ideal model system with which we can use to investigate many of the complex sensory phenomena 

that are necessary for life, namely: pattern separation, pattern completion, infant-mother 

attachment learning, and associative learning (Wilson and Sullivan, 1994; Sullivan et al., 2000a; 

Wilson and Stevenson, 2003a; Mandairon et al., 2006; Wilson et al., 2006; Wilson, 2009; Yuan 

and Harley, 2014). In the following sections, I will focus on two behavioral models that were used 

in respective projects. 

 

1.5.1. Early Odor Preference Learning and the Critical Period 

 A sensitive period for odor learning is critical for mammalian survival: it is evolution’s 

safeguard to ensuring that the young approach their caregiver (Leon, 1975; Galef and Kaner, 1980; 

Rosenblatt, 1983). Olfactory-based mother-infant attachment learning is not only necessary for an 

animal’s survival, but it also affects their reproductive behavior, littermate contact, maternal 

behavior as an adult, and conspecific identification abilities (Leon and Moltz, 1971; Pager, 1974; 

Alberts, 1978; Galef and Kaner, 1980; Alberts and May, 1984; Coopersmith and Leon, 1984; 

Fillion and Blass, 1986; Woo and Leon, 1987; Moore et al., 1996b; Fleming et al., 1999; Shah et 

al., 2002). In addition, it has been suggested that childhood experience during this attachment 

period has a significant influence on the development of adult character traits and mental health 

(Melges and Bowlby, 1969; Glaser, 2000; Teicher et al., 2003).  
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Rat pups, during their first postnatal week, and even human infants, during their first day 

after birth, have shown a tendency to form associations with maternal odor through associative 

learning (Moriceau et al., 2006; Romantshik et al., 2007). Smotherman has shown that aversive 

odor conditioning can be induced in the rat fetus (Smotherman, 1982). Similarly, other researchers 

have shown that human fetuses learn the odor of amniotic fluid, as three-day-old humans will 

orient themselves toward their mother’s amniotic fluid versus that of another mother (Hepper, 

1987; Marlier et al., 1998; Schaal and Marlier, 1998; Schaal et al., 1998; Robinson and Mendez-

Gallardo, 2010). Similarities in the olfactory components of amniotic fluid and colostrum have 

been found to initiate the neonate’s first approaches to, and meals from, the nipple (Coureaud et 

al., 2002). Furthermore, it has been shown that the mother’s scent has a soothing effect on the 

crying infant (Sullivan and Toubas, 1998). During this critical period, rat pups are limited to 

olfactory, gustatory, and somatosensory system functioning. Although many of the rat brain 

structures related to learning and memory formation are very immature and non-functional during 

this critical period (Thoman et al., 1968; Campbell and Coulter, 1976; Cowan et al., 1981; Rakic 

and Goldman-Rakic, 1982; Harris and Teyler, 1984; Wilson, 1984), neonates are still capable of 

learning (Caldwell and Werboff, 1962; Thoman et al., 1968; Johanson and Hall, 1982; Pedersen 

et al., 1982; Rudy and Cheatle, 1983; Sullivan et al., 1986b; Sullivan et al., 1986a). Regardless of 

the quality of the maternal stimuli, pups learn to approach the dam for nourishment, protection, 

and warmth (Sullivan et al., 2000a). That is, pups acquire a conditioned response (CR) to a novel 

odor (a conditioned stimulus, CS) that is paired with unconditioned stimuli (UCS). Such 

conditioning not only induces a variety of conditioned responses to the CS odor (Johanson and 

Hall, 1982; Sullivan and Hall, 1988; Wilson and Sullivan, 1994), but it can modify other adaptive 
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behaviors in the pup such as huddling, independent feeding (Sullivan et al., 1986b; Sullivan and 

Leon, 1986), and nipple attachment (Pedersen et al., 1982).  

A variety of UCS that mimic maternal care have been employed to generate many types of 

CR in the neonate. Some examples of the UCS that have been used are: nesting environment (Galef 

and Kaner, 1980; Alberts and May, 1984), milk presentation (Johanson and Hall, 1979; Johanson 

and Teicher, 1980; Johanson and Hall, 1982), stroking/tactile stimulation (Pedersen et al., 1982; 

Sullivan and Leon, 1986; Sullivan and Hall, 1988; Weldon et al., 1991; Moore and Power, 1992; 

McLean et al., 1993), tail pinch (Sullivan et al., 1986b), the odor of maternal saliva (Sullivan et 

al., 1986b), mild foot shock (Camp and Rudy, 1988; Wilson and Sullivan, 1990), and intracranial 

brain stimulation (Wilson and Sullivan, 1990).  

A noteworthy fact about the olfactory critical period is that it lacks some types of learning, 

including passive avoidance, fear conditioning, and inhibitory conditioning (Collier and Mast, 

1979; Haroutunian and Campbell, 1979; Blozovski and Cudennec, 1980; Emerich et al., 1985; 

Sullivan et al., 1986a; Camp and Rudy, 1988; Myslivecek, 1997; Sullivan et al., 2000a). Moreover, 

this sensitive period of learning is unique in that even an aversive stimuli (e.g., a mild foot shock 

or tail pinch) can induce odor preference learning (Roth and Sullivan, 2003). This is adaptive as, 

during this sensitive period, pups are not only receiving licking, light grooming, and other 

appetitive stimuli from the mother, but are being stepped on, bitten, and roughly groomed by her 

as well (Roth and Sullivan, 2005; de Medeiros et al., 2009). It has been shown that a pup’s inability 

to discriminate between aversive and appetitive stimuli disappears during the second postnatal 

week – that is, the critical period ends during the second postnatal week (Camp and Rudy, 1988; 

Sullivan et al., 2000a; Moriceau et al., 2006). For example, pups trained in pairing a CS odor with 

an UCS foot shock during the critical period will develop a preference for the CS odor; however, 
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pups trained in pairing this same CS odor with the same UCS foot shock after the critical period 

will develop an aversion to the CS odor.  

The early odor preference learning model was first demonstrated by Leon and colleagues 

(Leon et al., 1977; Alberts and May, 1984; Coopersmith and Leon, 1984). Here, exposing the 

neonatal rat to peppermint odor for 3-4 hours each day from PND 1-19 induced a robust behavioral 

preference for this odor when pups were tested on PND 20. Around the same time, Caza and Spear 

(Caza and Spear, 1984) proposed that a mere 3 minute odor exposure per day was just as effective 

as a daily 3-4 hour exposure in inducing an odor preference in similarly aged rats. This trend was 

also observed in one-day-old human infants (Balogh and Porter, 1986). Sullivan and colleagues 

showed a similar type of odor preference learning in humans using classical conditioning (Sullivan 

et al., 1991b). In their experiment, one-day-old infants were found to preferentially orient 

themselves towards a previously novel odor, citrus, when subjected to classical conditioning by 

simultaneously pairing the odor with stroking. This same research group also showed that, in 

neonatal rats, pairing a 10 minute odor exposure with tactile stimulation during PND 1-18 induces 

a behavioral preference for the conditioned odor on PND19 (Sullivan and Leon, 1986). Later 

studies have shown that a single 10 minute pairing of an odor with stroking on PND 6 is sufficient 

to induce an early odor preference 24 hours following this training (i.e., on PND7) (Sullivan and 

Leon, 1987). Sullivan and colleagues have also shown that this conditioned response only appears 

when both odor presentation and tactile stimulation occur simultaneously or in a forward pairing 

(CS-UCS) (Sullivan and Leon, 1987; Sullivan et al., 1989a, b). CS-only, UCS-only, random CS-

UCS pairing, and backward UCS-CS pairing were all unable to induce a significance preference 

to the trained odor (Galef and Kaner, 1980; Galef, 1982; Pedersen et al., 1982; Alberts and May, 

1984; Sullivan et al., 1986a; Sullivan and Leon, 1986, 1987; Sullivan et al., 1989b, a). It was also 
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found that a conditioned response would appear if the pairing occurred before or around PND 10, 

otherwise stroking was unable to induce an odor preference for the trained odor (Woo and Leon, 

1987). In the search for understanding the neurobiology of such a unique critical period in learning 

and memory, the rat pup early odor preference learning model quickly became popular (Yuan et 

al., 2014). 

 

1.5.1.1 NE-mediated learning mechanisms 

 Several lines of evidence support the hypothesis that LC-mediated NE release plays a major 

role in critical period learning. An unusual surge of NE occurs immediately after birth and this 

surge has been hypothesized to provide a means by which early odor learning can take place – 

even in the absence of traditional UCS (Sulyok, 1989; Ronca et al., 2006). In fact, NE is abundant 

during the perinatal period (Herlenius and Lagercrantz, 2001) and is responsible for many events 

including postnatal learning (Leon, 1998) and independent respiration (Ronca and Alberts, 1995). 

Elevated NE levels were detected in both parturient females and their pups indicating a prominent 

role for NE in early life experience (Sperling et al., 1984). A similar observation has been reported 

in human infants. A positive correlation between umbilical cord blood NE levels and head turning 

towards trained odor was observed in human subjects (Varendi et al., 2002).  

Nakamura and colleagues found that the reinforcing tactile stimulations (e.g., stroking, tail 

pinch, air puff) used for classical conditioning in early odor learning activate LC neurons as early 

as PND1 (Nakamura et al., 1987). Around this same period, many studies showed that 

interventions in the olfactory NE system altered pup odor learning (Marasco et al., 1979; Pedersen 

et al., 1982; Cornwell-Jones and Bollers, 1983). Importantly, it has been shown that the 

noradrenergic system is functionally present in the OB during the critical period (McLean and 
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Shipley, 1987a; Wilson and Leon, 1988b). The UCS elicits NE release from the LC to the OB for 

acquisition of the conditioned odor preference (Nakamura et al., 1987; Rangel and Leon, 1995). 

Subsequent studies conducted by several other laboratories support the notion that LC-mediated 

NE release is both necessary and sufficient for early odor preference learning (Sullivan et al., 

1989a; Sullivan et al., 1991a; Sullivan et al., 1992; Sullivan et al., 1994; Sullivan et al., 2000b; 

Yuan et al., 2002). It has been shown that both pharmacological blockade of NE in the OB, and 

LC lesions prevent odor preference learning (Sullivan et al., 1989a; Sullivan et al., 1991a; Sullivan 

et al., 1994; Sullivan et al., 2000b). Alternatively, odor preference can be induced by direct NE 

infusions in the OB or LC stimulation paired with odor exposure (Sullivan et al., 1992; Sullivan et 

al., 2000b; Yuan et al., 2002). Odor preference conditioning is also achieved by pairing an odor 

with β-adrenoreceptor activation as an alternative UCS (Sullivan et al., 1989a; Langdon et al., 

1997; Sullivan et al., 2000b; Yuan et al., 2003a; Harley et al., 2006; Lethbridge et al., 2012).   

 Many olfactory laboratories have been interested in elucidating the underlying physiology 

of heightened plasticity during the critical period. Several publications credit the neonatal 

properties of the LC as the major source of bulbar plasticity during this period. One such property 

is its lack of inhibitory  noradrenergic autoreceptors during the first post-natal week (Nakamura et 

al., 1987; Nakamura and Sakaguchi, 1990; Winzer-Serhan and Leslie, 1999), which results in an 

exceptionally increased LC neuron response duration compared to that of adults (Nakamura et al., 

1987). Another interesting property of the immature LC is that its neurons are sensitive to a wide 

range of stimuli and are more electrically coupled than the mature LC (Nakamura et al., 1987; 

Christie et al., 1989). This immature LC physiology increases the probability that the LC will 

remain active for an extended duration to a non-noxious UCS. NE levels were found to be 

significantly higher in the OB following odor plus tactile stimulation compared to odor or tactile 
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stimulation alone; furthermore, although a marked NE level increase was detected in the bulb 

during the first postnatal week by CS + UCS conditioning, this same increase was not observed 

for PND10 pups (Rangel and Leon, 1995). Another interesting neonatal characteristic of the LC-

NE system is that it reduces M/T cell habituation to repetitive odor presentations during associative 

training. This reduced habituation increases the responsiveness of M/T cells to the CS odor 

(Wilson and Sullivan, 1992) and, therefore, pups are better able to make odor-UCS associations 

than adults. All of the aforementioned characteristics of the immature LC contribute to creating 

the conditions for excellent associative learning in the pup as compared to the adult. 

 This mammalian model of imprinting ends around PND 10. After that pups develop 

adequate motor abilities to explore their environment (Bolles and Woods, 1965) and gain the 

ability to exhibit passive avoidance, active avoidance and inhibitory conditioning (Collier and 

Mast, 1979; Blozovski and Cudennec, 1980; Camp and Rudy, 1988; Myslivecek, 1997; Sullivan 

et al., 2000a). With respect to inhibitory conditioning, the developmental emergence of the 

functional amygdala seems to be the reason for increased learning at this time (Sullivan and 

Wilson, 1993; Sullivan et al., 2000a). Receptor autoradiography and mRNA analysis have shown 

that although the LC alpha 2 autoreceptors are present in the neonate (Winzer-Serhan and Leslie, 

1999), their activity remains muted until the PND 10 week (Kimura and Nakamura, 1987; 

Nakamura et al., 1987; Nakamura and Sakaguchi, 1990; Winzer-Serhan and Leslie, 1999). In 

addition to the developmental emergence of functional α2 inhibitory noradrenergic autoreceptors, 

reduced excitatory α1 function at older ages has been related to the older pups' inability to rapidly 

acquire odor preferences (Nakamura et al., 1987; Pieribone et al., 1994; Scheinin et al., 1994; 

Moriceau and Sullivan, 2004). Experimental designs that mimic LC activity during the post-
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sensitive period such that it is similar to that in the critical period produce odor preference learning 

in older pups as can bulbar infusion of a β-adrenoceptor agonist (Moriceau and Sullivan, 2004).   

Beside maturation of the LC-NE system, altered adrenoceptor function (Pandipati et al., 

2010), reductions in NMDA receptor signaling (Poo and Isaacson 2007; Franks and Isaacson 

2005), and increased levels of corticosterone (Moriceau et al., 2009a) have been hypothesized to 

contribute to the termination of the critical period.  

 

1.5.1.1.1Olfactory Bulb 

Pharmacological evidence suggests β-adrenoreceptors as one of the major pathways 

through which NE plays its critical role as an UCS in early odor preference learning. Both global 

and OB administrations of the β-adrenoreceptor antagonist propranolol prevent neonatal odor 

preference learning (Sullivan et al., 1989a; Sullivan et al., 2000b). Additionally, the Sullivan group 

was able to induce learning in pups by pairing an odor with the β-adrenoreceptor agonist 

isoproterenol (Sullivan et al., 2000b). Later studies by Harley and colleagues found that learning 

occurs when β1-adrenoreceptors are activated, but not β2 (Harley et al., 2006). Dose-response 

curves indicate that only 2 mg/kg of isoproterenol is effective in promoting learning; higher 

(6mg/kg) or lower (1 mg/kg) doses are unable to create preference memories (Sullivan et al., 

1989a; Langdon et al., 1997; Yuan et al., 2003a). Further studies found that when both stroking 

and the optimal isoproterenol dose are used as the UCS and odor presentation as the CS, training 

does not lead to memory formation. However, pairing lower doses of isoproterenol and sub-

threshold stroking did lead to odor preference memory (Sullivan et al., 1991a). This suggests an 

additive effect of isoproterenol and stroking on β-adrenoreceptor activation in the OB and that 

excessive NE activation can prevent early odor preference learning. Although β-adrenoreceptors 
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are considered to be one of the major players in early odor preference learning, recent studies also 

demonstrate a role for α-adrenoreceptors in this learning paradigm. For instance, Harley and 

colleagues were able to induce an odor preference memory in rat pups by pairing the α1-

adrenoreceptor agonist, phenylephrine, with an odor (Harley et al., 2006).   

 

1.5.1.1.1.1 Representational changes 

 Early odor preference learning-induced long-term metabolic changes that have been 

reported in the OB are increased 2-deoxyglucose (2-DG) uptake (Coopersmith et al., 1986; 

Sullivan and Leon, 1986), c-fos activation (Guthrie et al., 1993; Johnson et al., 1995), and glycogen 

phosphorylase activation (Coopersmith and Leon, 1987). Sullivan has shown that only pairing 

odor with tactile stimulation results in increased focal 2-DG uptake in the bulb, whereas odor alone 

fails to do so (Sullivan and Leon, 1986; Sullivan and Hall, 1988). In addition, such enhanced 2-

DG uptake did not accompany simple increases in respiration (Coopersmith and Leon, 1984; 

Coopersmith et al., 1986; Sullivan and Leon, 1986). More tellingly, enhanced focal uptake of 2-

DG was specifically identified in the glomerular layer following odor preference learning 

compared to odor alone (Sullivan et al., 1991a; Johnson and Leon, 1996). Similarly, intrinsic 

optical recording from the glomerular layer showed an increased optical signal in trained pups 

compared to controls (Yuan et al., 2002). In vivo studies reveal olfactory nerve (ON)-evoked 

lasting increases in the MC excitatory responses following an early odor preference training 

protocol (Yuan et al., 2000). Neonatal odor preference learning also increased the number of JG 

surrounding odor-activated glomeruli and the glomerular size (Woo et al., 1987; Woo and Leon, 

1991), again indicating learning-induced long term plastic modifications in the bulb.  
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1.5.1.1.1.2 Electrophysiology 

A recent study by Pandipati and Schoppa characterized the age-dependent physiological 

effect of NE in rats (Pandipati and Schoppa, 2012). They discovered that α2-adrenoreceptor- 

mediated MC disinhibition by GCs only pertains in pups within PND 13. This acute disinhibitory 

effect leads to potentiating effects on MC-GC synaptic transmission such as enhanced evoked γ 

frequency oscillations originating from the MC-GC network (Gire and Schoppa, 2008; Pandipati 

et al., 2010). However, such strong gamma frequency oscillation enhancement was not evident in 

older animals at PND 18-23 (Pandipati and Schoppa, 2012).    

Both behavioral (as discussed in section-1.5.1.1) and electrophysiological evidence 

suggests that the modulatory role of NE in early odor preference learning is mostly mediated by 

β-adrenoreceptors. Our lab also proposed that NE via β-adrenoreceptors could potentially affect 

ON-MC synaptic transmission, which may lead to long-term potentiation of ON-MC synapses 

(Yuan et al., 2014).  Mechanistically, NE via β-adrenoreceptors suppresses PG activity, thus 

disinhibiting MCs and enhancing MC responses to ON input (Yuan, 2009). On the same note, 

Lethbridge et al found that NE via β-adrenoreceptors can also increase MC firing responses to 

olfactory nerve stimulation (Lethbridge et al., 2012). Disinhibition of mitral cells via granule cells 

is another way NE exerts plasticity through β-adrenoreceptors (Wilson and Leon, 1988b; Wilson 

and Sullivan, 1992).  

 

1.5.1.1.1.3 Intracellular signaling: cAMP/PKA/CREB model 

 cAMP-mediated signaling cascades in many species ( e.g. Aplysia and  Drosophila)  have 

a critical role in the processes of learning and memory (Byers et al., 1981; Schacher et al., 1988; 

Ghirardi et al., 1992; Levin et al., 1992). Detailed intracellular events mediated by cAMP were 
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outlined by Frank and Greenberg (1994) (Frank and Greenberg, 1994). In short, neurotransmitter 

binding to the receptors triggers intracellular activation of adenylyl cyclase, which in turn elevates 

the amount of cAMP. Increased cAMP facilitates PKA translocation to the nucleus, which then 

triggers phosphorylation of cAMP response element-binding protein (CREB) (Meinkoth et al., 

1990). Phosphorylated CREB (pCREB) links neural activity to gene transcription and contributes 

to cell-wide transcriptional modification. This unique characteristic of pCREB gave rise to the idea 

that it mediates the encoding of the memory. In fact, pCREB elevation has been implicated in 

synaptic modification across many models (Bito et al., 1996; Deisseroth et al., 1996; Impey et al., 

1996; Moore et al., 1996a).  

Although the cAMP-dependent intracellular signaling cascade (cAMP/PKA/CREB) for 

learning and memory is well established in Aplysia (Brunelli et al., 1976; Pittenger and Kandel, 

2003) and Drosophila (Byers et al., 1981; Shotwell, 1983; Yin and Tully, 1996), direct evidence 

for such  intracellular events in mammals is sparse (Alberini, 1999). McLean and colleagues were 

among the first investigators to describe the role of pCREB in mammalian associative learning 

(McLean et al., 1999). In particular, only learning effective training (pairing odor with tactile 

stimulation) increases pCREB levels significantly in MCs, odor or tactile stimulation alone do not 

(McLean et al., 1999). This highlights the convergent effects of odor-induced calcium/calmodulin 

signaling and the NE-cAMP cascade in producing enhanced pCREB and learning (Yuan et al 

2003a). Odor-induced calcium/calmodulin enhances adenylate cyclase elevation of cAMP as first 

reported by Yovell et al in Aplysia (Yovell et al, 1992). Interestingly, such an effect requires 

forward pairing (Abrams et al, 1998). Subsequent studies found that while the optimal 

isoproterenol (2 mg/kg) dose as the UCS similarly increased pCREB amounts in trained pups, 
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saline or higher dose of isoproterenol paired with odor failed to increase pCREB synthesis (Yuan 

et al., 2000).  

β1- adrenoreceptor and 5-HT2A receptors co-localize in MCs and 5-HT depletion results in 

reduction of the cAMP levels normally observed following learning-induced UCS application 

(Yuan et al., 2003a). The causal role of cAMP in odor preference learning was demonstrated by 

blocking phosphodiesterases with cilomilast. Phosphodiesterases normally breakdown cAMP. The 

cilomilast manipulation converts a low ineffective UCS (1 mg/kg isoproterenol) into an effective 

one for learning (McLean et al., 2005).  Furthermore, odor preference learning in 5-HT-depleted 

pups was rescued by pairing 2 mg/kg isoproterenol with cilomilast (McLean et al., 2009). 

Temporal pattern investigations of cAMP in the rat pup learning model suggest a pulsatile cAMP 

modulation in MCs, with a critical10 min cAMP peak following learning-inducing training (Cui 

et al., 2007).  

The causal role of pCREB in the pup learning model was established by injecting a Herpes 

simplex virus expressing CREB (HSV-CREB) or a dominant-negative mutant CREB (HSV-

mCREB) in both OBs (Yuan et al., 2003b). Bilateral infusion of HSV-mCREB prevented learning 

in pups that received stroking paired with odor or the learning dose (2 mg/kg) of isoproterenol 

paired with odor.  However, learning was achieved in those pups by a supraoptimal dose of 

isoproterenol (4 mg/kg), indicating a higher level of β adrenoreceptor activation is necessary to 

recruit a sufficient amount of pCREB to generate learning with these gene manipulations. On the 

other hand, excessive pCREB expression via HSV-CREB infusion prevented pups learning that 

received either optimal (2 mg/kg) or higher (4 mg/kg) isoproterenol doses in the presence of odor. 

Interestingly, learning was restored in HSV-CREB-treated pups when a suboptimal (1 mg/kg) dose 

of isoproterenol was applied.  
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 Further study established a causal role for PKA in this learning model. A series of 

experiments by Grimes et al (2012) suggested that similar to cAMP, PKA activation is maximal 

at 10 min following odor conditioning training. Furthermore, intrabulbar infusions of the PKA 

blocker Rp-cAMPs results in CREB phosphorylation blockage and prevents normal 24 h 

preference learning from occurring. Emergence of 24h odor preference memory following a PKA 

agonist Sp-cAMP infusion in the bulb together with novel odor presentation, suggested that direct 

PKA activation itself can act as an UCS in this pup learning model.  Consistent with other literature 

suggesting that the cAMP/PKA/CREB cascade is selectively involved in learning and memory 

(Huang et al., 1994; Nguyen et al., 1994; Alberini et al., 1995; Bailey et al., 1996; Nguyen and 

Kandel, 1996, 1997), the foregoing data support such a model in early odor preference learning.  

 

1.5.1.1.2 Anterior Piriform Cortex 

 Kucharski and colleagues were the first to demonstrate the PC’s role in neonatal odor 

preference learning (Kucharski et al., 1986a; Kucharski and Hall, 1987). Hall and colleagues found 

that 6 day old pups show no sign of preference to an odor that was paired with milk, when tested 

with the odor to a naris occluded during training. However, robust preference was obtained when 

the unoccluded naris (trained naris) was used during testing. Interestingly, when anterior 

commissural connections were developed at 12 days (Schwob and Price, 1984), the untrained 

hemisphere can access memory acquired at 6 days from the learned hemisphere (Kucharski and 

Hall, 1987). Disrupting the anterior commissure retains lateralized memory in the spared 

hemisphere. Later studies from the Sullivan lab found increased c-fos activation in the aPC 

following odor preference learning (Roth et al., 2006). Consistent with these earlier findings, 

transient silencing of aPC using either lidocaine or muscimol prevents early odor preference 
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learning (Morrison et al., 2013). In addition, pharmacological blockade of NMDA and β-

adrenoreceptors in aPC prevents odor preference learning in rat pups. Odor preference memory 

can be induced in rat pups by pairing odor with infusion of the β-adrenoreceptor agonist 

isoproterenol in the aPC (Morrison et al., 2013). These series of experiments arguably suggest that 

piriform cortical plasticity also contributes to early odor preference learning and memory.  

 

1.5.1.1.2.1 Electrophysiology 

Morrison et al (2013) has shown a significant augmentation of LOT long term potential 

(LTP) amplitude when theta burst induction was combined with isoproterenol bath application 

(Morrison et al., 2013). Isoproterenol reduces the paired pulse ratio of the LOT-evoked field 

excitatory post synaptic potential (EPSP) indicating increased presynaptic release. This acute 

effect of isoproterenol may lead to the observed LTP enhancement. Ex vivo recording found that 

both 3h and 24h after odor preference training LOT field EPSP enhancement is observed. While 

both pre- and post-synaptic potentiation was evident following 3h of training, only post-synaptic 

potentiation was observed following 24h of training. In addition, they also found that blocking 

NMDA receptors by D-APV application prevented LTP induction at the LOT synapse.  Another 

remarkable finding in establishing aPC involvement in early odor preference learning came from 

a calcium imaging study (Fontaine et al., 2013). Calcium imaging of aPC pyramidal networks 

reveal a reduction of pyramidal cell firing thresholds within the memory window, leading to the 

hypothesis that learning increased the responsiveness of pyramidal cells to the LOT input. 

Altogether these data suggest that plastic changes at LOT-aPC synapses and global changes in the 

pyramidal network of aPC occur during early odor preference memory.  
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1.5.2 Adult go-no-go 

In this learning model rodents are conditioned to distinguish between odors depending on 

the valence of the odor (e.g. positively reinforced or non-rewarded). Computer controlled 

olfactometers have been used to demonstrate a rodent’s ability to detect and discriminate odors 

(Laing et al., 1989; Youngentob et al., 1991; Brown et al., 1996; Bodyak and Slotnick, 1999; 

Larson and Sieprawska, 2002). In olfactometers, rodents are allowed to either positively respond, 

which is called a “go” response following reinforced odor delivery/presentation, or refrain from 

entering the odor delivery port, which is referred to as “no-go” response following unrewarded 

odor delivery. Other than go/no-go tasks, rodents have been trained to go in a left or right direction 

for reward or they have been trained to dig for food. The digging method requires fewer trials, 

while the first two behavioral paradigms take significantly more trials to reach learning criteria.  

 

1.5.2.1 General behavioral paradigm considerations 

 Animals usually are either food or water deprived. This deprivation keep rodents motivated 

to participate in the task and learn the discrimination. However, for habituation measures of odor 

detection or spontaneous odor discrimination, animals do not need to be deprived of food or water. 

Go-no-go odor discrimination training begins with shaping where rodents become familiarized 

with the procedure. For example, in the case of the digging method (Berger-Sweeney et al., 1998) 

rodents are initially trained to find the hidden food (visible, semi-visible and buried) in the absence 

of scent. A limited amount of time is usually assigned to finish the task and position of the baited 

food is randomized. After the shaping period, hidden foods are presented with an odor of interest. 

After several trials rodents are able to retrieve the food using odor as a cue. During probe trials the 
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percentage of choice accuracy, the latency to retrieve the hidden food and errors (digs in the 

unrewarded place) are usually recorded.  

In principle odor discrimination training with a computer-controlled olfactometer is similar 

to other go-no-go tasks (Bodyak and Slotnick, 1999). Shaping or initial training is usually 

performed by using software e.g. the ALL-BEGIN program. This program automatically delivers 

a certain amount of water (~30 μl) from a reservoir following each lick in the water port and 

automatically advances to next stage after 20-30 water deliveries. At the next stage, reinforced 

odor (S+) is introduced into the system. Each snout insertion briefly operates the odor channel and 

the duration of odor exposure is increased in subsequent trials. Next, a fixed amount of time is 

provided for rats to sample the odor stimulus and make a decision, either they can lick the water 

port (usually a minimum of 6 times) for a water reward or reject it by withholding their snout from 

the port. Once rodents are acquainted with this procedure, the next training is called rule learning. 

During rule learning rodents, for the first time, experience an unrewarded odor (S-). This rule 

learning training in our system utilizes software called the IN-D2 program. S- presentation is 

followed by no water delivery. Initially rodents might respond randomly to this new odor but 

following a few trials they stop responding to the S-. Usual training in IN-D2 program consists of 

10 S+ and 10 S- deliveries in a random fashion. The percentage of correct responses is calculated 

by the computer. Once a rodent reaches criterion for the correct response rate (~80%) in rule 

learning training, odor discrimination training for two new odors can be employed. Training is 

exactly the same as the rule learning phase except two new novel odors are introduced.  

With IN-D2, the same port is used for water delivery and odor delivery. It is also possible 

to deliver water in one port and odor in another port using an OUT-D2 program. In this training 
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program, the investigator can train rodents to go either to the left or right from the odor delivery 

port using different odor stimuli.  

Shaping/begin/rule learning training is not necessary for experiments using habituation to 

test odor detection, and spontaneous discrimination (Escanilla et al., 2010). Rodents are allowed 

to investigate certain odors for a fixed period (~ 50 sec). A fixed amount of odorant is placed onto 

filter paper in a specified place randomly chosen. The amount of time rodents spend investigating 

the odors is measured as a test of the rodent’s ability to discriminate or to discern odor novelty. 

Habituation itself can also be assessed.  

 

1.5.2.2 The roles of NE in adult odor learning 

Despite a wealth of data supporting NE’s critical role in neonatal odor learning (Morrison 

et al., 2013), few studies have been done to delineate its potential role in adult odor learning. 

However, the role of NE in innate odor learning has recently been reported in juvenile rats 

(Kabitzke et al. 2011).  

 

1.5.2.2.1 Olfactory Bulb 

 Several studies found increased NE levels in the OB following novel odorant presentation, 

repeated odor delivery and even associative conditioning (Brennan et al., 1998; Veyrac et al., 

2009). These initial findings potentially suggest a role for OB NE in adult odor learning. 

 

1.5.2.2.1.1 Behavioral studies 

 Unlike neonatal odor learning, where pairing odor with increased NE levels in the OB 

induces a robust preference for the paired odor, the same training in anesthetized adult mice leads 
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to habituation to the paired odor (Shea et al., 2008). The role of NE in habituation needs further 

investigation to settle the seemingly contradictory results in this field. For example, localized 

blocking of adrenoreceptors in the bulb using either α or β receptor antagonists showed no effect 

on habituation to repeated odor exposure (Mandairon et al., 2008b; Escanilla et al., 2010). On the 

other hand, global impairment of NE release by pharmacological lesion of the LC results in an 

impairment in habituation, which could be restored by local NE infusion in the bulb (Guerin et al., 

2008). In other studies it has been shown that NE is essential in reversing or preventing olfactory 

habituation (Smith et al., 2009).  

Spontaneous odor discrimination and detection were found to be dependent on NE 

modulation. Studies where α adrenoreceptors were blocked in the bulb showed impaired 

spontaneous odor detection and discrimination in rats (Escanilla et al., 2010).  Although in the case 

of a reward-motivated odor discrimination task, Mandairon et al (2008b) discovered that both α- 

and β- adrenoreceptor blockade in the bulb only slowed down discrimination learning (Mandairon 

et al 2008b), Doucette et al ( 2007) showed a similar adrenoreceptor blockade  in the bulb 

prevented discrimination of very similar odors (Doucette et al., 2007). Contradictory findings may 

result from the different learning paradigms employed and the species used in these two studies. 

 

1.5.2.2.1.2 Electrophysiological evidence 

Numerous OB slice physiology studies highlight its potential role in odor learning (Fletcher 

and Chen, 2010). Originally it was thought that NE inhibited MC firing by acting on GCs (Bloom 

et al., 1964; Salmoiraghi et al., 1964; McLennan, 1971). Consistent with this hypothesis a recent 

study found a reduction of spontaneous MC firing following LC stimulation (Jiang et al., 1996). 

However, in the same experiments they found NE increased MC activity when  the sensory neurons 



54 
 

are subject to peri-threshold stimulation, leading to the hypothesis that NE could enhance MC 

responses to weak odor input (Jiang et al., 1996). In other experiments it has been shown that NE 

can directly excite both MCs and GCs via α1-adrenoreceptors (Mouly et al., 1995; Ciombor et al., 

1999; Hayar et al., 2001; Araneda and Firestein, 2006; Nai et al., 2010). Interestingly, it has been 

shown that NE can also indirectly excite MCs via disinhibition. In this particular case Trombley 

and Shepherd (1992) showed that NE presynaptically inhibits MC mediated GC firing, thus 

preventing feedback inhibition of MCs by GCs (Trombley and Shepherd, 1992). All together these 

results suggest that NE function in the OB is diverse and complicated.  

 NE action may depend on receptors activated at various concentrations (Nai et al., 2009; 

Nai et al., 2010). For instance, at lower concentrations NE acts on α2-adrenoreceptors and enhances 

MC excitation via a disinhibition mechanism (Nai et al., 2009; Nai et al., 2010; Pandipati et al., 

2010). On the other hand, at higher concentrations NE excites GCs via α1-adrenoreceptors, which 

in turn inhibit MCs by releasing GABA (Nai et al., 2009; Nai et al., 2010). NE also has been shown 

to exert longer term effects in the OB. When ON is stimulated in the presence of an NE agonist, 

gamma frequency oscillations in the OB enhance significantly, indicating a global impact of NE 

on OB circuitry (Gire and Schoppa, 2008; Pandipati et al., 2010). Furthermore, long lasting 

suppression of MCs to odor input was also observed when LC stimulation was paired with odor 

exposure (Shea et al., 2008). The MC response to odor input was not affected if both α and β 

receptor antagonists were applied during LC stimulation.  
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1.5.2.2.2 Anterior piriform cortex 

 Other than electrophysiological studies, the role of aPC NE in mediating adult odor 

learning is largely unknown. However, considering the anatomical position and rich projection of 

NE in aPC warrant elaborate investigation to delineate aPC NE role in odor guided behaviour.  

 

1.5.2.2.2.1 NE cellular mechanisms 

 Similar to the OB, concentration-dependent differential effects of NE in PC have been 

reported. Although at higher concentration it reduces the cortical response to OB input, at lower 

concentrations NE enhances the overall cortical response to OB input either by increasing MC 

excitatory transmission or by increasing pyramidal cell excitability (Collins et al., 1985). Electrical 

stimulation of LC in vivo results in overall enhanced PC neuron firing or increased temporal 

precision in response to odors (Bouret and Sara, 2002). In addition to LOT-PC synapses, NE also 

modulates excitatory associative fibers within the PC. Hasselmo et al (1997) found a reduction in 

excitatory synaptic transmission between pyramidal cells following NE application, suggesting 

that this suppression might help to enhance the exogenous signal-to-noise ratio in the PC 

(Hasselmo et al., 1997).  

 

1.6 Large Scale Neuronal Mapping Techniques 

 To uncover the mysteries of the nervous system, neuroscientists need modern techniques 

to trace the activity patterns of large numbers of neurons. A large literature suggests that the neural 

basis of behavior and cognition is the result of the day-to-day orchestration of neuronal network 

activity distributed widely throughout the brain (Marom and Shahaf, 2002; Marom and Eytan, 

2005; Chiappalone et al., 2008). Thus, the first step to understanding behavior is to capture detailed 
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functional maps of neural circuits within the brain. Although activity-dependent changes in 

synaptic strength have been studied extensively at the single neuron level (Bliss and Lomo, 1973; 

Stanton and Sejnowski, 1989; Artola and Singer, 1993; Bliss and Collingridge, 1993; Mulder et 

al., 1997; Werk and Chapman, 2003; Malenka and Bear, 2004; Mapelli and D'Angelo, 2007), how 

synaptic plasticity is implemented at the network level to permit the storage and recall of 

information remains elusive (Marom and Shahaf, 2002; Marom and Eytan, 2005; Chiappalone et 

al., 2008). Therefore, the ability to monitor larger-scale neuronal activity or ‘neuronal ensembles’ 

is required. Large-scale neuronal mapping techniques have been used to address some of the 

fundamental questions (e.g. how brain represents and processes sensory information) that have 

baffled neuroscientists for many years. Techniques such as electroencephalography (EEG) (Singh 

et al., 2003; Waldert et al., 2008), magnetoencephalography (MEG) (Luo and Poeppel, 2007; van 

Dijk et al., 2008), functional imaging (positron emission tomography (PET)  and functional 

magnetic resonance imaging (fMRI)) (Schacter and Wagner, 1999; Mayes and Montaldi, 2001; 

Sowell et al., 2004; Jasanoff, 2005; Mechelli et al., 2005; Smirnakis et al., 2005), two photon 

imaging (Mainen et al., 1999; Ohki et al., 2005) and multi-neuron recording   (Wilson and 

McNaughton, 1993; Gothard et al., 1996; Barnes et al., 1997; Nicolelis et al., 1997b; Hoffman and 

McNaughton, 2002; Nicolelis et al., 2003; Doucette and Restrepo, 2008) have been used to capture 

the blue print of cognition since 1980. Though fMRI and PET are capable of recording from large 

areas of the brain containing millions of neurons in action, single-cell resolution with these 

methods is not yet possible. On the other hand, multielectrode recording, though providing the 

necessary single cell resolution, is limited by the number of neurons sampled and often requires a 

large number of animals before enough units are collected for statistical analysis. This task 

becomes more challenging for a brain region like the dentate gyrus where activity is sparse (Small 
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et al., 2004). Although EEG and MEG fall in between functional imaging and multi electrode 

recording, single cell resolution is still not possible. In addition to the aforementioned imaging 

techniques, calcium-sensitive and voltage-sensitive dye imaging (Baker et al., 2005; Djurisic and 

Zecevic, 2005) as well as fluorescence resonance energy transfer (FRET)-based systems (Chanda 

et al., 2005) can be implemented to trace behaviorally relevant neural circuitry at large scales. 

Furthermore, immediate early genes (IEG, e. g. Arc, c-fos, homer1a, zif268) can also be used as 

markers to visualize dynamic neuronal ensembles in the brain (Morgan et al., 1987; Koya et al., 

2009). Despite the drawbacks of each of these imaging techniques, large scale brain activity 

mapping methods have accelerated our understanding of the neural underpinnings of cognition 

that results from interactions within and between distributed brain systems.  

 

1.6.1 Tetrode recording 

 One of the large scale neuronal recording techniques that allows segregation of individual 

spikes from multi-unit recording is called tetrode recording. As the name implies it is made of four 

electrodes, each about 10-15 µm in diameter (Emondi et al., 2004). To obviate the spike resolution 

problem of traditional extracellular recording that arises with burst discharges and with closely 

packed neuronal cells groups, initially the stereotrode (McNaughton et al., 1983) and later the 

tetrode (O’Keefe and Reece, 1993; Wilson and McNaughton, 1993) recording techniques were 

developed. Some of the inherent limitations of tetrode recording include mechanical damage 

associated with the probe movements (Claverol-Tinture and Nadasdy, 2004; Bjornsson et al., 

2006; Seymour and Kipke, 2007; Tsai et al., 2009; Kozai et al., 2010), and excluding neurons with 

low firing rates (Shoham et al., 2006; Buzsaki and Mizuseki, 2014; Schwindel et al., 2014), and 

low spike amplitudes (Schomburg et al., 2012). In the last decade significant progress has been 
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made in the field to meet the increased demand for better recording with substantially increased 

numbers of monitoring sites and less tissue damage (Nordhausen et al., 1996; Motta and Judy, 

2005; Rennaker et al., 2005; Hofmann et al., 2006; Ludwig et al., 2006; McCreery et al., 2006; 

Musallam et al., 2007; Neves and Ruther, 2007; Bartels et al., 2008; Kipke et al., 2008; Neves et 

al., 2008; Ruther et al., 2011). This technical advancement now allows us to record discharge 

properties of larger numbers of well-isolated cells simultaneously at different times in behaving 

animals (Du et al., 2011; Kozai et al., 2012). Therefore it is possible to study the behavior of 

multiple cells in a variety of brain structures for weeks and even months in various species 

(Nicolelis et al., 1997b; Rousche and Normann, 1998; Pouzat et al., 2002; Csicsvari et al., 2003; 

Kipke et al., 2003; Bartho et al., 2004; Blanche et al., 2005; Suner et al., 2005; Broome et al., 2006; 

Jackson and Fetz, 2007; Fujisawa et al., 2008; Montgomery et al., 2008; Chestek et al., 2011; Du 

et al., 2011; Ruther et al., 2011; Agarwal et al., 2014; Lin et al., 2014). Interest in manipulating 

multiple neurons under investigation requires technological breakthroughs to, for example, 

combine optogenetic manipulations with larger scale neural recording electrodes. In a recent paper 

Buzsaki et al (2015) has extensively discussed how some of the technical difficulties in this field 

can be resolved to take full advantages of the available methods (Buzsaki et al., 2015).  

 

1.6.2 Optical recording using intrinsic signals 

 It is a general phenomenon in biology that the functional state of a tissue influences its 

optical properties. One physiological basis of optical changes in a tissue is a wavelength-specific 

absorption of photons by oxygenated and deoxygenated haemoglobin (Villringer and Chance, 

1997). The historical roots of activity-dependent changes of optical properties of nerve cells can 

be traced to as early as 1949 (Hill and Keynes, 1949). Nearly four decades ago Jöbsis described 
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the possibility of measuring blood and tissue oxygenation changes in the brain of a cat using near-

infrared (NIR) light (Jobsis, 1977). Since that time changes in optical properties of neurons have 

been measured in bloodless brain slices (Lipton, 1973; MacVicar and Hochman, 1991), in intact 

cortical tissue (Jobsis, 1974; Harik et al., 1979; Grinvald et al., 1986), and in cell cultures 

(Stepnoski et al., 1991). Both animal (MacVicar and Hochman, 1991; Yuan et al., 2002) and 

human subjects (Haglund et al., 1992) have been used to map neuronal activity by capturing optical 

signals from surgically exposed areas of interest.  However, recent technical advancements allow 

assessing brain activity even non-invasively (Maki et al., 1995; Hirth et al., 1996; Chance et al., 

1997), and through the intact skull (Chance et al., 1993; Hoshi and Tamura, 1993; Kato et al., 

1993; Villringer et al., 1993; Gratton et al., 1995). In fact, non-invasive optical imaging has been 

employed in adult human subjects (Chance et al., 1993; Hoshi and Tamura, 1993; Kato et al., 1993; 

Villringer et al., 1993; Gratton et al., 1995; Maki et al., 1995; Hirth et al., 1996; Chance et al., 

1997) and it was possible to assess several types of brain activity including the response to auditory 

stimulation (Hoshi and Tamura, 1993), visual activation (Kato et al., 1993; Villringer et al., 1993; 

Gratton et al., 1995; Meek et al., 1995; Wenzel et al., 1996), motor activity (Maki et al., 1995; 

Hirth et al., 1996; Obrig et al., 1996) and the performance of cognitive tasks (Chance et al., 1993; 

Hoshi and Tamura, 1993; Villringer et al., 1993).   

 

1.6.3 c-fos 

 Probably c-fos is one of the best studied IEGs that has been used to produce high-resolution 

functional maps of cellular activation in the CNS since the late 1980s (Greenberg and Ziff, 1984; 

Curran and Morgan, 1985; Dragunow et al., 1987; Morgan et al., 1987; Dragunow and Faull, 1989; 

Sheng and Greenberg, 1990; Morgan and Curran, 1991; Herrera and Robertson, 1996; Herdegen 
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and Leah, 1998; Montag-Sallaz and Buonviso, 2002). Now, localization of c-fos protein has been 

an effective tool in neuroscience to visualize patterns of neuronal activation in the brain and spinal 

cord for decades (Hyman et al., 1993; Sharp et al., 1993; Hughes and Dragunow, 1995; Chaudhuri, 

1997; Chaudhuri et al., 2000). Although it was thought that c-fos induction is primarily associated 

with the functional activity of neurons (Sagar et al., 1988; Dragunow and Faull, 1989; Duncan et 

al., 1993), the absence of significant c-fos expression in regions with high levels of neuronal 

activity {e.g. visual cortex (Kaczmarek and Chaudhuri, 1997)} suggest that normal levels of 

neuronal activation are not sufficient to induce IEG expression. Consistent with this idea it has 

been shown that IEG activation is inversely correlated with the burst-intervals of action potentials 

(Fields et al., 1997). Different types of challenges (seizure, sound, water stress, intra-parenchymal 

injection of various substances, fear, odors, including convulsing agents, etc.) have been used to 

induce c-fos to map relevant functional neural circuitry in different cortical regions including 

visual cortex (Kaczmarek and Chaudhuri, 1997), auditory cortices (Campeau and Watson, 1997), 

amygdala (Dragunow et al., 1988; Cullinan et al., 1995), hippocampus (Hughes et al., 1992), 

thalamus (Gholami et al., 2006), cingulate cortex (Duncan et al., 1993), medial prefrontal cortex 

(Duncan et al., 1993), cerebellum (Carbo-Gas et al., 2014), limbic structures (Le Gal La Salle, 

1988), neocortex (Simler et al., 1994), striatum (Szyndler et al., 2009) and  piriform cortices 

(Dragunow and Robertson, 1987). Despite its widespread application, c-fos 

immunohistochemistry (IHC) is time consuming and labour and resource intensive (Deutch et al., 

1991; Hughes et al., 1992; Smith and Day, 1993; Conde et al., 1995; Lin et al., 1998; Sebens et 

al., 1998; D'Hondt et al., 1999; Leman et al., 2000; Ishida et al., 2002; Cohen et al., 2003; Koya et 

al., 2009). However, a faster c-fos IHC protocol has been published by Sundquist and Nisenbaum 

(2005).   
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 Several learning-related synaptic events such as changes in neurotropic factors, 

depolarization, release of neurotransmitters, elevation of intracellular/intranuclear Ca2+ and 

increase of Ca2+ influx, facilitate c-fos induction in cells (Greenberg and Ziff, 1984; Szekely et al., 

1987; Morgan and Curran, 1989a, b; Doucet et al., 1990; Sheng and Greenberg, 1990; Sheng et 

al., 1990; Ghosh et al., 1994; Gaiddon et al., 1996). One of the reasons that c-fos has been used to 

map stimulus-driven functional circuitry is that c-fos mRNA and protein are very low under basal 

conditions (Hughes et al., 1992). However, c-fos mRNA can be induced by acute challenge within 

minutes and peaks between 30 and 60 min post challenge. c-fos protein level reaches its maximum 

between 1h and 3h, then gradually it decays from the nucleus by 4-6 h after the induction protocol 

(Sonnenberg et al., 1989; Chan et al., 1993; Imaki et al., 1993; Ding et al., 1994; Ikeda et al., 1994; 

Cullinan et al., 1995; Kovacs and Sawchenko, 1996). Recently the combination of c-fos 

immunohistochemistry with localization of a second antigen has provided an advanced c-fos 

mapping technique identifying neurochemically-specified groups of cells in the brain (Mikkelsen 

et al., 1994; Kovacs, 1998; Hoffman and Lyo, 2002). Indeed, these technological advancements 

permit the design of novel experiments to define the role of active neuronal ensembles in cognitive 

behaviors.  

 

1.6.4 Cellular compartment analysis of temporal activity by fluorescence in 

situ hybridization (catFISH) of immediate early genes 

 Since Hebb postulated that learned associations occur within specific patterns of neurons 

(Hebb, 1949), which we now call neuronal ensembles, many in vivo electrophysiologists have 

provided evidence that the association between the conditioned stimulus and the unconditioned 

stimulus takes place in neuronal ensembles that are activated at the same time by both the stimuli 
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(Hebb, 1949; Schwindel and McNaughton, 2011). Later this ensemble hypothesis was adopted by 

many investigators and became the foundation for numerous learning and memory studies. 

Subsequent studies have  characterized learning-induced changes in putative neuronal ensembles 

(Pennartz et al., 1994; Nicolelis et al., 1997a; Guzowski et al., 2004; Schwindel and McNaughton, 

2011; Knierim and Zhang, 2012; Penner and Mizumori, 2012; Buzsaki and Moser, 2013).  

In the last 25 years several IEG-based labelling methods have been used to map neuronal 

components of brain circuits associated with specific behaviors (Morgan and Curran, 1991; Lerea 

et al., 1992; Sgambato et al., 1997; Reijmers et al., 2007; Mattson et al., 2008; Garner and Mayford, 

2012). For example, IEG methods have been employed in studies of addiction and withdrawal; 

learning and memory; pain; sensory processing; mating; feeding; maternal behaviors; circadian 

rhythm entrainment; and fear and stress (Guzowski et al., 2005). Conventional IEG techniques that 

either stain for protein levels (immunohistochemistry) or the mRNA of interest (in situ 

hybridization), permit one time visualization of the neuronal ensemble. To obviate these 

drawbacks, Guzowski and colleagues (1999) developed an IEG imaging technique to visualize the 

activity history of neural ensembles activated in two events separated by a fixed interval.  

Importantly, this methodological advance enables an investigator to map behaviorally relevant 

circuitry with reasonable temporal and good single cell resolution. The technique is termed 

“cellular compartment analysis of temporal activity by fluorescence in situ hybridization” 

(catFISH). This method mostly takes advantage of the temporal dynamics of the IEGs Arc, 

Homer1a, or Zif268. This technique has been used to label behaviorally relevant neural circuitry 

in the olfactory system (Yuan and Harley, 2014), hippocampus (Guzowski et al., 1999; Guzowski 

et al., 2004; Czerniawski and Guzowski, 2014; Pevzner and Guzowski, 2014), amygdala (Barot et 

al., 2008; Orsini et al., 2013), and infra limbic cortex (Orsini et al., 2013) among other structures. 
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Furthermore, this technique has been employed to study different learning paradigms including 

odor associative learning (Yuan and Harley, 2014), extinction (Orsini et al., 2013), fear 

conditioning (Hashikawa et al., 2011; Czerniawski and Guzowski, 2014; Pevzner and Guzowski, 

2014), conditioned taste aversion (Barot et al., 2008),and spatial navigation (Kubik et al., 2012). 

The catFISH technique has even been employed to image replay while an animal is at rest 

(Marrone et al., 2008) and to study the hippocampal function of rats that are susceptible to 

Posttraumatic Stress Disorder (PTSD)-like behaviors (Nalloor et al., 2014).  

 

1.6.4.1 catFISH principles 

 The general principle for catFISH is to use one neuronal activity marker (e.g. Arc or 

Homer1a) to detect neurons activated during the first episode of a sensory experience and a 

different or the same neuronal marker to label neurons that are activated by a second sensory 

experience. Likelihood of double labelling is indicative of the same neurons being recruited during 

the two episodes. While other brain imaging techniques either offer cellular resolution 

(conventional IEG immunohistochemistry) or temporal resolution (PET or fMRI), catFISH 

provides both temporal and cellular resolution of the brain’s responses to the external world.  The 

drawback is that catFISH can only be applied when two events occur with a fixed time interval 

due to the constrained expression dynamics of the IEGs used. Although catFISH is not applicable 

for real time study, it can be employed to trace large numbers of neurons that are activated by two 

defined episodes across brain structures.  
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1.6.4.2 Arc 

 The immediate early gene Arc (activity-regulated cytoskeleton-associated protein) is a 

commonly used activity marker in catFISH. This method exploits the time-dependent migration 

profile of the Arc mRNA from the nucleus to the cytoplasm of a neuron (Guzowski et al., 1999). 

As a result, it is possible to monitor neuronal ensembles activated at two times separated by a 

resting period (~20-30 min). This unique technical advantage of Arc catFISH permits us to address 

questions like how learning alters neural activity patterns to cope with an ever changing 

environment or whether the same neuronal ensemble that is recruited during learning also 

participates in the retrieval process (although the two events are temporally constrained). It can 

also be used to trace spatial activity maps of neuronal ensembles that encode specific contexts or 

cues.  Following any supra-threshold neuronal activity, Arc mRNA transcription occurs within ~1-

5 min and can be detected as bright transcription foci in the nucleus. Afterwards, Arc mRNA leaves 

the nucleus and diffuses to the cytoplasm. As a result within ~20-30 min of neural activity Arc 

mRNA emerges in the cytoplasm. Hence, Arc mRNA signals in the nucleus represents a behavioral 

epoch that takes place ~2-5 min before sacrifice and Arc mRNA in the cytoplasm indicates neural 

activity that occurs~20-30 min before sacrifice. However, neurons with both cytoplasmic and 

nuclear Arc mRNA are involved in both behavioral epochs. Thus by counting these three 

characteristic Arc expression patterns in a neuronal network, one can identify the two individual 

ensembles representing each event and the common cells activated by the two events. Several lines 

of evidence suggest that Arc is dynamically regulated in multiple brain regions (e.g. hippocampus, 

entorhinal cortex, amygdala, striatum) and it has been proven to be necessary for memory 

consolidation (Guzowski et al., 2001; Miyashita et al., 2008). In line with this, it has been reported 

that Arc is tightly coupled to neuronal activity associated with synaptic plasticity and memory 
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(Miyashita et al., 2009). In fact, Arc has been proposed to be involved in every form of synaptic 

plasticity (Lanahan and Worley, 1998; Guzowski, 2002; Plath et al., 2006; Bramham et al., 2008; 

Miyashita et al., 2009). For instance, genetic reduction of Arc protein expression in hippocampus 

leads to impairment in LTP maintenance and consolidation of hippocampus-dependent long term 

memory (Guzowski et al., 2000; Plath et al., 2006). Accumulation of Arc in inactive synapses 

facilitates surface GluA1 removal from the inactive synapse and is thus proposed to be involved 

in homeostasis and restabilization of active synapses (Rial Verde et al., 2006; Shepherd et al., 

2006; Okuno et al., 2012). Furthermore, somatic background staining of Arc is significantly lower 

compared to other dynamically regulated IEG such as Zif268.  All these advantages of Arc make 

Arc catFISH a powerful tool for the study of various cognitive functions such as perception, 

addiction, extinction, learning, and memory. 

 

1.6.4.3 Homer1a 

 Arc catFISH is the first of the two catFISH methods initially proposed by Guzowski and 

his colleagues. In the second catFISH method, the activity history of neurons is readout by using 

two IEGs e.g. Arc and Homer 1a  (Guzowski, 2002; Vazdarjanova et al., 2002; Vazdarjanova and 

Guzowski, 2004; Kubik et al., 2007; Czerniawski and Guzowski, 2014; Pevzner and Guzowski, 

2014). While Arc is expressed in the nucleus shortly following a sensory event, Homer1a emerges 

in the nucleus around 30 min following an event. Colocalization of Arc and Homer1a in the same 

cells suggests participation of the same neurons in both events. As cytoplasmic Arc expression is 

diffuse in nature, the nuclear foci signal of Homer1a offers a better readout for cells that are 

activated30 min before sacrifice. However, despite the fact that Arc/Homer1a catFISH eases the 

manual quantification process, Arc catFISH is less time consuming due to the need for processing 
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of only one marker. It is to be noted that although both catFISH techniques are excellent analytical 

tools to dissect the behaviorally relevant neural circuitry, the time consuming manual counting 

procedures of these techniques is still a major challenge to overcome. In addition, IEG catFISH 

techniques are not able to measure the rate coding properties of neurons.  

 

1.6.4.4 Zif268 

The inducible nature of IEG zif268 allows investigators to use it as another activity marker 

in the brain. Similar to other IEGs, Zif268 has been implicated in synaptic plasticity and is 

constitutively expressed in the neocortex, hippocampus, primary olfactory and entorhinal  cortices, 

amygdaloid nuclei, nucleus accumbens, striatum, visual cortex  and cerebellar cortex (Worley et 

al., 1991; Lanahan and Worley, 1998; Bozon et al., 2003; Davis et al., 2003). Studies suggest that 

zif268 is tightly coupled to neural activity in the visual cortex where its protein is detectable after 

2h of light stimulation and zif268 mRNA appears within 30 min of activation (Worley et al., 1991; 

Kaminska et al., 1996). Using this differential time course of appearance and disappearance of the 

IEG zif268 and its protein as an advantage, Chaudhuri et al (1997) developed a double labelling 

technique to visualize the neurons that are activated by two different visual experiences (Chaudhuri 

et al., 1997). Basically this technique combines immunocytochemical staining (ICC) and in situ 

hybridization (ISH). Since IEG mRNA and the protein’s half-life varied substantially and the 

double ICC/ISH labelling mapping method is technically more challenging than catFISH, this 

technique has not been exploited as much as catFISH as a mapping technique (Morgan and Curran, 

1991; Guzowski et al., 2001). 
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1.7  Objectives 

 This thesis explored the following questions 

1. What is the role of the α2-adrenoceptor in early odor preference learning? It has been 

shown that α2-adrenoreceptors mediate the disinhibitory effects of NE on mitral cells 

(Trombley and Shepherd, 1992; Trombley, 1994; Pandipati et al., 2010) and promote 

long-term enhanced gamma-oscillations within the OB network (Pandipati et al., 

2010). The α2-adrenoceptor mediated effect is age-dependent and the window of 

α2function in the OB coincides with the critical period for early odor preference 

learning. However, whether α2 activation plays a role in early odor preference learning, 

the molecular mechanisms underpinning its action and its synergistic effects with other 

adrenoreceptors have not been studied.  

2. How does early odor preference learning influence odor representations in the OB and 

aPC? Previous research has shown both the OB and aPC are critical for early odor 

learning and they work in concert to promote learning plasticity (Yuan et al., 2014). 

However, whether and how odor learning modifies neuronal ensemble dynamics in the 

OB and aPC to support memory is unknown. 

3. How does the aPC represent odors in adult rats and how do odor representations adapt 

to differential behavioral demands? Pattern separation and completion have been 

studied in both hippocampus and PC (Wilson, 2009; Rolls, 2013, 2015). Recent work 

from Wilson’s lab has demonstrated a bi-directional plasticity of the aPC ensembles in 

odor discrimination learning using extracellular unit recording in anesthetized rats 

(Chapuis and Wilson, 2012). The Arc catFISH method employed as the advantage of 

post-hoc monitoring of large ensembles of neurons during behavior. Pattern separation, 
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completion and dynamics of the ensembles responding to the same stimulus over time 

can be visualized in a non-invasive manner. 

4. What are the roles of NE in adult odor discrimination learning and odor 

representations? Previous research has suggested that NE is critical for olfactory 

learning and odor discrimination in adult rodents (Doucette et al., 2007; Mandairon et 

al., 2008b; Escanilla et al., 2010). Recently it has been shown that pharmacological 

blockade of adrenoreceptors in the OB impairs difficult odor discrimination learning 

and reduces synchronized firing of mitral cells to rewarded odors(Doucette et al., 

2011).How NE manipulations in the PC influence odor learning and odor 

representations in the OB is not known. Furthermore, although NE manipulation in the 

OB has been implicated in odor learning, how such altered OB signaling influences PC 

odor ensemble representation has not been characterized.   
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Chapter-02 : Olfactory bulb 2-adrenoceptor activation promotes rat pup odor preference 

learning via a cAMP-independent mechanism.(This chapter is a version of the manuscript 

published in Learning and Memory 19 (11): 499-502, 2012) 

 

2.1 Introduction 

 

 Odor-preference learning in the week-old rat pup occurs when a novel odor (conditioned 

stimulus, CS) is paired with activation of the noradrenergic locus coeruleus. The locus coeruleus 

is activated by the range of stimuli that can induce odor-preference learning including stroking 

(Sullivan and Leon, 1986; McLean et al., 1993) and feeding (Johanson and Teicher, 1980; 

Kucharski and Hall, 1987), all of which serve as unconditioned stimuli (UCS). Even rough 

maternal handling mimicked by mild shocks will engage odor-preference learning (Camp and 

Rudy, 1988; Sullivan et al., 2000a). Odor-preference learning enables rat pups to locate the dam 

at a period when visual and auditory input is minimal. Odor paired with the activation of β-

adrenoreceptors in the olfactory bulb is sufficient to induce odor learning, while a bulbar β-

adrenoceptor antagonist prevents odor-preference learning (Sullivan et al., 2000b). Thus, the 

olfactory bulb appears to be the critical site for the CS–US pairing, and the likely location of the 

odor memory. 

However, in addition to β-adrenoceptors, which induce odor learning via activation of the 

cAMP/PKA/CREB cascade (McLean et al., 1999; Yuan et al., 2003b; Yuan et al., 2003a; Cui et 

al., 2007; Grimes et al., 2012), there are bulbar α-adrenoreceptors likely to be engaged by 

norepinephrine (NE) release. Recently, studies of α2-adrenoceptor activation in the olfactory bulb 

in vitro have revealed receptor effects that could promote odor learning (Nai et al., 2010; Pandipati 
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et al., 2010). In particular, the α2-adrenoceptor agonist, clonidine, has been shown to decrease 

granule cell excitability (Nai et al., 2010), releasing the odor-encoding mitral cells from tonic 

inhibition, and to promote olfactory bulb synchrony at γ EEG frequencies (Pandipati et al., 2010). 

These studies predict a role for α2-adrenoceptor activation in odor-preference learning. 

The present experiments assess the role of bulbar α2-adrenoceptors in rat pup odor 

preference learning. 

 

2.2 Methods 

In all experiments, drugs were infused into the olfactory bulbs on postnatal day (PND) 6. 

Day of birth was considered PND 0. Sprague-Dawley rat pups of both sexes were used and litters 

were culled to 12 pups on PND 1. Dams were maintained under a 12-h reverse light/dark cycle at 

22°C in polycarbonate cages with ad libitum access to food and water. All procedures were 

approved by the Institutional Animal Care Committee at Memorial University of Newfoundland 

and followed the Canadian Council on Animal Care guidelines.  

 

2.2.1 Odor Conditioning and Drug Infusion 

Details of infusion methods have been reported previously (Lethbridge et al., 2012). 

Briefly, PND 5 rat pups were anesthetized via hypothermia and two customized guide cannulae 

(27-gauge, 2.5 mm apart, anchored by dental acrylic and extending ∼1 mm beyond the acrylic) 

were implanted into the center of the olfactory bulb and fixed to the skull with dental acrylic. 

Infusion cannulae made from 30-gauge stainless-steel tubing were inserted into PE20 

polypropylene tubing attached to a 10-μL micro syringe and placed in a multi-syringe pump. 
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In the first experiment, on PND 6, peppermint odor was paired with mild electrical shock. 

Animals received bilateral intra-bulbar infusions of saline or yohimbine (500 µM, 1 µL/bulb at 0.1 

µL/min) and were randomly assigned to one of three groups: (1) saline + shock, (2) saline + shock 

+ odor, or (3) yohimbine + shock + odor. The training chamber included a grid assembly floor 

connected to a shock generator (Muromachi Kikai Co.). The paired group received 11 

presentations of a 30-sec odor stimulus delivered by sliding an odorized bedding tray (0.3 mL 

peppermint extract/500 mL clean bedding) under the grid for 30 sec, ending with a 1-sec shock 

(0.5 mA). The intertrial interval was 2 min.  

 

2.2.2 Odor Preference Testing 

On PND 7, pups were tested for odor-preference memory in a stainless-steel test box placed 

on top of two bedding boxes separated by a 2-cm neutral zone. One box contained peppermint 

bedding while the other box contained clean, unscented bedding. Each pup underwent five 1-min 

trials during which it was placed in the neutral zone of the test box and allowed to move freely. 

The amount of time spent over peppermint bedding and unscented bedding over five trials was 

calculated. Values reported are the percentages of time spent over peppermint bedding divided by 

total time spent over both beddings. One-way ANOVA and post-hoc Fisher tests were used to 

evaluate statistical significance with P set at <0.05. An intra-bulbar infusion of 4% methylene blue 

dye was followed by dissection of the olfactory bulbs to check cannulae position (Appendix-A). 

Pups with cannulae blockage during infusion, or misplaced cannulae, were excluded from analysis.  
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2.3 Results 

Pairing peppermint odor with shock induced odor-preference learning, while the α2-

adrenoceptor antagonist yohimbine prevented odor-preference learning (F(2,33) = 12.18, P < 0.001) 

(Fig. 2.1A). Saline + shock + odor pups spent significantly more time (56.05% ± 3.68, n = 12) 

over peppermint than either the saline + shock group (37.63% ± 4.04, n = 12) or the yohimbine + 

shock + odor group (33.86% ± 2.21, n = 12). Blocking α2-adrenoreceptors locally in the olfactory 

bulb prevented preference learning that was induced by pairing odor with electrical shock.  

We next asked whether α2-adrenoceptor activation could act as an UCS for odor-preference 

learning. PND 6 rats were placed on peppermint bedding for 10 min and the α2-adrenoceptor 

agonist, clonidine (5, 50, or 500 µM) or saline, was infused into the olfactory bulb bilaterally at 

the rate of 0.1 µL/min. To control for the potential effect of clonidine on α1-adrenoreceptors at the 

higher concentration, a group of animals with co-infusion of prazosin (10 µM, α1-adrenoceptor 

antagonist) and clonidine (500 µM) was included in the study. Clonidine dose-dependently 

induced odor-preference learning on PND 7 (F(4,62) = 4.77, P = 0.002) (Fig. 2.1B). The 500 µM 

clonidine infusion group spent significantly more time on the peppermint side (63.89% ± 3.03, n = 

14) than the saline group (43.82% ± 2.97, n = 18), the 5 µM clonidine group (51.19% ± 2.25, n = 

14), or the 50 µM clonidine group (52.48% ± 4.49, n = 16). The coinfusion of 500 µM clonidine 

and 10 µM prazosin group (57.8% ± 5.97, n = 5) still showed a significant learning effect when 

compared with the saline group. This outcome suggests that clonidine-mediated α2-adrenoceptor 

activation can act as an UCS for odor-preference learning. 

 

http://learnmem.cshlp.org/content/19/11/499.long#F1
http://learnmem.cshlp.org/content/19/11/499.long#F1


73 
 

 

 

Figure 2.1 Olfactory bulb α2-adrenoreceptors are critically involved in early odor-preference 

learning in rats. 

(A) Bulbar infusion of the α2-adrenoceptor antagonist yohimbine prevented odor preference 

learning induced by odor + shock pairing. (PP) Peppermint. (B) Clonidine bulbar infusion dose-

dependently induced odor-preference learning. Bars show the percentages of time spent on the 

peppermint side in a two-choice test box in different experimental groups. (**) P< 0.01; (*) P< 

0.05. Error bars, mean ± SEM. 
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 We then sought to clarify the cellular mechanisms of α2-adrenoceptor action during 

clonidine-induced learning. The evidence that clonidine reduces granule cell activity (Nai et al., 

2010; Pandipati et al., 2010) predicts elevated mitral cell excitation during odor paired with 

clonidine. We performed pCREB immunohistochemistry as an index of mitral cell activation and 

to assess the role of CREB in the clonidine model. Unilateral bulbar infusions of either clonidine 

(500 µM) or the GABA-A receptor antagonist gabazine (100 µM, previously shown to induce 

odor-preference learning) (Lethbridge et al., 2012) were paired with odor. The remaining bulb was 

infused with saline as a control. Additional animals were given intrabulbar isoproterenol (50 µM) 

(Fig. 2.2A,B) or a systemic isoproterenol injection (2 mg/kg, data not shown) to confirm the β-

adrenoceptor-associated increase in pCREB and cAMP patterns reported previously (Yuan et al., 

2000; Yuan et al., 2003b; Yuan et al., 2003a; Cui et al., 2007). At 5–10 min following the end of 

training, animals were anesthetized with chloral hydrate and perfused transcardially with ice-cold 

saline followed by ice-cold fixative (4% paraformaldehyde in 0.1 M phosphate buffer at pH 7.4). 

Brains were removed and post-fixed for 1 h in fixative and then immersed in 20% sucrose 

overnight at 4°C. They were stored in sucrose until cutting. Brains were quick-frozen on dry ice 

and 30-μm coronal sections cut in a cryostat at −20°C. A pCREB antibody (1:100, Cell Signalling) 

was used to probe for CREB phosphorylation at Ser133. The antibody was dissolved in phosphate-

buffered saline with 0.2% Triton-X-100, 0.02% sodium azide, and 2% normal goat serum and 

applied to sections overnight at 4°C in a humidified chamber. The next day, sections were 

incubated in a biotinylated secondary antibody (Vectastain Elite) followed by a diaminobenzidine 

tetrahydrochloride reaction. Sections were dehydrated and cover slipped with Permount.  

 

 

http://learnmem.cshlp.org/content/19/11/499.long#F2
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Figure 2.2 α2-adrenoceptor activation increases pCREB expression in mitral cells via a 

cAMP independent pathway 

(A) An example of mitral cell pCREB expression following bulbar infusion of the β-adrenoceptor 

agonist isoproterenol. (MC) Mitral cell layer. Scale bars, 500 µm and 100 µm. (B) Mitral cell 

cAMP activation in an alternate section from the same bulb induced by isoproterenol infusion. 

Scale bars, 500 µm and 100 µm. (C) Clonidine infusion increased mitral cell pCREB expression 

in the olfactory bulb. Clonidine was infused into the right olfactory bulb. Bars show the relative 

optical densities (RODs) of mitral cell pCREB in the lateral and medial regions of the two olfactory 

bulbs. (**) P< 0.01. (D) Gabazine infusion increased mitral cell pCREB expression in the olfactory 

bulb. Gabazine was infused into the right olfactory bulb. (*) P< 0.05. (E) Clonidine infusion did 

not change mitral cell cAMP expression in the olfactory bulb. (F) Gabazine infusion did not 

change mitral cell cAMP expression in the olfactory bulb. Error bars, mean ± SEM. 
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Staining for pCREB was analyzed using a Bioquant image analysis system. Images of 

sections were captured with a CCD camera connected to a Leitz microscope. For each section 

analyzed, the optical density (OD) of the olfactory nerve layer was used as a measure of 

background OD. Regions of interest (ROIs) were selected using a hand tracing tool. The relative 

OD of each ROI was obtained using the following formula: (OD of ROI–OD of background)/OD 

of background. Image analysis was conducted on every third to fourth section across the rostro-

caudal extent of the olfactory bulb measuring the mitral cell layer in both the lateral and medial 

regions. The relative ODs (RODs) of the lateral and medial measurements were compared among 

groups and the mean ± SEM are reported for each ROI. Paired t-tests were used to evaluate 

differences (P < 0.05).  

Unilateral clonidine infusion significantly increased mitral cell layer pCREB expression in 

the lateral (ROD clonidine: 0.059 ± 0.012 vs. saline: 0.041 ± 0.010, n = 6), but not medial (ROD 

clonidine: 0.040 ± 0.012 vs. saline: 0.036 ± 0.010, n= 6), regions of the olfactory bulb (Fig. 2.2C). 

Gabazine infusion increased mitral cell layer pCREB expression in both the lateral (gabazine: 

0.082 ± 0.017 vs. saline: 0.050 ± 0.011, n = 7) and the medial (gabazine: 0.079 ± 0.019 vs. saline: 

0.055 ± 0.015, n = 7) regions of the olfactory bulb (Fig. 2.2D). These results suggest that α2-

adrenoceptor-mediated disinhibition synergizes with odor input to activate pCREB in odor-

encoding mitral cells in the peppermint presentation region (Lethbridge et al., 2012), while 

gabazine disinhibition is strong enough to directly activate mitral cell pCREB more globally.  

The activation of pCREB by clonidine and gabazine learning doses paired with odor 5–10 

min post-training is consistent with a role for an α2-adrenoceptor-mediated disinhibition in learning 

and parallels the pCREB increases reported with an isoproterenol US (Yuan et al., 2000) and 

verified in examples for the present experiments (Fig. 2.2A).  

http://learnmem.cshlp.org/content/19/11/499.long#F2
http://learnmem.cshlp.org/content/19/11/499.long#F2
http://learnmem.cshlp.org/content/19/11/499.long#F2
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Using alternate sections from a subset of the infused bulbs, we asked whether increases in 

cAMP occurred 5- to 10-min post-training as reported earlier for β-adrenoceptor-mediated 

learning (Fig. 2.2B; (Yuan et al., 2003a; Cui et al., 2007)). The procedures for cAMP staining and 

analysis were the same as those used for pCREB immunoctyochemistry except that a cAMP 

antibody (1/2000, Genscript) was used. 

Neither unilateral clonidine nor gabazine infusion changed mitral cell cAMP expression in 

either the lateral (clonidine: 0.055 ± 0.016 vs. saline: 0.059 ± 0.016, n = 6; gabazine: 0.086 ± 0.022 

vs. saline: 0.078 ± 0.012, n = 4) or the medial (clonidine: 0.061 ± 0.016 vs. saline: 0.074 ± 

0.025, n = 4; gabazine: 0.113 ± 0.025 vs. saline: 0.108 ± 0.014, n = 4) regions of the olfactory bulb 

(Fig. 2.2E, F). 

The optical density of pCREB and cAMP staining did not vary among conditions in the 

granule cell layer in contrast to what we found for the mitral cell layer (data not shown). This result 

and the observation that the pCREB-reactive nuclei in the mitral cell layer were, in general, equal 

to or larger than 10 µm in diameter (in contrast to ∼5–7 µm in the granule cell layer) (see Fig. 

2.2A, lower panel) suggest that changes in pCREB optical density in the mitral cell layer are due 

to changes in mitral cell reactivity rather than to changes in granule cell pCREB. However, using 

antibodies to positively identify cell types should be considered in future studies to further 

strengthen this inference. 

 Finally, we probed the interaction between α2- and β-adrenoceptor activation during early 

odor-preference learning. We asked whether clonidine infusion would enable learning in animals 

that receive subthreshold doses of isoproterenol during training. We first replicated the reported 

inverted U-curve effect of isoproterenol (Sullivan et al., 1991a) by giving PND 6 pups 

subcutaneous injections of saline or various doses of isoproterenol (1, 1.5, 2, 6 mg/kg, made in 

http://learnmem.cshlp.org/content/19/11/499.long#F2
http://learnmem.cshlp.org/content/19/11/499.long#F2
http://learnmem.cshlp.org/content/19/11/499.long#F2
http://learnmem.cshlp.org/content/19/11/499.long#F2
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saline). Thirty minutes after injection, pups were removed from the dam and individually placed 

on unscented clean bedding for a 10-min habituation period and then transferred to peppermint 

bedding for a 10-min odor exposure. 

Odor-preference testing the next day showed that only the moderate dose of isoproterenol, 

2 mg/kg, induced learning (F(4,43) = 2.94, P = 0.031) (Fig. 2.3A). Post-hoc tests showed significant 

differences between the 2 mg/kg group (56.64% ± 4.48, n = 9) and all lower dose groups: saline 

(34.61% ± 3.73, n = 13), 1 mg/kg isoproterenol (35.81% ± 4.53, n = 9), and 1.5 mg/kg 

isoproterenol (40.24% ± 9.10, n = 8). 

 We next tested whether coapplication of clonidine infused bilaterally as described earlier 

would left-shift the isoproterenol dose curve. A saline infusion-only group was included as a 

negative control. Co-application of the previously suboptimal 50 µM clonidine enabled odor-

preference learning when combined with the previously suboptimal 1.5 mg/kg dose of 

isoproterenol (F(5,46) = 2.78, P = 0.028) (Fig. 2.3B). The 1.5 mg/kg group (53.77% ± 3.61, n = 9) 

spent significantly more time over the peppermint bedding than the 2 mg/kg group (31.75% ± 

3.69, n = 7) and the saline infusion group (38.84% ± 2.09, n = 13), which did not differ. These 

results reveal additive effects of α2- and β-adrenoceptor activation in the formation of early odor-

preference learning. 

 

 

 

 

 

 

http://learnmem.cshlp.org/content/19/11/499.long#F3
http://learnmem.cshlp.org/content/19/11/499.long#F3


79 
 

 

 

Figure 2.3 α2-adrenoceptor coactivation enables odor learning with suboptimal doses of 

isoproterenol 

(A) Isoproterenol dose dependently induced early odor-preference learning in an inverted U-curve 

fashion. (B) Addition of subthreshold 50 µM clonidine enabled odor-preference learning with a 

subthreshold 1.5-mg/kg dose of isoproterenol. (**) P < 0.01; (*) P < 0.05. Error bars, mean ± SEM. 
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2.4 Conclusion and Discussion 

Taken together, our pattern of results is consistent with a critical role for the α2-

adrenoceptor in early odor-preference learning and supports the prediction from recent in vitro 

studies demonstrating an α2-adrenoceptor-mediated disinhibition of mitral cells from granule cells 

(Pandipati et al., 2010), which would enhance mitral cell excitation and facilitate recruitment of 

NMDA-mediated plasticity. These effects together with β-adrenoceptor-mediated effects on mitral 

cells (Hayar et al., 2001; Yuan et al., 2003a; Yuan, 2009; Lethbridge et al., 2012), as well as 

behavioral evidence (Harley et al., 2006) that systemic α1-adrenoceptor activation serves as a US 

for odor-preference in rat pups, argue that US-associated NE release in the olfactory bulb acts 

through multiple adrenoreceptors to promote optimal plasticity-inducing activation of the odor-

encoding mitral cells. Memory for the conditioning odor is likely to be represented as a stronger, 

sharper, and more synchronized mitral cell output from the olfactory bulb. An increased output 

synchrony has recently been shown to indicate encoded reward (Doucette et al., 2011). γ frequency 

enhancement by the α2-adrenoceptor may confer the reward signature in odor preference learning. 

It is not known at this point how the varying forms of adrenoceptor plasticity promotion 

interact intracellularly. Although the role of disinhibition is well understood, the specific route to 

CREB phosphorylation in the absence of a cAMP increase in mitral cells remains to be elucidated. 

The ability to combine subthreshold α2- and subthreshold β-adrenoceptor activation to induce odor 

learning suggests a converging intracellular interaction. It will be interesting to examine cAMP 

changes in the additive model in future experiments. 

The amount of NE released as a function of the US is also of considerable interest. Milk 

infusion (Kucharski and Hall, 1987) and mild shock (Moriceau et al., 2009b) produce longer-

lasting memories than those induced by stroking or isoproterenol. We predict that the 
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concentration of NE released in the vicinity of the bulbar adrenoreceptors determines memory 

duration by acting through multiple concentration-sensitive receptor subtypes. The inverted U 

curve associated with β-adrenoceptor activation is well characterized (Sullivan et al., 1991a; 

Langdon et al., 1997; Yuan et al., 2000). Additionally, at the granule cell-to-mitral cell synapse, 

NE has differing effects depending on both concentration and developmental stage (Nai et al., 

2009; Pandipati et al., 2010). Under natural conditions, NE concentrations likely will favor 

complex interactions of excitation and inhibition, fine-tuning odor encoding at more than one level. 

 Finally, whether early odor-preference memory is restricted to the olfactory bulb after 

initial encoding is unknown. Some evidence suggests stronger memories come to be shared with 

downstream sites such as the piriform cortex (Kucharski and Hall, 1987)). For this to occur, 

changes in output synchrony such as those associated with α2-adrenoceptor activation may be even 

more important than changes in the strength of olfactory nerve-to-mitral cell firing (Lethbridge et 

al., 2012). 
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Chapter-03: Visualizing the Engram: Learning Stabilizes Odor Representations in the 

Olfactory Network (This chapter is a version of the manuscript published in The Journal of 

Neuroscience 34(46): 15394-15401, 2014) 

 

3.1 Introduction 

 The rat pup odor preference learning model is highly attractive as a tractable model of 

mammalian associative learning. The rodent pup readily acquires preferences for odors paired with 

maternal care signals to support maternal recognition (Logan et al., 2012). The conditioned 

stimulus in this associative model is typically a novel odor, whereas the unconditioned stimulus is 

provided by norepinephrine (NE) release from the locus coeruleus acting through an ensemble of 

noradrenergic receptors, the best studied of which is the β-adrenoceptor (Yuan et al., 2014). This 

NE release can be induced by tactile stimulation with a brush to mimic maternal care (Rangel and 

Leon, 1995). A single trial in which pups on peppermint-scented bedding are stimulated creates a 

preference for peppermint lasting 24 h, whereas multiple trials spaced over days creates more 

enduring memories (Fontaine et al., 2013). 

 Cellular events critical for learning have been identified in both the olfactory bulb (OB) 

and aPC. Mechanisms for learning include activation of NMDA receptors (NMDARs; (Lethbridge 

et al., 2012; Morrison et al., 2013)), L-type calcium channels (Jerome et al., 2012), metabotropic 

glutamatergic receptors (Rumsey et al., 2001), adrenergic receptors (Sullivan et al., 2000b; Harley 

et al., 2006; Shakhawat et al., 2012; Morrison et al., 2013), and disinhibition (Lethbridge et al., 

2012). Intracellular changes critical for learning in the OB include a temporally specific cAMP 

transient (Cui et al., 2007), activation of protein kinase A  (Grimes et al., 2012), phosphorylation 

of CREB (McLean et al., 1999), and an insertion of AMPA receptors (AMPARs; (Cui et al., 2007).  
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 Changes that relate to long-term memory expression are fewer in number. Visualization 

methods have shown an increase in intrinsic optical signaling (Yuan et al., 2002), an increase in 

AMPARs at the glomerular level (Cui et al., 2011), and an increase in network strength in the aPC 

(Fontaine et al., 2013). Electrophysiological methods have shown potentiation of the olfactory 

nerve to mitral cell synapse in the OB (Yuan and Harley, 2012) and of the lateral olfactory tract 

mitral cell output to an aPC pyramidal cell synapse (Fontaine et al., 2013; Morrison et al., 2013). 

 Maintained increases in AMPAR strength, which have been hard to demonstrate with 

memory in other systems, have been clearly seen in this model (Fontaine et al., 2013). The 

commissural connections are not mature in the 1-week-old rat pup, and thus odor input is 

lateralized both in the OB and piriform cortex (Kucharski et al., 1986b; Kucharski and Hall, 1987; 

Fontaine et al., 2013). Taking advantage of this within-animal control, AMPAR changes congruent 

with memory duration were readily revealed (Fontaine et al., 2013). 

 In the present study, catFISH of Arc mRNA was used to identify odor ensemble 

representations in the OB and aPC of rat pups that had undergone odor preference training with 

one naris occluded. The outcomes support current views of cortical representations in mammalian 

brain and suggest stability of cell participation in representations is the signature feature of learning 

and memory. 
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3.2 Materials and Methods 

3.2.1 Animals 

 All experiments with animals were approved by the Animal Care Committee of Memorial 

University of Newfoundland in compliance with the guidelines of the Canadian Council on Animal 

Care. Sprague Dawley rat pups of both sexes were used in this study. Dams with pups were housed 

in a vivarium that was temperature controlled and on a 12 h light/dark cycle. The date of birth for 

the pups was designated postnatal day 0 (PND0). 

 

3.2.2 Early odor preference training 

 The early odor preference training protocol with single naris occlusion has been established 

previously (Yuan and Harley, 2012; Fontaine et al., 2013). Rat pups were assigned to one of two 

conditions: odor paired with stroking (O/S+) or odor only (O/S−). Four-day behavioral training was 

performed from PND3 to PND6. During training, all pups received left naris occlusion for each 

session. Nose plugs were constructed from polyethelene-20 tubing (Yuan and Harley, 2012; 

Fontaine et al., 2013). Pups were given a sterile 2% xylocaine gel application on the left naris 5 

min before plug insertion. Pups were left to rest for 5 min before subsequently being given either 

O/S+ or O/S− training. During training, pups were placed on peppermint-scented bedding (0.3 ml 

of peppermint for 500 ml volume of bedding). Pups in the O/S+ group were simultaneously stroked 

with a paint brush (30 s stroking interleaved with 30 s rest) for 10 min. Pups in the O/S− group 

were placed on peppermint bedding for 10 min without being stroked. Nose plugs were removed 

immediately after the training, and pups were returned to the dams. 
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3.2.3 Tissue collection 

On PND7, pups were placed into covered plastic jars with charcoal-filtered clean air flow 

for 1.5 h before being given two 5 min odor deliveries separated by 20 min: either 2× peppermint 

or peppermint followed by vanillin or 2× vanillin (Fig. 3.1A). For odor delivery, pups were moved 

to an adjacent covered jar with peppermint or vanillin bedding at the bottom (0.3 ml of odor extract 

mixed with 500 ml of normal bedding) and then switched back to the clean-air jar in the 20 min 

interval. A naive group was used initially to test odor input specificity. Pups in this group were 

exposed to two different odors without prior training. For this latter experiment (Fig. 3.1), 1% 

peppermint or vanillin odor diluted in mineral oil was delivered through the air-delivery system 

(Knosys olfactometer) for the 5 min odor periods (Shakhawat et al., 2014a). 

 After the second odor exposure, rats were decapitated, and their brains were flash-frozen 

in 2-methyl-butane immersed in an ethanol/dry ice slurry. Brains were preserved in a −80°C 

freezer until being sectioned at 20 μm in a cryostat set at −20°C. Sections of right hemispheres of 

the animals in the input specificity study and both hemispheres of pups from all other groups were 

mounted onto 2% 3-aminopropyltriethoxysilane-treated slides (Snowcoat; Leica) using OCT 

compound (Tissue-Tek; Sakura Fintek USA). Each block usually contained four to six brains from 

a particular experiment so that these brains were processed together. Five to six slides taken evenly 

through the rostral to caudal range of the OB and the aPC were used for fluorescent in 

situ hybridization and stored at −20°C.  

http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F1
http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F1
http://www.jneurosci.org.qe2a-proxy.mun.ca/cgi/redirect-inline?ad=Leica
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3.2.4 Fluorescence in situ hybridization 

The fluorescence in situ hybridization protocol used was established previously (Guzowski 

and Worley, 2001; Shakhawat et al., 2014a). Briefly, Arc full-length DNA plasmid was digested 

using EcoRI (Invitrogen) and run against a DNA ladder to confirm yield and base pair accuracy 

(∼2.5 kb) (Appendix-B). Digoxegenin-labeled riboprobes were synthesized from the digested 

DNA template using a Maxiscript transcription kit (Ambion). Arc antisense riboprobe yields were 

confirmed using 1% agarose gel electrophoresis. Slides were brought to room temperature, fixed 

with 4% paraformaldehyde, bathed with acetic anhydride and methanol/acetone (Thermo Fisher 

Scientific), and treated with prehybridization buffer followed by hybridization buffer (Sigma-

Aldrich) and Arc riboprobe. Hybridization occurred overnight in a 56°C oven. The next day, after 

a series of sodium citrate washes, any remaining single-stranded RNA was cleaved using Rnase A 

(Sigma-Aldrich) at 37°C. Endogenous peroxidases were quenched with H2O2, and slides were 

blocked with 5% sheep serum (Sigma-Aldrich) and incubated with anti-digoxegenin–horseradish 

peroxidase (Roche) for 2 h. After a series of Tris-buffered saline washes, the Cy3 fluorescent 

marker (PerkinElmer) was applied to visualize Arc mRNA, and nuclei were counterstained with 

4′-6-diamidino-2-phenylindole (DAPI; 1:2000; Sigma-Aldrich). Finally, slides were covered with 

Vectashield antifade medium (Vector Laboratories) and sealed with clear nail polish after cover-

slipping. Slides were kept at 4°C before confocal microscopy scanning. 

 

 

 

 

http://www.jneurosci.org.qe2a-proxy.mun.ca/cgi/redirect-inline?ad=Thermo%20Fisher%20Scientific
http://www.jneurosci.org.qe2a-proxy.mun.ca/cgi/redirect-inline?ad=Thermo%20Fisher%20Scientific
http://www.jneurosci.org.qe2a-proxy.mun.ca/cgi/redirect-inline?ad=PerkinElmer
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3.2.5 Confocal image acquisition 

 Using an FV1000 confocal microscope (Olympus), optical z-sections were taken from both 

the OB and the aPC. Images of mitral cell layers were taken at 40× with two standardized areas 

(∼0.06 mm2 each) in the dorsolateral quadrant and two areas in the ventromedial quadrant of the 

OB (Fig. 3.2A). Images of pyramidal cell layers (II/III) of the aPC were taken at 20×. Two 

standardized-sized areas (∼0.3 mm2 each; one in lateral and one in medial aPC; Fig. 3.4A) were 

scanned. The z-stacks (1.0 μm thickness) throughout each section (20 μm) of the OB and the aPC 

were acquired from three to four slides spread evenly over the rostral to caudal range. 

Photomultiplier tube assignments, confocal aperture size, and contrast remained constant for each 

slide. The average counts of the two areas were used for final counts for the dorsolateral and 

ventromedial OB and for the aPC. 

 

3.2.6 Image analysis 

Off-line image analysis was performed using ImageJ software. The total numbers of DAPI 

cells were assessed using the ImageJ automatic cell-counting application for the aPC and the 

manual counting option for the OB. Foci, cytoplasmic, and double labeling of Arc-positive (Arc+) 

cells were counted manually. Labeling of cells as foci, cytoplasmic, and double was achieved by 

checking multiple optical sections (20% midrange of the z-stack) that comprised each individual 

cell (Miyashita et al., 2009). Counting was performed by an individual blind to all experimental 

training conditions. 

 

http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F2
http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F4


88 
 

3.2.7 Statistics 

 OriginPro 9.0 software was used to analyze all data sets. Data were reported as the mean ± 

SEM. Two-sample paired t tests were used for statistical comparisons for all experiments except 

for the input specificity experiment in Figure 3.1 and the comparison of occluded hemispheres 

across groups, in which a two-sample unpaired t test was used. Differences between groups were 

considered significant when p values were <0.05. 

 

3.3 Results 

The immediate-early gene Arc has been established as a marker to index plasticity-related 

neuronal activation in multiple brain areas, including the olfactory cortex (Guzowski et al., 2005; 

Shakhawat et al., 2014a). Although previous research using Northern blots suggested Arc was not 

expressed early in development in the forebrain (Lyford et al., 1995), the more sensitive in 

situ hybridization technique readily reveals the presence of Arc mRNA in our 

study. Arc transcription first appears in the neuronal nucleus within 5 min of neuronal activity. 

Thirty minutes later, initial Arc mRNA has trans-located to the cytoplasm, and a second event can 

initiate new transcription of nuclear Arc (Guzowski et al., 2005) . Therefore, Arc permits 

discrimination of two separate odor events through analysis of compartmentalized expression (Fig. 

3.1A). In the present experiments, we were also able to use Arc to examine granule cells, although 

it is not normally often expressed in inhibitory interneurons (Vazdarjanova et al., 2006; McCurry 

et al., 2010) and did not occur here in the juxtaglomerular neurons. 

 Two sets of experiments were included in this study. First, naive rat pups were used to test 

whether Arc can serve as an input-specific activity marker in the OB. Second, rat pups underwent 

either odor paired with stroking (O/S+) or odor-only (O/S−) training and were given 2× peppermint 

or vanillin before brain extractions (Fig. 3.1A). 

http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F1
http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F1
http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F1
http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F1
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3.3.1 Odor input specificity in the OB indexed by Arc mRNA 

 

 To test the odor input specificity of Arc activation, naive pups were exposed to two 5 min 

episodes of odor: either peppermint on both occasions separated by a 25 min interval (Fig. 3.1A, 

top, PP-PP) or peppermint followed by vanillin 25 min later (Fig. 3.1A, top, PP-VA). Animals 

were killed immediately after the second episode and processed for Arc catFISH. Cells that 

expressed Arc in the cytoplasm were only active during the first odor episode (peppermint) 

whereas cells that expressed Arc only in the nuclei were active only during the second odor episode 

(peppermint or vanillin), and cells expressing Arc in both the nuclei and cytoplasm were activated 

by both odor episodes (see example cells in Fig. 3.1A, bottom). 

 Peppermint activated both mitral cells and granule cells in the OB, especially the 

dorsolateral and ventromedial regions that were previously shown as “hot spots” for peppermint 

(Johnson and Leon, 1996); Fig. 3.1B1). Arc+ cells in the mitral cell layer were counted in the 

dorsolateral region of the OB. On average, novel peppermint activated ∼7.5% of the cells in the 

mitral cell layer of the dorsolateral OB, whereas novel vanillin activated ∼6.4% of the cells in the 

same region. Comparing the overlap ratio (OLR; the proportion of cells with double staining 

relative to the total number of Arc+ cells) of the cell ensembles activated by two odor events, we 

demonstrated that repeated peppermint exposure was associated with significantly greater overlap 

(32.43 ± 1.64%, n = 4) than peppermint followed by vanillin exposure (18.73 ± 2.79%, n = 4, t = 

4.23, p = 0.006; Fig. 3.1B2, B3). This experiment suggests that Arc mRNA can be used as a marker 

for input-specific representations of odors in the OB. The same odor is more likely to 

initiate Arc transcription twice in the same cells. 

http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F1
http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F1
http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F1
http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F1
http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F1
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Figure 3.1 Arc mRNA visualization reveals odor input-specific activation of mitral cell  

ensembles in the OB.  
A, Schematic of tissue collection protocols in naive and trained rat pups (top) and example images 

for Arc+ cells (bottom). Blue indicates nuclei staining by DAPI. Red indicates Arc staining. White 

arrows indicate Arc staining in nuclei. Yellow arrows indicate Arc cytoplasm staining. Scale bar, 

10 μm. B1, Example image of Arc expression in the OB of a naive rats exposed to 2× peppermint. 

GL, Glomerular layer; MCL, mitral cell layer; GCL, granule cell layer. Scale bar, 500 μm. B2, 

Example images of dorsolateral OB Arc expression in a naive rat pup to two odor episodes. White 

arrows indicate Arc+ double cells in the MCL. Scale bars, 20 μm. B3, OLRs of the cell ensembles 

of the two odor episodes. **p< 0.01, PP, Peppermint; VA, vanillin. 
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3.3.2 Odor preference training leads to more stable odor representation in the   

 mitral cell layer of the OB 

We next trained rat pups in a multiday (P3–P6) peppermint O/S+ conditioning with a single 

naris occluded. The ensembles of neurons responding to peppermint in the OB after training were 

assessed by Arc mRNA expressions induced by two peppermint episodes (Figs. 3.1A, 2, PP-PP). 

The trained OB was compared with the occluded side to achieve an intra-animal control. We have 

shown that single naris occlusion during multiday training leads to lateralized learning and 

synaptic changes that are confined to the spared olfactory hemisphere (Yuan and Harley, 2012; 

Fontaine et al., 2013). O/S− pups were used as controls to test for any nonspecific effects of 

repeated odor exposure training. 

 In the dorsolateral region, the OLR of mitral cell ensembles in the spared OB in the 

O/S+ rats was significantly greater (49.01 ± 0.79%) than in the occluded bulb (24.56 ± 1.48%, n = 

4, t = 24.84, p = 1.43E−4; Fig. 3.2B1, B2). After associative learning, mitral cells are activated 

more reliably by peppermint odor, and the same cell is likely to respond to both episodes of 

peppermint. Interestingly, the total number of Arc+ cells activated by two odor events did not 

change in the spared bulb (11.58 ± 1.39%) compared with the occluded one (12.05 ± 1.72%, n = 

4, t = 0.276, p = 0.80; Fig. 3.2B3). However, double-stained Arc+ cells were significantly 

increased after O/S+ learning (5.67 ± 0.69% in the spared bulb vs 3.01 ± 0.57% in the occluded 

bulb; n = 4, t = 4.29, p = 0.02; Fig. 3.2B3). The percentage of single-stained Arc+ cells responding 

to either episode of peppermint showed a trend toward decreasing in the spared OB but did not 

reach statistical significance (5.91 ± 0.72% in the spared bulb vs 9.04 ± 1.19% in the occluded 

bulb; n = 4, t = 2.75, p = 0.07). The increase in double cells that are likely strongly activated by 

http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F1
http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F2
http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F2
http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F2
http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F2
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peppermint suggests odor preference learning in rat pups results in the potentiation of previously 

weakly activated cells. 

 The OLR for O/S− rats was not different between the two bulbs (spared, 33.65 ± 0.93%; 

occluded, 34.22 ± 2.42%; n = 3, t = 0.17,p = 0.88; Fig. 3.2C1,C2), suggesting no effect of odor 

exposure itself on initial odor ensemble representation. Consistently, no differences were observed 

in the numbers of cells expressing Arc in any compartment (Fig. 3.2C3). 

 Peppermint representation in the ventromedial OB revealed the same trends. In the 

O/S+ pups, the OLR of mitral cell ensembles was greater in the spared OB (45.07 ± 3.59%) than 

in the occluded bulb (24.40 ± 2.22%; n = 4, t = 5.49, p = 0.01; Fig. 3.2D1, D2). Consistent with 

the dorsolateral region, the double-stained Arc+ cells increased after O/S+ learning (6.26 ± 1.52% 

in the spared bulb vs 2.57 ± 0.34% in the occluded bulb; n = 4, t = 3.07, p = 0.05; Fig. 3.2D3), 

whereas the total Arc+ cells and single-stained Arc+ cells were not different in the two bulbs (Fig. 

2D3). In O/S− pups, neither the OLR of cell ensembles (Fig. 3.2E1, E2) nor the numbers 

of Arc+ cells (Fig. 3.2E3) are different in the ventromedial OB. 

 An unexpected outcome was a significant reduction in the OLR of the peppermint 

representation in the occluded OB in the O/S+ group compared with that in the O/S− group (t = 

3.60, p = 0.02, unpaired t test). This may relate to a backward conditioning effect when the naris 

plug was removed and residual peppermint odor remained on the pup. Such an effect might be 

expected to reduce the stability of peppermint encoding. 

 

 

 

 

http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F2
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Figure 3.2 Early odor preference learning stabilizes the mitral cell ensemble to the 

conditioned odor in the OB.  
A, Schematic of OB anatomy and Arc sampling regions (red rectangles). D, Dorsal; V, ventral; L, 

lateral; M, medial; ON, olfactory nerve; GL, glomerular layer; MCL, mitral cell layer; GCL, granule 

cell layer.B1–B3, O/S+ training leads to increased overlap of mitral cell ensembles in the dorsolateral 

olfactory bulb responding to 2× peppermint exposures. B1, Example images of the mitral cell layer in 

the occluded and spared olfactory bulbs from the same animal. B2, OLR of mitral cell ensembles 

responding to 2× peppermint exposures. B3, Percentage of Arc+ cells over the total population indexed 

by DAPI staining.C1–C3, O/S− training does not change the OLR of mitral cell ensembles in the 

dorsolateral OB responding to 2× peppermint exposures. D1–D3, O/S+ training leads to increased 

overlap of mitral cell ensembles in the ventromedial OB responding to 2× peppermint exposures. E1–

E3, O/S− training does not change the OLR of mitral cell ensembles in the ventromedial OB responding 

to 2× peppermint exposures. F1–F3, O/S+ training with peppermint does not change the OLR of mitral 

cell ensembles in the dorsolateral OB responding to 2× vanillin exposures. MC, Mitral cell; DL, 

dorsolateral; VM, ventraomedial; PP, peppermint; VA, vanillin. Arrows indicate double-stained Arc+ 

cells. Scale bars, 20 μm. *p< 0.05; **p< 0.01. 
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3.3.3 Mitral cell ensemble stabilization is specific to the conditioned odor 

 In another set of experiments, we examined dorsolateral OB Arc+ mitral cell ensembles to 

vanillin after O/S+ training with peppermint (Fig. 3.2F). The OLR (29.48 ± 1.71% in the spared 

bulb vs 33.14 ± 0.85% in the occluded bulb; n = 5, t = 2.19, p = 0.10; Fig. 3.2F1,F2) and the 

pattern of Arc expression (Fig. 3.2F3) were not different between the spared and occluded bulbs. 

This demonstrates that odor learning is input specific in the OB such that only the representation 

of the conditioned odor is altered. 

 

3.3.4 Odor preference training also results in a more stable odor representation in  

 the underlying granule cells of the OB 

 We next compared the granule cell ensembles in the OB granule cell layer after 

O/S+ training. The areas of interest were taken from the same rectangle regions where we measured 

cell ensembles in the mitral cell layers. Granule cell ensembles in the dorsolateral region showed 

greater OLR in the spared OB (48.07 ± 2.99) compared with the occluded OB (24.40 ± 2.43; n = 

4, t= 4.56, p = 0.02; Fig. 3.3A1, A2). The total Arc+ cells (7.25 ± 0.32% in the spared bulb vs 8.31 

± 1.60% in the occluded bulb; n = 4,t = 0.60, p = 0.59) and double-stained Arc+ cells (7.25 ± 0.32% 

in the spared bulb vs 8.31 ± 1.60% in the occluded bulb; n = 4, t= 0.60, p = 0.59; Fig. 3.3A3) were 

not different in the two OBs. However, the single-stained Arc+ cells showed a trend of decreased 

numbers in the spared OB (3.76 ± 0.21) compared with the occluded OB (6.20 ± 1.01; n = 4, t = 

2.67, p = 0.076; Fig. 3.3A3). There were no differences in either OLR or Arc+ cell numbers in the 

ventromedial region of the OB (Fig. 3.3B1–B3). Changes in granule cell ensembles are also 

training odor specific. Neither the OLR nor numbers of Arc+ cells were different in the spared and 

occluded OB in the dorsolateral regions to the control odor vanillin (Fig. 3.3C1–C3). 

http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F2
http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#F2
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Figure 3.3 Early odor preference learning stabilizes the granule cell ensemble to the 

conditioned odor in the OB.  

A1–A3, O/S+ training leads to increased overlap of granule cell ensembles in the dorsolateral 

olfactory bulb responding to 2× peppermint exposures. A1, Example images of the granule cell 

layer in the occluded and spared olfactory bulbs from the same animal. A2, OLR of granule cell 

ensembles responding to 2× peppermint exposures. A3, Percentage of Arc+ cells over the total 

population indexed by DAPI staining.B1–B3, O/S+ training does not change the OLR of granule 

cell ensembles at the ventromedial OB responding to 2× peppermint exposures. C1–C3, O/S+ 

training with peppermint does not change the OLR of granule cell ensembles at the dorsolateral 

OB responding to 2× vanillin exposures. GC, Granule cell; DL, dorsolateral; VM, ventromedial; 

PP, peppermint; VA, vanillin. Arrows indicate double-stained Arc+ cells. Scale bars, 20 μm. *p< 

0.05. 
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3.3.5 A more stable odor map in the aPC 

 We have previously shown that the OB and the aPC are both involved in, and support, early 

odor preference learning (Lethbridge et al., 2012; Yuan and Harley, 2012; Fontaine et al., 2013; 

Morrison et al., 2013). We examined pyramidal cell ensemble changes in the aPC after early odor 

preference learning from the same animals as in the OB experiments. Single-odor exposure 

activates ∼1% pyramidal cells in the aPC. Similar to mitral cell ensembles in the OB, the stability 

of the odor representation as indexed by the OLR of pyramidal ensembles in the spared aPC (35.74 

± 2.38%) was significantly greater than that in the occluded one (18.44 ± 2.62%; n = 4, t = 

7.84, p = 0.004; Fig. 3.4B1,B2). The increase in the overlap ratio was caused by an increased 

number of double-stained Arc+ pyramidal cells (0.75 ± 0.12% in the spared hemisphere vs 0.45 ± 

0.12% in the occluded side; n = 4, t = 3.45, p = 0.04), whereas the total number of Arc+ cells to 

two odor events and the single-stained Arc+ cells were not different in two hemispheres (Fig. 

3.4B3). Odor experience alone did not alter either the overlap of the two peppermint ensembles 

(Fig. 3.4C1, C2) or the numbers of Arc+ cells activated (Fig. 3.4C3). 
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Figure 3.4 Early odor preference learning stabilizes the odor map for the conditioned odor 

in the aPC.  

(A) Schematic of aPC and Arc sampling regions (indicated by red rectangles). (B1-B3) O/S+ 

training leads to increased overlap of pyramidal cell ensembles in the aPC responding to two 

times peppermint exposures. B1, example images of pyramidal cell layer in the occluded and 

spared olfactory bulbs from the same animal. B2, OLR of pyramidal cell ensembles responding 

to two times peppermint exposures. B3, percentage of Arc+ cells over the total population 

indexed by DAPI staining. (C1-C3) O/S- training does not change OLR of pyramidal cell 

ensembles in the aPC responding to two times peppermint exposures. PP: peppermint Arrows 

indicate double stained Arc+ cells. Scale bars: 20 µm. * p < 0.05; ** p < 0.01.
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3.4 Discussion 

3.4.1 The nature of representations 

 Cortical representations are known to be both sparse, reflecting a dynamic balance of 

excitatory and inhibitory inputs, and variable (Shadlen and Newsome, 1998; Olshausen and Field, 

2004). These characteristics are thought to account for the large storage capacity of mammalian 

brain and reflect the dynamic aspects of its operation. Although representation in the OB itself is 

more like that of sensory cortices in having a spatial organization such that we are able to target 

representational regions, the aPC behaves like the general associative cortical model (Johnson et 

al., 2000). Compared with adult aPC (Shakhawat et al., 2014a), the odor ensembles in rat pup aPC 

were significantly smaller (∼3% vs ∼1%). We suggest this difference relates directly to the 

maturation of lateral olfactory tract input to the piriform cortex, which is about one-third of the 

adult value at this age (Sarma et al., 2011). Earlier estimates of piriform ensemble size have been 

substantially larger (Poo and Isaacson, 2009; Stettler and Axel, 2009), but this is likely a function 

of probing ensembles in the anesthetized versus awake state (Kato et al., 2012). The present values 

derive from ensemble measurements in awake animals. 

 Rat pups have similar numbers of piriform pyramidal cells as the adult (Sarma et al., 2011), 

and so dividing total piriform stereological counts (Capurso et al., 1997; Duffell et al., 2000) in 

half provides an estimate of ∼150,000 cells available in each hemisphere to participate in aPC 

representations. Thus, a 1% representation (∼1500 cells) is well above the calculated threshold of 

500 piriform pyramidal cells required to reliably drive odor preference behavior (Choi et al., 2011) 

and identical to the percentage of Kenyon cells estimated to underlie odor ensembles in the 

mushroom body of the insect (Campbell et al., 2013). It would be interesting if ensemble size was 

conserved in nervous system evolution. 
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 A curious aspect of the present data is the finding of an ∼15–20% overlap among unrelated 

odors, which is substantially larger than a 0.5% overlap that would be predicted from the size of 

each odor's representation (∼7%) by random draw with replacement. We suggest that this overlap 

reflects the existence of an active subset of cortical neurons that are primed to participate in any 

representation in a given time window (Yassin et al., 2010; Luczak and Maclean, 2012; Mizuseki 

and Buzsaki, 2013; Klinshov et al., 2014). Such primed subsets require a reconfiguration of our 

normal thinking about distributed random neural networks. 

 The first conclusion that can be made about granule cell participation in odor ensembles 

from these data is that it appears to be odor specific, arguing for different mitral cell/granule cell 

ensembles for different odors. Johnson and Leon (1996), using 2-deoxyglucose (2-DG), showed 

that peppermint activates two hot spots in the glomerular layer of the OB, one in the dorsolateral 

region and one in the ventromedial region. Early preference learning predominately enhanced 2-

DG activation in the dorsolateral glomerular region (Johnson and Leon, 1996) and phosphorylated 

CREB in the dorsolateral mitral cell layer (McLean et al., 1999), consistent with the more 

prominent change in the Arc expression of mitral and granule cells in dorsolateral region. In 19-d-

old rats, c-Fos granule cells significantly decrease with odor learning (Woo et al., 1996), as do Arc+ 

pyramidal cells in piriform cortex of adult rats (Shakhawat et al., 2014a). The lack of a decrease 

here in either area is likely related to age. 

 The second conclusion is that, like mitral cells, the granule cell representation of an odor 

increases its stability after the pairing with stroking reward. This parallel change in the granule 

cell and mitral cell ensembles is consistent with the idea that changes in excitation in any cortical 

system will be accompanied by balanced inhibition (Isaacson and Scanziani, 2011; Saar et al., 

2012; Xue et al., 2014). Mitral cells driving granule cells provides the most parsimonious account 

http://www.jneurosci.org.qe2a-proxy.mun.ca/content/34/46/15394.long#ref-21
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of these effects, and if that is the case, it again underlines a highly selective relationship among 

mitral and granule cells. Consistent with such selectivity, electrical coupling between mitral cells 

and nearby underlying granule cells has been reported in rat pups (Paternostro et al., 1995). 

Feedback effects from aPC that drive granule cell inhibition for individual odors has also been 

demonstrated (Restrepo et al., 2009; Boyd et al., 2012) and is another possible source of support 

for the parallel stability increases observed in the granule cell ensembles. 

 Overall, the striking feature of the learning-related changes in odor representation observed 

in these experiments is the increase in the stability of ensemble representation from ∼25% to 49% 

in the OB and from ∼18% to ∼35% in the aPC. The level of overlap after our odor reward pairings 

in the OB is similar to what has been observed using Arc to identify representations of repeated 

strong visual input in secondary visual cortex (50% overlap (Rudinskiy et al., 2012). This 

similarity of overlap levels in sensory stimuli for rewarded odor and for strong visual stimulation 

is consistent with data showing odor learning modifies OB responses to be similar to responses to 

a higher concentration of odorant (Abraham et al., 2014). Recent modeling work on cortical system 

representations argues that the stability parameter in population vectors is critical for adaptive 

behavior (Montijn et al., 2014). These changes in the responses to simple odorants were not able 

to be previously characterized using electrophysiological methods to probe representations 

(Chapuis and Wilson, 2012). 

 

3.4.2 Generality of the rat pup model 

There are many parallels between the rat pup odor preference model and adult odor 

associative learning models. Adult aPC ensembles also show the stabilization effect of learning 

and memory, but the number of neurons participating in an ensemble becomes somewhat sparser 
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than before learning (Shakhawat et al., 2014a), whereas that number did not change in the rat pup. 

In neither model does enlargement of the rewarded representation occur; this is consistent with 

data suggesting enlargement of sensory representations does not account for long-term memory 

even when it is seen (Reed et al., 2011). However, multiple groups have reported enlarged OB 

glomerular representations with learning in both rodent pups and adults (Woo et al., 1987; Johnson 

and Leon, 1996; Abraham et al., 2014). We have also described such a glomerular effect using 

intrinsic optical imaging in the odor preference learning model (Yuan et al., 2002), and as 

mentioned earlier, these effects are similar to those of increasing concentrations of the odorant 

(Abraham et al., 2014). Both enhanced glomerular input and increased stability of principal 

neuronal network representations should serve to create a stronger and more discriminable 

experiential input. 

 The machinery for NE to act as an unconditioned stimulus in the rat pup (Yuan et al., 2014) 

remains in the OB of older rats, and recent data suggest that blocking both α- and β-adrenoreceptors 

in the adult OB prevents discrimination of similar odors (Doucette et al., 2007; Mandairon et al., 

2008b). Whereas NE via β-adrenoceptor activation also mediates early odor learning in rat pup 

aPC (Morrison et al., 2013), as in rat pup OB, the role of NE projections and the function of NE 

in the aPC in adult rat odor learning requires future investigation. NMDARs and L-type calcium 

channels are critical in the OB as calcium sources mediating plasticity (Jerome et al., 2012; 

Lethbridge et al., 2012), and they are likely involved in aPC plasticity and aPC-mediated learning 

(Morrison et al., 2013), as both NMDARs and L-type calcium channels are critical mediators 

for Arc activation in the hippocampus (Bateup et al., 2013). 
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 The cellular and intracellular supports of rat pup learning and memory (see Introduction) 

are also those implicated in invertebrate and vertebrate associative learning and appear central for 

learning and memory in mammalian brain across the life span. 

 

3.4.3 Arc and plasticity 

 Arc here identifies the neurons participating in responding to odors, with the advantage of 

capturing the ensembles to the same odor twice. Neurons either alter their firing rate or increase 

their firing reliability to an odor after learning (Doucette et al., 2011). Increases in neuronal firing 

reliability translate into a tighter overlap in the condition in which an animal receives the same 

odor twice. Our data from both rat pups and adults (Shakhawat et al., 2014a) suggest that the 

probability that weakly activated cells transcribe Arc twice is lower before conditioning than after. 

 Arc is also part of the plasticity story. Others have suggested that CREB and/or immediate-

early genes like Arc identify neurons that are primed to participate in memory ensembles (Han et 

al., 2007; Yiu et al., 2014). Arc has recently been shown to promote thin spine production as sites 

for connectivity strengthening while homeostatically downregulating weaker connections (Peebles 

et al., 2010). Arc-negative mice show neither depression nor potentiation as a function of visual 

experience, whereas with olfactory experience, both potentiation and depression operate and are 

hypothesized to modulate the aPC ensemble changes across pups and adults (Saar et al., 2012; 

Yuan et al., 2014). Thin spine growth, as reported in hippocampus, may contribute to lasting 

ensemble strengthening in aPC, as well as among OB granule cells. 
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Chapter-04: Arc Visualization of odor objects reveals experience-dependent ensemble 

sharpening, separation, and merging in anterior piriform cortex in adult rat (This chapter 

is a version of the manuscript published in The Journal of Neuroscience 34(31): 10206-10, 

2014) 

 

4.1 Introduction 

 In the brain, the activity of ensembles of neurons represents features of the external world. 

However, how experience modifies neuronal activity patterns to influence our perceptions and 

memories remains elusive. The aPC is a prototypical ensemble-encoding network in the 

mammalian brain. In the adult rodent aPC, spatially organized inputs from the olfactory bulb 

activate layer II/III pyramidal neurons throughout the cortex to create “odor objects” lacking 

spatial order (Wilson and Sullivan, 2011). Odor experience readily modifies pyramidal cell 

properties in the aPC (Chapuis and Wilson, 2012; Saar et al., 2012; Morrison et al., 2013). Hence, 

it provides us with a model system for studying plasticity processes in an associative cortex and, 

here, using immediate early gene activation techniques permits us to visualize experience-

dependent remodeling of perceptual objects. 

In the present experiments, we use cellular compartment analysis of temporal activity by 

fluorescence in situ hybridization (catFISH) to visualize activation of the immediate early 

gene Arc and directly assess ensemble encoding of odors in aPC. Our results provide images of 

ensemble pattern reorganizations in appetitive learning paradigms that support, or require, such 

changes in the odor objects for behavioral success. All odor discriminations required only a few 

days of training before Arc visualization. The reward-contingent changes in representations are 

not seen in animals given random odor and reward associations over the same time intervals. 
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4.2 Materials and Methods 

4.2.1 Animals 

Sprague Dawley rats (8–10 weeks old) of both sexes (n = 54 total) were assigned randomly 

to groups. Rats were housed in polycarbonate cages (at least two same-sex rats per cage) on a 12 

h light/dark cycle with food and water ad libitum except during behavioral experiments. Rats were 

adapted to 1 h of water access daily for 4–5 d before behavioral training. During conditioning, rats 

were given 25 ml water daily. All procedures were approved by the Memorial University 

Institutional Animal Care Committee in compliance with the guidelines of the Canadian Council 

on Animal Care. 

 

4.2.2 Odorants 

 Odorants (Sigma-Aldrich) were diluted with mineral oil to specific concentrations. 

Concentrations were chosen as recommended for mice (Bodyak and Slotnick, 1999). Odorants (10 

ml) were freshly prepared for each experiment. Odorants used were 2% by volume of peppermint, 

1% of vanillin, 2% of peppermint plus vanillin (50:50 mixture), 2% of amyl acetate, 2% of 1-

heptanol plus 1-octanol (a 53:47 mixture), and 2% 1-heptanol plus 1-octanol (a 55:45 mixture). 

The latter two odors were used previously by Doucette et al. (2007), whereas the other odors have 

all been used in early odor preference learning (Yuan et al., 2002; Mukherjee et al., 2014). 

 

4.2.3 Behavioral Apparatus 

All behavior training was conducted in a Knosys olfactometer. Discrimination training 

methods were as described previously (Slotnick and Restrepo, 2005). Polyvinyl carbonate bottles 

http://www.jneurosci.org/content/34/31/10206.long#ref-6
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were used for each odor. The C-flex tubing used by the control pinch valves was changed for each 

new odor. 

 

4.2.4 Olfactometer rule learning 

Initially, rats were trained in the IN-BEGIN program for 3 d. Odor sampling and water 

delivery were given through the same port. For the first 20–30 trials, snout insertion breaking the 

light beam activated water delivery, and 30 μl of water were delivered for each lick. Subsequently, 

odor delivery on the spout signaled availability of water. The separation between odor delivery 

and water availability increased from 0.05 to 1 s over trials. Positive odors (S+) were introduced 

for 2.5 s. The subject could respond by either licking a minimum of six times for water reward or 

rejecting the odor. A 5 s intertrial interval was used. Rats underwent 100 trials/d and rapidly 

acquired this behavior. 

 

4.2.5 Odor discrimination training and testing 

Odor discrimination was conducted using the IN-D2 software and consisted of introducing 

a negative odor (S−) in addition to the S+. Intertrial intervals were fixed at 6 s, during which rats 

were unable to initiate trials. To initiate a trial, rats were required to leave the port for 1 s. If the 

response criterion was met, reward was given after S+ delivery or withheld after S−. After training 

blocks of 20 trials (10 S+ and 10 S− odors randomly delivered), rats refrained from licking in 

response to the S− odor. Rats in the random groups completed the same number of trials as the 

associative groups, but water was delivered randomly and they were not required to discriminate 

between the two odors. 
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Performance was evaluated in each block of 20 trials. The equation (n positive responses 

to S+ + n negative responses to S−)/20 × 100 was used to determine the percentage of correct 

responses. Rats reaching ≥85% correct responses over three blocks were considered successful 

learners (Belnoue et al., 2011). Two to 3 d were typically required to achieve this criterion. 

Two untrained control groups were also examined. A group used only in Experiment 1 

consisted of naive rats exposed to the peppermint and vanillin in the same manner as experimental 

rats before they were killed. In addition, a group of caged rats receiving daily water similar to that 

received by the trained rats and exposed to clean charcoal-filtered air for 1.5 h before being killed 

were used to estimate the background “noise” level of Arc expression. Background Arc-expression 

(Arc+) was very low (0.13 ± 0.03% of cells, n = 5); therefore, the subtraction of the noise Arc level 

was omitted in our experimental calculations. 

 

4.2.6 Brain collection and dissection 

Rats were killed 24 h after discrimination training. Individual rats were put in a covered 

plastic jar connected to the olfactometer air delivery channel. Rats were exposed to clean charcoal-

filtered air for 1.5 h before odors were delivered via C-flex tubing from the olfactometer for a 5 

min period. Two 5 min odor deliveries were interleaved by 20 min. Rats were quickly anesthetized 

by isoflurane and decapitated, and brains were rapidly removed (∼2 min) and flash frozen in 2-

methylbutane immersed in ethanol/dry ice slurry. Brains were preserved in a −80°C freezer until 

cryosectioned for in situ hybridization. 
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4.2.7 Tissue processing 

Right hemispheres were used during tissue sectioning. Each block usually contained four 

to six hemisections to include all the behavioral groups from a particular experiment. OCT medium 

(Tissue-Tek) was used to mold brains together in the same block. Coronal tissue sections (20 μm) 

were collected every 200 μm on 2% 3-aminopropyltriethoxysilane-treated slides 

(Snowcoat; Leica) using a cryostat set at −20°C. Five to six slides (taken evenly through the 

rostral-to-caudal range of the aPC) were taken for fluorescent in situ hybridization and stored at 

−20°C. 

 

4.2.8 Fluorescence in situ hybridization 

The fluorescent in situ hybridization method used was described previously (Guzowski 

and Worley, 2001). In short, digoxigenin-conjugated full-length Arc riboprobes were extracted 

using a commercial transcript kit (Ambion). The yield and integrity of the riboprobes were ensured 

by purifying on a mini quick-spin RNA column (Roche Diagnostics), and 2 μl of probe was 

subjected to gel electrophoresis analysis before use (Appendix-B). Slides were removed from the 

freezer and thawed for 10–15 min at room temperature before fixing in 4% paraformaldehyde. 

After fixation, slides were bathed in acetic anhydride and then treated in a 1:1 methanol/acetone 

(−20°C) solution. Prehybridization buffer was applied to the slides, which were then incubated for 

60 min in a humid chamber. Thereafter, slides were incubated overnight with 100 ng of Arc probe 

in a hybridization oven at 56°C. All solutions used for first-day in situ hybridization were made in 

Diethylpyrocarbonate (DEPC, OmniPur)-treated water (0.1%). The next day, slides were washed 

in a series of Saline-Sodium Citrate (SSC) buffers, treated with RNase A at 37°C, submerged in 

2% H2O2/SSC buffer solution, blocked with normal sheep serum, and incubated with anti-

http://www.jneurosci.org/cgi/redirect-inline?ad=Leica
http://www.jneurosci.org/content/34/31/10206.long#ref-8
http://www.jneurosci.org/content/34/31/10206.long#ref-8
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digoxigenin–horseradish peroxidase antibody (Roche Diagnostics) overnight at 4°C. The 

following day, slides were labeled with Cy3 (1:50) using a tyramide signal amplification labeling 

kit (PerkinElmer Life and Analytical Sciences). Subsequently, cell nuclei were counterstained 

with 4′-6-diamidino-2-phenylindole (DAPI; 1:2000; Sigma-Aldrich). Finally, sections were coated 

by applying Vectashield antifade medium (Vector Laboratories). Slides were cover slipped and 

sealed with clear nail polish. 

 

4.2.9 Image acquisition 

Image stacks were collected using an Olympus Fluoview FV1000 confocal microscope as 

described previously (Guzowski and Worley, 2001). Briefly, images of pyramidal cell layers 

(II/III) were taken at 20× with photomultiplier tube assignments, confocal aperture size, and 

contrast remaining constant for each slide. Two standardized-sized areas (∼0.8 mm2 each; one in 

lateral and one in medial aPC) were scanned. Z-stacks (1.0 μm optical thickness) throughout the 

thickness (20 μm) of each section of lateral and medial aPC were acquired from three to four slides 

spread evenly over the rostral-to-caudal range. The average count of the lateral and medial regions 

was used for the final count. 

 

4.2.10 Image analysis 

Offline image analysis was performed using NIH ImageJ software. The total numbers of 

DAPI cells were assessed using the NIH ImageJ automatic cell counting application. Foci, 

cytoplasmic, and double labeling of Arc were counted manually. Labeling of cells as foci, 

cytoplasmic, and double was achieved by checking multiple optical sections (20% mid-range of 

the Z-stack) that comprised each individual cell (Miyashita et al., 2009). Counting was performed 

http://www.jneurosci.org/cgi/redirect-inline?ad=PerkinElmer
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by the same individual throughout the experiment to maintain consistency. In a subset of animals, 

a second individual blind to conditions performed counts for comparison after work with a 

standardized set for visual training. Observations were highly consistent across the two observers 

(Appendix-F). 

 

4.2.11  Statistics 

OriginPro 9.0 software was used to analyze all datasets. Data were reported as mean ± 

SEM. Two-sample, two-tailed Student's t tests were used for statistical comparisons. Differences 

between groups were considered significant when p values were <0.05. 

 

4.3 Results 

 Arc mRNA appears first in the nucleus within 5 min of neuronal activity that engages its 

transcription. Twenty five minutes later, initial Arc mRNA has translocated to the cytoplasm and 

a second event can initiate new transcription of nuclear Arc (Guzowski et al., 2005). The in 

situ hybridization methodology permits comparison of two separate odor events. 

 

4.3.1 Odor input specificity of Arc catFISH 

We initially exposed naive rats to two 5 min episodes of odor, either peppermint followed 

25 min later by vanillin or peppermint on both occasions (Fig. 4.1a1, top). Animals were killed 

immediately after the second episode and processed for Arc catFISH. Cells that expressed Arc in 

the cytoplasm only were active during the first odor episode (peppermint), whereas cells that 

expressed Arc only in the nuclei were active during the second odor episode, and cells 

expressing Arc in both nuclei and cytoplasm were activated by both odor episodes (Fig. 4.1a1, 

http://www.jneurosci.org/content/34/31/10206.long#F1
http://www.jneurosci.org/content/34/31/10206.long#F1
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bottom). Comparing the overlap ratio (the proportion of cells with double staining relative to the 

total number of Arc+ cells) demonstrates that repeated peppermint exposure was associated with 

significantly greater overlap (25.68 ± 2.11%, n = 7) than peppermint/vanillin exposure (17.85 ± 

2.84%, n = 7, t = 2.21, p = 0.047; Fig. 4.1a2). In any given exposure, the total number of cells that 

were Arc+ was ∼5% of the total neurons. This proportion is consistent with previous estimates of 

aPC representations of odor encoding (Poo and Isaacson, 2009; Stettler and Axel, 2009)  and 

typical of the sparse encoding of cortical structures generally (Olshausen and Field, 2004). 

 

4.3.2 Sharpening of the odor map by positive associative training 

To assess the representation of odor memories in aPC, we water deprived rats and trained 

them in a go–no-go discrimination task in which a positive odor stimulus (S+) was paired with 

water reward and a negative odor stimulus (S−) was unrewarded. Control rats received random 

rewards with exposure to either odor. A correct response was defined as licking only in the 

presence of the rewarded odor or not licking in the presence of the unrewarded odor. 

http://www.jneurosci.org/content/34/31/10206.long#F1
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Figure 4.1 Contrast enhancements after odor associative learning 

a1, Schematic of brain extraction protocol in naive rats (top) and example images for Arc+ cells 

(bottom). Blue indicates nuclei staining by DAPI. Red indicates Arc staining. White arrows 

indicate Arc staining in nuclei. Yellow arrows indicate Arc cytoplasm staining. Scale bar, 10 μm. 

a2, Overlap ratios (OLRs) of the cell ensembles of the two odor episodes. Cyto, cytoplasmic; PP, 

peppermint; VA, vanillin.b1, Schematic of odor associative training and brain extraction 

protocol.b2, Go–no-go behavioral paradigm (left) and percentage correct responses in the 

associative (Asso) group and the random group (right). b3, OLRs of the cell ensembles 

representing two peppermint episodes.b4, Percentage Arc+ cells over the number of total cells 

measured by DAPI staining. b5, OLRs of the cell ensembles representing two different odor 

episodes (peppermint and vanillin).*p< 0.05, **p< 0.01. 
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In the first discrimination experiment, rats were trained with peppermint as S+ and vanillin 

as S− (Fig. 4.1b1). Rats quickly learned within the first three blocks (20 trials each; randomized 10 

S+/10 S−) to lick at the water port only in the presence of peppermint (n = 10, t = 5.07, p = 

8.01E−5 compared with the random group). Twenty-four hours after the seventh block when 

discrimination was nearly perfect (98 ± 1.53%, t = 18.67, p = 3.15E−13; Fig. 4.1b2), a subset of rats 

were given two episodes of peppermint exposure and killed for catFISH. The overlap ratio of cell 

ensembles in the S+ associative rats was significantly greater (41.01 ± 5.67%) than in the random 

group (25.58 ± 3.15%, n = 5, t = 2.38, p = 0.045; Fig. 4.1b3). The overlap ratio of the random rats 

was not different from naive rats (25.68 ± 2.11%, n = 7; Fig. 4.1a2), suggesting no effect of 

random pairings on initial ensembles. After associative learning, pyramidal cells are activated 

more reliably by peppermint odor and the same cell is likely to respond to both episodes of 

peppermint. The total Arc+ cells were fewer in the associative group (3.94 ± 0.56%, n = 5) relative 

to those in the random group (7.48 ± 1.08%, n = 5, t = 2.91, p = 0.020; Fig. 4.1b4). The reduction 

of total Arc+ cells was attributable to a reduction in the cells responding to only one episode (2.40 

± 0.56% in the associative group vs 5.52 ± 0.77% in the random group, n = 5, t = 3.29, p = 0.011), 

whereas the percentage of double-stained cells responding to both episodes of peppermint were 

similar in the two groups (1.54 ± 0.24% in the associative group vs 1.96 ± 0.44% in the random 

group, n = 5, t = 0.83, p = 0.431; Fig. 4.1b4). The reduction in single episode activated cells 

suggests that the S+ odor representation in the associative group had become sharper with a larger 

proportion of more reliably activated cells. However, when comparing peppermint and vanillin 

representations after training, there were no differences in ensemble overlap between 

discriminating (21.10 ± 5.94%) and random (20.10 ± 2.10%, n = 5, t= 0.159, p = 0.877) groups 

http://www.jneurosci.org/content/34/31/10206.long#F1
http://www.jneurosci.org/content/34/31/10206.long#F1
http://www.jneurosci.org/content/34/31/10206.long#F1
http://www.jneurosci.org/content/34/31/10206.long#F1
http://www.jneurosci.org/content/34/31/10206.long#F1
http://www.jneurosci.org/content/34/31/10206.long#F1
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(Fig. 4.1b5). This suggests that the strengthened peppermint representation was related to the 

acquisition of discriminative behavior, but decorrelation between the two ensembles did not occur.  

Peppermint odor was originally selected because it has been used widely in rat pup odor 

preference learning. Vanillin was chosen as being distinct from peppermint spatially in the 

olfactory bulb (http://gara.bio.uci.edu/). Consistent with the change in odor representations from 

spatial patterns in the olfactory bulb, to sparse random networks in the aPC (Wilson and Sullivan, 

2011), there was no clustering of Arc+ neurons for either odor in the aPC. 

 

4.3.3 Odor mixture associative training leads to merging of odor ensembles 

In our second experiment, we examined Arc+ ensembles after training with a mixture of 

peppermint and vanillin combined as the S+, whereas amyl acetate served as the S− (Fig. 4.2a). 

After successful discriminative performance, rats were able to respond positively to single 

component peppermint (99 ± 1%, n = 5, t = 17.01, p = 1.45E−7 compared with control) or vanillin 

(95 ± 1.58%, n = 5, t = 12.68, p = 1.41E−6 compared with control; Fig. 4.2b1). Arc+ responses to 

peppermint and vanillin individually revealed that the overlap ratio between the two different 

component ensembles was significantly greater in the associative learning group (44.31 ± 4.78%) 

than the random group (23.81 ± 5.31%, n = 5, t = 2.87, p = 0.010; Fig. 4.2b2). This demonstrates 

that the aPC directly supports merging of the ensemble patterns when they have been rewarded as 

part of a mixture. 

 

 

 

http://www.jneurosci.org/content/34/31/10206.long#F1
http://gara.bio.uci.edu/
http://www.jneurosci.org/content/34/31/10206.long#F2
http://www.jneurosci.org/content/34/31/10206.long#F2
http://www.jneurosci.org/content/34/31/10206.long#F2
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Figure 4.2 Odor mixture associative learning merges neuronal ensembles of odor 

components 

a, Schematic of odor mixture associative training and brain extraction protocol. b1, Go–no-go 

behavioral paradigm (left) and percentage correct responses in the associative (Asso) group and 

the random group (right). b2, Representative images of Arc+ cells in the aPC (left) and overlap 

ratios (OLRs) of the cell ensembles representing peppermint (PP) and vanillin (VA; right). Arrows 

indicate double-stained Arc+ cells. Scale bar, 20 μm. *p< 0.05, **p< 0.01. 
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4.3.4  Similar odor discrimination training leads to pattern separation 

In our final experiment, we examined ensemble overlap ratios in rats required to perform 

challenging odor discrimination problem using two very similar odor mixtures (1-heptanol and 1-

octanol; S+, 53%/47%; S−, 55%/45%; Fig. 4.3a). Chapuis and Wilson (2012) found that, with 

simple odor discrimination, decorrelation of ensembles was not observed in electrophysiological 

sampling, but with challenging discriminations, decorrelation occurred. Rats experienced 

difficulty in discriminating these odor mixtures and were unable to discriminate after eight blocks 

of training (Fig. 4.3b1), when rats in the easier discrimination task had performed nearly perfectly 

(Fig. 4.1b2). Continued training eventually led to successful discrimination in the associative 

group (98 ± 1.22% vs random group: 43 ± 2% at the 16th block, n = 5, t = 23.45, p = 1.16E−8; Fig. 

4.3b1). A significant decrease in the Arc+ overlap between these odor pairs occurred in the 

associatively trained group (12.54 ± 1.01%, n = 5) relative to the random condition (23.95 ± 

0.82%, n = 5, t = 8.75, p = 2.28E−5; Fig. 4.3b2). Easy and difficult discriminations both induce 

remodeling of naive ensemble representations, but only the difficult discrimination leads to the 

reduced overlap of ensemble activity characteristic of pattern separation and likely necessary for 

its successful behavioral solution. 

 Unexpectedly, the difficult and easy odor discriminations demonstrated a similar degree of 

ensemble overlap among rats receiving random odor plus reward (easy odor pair in Fig. 4.1b5: 

20.10 ± 2.10% vs difficult odor pair in Fig. 4.3b2: 23.95 ± 0.82%, n = 5, t = 1.71, p = 0.125), 

suggesting that the degree of initial overlap of Arc+ cell ensembles does not predict behavioral 

discrimination ability. 

 

http://www.jneurosci.org/content/34/31/10206.long#F3
http://www.jneurosci.org/content/34/31/10206.long#ref-5
http://www.jneurosci.org/content/34/31/10206.long#F3
http://www.jneurosci.org/content/34/31/10206.long#F1
http://www.jneurosci.org/content/34/31/10206.long#F3
http://www.jneurosci.org/content/34/31/10206.long#F3
http://www.jneurosci.org/content/34/31/10206.long#F3
http://www.jneurosci.org/content/34/31/10206.long#F1
http://www.jneurosci.org/content/34/31/10206.long#F3
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Figure 4.3 Similar odor discrimination learning promotes pattern separation 

a, Schematic of similar odor discrimination training and brain extraction protocol. b1, Go–no-go 

behavioral paradigm (left) and percentage correct responses in the associative (Asso) group and 

the random group (right). b2, Representative images of Arc+ cells in the aPC (left) and overlap 

ratios (OLRs) of the cell ensembles representing S+ (1-heptanol plus 1-octanol, 53%/47% mixture) 

and S− (1-heptanol plus 1-octanol, 55%/45% mixture; right). Arrows indicate double-stained Arc+ 

cells. Hept+Octa, 1-heptanol plus 1-octanol; Scale bar, 20 μm. **p< 0.01 
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4.4 Discussion 

 Wilson and Sullivan (2011) have proposed that the aPC generates odor objects. Direct 

visualization of those objects here as indexed by neuronal transcription of the immediate early 

gene Arc is consistent with the sparse ensemble characteristics seen previously in the aPC (Poo 

and Isaacson, 2009; Stettler and Axel, 2009). Here, in the adult rat, such representations appear 

rapidly modifiable (within the few days required for successful behavior). We have visualized 

three forms of aPC representational plasticity: (1) an increase in consistent ensemble participation 

together with a reduction in ensemble size for an S+; (2) an increase in ensemble overlap for 

components when odor mixtures signal reward; and (3) a decrease in ensemble overlap when a 

discrimination among highly similar odor mixtures is required, the mechanistic definition of 

pattern separation. These outcomes are supported by observations from electrophysiological 

population sampling (Chapuis and Wilson, 2012). Chapuis and Wilson demonstrated that cell 

response profiles were decorrelated for a series of odors in anesthetized rats after training in 

challenging odor discriminations. Decorrelation was not seen with simple discriminations, 

consistent with the present observations. After training with odors signaling similar outcomes, the 

correlations among cell response profiles increased, similar to the increased overlap seen here in 

Experiment 2. The data are consistent with Chapuis and Wilson's proposal that pattern completion 

and pattern separation both occur in the aPC. 

However, the present experiment did not directly assess pattern completion. Although it is 

possible to suggest that training on peppermint plus vanillin and then successfully solving the go–

no-go task to either peppermint or vanillin alone is pattern completion, it is more parsimonious to 

suggest that this is an example of each component changing to be more similar to the mixture 

(Linster and Smith, 1997). It is clear that there is increased overlap when both components are 

http://www.jneurosci.org/content/34/31/10206.long#ref-20
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associated simultaneously with reward. Similarly, there is decreased overlap when components are 

differentially associated with reward and no reward. These results contrast with the recent report 

in Drosophila in which ensemble odor representation in the mushroom bodies predict behavioral 

discrimination performance but are not altered by discrimination training (Campbell et al., 2013). 

In the present study, the representation of peppermint did not differ in naive rats from those given 

random odor and reward experience, but with systematically paired odor and reward, peppermint 

representations were invariably modified. 

A feature not predicted from the Chapuis and Wilson experiments was the finding of a 

smaller but more reliable representation of the S+ after reward pairing. Electrophysiological testing 

does not permit the documentation of spatial sharpening for rewarded stimuli revealed by Arc. 

Previous work with c-Fos supports this characterization because animals well trained in odor 

discriminations have smaller aPC c-Fos representations (Roullet et al., 2005). However, only Arc 

methodology permits the assessment of the increased reliability of the representation because it 

allows a given odor to be compared with itself. The present study does not address changes that 

may occur when an odor is systemically unrewarded. There was a trend in the data for such odors 

to have larger representations, but this did not reach significance and will require additional 

experimentation. It would also be of interest to know whether punishment and non-reward differ 

in their impact on aPC ensembles. 

There are a number of possible mechanisms to support the changes observed here. 

Increases in the strength of connections through LTP-like changes with concomitant increases in 

lateral inhibition (Brosh and Barkai, 2009; Saar et al., 2012) or even LTD-like changes of weak 

cells could account for the increased reliability of cell participation, as well as the smaller 

ensembles, characteristic of associative representations (Gdalyahu et al., 2012). Changes in 
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overlap of two odor representations could also relate to Hebbian mechanisms supporting reward-

congruent and -incongruent activation patterns. In rat pups, we have shown both LTP and 

norepinephrine-mediated enhancement of connectivity in aPC (Morrison et al., 2013), but whether 

a norepinephrine effect occurs in the present paradigm is unknown. 

The present data demonstrate the ability of sparse random cortical networks in the adult 

mammalian brain to be rapidly tuned by consequential environmental feedback to optimize 

perceptual representations. We suggest that the suite of changes seen here in ensemble 

representations with discrimination training contribute to the neuronal substrate of perceptual 

expertise. 
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Chapter-05: Arc-expressing neuronal ensembles supporting pattern separation require 

adrenergic activity in anterior piriform cortex: an exploration of neural constraints on 

learning (This chapter is a version of the manuscript published in The Journal of 

Neuroscience 35(41): 14070-14075, 2015) 

 

5.1 Introduction 

 In rodents, OB receives massive adrenergic input from LC (McLean et al., 1989). NE 

release in the OB is critical for associative learning in rat pups (Wilson and Sullivan, 1994; Yuan 

et al., 2014). In adult rats, increases in OB NE are associated with improved signal to noise ratios 

(de Almeida et al., 2015), lower thresholds for odor discriminations (Escanilla et al., 2010), and 

appear necessary for learning similar odor discriminations (Doucette et al., 2007; Mandairon et al., 

2008b). 

OB mitral cells demonstrate sparse coding and temporally dynamic firing in awake rodents 

(Rinberg et al., 2006; Wachowiak et al., 2013). Even at this early stage, OB processing is shaped 

by experience and context. Mitral cell firing patterns diverge for rewarded and unrewarded odors 

in mice undergoing discrimination training (Doucette and Restrepo, 2008). Mitral cells 

synchronize firing for rewarded odors and adrenergic blockade disrupts this synchrony as well as 

similar odor discrimination (Doucette et al., 2011). Synchronized mitral cell firing increases the 

likelihood of driving piriform target neurons (Franks and Isaacson, 2006). 

 PC receives direct projections from OB via the lateral olfactory tract and is proposed as a 

critical site for integrating odor features into odor objects (Wilson and Sullivan, 2011). PC 

pyramidal cells exhibit sparse and diffuse coding to odor input (Stettler and Axel, 2009; Poo and 

Isaacson, 2011; Shakhawat et al., 2014a).  Additionally, PC pyramidal cells project back to the OB 
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and shape mitral cell responses to odors (Boyd et al., 2015; Otazu et al., 2015). PC itself receives 

extensive NE input from the LC (Shipley and Ennis, 1996).  In rat pups, aPC odor-NE pairings are 

sufficient to induce odor preference learning (Morrison et al., 2013). In adult rat, PC LC-NE 

appears to sharpen odor representations (Bouret and Sara, 2002). 

How altered OB signaling following NE neuromodulation influences cortical processing 

and vice versa, how cortical changes feedback to influence odor ensemble representation in the 

OB, has not been characterized experimentally. Here we examine OB or aPC ensemble 

representation in adult rats following a similar odor discrimination task, with adrenoceptor 

blockade in aPC, or OB respectively. We find changes in odor encoding index learning success 

and aPC adrenergic blockade prevents learning of a similar odor discrimination. 

 

5.2 Materials and Methods 

5.2.1  Subjects 

 Sixty Sprague-Dawley rats (Charles River), 8-10 weeks old, of both sexes, were subjects. 

Rats were housed under a 12 h light/dark cycle with ad libitum dry food and water, except during 

training. Water deprivation was implemented 4-5 days before training began with either ad libitum 

water 1 h/day or a total volume of 25 ml/day. Water deprivation was maintained during training. 

Procedures were consistent with Canadian Council on Animal Care guidelines, and approved by 

the Memorial University Institutional Animal Care Committee.  
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5.2.2 Odorants 

 Odorant solution (10 ml, in mineral oil) was freshly prepared for each experiment. Odors 

were 1% of orange vs. 2% of peppermint, or 0.001% of 1-Heptanol vs. 0.001% 1-Heptanol+1-

Octanol (50:50 mixture; Sigma-Aldrich) (Escanilla et al., 2010; Shakhawat et al., 2014a).  

 

5.2.3 Go/no-go odor discrimination training and drug infusions 

 Odor discrimination training was performed in a custom-built computer controlled four-

channel Knosys olfactometer.  

 

5.2.3.1 Initial rule learning 

Orange odor (S+) was introduced with water reward (30 μl drop/lick). Each trial lasted 2.5 

sec. Rats were allowed 0.5 s to sample the odor and 2.0 sec to make a decision. Rats either licked 

the water port for a minimum of 6 times for reward or rejected the odor by removing their snouts 

from the port.  Inter-trial intervals were 5 seconds. Initially rats underwent ~100 reinforcement 

trials per day for 3 days.  

Rats were then exposed to the same S+ odor while a negative peppermint odor (S-) not 

paired with water reward was introduced. Blocks were 20 trials in which 10 S+ and 10 S- odors 

were randomly delivered. Rats completed 5-10 blocks per day until criterion was reached within a 

block on a given day. The percentages of correct responses to both odors were calculated by 

software (BBC Basic), and converted to percentages (correct S+ response # + correct S- response 

#)/20 x100. Discrimination learning was defined as ≥ 80% correct responses in one block. All rats 

learned to discriminate between the two odors within 3-4 blocks (Appendix-C). Following rule 
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learning, ad libitum water was reinstated. The next day, all rats underwent OB or aPC cannulation 

surgery and had approximately one-week recovery.  

 

5.2.3.2 Cannula implantation 

 Guide cannulae were custom-made by anchoring two stainless steel tubes (23-gauge) to a 

dental acrylic base.  

Rats were anesthetized with a ketamine (100 mg/kg) and xylazine (10 mg/kg) mixture (i.p.) 

and secured in a stereotaxic apparatus. Two holes were drilled +8.0 mm anterior and ~1.5 mm 

bilateral relative to bregma for OB or +2.5 mm anterior, ~4.0 mm bilateral for aPC. Guide cannulae 

were inserted ventral to the skull surface; 2.0 mm for OB; 6.0 mm for aPC. Guide cannulae were 

attached by dental cement to two skull screws.  

 

5.2.3.3 Similar odor discrimination training and drug infusion 

 After recovery, rats were infused with vehicle or a mixture of adrenoreceptor antagonists 

before each training session.  For the antagonist mixture, the non-selective α-adrenoreceptor 

antagonist phentolamine hydrochloride (Sigma Aldrich, 10 mM) and the β-adrenoreceptor 

antagonist alprenolol hydrochloride (Tocris, 120 mM) were dissolved in sterile saline (Mandairon 

et al., 2008b). Three microliters of drug or vehicle were infused bilaterally at a rate of 1.0 µl/min 

via a multi-syringe pump twenty minutes prior to training.  

Training on the similar odor discrimination problem (1-Heptanol vs. 1-Heptanol+1-

Octanol 50:50 mixture) followed the procedures described for orange vs. peppermint. Rats were 

trained over 3-4 days until criterion was achieved in a block or for a fixed number of blocks (10) 

if criterion was not achieved.  
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5.2.4  Tissue Collection 

Twenty four hours following similar odor discrimination training, rats were placed in a 

sealed container, ventilated with a continuous flow of charcoal-filtered air for 1.5-2 hrs, followed 

by two 5-min episodes of odor delivery (either S+ twice or S+ followed by S-) in the same container. 

The two episodes were separated by 20 min. Immediately after the 2nd episode, rats were killed 

under isoflurane anesthesia and brains collected and flash frozen in 2-methylbutane immersed in 

an ethanol/dry ice-slurry. Brains were kept at -80ºC.   

 During sectioning, the right hemispheres of 4-6 rats were arranged side-by-side in a 

custom-made plastic box filled with OCT medium in a cryostat at -200C to form a frozen block. 

Saline and drug groups were matched in each block. Coronal sections (20 µm) were collected on 

3-aminopropyltriethoxysilane (2%) treated slides. Five to six representative slides over the rostral-

to-caudal range of the OB and aPC were chosen for fluorescent in situ hybridization and stored at 

-200C.  

 

5.2.5 Fluorescence in situ hybridization 

Full-length Arc riboprobes conjugated to digoxigenin were extracted using a commercial 

transcript kit (Ambion). The purity and integrity of synthesized riboprobes were ensured by a 

mini quick spin RNA column (Roche Diagnostics). Two µL of the probe was tested via gel 

electrophoresis before use (Appendix-B).  

Brain slides were thawed for 10-15 min at room temperature. They were quickly fixed in 

4% paraformaldehyde. The slides were bathed in acetic anhydride and treated in 1:1 

methanol/acetone solution at -200C. The slides were then incubated for 60 min in prehybridization 

buffer in a humid chamber. Next, the slides were incubated overnight with 100 ng of Arc probe in 
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a hybridization oven at 560C. All solutions were made in DEPC (Sigma) treated water (0.1%). The 

next day, slides were washed in a series of saline-sodium citrate buffer. They were then treated 

with RNase A at 370C, submerged in 2% H2O2/ SSC buffer solution, blocked with normal sheep 

serum, followed by incubation with anti-digoxigenin-horseradish peroxidase antibody (Roche 

Diagnostics) overnight at 40C. The slides were labeled with Cy3 (1:50) using a tyramide signal 

amplification (TSA) labeling kit (Perkin Elmer) and cell nuclei counterstained with DAPI (4’-6-

diamidino-2-phenylindole: Sigma-Aldrich). Finally, sections were coated with Vectashield 

antifade medium, coverslipped and sealed with nail polish.  

 

5.2.6 Image acquisition and analysis 

Tissue damage from cannulation prevented examination of the cannulated structure, but 

here we address the influence on the projection structure. All slides were scanned in a Fluoview 

FV1000 confocal microscope (Olympus Canada) (see (Shakhawat et al., 2014a). Images of aPC 

were taken at 20X magnification (one medial and one lateral region, Figure 5.1A) and images of 

OB at 40X (two dorsolateral and two ventromedial regions, Figure 5.2A). The photomultiplier 

tube assignments, confocal aperture size, and contrast remained constant for each slide. The z-

stacks (optical thickness: 1.0µm) throughout the thickness of the section (20 µm) were acquired 

from 3-4 slides for each animal.  

 Image J software was used for counting cells in the scanned images.  Cell labeling (foci, 

cytoplasmic, double, and DAPI) was done manually and was achieved by checking the multiple 

optical sections (20% mid-range of z-stack) that comprised each cell (Shakhawat et al., 2014a). 

Average cell counts of all regions in the OB or aPC from all slides in the same animals were 

reported. 
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5.2.7 Statistics 

 OriginPro 9.0 software was used to analyze all data sets. Student t tests between the saline 

and drug infused groups were used for statistical comparisons. Data are presented as mean ± sem. 

 

5.3 Results 

5.3.1 OB adrenoceptor blockade impairs similar odor discrimination learning, reliability 

 of rewarded odor representations, and pattern separation in aPC 

 We first tested whether blocking OB adrenoreceptors has any effect on similar odor 

discrimination learning. β- and α-adrenoceptor blockade slowed discrimination learning of highly 

similar odor pairs. The saline-infused group learnt to discriminate the S+ and S- odors in 6 blocks 

(84 ± 1.25% success rate) while the drug group was unable to discriminate after 6 blocks (49 ± 

1.25%, n = 4; t = 19.80, p = 1.08E-6, Figure 5.1B1, see also Figure 5.1C1 and 5.1D1). However, 

extended training eventually led to successful discrimination in the drug group. By 14 blocks of 

training, the drug group showed significant discrimination (88 ± 2.55%) and was no different from 

the saline group (92 ± 4.06%, n = 5; t = 0.83, p = 0.43, Figure 5.1C1).  

 To investigate the effect of OB adrenergic blockade on odor representations in the aPC, we 

looked at Arc expression in rats that were exposed either to the S+ odor twice or to the S+ followed 

by the S-. Arc mRNA is expressed in the nucleus of the cell shortly (~5 min) following an odor 

stimulation and is translocated into the cytoplasm ~20-30 min later. Therefore, nucleus and 

cytoplasm double labeled Arc+ cells following repeated exposures to the same odor indicate those 

that are reliably activated by the odor, while double labeled Arc+ cells following two different odor 

episodes are likely those activated by both odors and index the correlation of the two odors 

(Shakhawat et al., 2014a).  
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Overlap ratio (OLR) defined by the percentage of double Arc+ cells over total Arc+ cells 

was used to measure the reliability of odor representations to the rewarded odor in the aPC 

following two consecutive S+ episodes. At the 6th block, when the saline-infused animals learnt to 

discriminate between S+ and S-, whereas the drug group did not, there was a significant difference 

in the Arc+ cell patterns between the two groups. The OLR in the saline group was significantly 

larger (37.56 ± 1.57%; n = 4) than that in the drug group (22.16 ± 0.26%; t = 9.70, p = 6.87E-5, 

Figure 5.1B2&3). This replicates the finding of increased stability with reward seen previously 

(Shakhawat et al., 2014a) and suggests a less stable representation of the S+ in the aPC occurs due 

to OB adrenergic blockade and is associated with failure to discriminate. The smaller OLR in the 

drug group was due to fewer double Arc+ cells in the aPC (0.83 ± 0.39%) relative to the saline 

group (1.85 ± 0.39%, n = 4; t = 2.63, p = 0.04, Figure 5.1B4).  

With 17 blocks of extensive training, the drug group was discriminating between S+ and S- 

(88 ± 1.22% vs. 92 ± 3% in the saline group, n = 5, t = 1.23, p = 0.25, Figure 5.1C1), and the OLR 

in the drug group was larger (45.72 ± 0.88) and not different from that in the saline group (43.07 

± 2.78%, n = 5, t = 0.91, p = 0.39, Figure 5.1C2&3). The distribution of Arc+ cells (total, double, 

single) was similar in both groups (Figure 5.1C4). OB adrenergic blockade compromised the 

natural course of enhanced stability of aPC representations with training and made discrimination 

of similar odors more challenging.   

 Pattern separation in the aPC was also examined in rats that underwent 6 blocks of training 

(Figure 5.1D1). Arc expression was visualized following exposure to S+ then S-. Here, OLR 

indexes the overlap between two different odor representations. The OLR was significantly smaller 

in the saline group (16.78 ± 1.39%, n = 5) than in the drug group (28.56 ± 0.96%; t = 6.97, p = 

1.16E-4, Figure 5.1D2&3), suggesting pattern separation in the saline, but not the drug, group. 
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Correspondingly, there were more double Arc+ cells in the drug group (3.61 ± 0.50%) than in the 

saline group (1.76 ± 0.21%, n = 5, t = 3.39, p = 0.009, Figure 5.1D4). Inability to discriminate 

similar odors after 6 blocks of training was accompanied by lack of pattern separation, and lack of 

rewarded odor stability, in the drug group aPC odor ensembles.  
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Figure 5.1 OB adrenoceptor blockade slows down similar odor discrimination learning and 

odor representation and pattern separation in the aPC 

(A) Schematic of experimental procedures. (B1-B4) Impaired odor discrimination by adrenoceptor 

blockade is accompanied by reduced reliability of pyramidal cell activity. B1: Correct responses 

in the drug and saline groups following 6 blocks of training. B2: Example images of Arc+ cells in 

aPC. Blue indicates DAPI staining of nuclei. Red indicates Arc signals. White and yellow arrows 

indicate double- and single-stained Arc+ cells respectively. Bar, 20 μm. B3: Overlap ratio (OLR) 

of the two ensembles to the same reward odor (S+) in the drug and saline groups. B4: Distribution 

of Arc+ cells including total, double and single-stained cells. * p < 0.05; ** p < 0.01. (C1-C4) 

Prolonged training leads to odor discrimination in adrenoceptor-blocked group and restores 

reliability of pyramidal cell activity. (D1-D4) Impaired odor discrimination by adrenoceptor 

blockade is accompanied by reduced pattern separation between rewarded (S+) and unrewarded 

(S-) ensembles.  



130 
 

5.3.2 APC adrenoceptor blockade prevents similar odor discrimination, and impairs 

 reliability of odor representations in the OB 

The role of aPC adrenoreceptors in odor discrimination learning has not been studied. Here 

we infused adrenoceptor blockers into aPC before training and infused rats were unable to 

discriminate the similar odors despite extensive training (Figure 5.2B1 and 5.2C1). At the 17th 

block, the drug group is unable to discriminate (55 ± 4.2%, n = 5, t = 9.07, p = 1.75E-5, Figure 

5.2C1), while the saline group is highly successful (94 ± 1%) having reached discrimination 

criterion at 6 blocks. This is the first evidence that aPC adrenoreceptors are critical for similar odor 

discrimination learning. We also tested a subset of these rats for their memory of the earlier orange 

and peppermint discrimination. Recall and discrimination of these distinct odors was not affected 

by aPC adrenoceptor blockade (Appendix-E).  

 Arc visualization in the OB following odor discrimination training with aPC adrenoceptor 

blockade revealed differences in both mitral and granule cell ensemble representations to the 

rewarded odor.  The OLR of mitral cell ensembles to the rewarded odor in the saline group (35.69 

± 3.72%, n = 4) was larger than in the drug group (19.58 ± 1.55%; t = 4.00, p = 0.007, Figure 5.2 

B2&3). Double Arc+ cells were fewer in the drug group (1.26 ± 0.11%) than in the saline group 

(3.00 ± 0.36%, n = 4, t = 4.60, p = 0.004, Figure 5.2B4). Similarly, the OLR of granule cell 

ensembles to the rewarded odor was larger in the saline group (38.72 ± 2.96%) than the drug group 

(17.36 ± 0.55%, n = 4; t = 7.08, p = 3.97E-4, Figure 5.2B2&5). This was again due to fewer double 

Arc+ cells in the drug group (0.94 ± 0.13% drug group vs. 2.96 ± 0.40 saline group, n = 4, t = 4.86, 

p = 0.003, Figure 5.2B6). Together, aPC adrenergic disruption during similar odor discrimination 

training impairs the reliability of neuronal representations to the rewarded odor in the OB. 



131 
 

 Finally, we tested whether aPC adrenergic blockade affects pattern separation of the OB 

S+ and S- ensembles. This was performed after 17 blocks of training (Figure 5.2C1). There were 

no differences in the OLR of the two ensembles in the two groups (16.84 ± 1.63 in the saline group 

vs. 12.58 ± 2.41% in the drug group; n = 4, t = 1.46, p = 0.18, Figure 5.2C2&3). There was also 

no difference in the distribution pattern of Arc+ neurons (Figure 5.2C4).  
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Figure 5.2 aPC adrenoceptor blockade prevents similar odor discrimination learning and 

changes in OB odor representations 

(A) Schematic of experimental procedures. (B1-B6) Impaired odor discrimination by 

adrenoceptor-blockade is accompanied by reduced reliability of mitral and granule cell 

representations. B1: Correct responses in the drug and saline group with 8 training blocks. B2: 

Example of Arc+ cells in the OB. Blue indicates DAPI staining of nuclei. Red indicates Arc signals. 

White and yellow arrows indicate double- and single-stained Arc+ cells respectively. GC, granule 

cell layer, MC, mitral cell layer. Bar, 20 μm.B3: OLR of two mitral cell ensembles to the same 

reward odor (S+) in the drug and saline groups. B4: Distribution of Arc+ mitral cells including 

total, double and single-stained cells. B5: OLR of two granule cell ensembles to the same reward 

odor (S+) in the drug and saline groups. B6: Distribution of Arc+ granule cells including total, 

double and single-stained cells. * p< 0.05; ** p < 0.01. (C1-C4) No difference in pattern separation 

between rewarded (S+) and unrewarded (S-) mitral cell ensembles in the OBs of the drug and saline 

groups. 
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5.4 Discussion 

5.4.1 Blockade of OB adrenoreceptors slows similar odor discrimination and the 

 stabilization of reward odor encoding in aPC 

Rats with OB blockade of adrenoreceptors did not learn the similar discrimination in 6 

blocks of training, but did reach criterion after 14 blocks. After 6 blocks the rewarded odor 

representation in aPC for saline-infused rats revealed increased stability relative to that in OB-NE 

blockade rats (OLR 38% vs. 22%).  When the drug group reached criterion there was no longer a 

difference in OLR from the saline group; both showed increased stability.  Increased stability of 

cortical motor (Peters et al., 2014; Cao et al., 2015) and sensory (Shakhawat et al., 2014a; 

Shakhawat et al., 2014b; Poort et al., 2015) representations with learning appears to be a general 

feature of learning-induced network change. Ensemble sizes were similar to previous reports for 

aPC (~4-5%; Shakhawat et al., 2014a).  

Critically for this discrimination task, pattern separation in aPC for the saline-infused group 

(OLR S+/S- 17%) was significantly greater after 6 blocks than for the drug infused group (29%).  

Pattern separation in aPC ensembles has also been reported following similar discrimination 

learning (Chapuis and Wilson, 2012; Shakhawat et al., 2014a). 

 

5.4.2 Blockade of adrenoreceptors in aPC prevents similar odor discrimination and 

 stabilization of reward odor encoding in OB 

Adrenergic antagonists in aPC prevented successful discrimination learning even after 17 

blocks of training. At 6 blocks, saline-infused rats reached criterion and had greater overlap in 

rewarded odor ensembles for both mitral cells (~36%) and granule cells (~39%). This is similar to 

OB changes in odor ensemble encoding with preference training in the rat pup (Shakhawat et al., 
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2014b). Ensemble size (7.5%) was also similar for pups and adults. A parsimonious explanation 

of the ensemble changes is that activated mitral cells recruit their associated granule cells.  

Pattern separation in OB Arc+ ensembles was not seen during this task. Whether the OB 

contributes to pattern separation is still under debate (Sahay et al., 2011).   

 

5.4.3 Neural constraints on similar odor discrimination learning 

Learning increases in the OLR of rewarded odors (Shakhawat et al., 2014a; Shakhawat et 

al., 2014b), but not unrewarded odors (Shakhawat et al., 2014b) reveals the importance of reduced 

variability in encoding survival-relevant odors.  

The present data suggest aPC-NE is required for difficult odor discrimination learning. NE 

enhances signal to noise ratio of the afferent inputs to aPC (Hasselmo et al., 1997). The data also 

imply that feedback from the learned aPC representation is necessary to the development of 

stability in the OB ensemble. Odor/reward associations are slowed when centrifugal feedback to 

the bulb is transected (Kiselycznyk et al., 2006). Blockade of OB NE does not prevent stability, or 

pattern separation, changes in aPC ensembles, but slows their appearance. This result is consistent 

with evidence that OB NE facilitates similar odor discriminations (Doucette et al., 2007; 

Mandairon et al., 2008b). 

The obligatory role of aPC NE for the acquisition of similar odor discriminations was 

unexpected. Pattern separation in aPC is likely fundamental to successful learning. Pattern 

separation requires the dissociation of ensembles either through enhancement of inhibitory 

processes or a weakening of connections. The long training required for separation of similar odor 

representations might relate to competing demands for strengthening rewarded representations and 

weakening overlap to facilitate discrimination. Simple discrimination only requires a 
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strengthening of connections (Shakhawat et al., 2014a). NE facilitates inhibition and supports LTD 

and LTP, in the latter case the implicated receptors differ (Kirkwood et al., 1999). Selective 

antagonism in aPC may help reveal the mechanisms implicated in odor pattern separation. 

Another requirement for discriminating similar odors is neural space. Odor objects activate 

similar-sized ensembles. With less overlap more neurons are needed for odor differentiation. This 

is consistent with human evidence reporting more discriminable episodic memories in individuals 

with larger relevant neural space (Chadwick et al., 2014).  
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Chapter-06: Discussion 

 

The major goal of this research was to delineate the role of NE in odor learning. Thus, this 

dissertation explored how NE via multiple adrenoreceptors modulates early odor preference 

learning in rat pups and odor discrimination learning in adult rats. In pups, NE-mediated 

intracellular cascades facilitate the plastic changes necessary for odor memory. In adult rats, this 

research work discovered NE-mediated network plasticity in the olfactory system following 

learning. Below are the summaries of all findings, starting from Chapter 2 to Chapter 5. 

 

 

6.1 Major Contributions to the Field 

6.1.1 NE acts as a UCS in early odor preference learning via multiple adrenoreceptors 

Previous research revealed that β1-adrenoreceptors are one of the major contributors to 

neonatal odor learning (Yuan et al., 2003a, b; Harley et al., 2006). α1-adrenoreceptors also play a 

role in early odor preference learning (Harley et al., 2006). Additionally, α2-adrenoreceptors are 

expressed in the OB (McCune et al., 1993; Pieribone et al., 1994; Day et al., 1997; Winzer-Serhan 

et al., 1997a,b; Winzer-Serhan and Leslie, 1999; Hayar et al., 2001; Nai et al., 2010), and have 

been shown to be critically involved in NE-mediated long-term plasticity of mitral cell networks 

in the OB (Pandipati et al., 2010). In this work (Chapter 2), an α2-adrenoreceptor antagonist, 

yohimbine, was directly infused into the OB (Shakhawat et al., 2012). Odor, when paired with 

mild shock, paradoxically results in odor preference in rat pups (Sullivan et al., 2000a). Yohimbine 

infusion prevented odor preference learning to the conditioned odor using the shock + odor 

paradigm (Fig-2.1). 
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The next obvious question was whether activating α2-adrenoreceptors by a local bulbar 

infusion can itself serve as an UCS to induce odor preference memory. Infusion of clonidine, an 

α2-adrenoreceptor agonist, when paired with the conditioned odor, induced a significant preference 

for that odor (Fig 2.1). To circumvent the potential effects of clonidine on α1-adrenoreceptors, an 

antagonist of α1-adrenoreceptors (prazosin) was co-infused with clonidine into the bulb. This 

cocktail infusion was also able to induce learning in rat pups, supporting our hypothesis that α2-

adrenoreceptor activation can also act as an UCS for odor preference learning Fig 2.1).  

Since past physiological evidence suggests that NE via α2-adrenoreceptors indirectly 

excites mitral cells via disinhibition (Nai et al., 2010; Pandipati et al., 2010), we studied the effect 

of clonidine on mitral cell intracellular signaling, especially on pCREB and cAMP, two players 

critically involved in β-adrenoceptor mediated learning plasticity (Shakhawat et al., 2012). To 

compare to other disinhibitory effects a GABAA receptor antagonist gabazine, was infused in 

another cohort. Either clonidine or gabazine infusion increased pCREB expression in the mitral 

cells in the drug-infused bulb compared to the saline infused bulb (Fig 2.2). Whereas clonidine 

infusion increased pCREB expression in the lateral domain (peppermint hot spot; Lethbridge et al. 

2012), gabazine treatment increased pCREB expression both in the lateral and medial domains of 

the olfactory bulb (Fig 2.2). These results suggest that odor input together with α2-adrenoreceptor 

mediated disinhibition act conjointly to enhance mitral cell activity and induce pCREB synthesis 

in the peppermint representation region, while gabazine-mediated disinhibition elicited a global 

pCREB expression change in the MCL (Fig 2.2). 

β1-adrenoreceptor mediated cAMP increase has been a prominent intracellular mechanism 

underpinning early odor preference memory (Yuan et al., 2014). In this experiment we also tested 

the molecular signalling underlying α2-adrenoreceptor mediated learning. First, neither clonidine 
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nor gabazine application in the bulb changed the cAMP level compared to the saline-treated bulb, 

excluding the possibility that the calcium-enhanced adenylate cyclase pathway activates cAMP in 

this learning paradigm (Fig 2.2). This indicates that α2-adrenoreceptor mediated learning occurs 

via a cAMP-independent pathway. It should be noted that α2-agonist clonidine can also act on I1-

imidazoline receptor, which has been shown to be expressed in the OB (Friedrich et al., 2008). 

Thus one might speculate this as one of the reason behind the unexpected cAMP independent 

learning observed here. Another interesting discovery of this experiment was that neither pCREB 

nor cAMP levels changed in the GC layer (Fig 2.2).  

 Finally we asked whether β and α2-adrenoreceptors act concurrently to induce learning. 

We found that co-application of a previously suboptimal dose of both clonidine (50µM) and 

isoproterenol (1.0 mg/kg) leads to odor memory formation (Fig 2.3). In addition, co-application of 

500 μM clonidine enabled odor preference learning with a saline s.c. injection (59.47% ± 3.20, n 

= 11) or a 1 mg/kg isoproterenol injection (66.37% ± 5.06, n = 11). The latter group differed 

significantly from no learning saline infusion group (38.84% ± 2.10, n = 13), the 2 mg/kg group 

(45.34% ± 8.93, n = 9) and the 6 mg/kg group (43.22% ± 7.06, n = 8), while the saline s.c. + 500 

μM clonidine infusion group differed from the saline infusion control group and the 6 mg/kg no 

learning control group (Appendix-G). These results are consistent with the hypothesis that NE 

facilitates early odor preference memory formation via multiple adrenoreceptors and those 

adrenoreceptors have an additive effect to enable odor preference learning.   
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6.1.2 Odor preference learning results in stable odor representations in both the OB and 

aPC 

One of the major goals of this dissertation was to explore the modulatory role of NE on 

odor representations following learning. In order to do that, first we studied how associative 

learning changes odor representations in both the OB and aPC. A notion that network ensembles 

stabilize following learning was proposed by Hebb in 1949. A myriad of data have shown that 

odor learning modifies odor representations in the OB and aPC similar to other sensory modalities 

(Woo et al., 1987; Woo and Leon, 1991; Roth and Sullivan, 2005; Roth et al., 2006; Jones et al., 

2008; Busto et al., 2009; Fletcher, 2012; Kass et al., 2013). In line with these studies, our lab has 

also described learning-induced physiological changes in the OB and aPC in the rat pup learning 

model (Yuan et al., 2002; Yuan and Harley, 2012; Fontaine et al., 2013; Morrison et al., 2013). 

However, those earlier imaging and electrophysiological techniques have limited capability to 

capture large ensemble activity with single cell resolution. In this study, Arc catFISH was used to 

monitor learning-induced spatiotemporal activity patterns of sparsely distributed neurons with 

single cell resolution (Shakhawat et al., 2014a,b). Due to the lack of mature anterior commissural 

projections in one week-old rat pups, odor learning can be confined to one olfactory bulb 

hemisphere through single naris occlusion during training, permitting the learned vs unlearned 

bulb to be tested within the same animal (Kucharski et al., 1986a; Kucharski and Hall, 1987; Yuan 

and Harley, 2012). Previous work from our lab using ex vivo calcium imaging suggests an 

enhanced odor representation in the aPC following learning – the threshold for pyramidal cells to 

respond with action-potential dependent calcium transients was lowered in the learned hemisphere 

(Fontaine et al., 2013). This suggests early odor learning may strengthen previously weakly 
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responsive cells through synaptic potentiation so that those cells are recruited more reliably to the 

conditioned odor input.  

 Here using Arc catFISH we were able to demonstrate that learning increased the likelihood 

of reliably recruiting more similar ensembles to the rewarded odor (Shakhawat et al., 2014a,b). 

The overlap between two ensembles activated by the rewarded odor increased from ~25% to ~49% 

in the OB (Fig 3.2) and from ~18% to ~40% in the aPC (Fig 3.4). An increased number of 

repeatedly activated neurons to the rewarded odor resulted in a more stable learning-induced odor 

representation. Interestingly, the overall size of the odor representation remained unchanged 

following learning (Fig 3.2 & 3.3). Whereas ~7-8% of mitral cells were shown to be responsive 

for odors in the OB, sparser, i.e. 1%, odor representation was observed in the aPC (Fig 3.2, 3.3 & 

3.4). Generally interneurons do not express Arc (Vazdarjanova et al., 2006; McCurry et al., 2010), 

but surprisingly granule cells of the OB do recruit Arc (Fig 3.3). In granule cells, we found that 

learning did not change the overall sparse activity pattern (~5%) of granule cells in the OB (Fig 

3.3). However, similar to principle cells of the OB and aPC, the stability of the granule cell network 

responsive to the rewarded odor increased significantly following learning (up to 50% overlap of 

the two ensembles responding to the rewarded odor) (Fig 3.3). Altogether, with odor associative 

learning, variable odor representations became more stable and thus the precision for and 

likelihood of memory recall may have been enhanced (Shakhawat et al., 2014a,b).   
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6.1.3 Activity-dependent ensemble modification in aPC following odor discrimination 

learning in adult rats 

 A variety of theoretical and computational models propose that the PC possesses 

characteristics of associative cortices (Haberly, 1985; Ambros-Ingerson et al., 1990; Hasselmo et 

al., 1990; Granger and Lynch, 1991; Haberly, 2001; Linster et al., 2009), thus it becomes a 

plausible model system to study activity-dependent synaptic plasticity in general (Gottfried, 2010; 

Wilson and Sullivan, 2011; Yuan and Harley, 2014). Using Arc catFISH, we visualized three forms 

of aPC representational plasticity: adult odor discrimination learning (1) creates a stable odor 

engram for the rewarded odor; (2) enhances pattern separation between highly similar conditioned 

odor pairs when discrimination is required; and (3) reconstructs an odor engram from the 

fragmented input of the odor mixture that signals reward. In general, consistent with other network 

studies, we also found robust and sparse odor representation in the aPC of the adult rats (Shakhawat 

et al., 2014a,b).  

 

6.1.3.1 Successful odor discrimination in adult rats sharpens the ensemble representation for 

the rewarded odor. 

Arc imaging revealed that odor discrimination learning resulted in the creation of a stable 

odor engram in the aPC, similar to what we observed in the neonate aPC, following early odor 

associative learning (Shakhawat et al., 2014a,b). Ensemble overlap to the rewarded odor increased 

from 25% to 40% after learning (Fig 4.1). Further mechanistic investigation showed that the stable 

engram arose from a reduction in weakly or randomly activated cells, leading to sharper, and a 

more reliable network representation of the rewarded odor. Furthermore, unlike neonates, there 



142 
 

was a significant reduction of the odor representation size (from 5% to 2.5% to the rewarded odor) 

in adult rats (Fig 3.4 & 4.1).  

 

6.1.3.2 Successful odor discrimination de-correlates neuronal ensembles representing highly 

similar odors in the aPC. 

 Although dissimilar odors did not show enhanced spatial segregation in their odor 

representations in aPC for successful discrimination (Fig 4.1), more challenging similar odor 

discrimination learning promoted pattern separation in the aPC (Fig 4.3). Discrimination of a 

highly similar odor pair required significantly more training, but evolved with disambiguated odor 

representations (less overlapping) for rewarded and unrewarded odors in the aPC (Fig 4.3). 

 

6.1.3.3 Reward learning with a two-odor mixture increases the similarity of the two odor 

representations 

 Following associative training of an odor mixture with the water reward, the degree of 

the overlap between the two components of the odor mixture significantly increased (from ~ 

20% to ~ 45%) in the trained rat, suggesting that the odor representations of the two odorants 

became highly similar after conditioning (Fig 4.2).  
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6.1.4 Adrenergic modulations in the OB and aPC underlie highly similar odor 

discrimination learning in adult rats. 

 Adrenergic blockade in the aPC prevented the discrimination of highly similar odors (Fig 

5.2). This suggests for the first time that NE in the aPC is vital in similar odor discrimination 

learning. The same intervention in the OB slows similar odor discrimination learning (Fig 5.1). 

Arc ensemble visualization demonstrated that aPC ensemble stability was reduced and pattern 

separation was impaired when the OB was subjected to adrenergic blockade (Fig-5.1). However, 

although impairment in ensemble stability was observed in the OB, pattern separation was not seen 

in the OB whether or not adrenergic receptors were blocked in the aPC (Fig 5.2). 

 

6.2 Our findings in the neurobiology of learning and memory 

6.2.1 Role of α2-adrenoreceptors in learning and memory 

 Although β-adrenoreceptors have been extensively studied as a primary mediator for early 

odor preference learning, current literature suggests multiple types of adrenoreceptors are involved 

in  this learning model (Hayar et al., 2001; Yuan et al., 2003a; Harley et al., 2006; Yuan, 2009; 

Lethbridge et al., 2012). The diffuse nature of noradrenergic fiber innervations in the OB and the 

possibility of volume transmission of NE (Agnati et al., 1995; Umbriaco et al., 1995)increases the 

likelihood of the involvement of multiple adrenoreceptors expressed in different layers of the OB 

during odor preference learning. We have shown that α2-adrenoreceptors together with β-

adrenoreceptors act in concert to enable odor preference learning (Fig 2.3). The α2-adrenoreceptor 

is not only involved in odor learning, it has also been shown to be crucially involved in amygdala-

dependent fear memory creation in chicks (Gibbs and Summers, 2003).  
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6.2.2 Role of adrenoreceptors in adult odor discrimination learning 

 Though the role of OB adrenoreceptors in adult rodent odor discrimination learning has 

been characterized previously (Doucette et al., 2007; Escanilla et al., 2010), we are the first to 

demonstrate the essential role of adrenoreceptors in the aPC for adult rat odor discrimination 

learning (Fig 5.2). Doucette et al (2007) reported that pharmacological blockade of both β- and α-

adrenoreceptors in the mouse OB impairs similar odor discrimination learning. Impairment in 

discrimination learning is only observed when both types of adrenoreceptors are blocked. Easy 

odor discrimination learning remains unaffected following adrenoreceptor blockade in the OB. 

One year later Mandairon et al (2008b) reported that reward-motivated discrimination learning 

slows down when both adrenoreceptor antagonists are applied in the OB. Though the odor pairs 

employed in the above two studies are different, all the odors are perceptually similar and hence 

difficult to discriminate. However, the behavioral paradigms used by these two studies were 

different. Whereas Doucette et al (2007) used an olfactometer to train-water deprived mice in the 

discrimination task, Mandairon et al (2008b) used a food digging paradigm to train-food deprived 

rats to discriminate two odors. Using a similar digging paradigm in mice, a recent study suggested 

that, as opposed to odor associative learning, bulbar blockage of adrenoreceptors is required for 

odor perceptual learning (Vinera et al., 2015). We have used an olfactometer and go-no-go 

discrimination learning, similar to Doucette et al (2007), to test the role of NE in odor 

discrimination learning. Our results suggest that bulbar adrenoreceptor blockade only partially 

impacts similar odor discrimination learning, whereas aPC adrenoreceptors are necessary for the 

similar odor discrimination since adrenoceptor blockade in the aPC completely prevented 

discrimination of highly similar odors (Fig 5.2). 
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6.2.3 Sparse coding and discriminability of sensory stimuli 

Sparse distributed coding has several beneficial features that assists the brain in storing 

nearly unlimited information (Willshaw et al., 1969; Marr, 1971; Field, 1987; McClelland et al., 

1995; Norman and O'Reilly, 2003; Waydo et al., 2006; Babadi and Sompolinsky, 2014; Wixted et 

al., 2014). It is an energy efficient way to code information (Levy and Baxter, 1996), and eases the 

subsequent readout of complex data for further processing (Olshausen and Field, 2004). Obviously 

it not only increases the capacity of the brain to store numerous associative memories (Brunel et 

al., 2004), but can speed up the learning process as well (Schweighofer et al., 2001). For that idea, 

it is usually assumed that sparse coding reduces the probability of overwriting previously stored 

information (Willshaw et al., 1969; Olshausen and Field, 2004). Different faculties of the brain 

have been shown to utilize sparse coding ubiquitously to encode various forms of sensory 

information (Young and Yamane, 1992; Rolls and Tovee, 1995; Vinje and Gallant, 2000; Brecht 

and Sakmann, 2002; Laurent, 2002; Perez-Orive et al., 2002; Vinje and Gallant, 2002; DeWeese 

et al., 2003; Theunissen, 2003; Yuan and Harley, 2014). Sparse coding is preserved across phyla 

(Young and Yamane, 1992; Rolls and Tovee, 1995; Vinje and Gallant, 2000; Brecht and Sakmann, 

2002; Laurent, 2002; Perez-Orive et al., 2002; Vinje and Gallant, 2002; DeWeese et al., 2003; 

Theunissen, 2003; Yuan and Harley, 2014). Sparse coding is not only limited to sensory coding, 

but is also applicable in the motor system (Hahnloser et al., 2002; Beloozerova et al., 2003; Brecht 

et al., 2004). Despite the numerous advantages of sparse coding, certain trade-offs, such as a more 

limited capacity for generalization, associated with sparse coding should also be considered 

(Spanne and Jorntell, 2015).  

Sparse and distributed coding has also been reported in the OB (Assisi et al., 2007; Luo et 

al., 2010; Olsen et al., 2010; Koulakov and Rinberg, 2011; Yu et al., 2013) and PC (Stettler and 
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Axel, 2009; Isaacson, 2010; Davison and Ehlers, 2011; Wilson and Sullivan, 2011). These coding 

properties optimize the OB and aPC capacity to represent odors in confined networks (Shadlen 

and Newsome, 1998; Olshausen and Field, 2004) and it is particularly advantageous in the face of 

network degradation (Slotnick and Bisulco, 2003; Slotnick et al., 2004; Bracey et al., 2013). 

Specifically, significant experimental evidence has accumulated which suggests that mitral cells 

contribute to odor identification processes through sparse (Fantana et al., 2008), spatially 

distributed (Johnson et al., 1999), and multidimensional (Johnson and Leon, 2007) glomerular 

activity, which was found to be preserved across species and individuals (Soucy et al., 2009). 

Consistent with these studies, Arc catFISH revealed that mitral cell and granule cell representations 

are sparse and widely distributed in the OB (Shakhawat et al., 2014b). We found that only ~7–8% 

of the mitral cells (Fig 3.2) and ~5% of granule cells responded to the peppermint odor in rat pups 

(Fig 3.3). aPC odor representation is sparser than the OB  (Fig 3.4). Only ~1% of pyramidal cells 

in the aPC responded to odor in pups (Fig 3.4) and ~3-5% in adult rats (Fig 4.1). The smaller 

representation size in pups may be attributed to the immaturity of mitral cell axons at this age 

(Sarma et al., 2011) such that fewer inputs are active than in the adult for any given representation. 

As discussed, sparser representation of sensory information has been observed in different species, 

including humans. For example, Waydo et al (2006) shows that only 1% of hippocampal neurons 

participate in semantic memory representations in humans. 

 

6.2.4 Emergence of a more stable odor representation following learning 

 It has been a challenge in neuroscience for a long time to prove that the same neuronal 

network that is involved during information encoding is also engaged during the retrieval process. 

The reason behind the failure to study engram dynamics using traditional scientific methods is, in 
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large part, due to the elusive nature of the memory representation in the brain. Lashley’s three 

decades of work leads to the conclusion that memory is sparse, widely distributed and dynamic in 

nature (Lashley, 1950). Only in recent years have improvements in modern technologies allowed 

us to visualize the engram, and even to manipulate it (e.g. erasing a memory) (Boyden et al., 2005; 

Liu et al., 2012; Ramirez et al., 2013; Nabavi et al., 2014).   

The prevailing view of memory formation at the neuronal network level is that plasticity 

mechanisms allow the formation of stable neuronal ensembles by strengthening connections 

between populations of neurons that are involved in encoding (Bliss and Collingridge, 1993; 

LeDoux, 2000; Josselyn et al., 2015), although this idea has recently been challenged (Ryan et al., 

2015). Once memory is formed, the likelihood of the same population of neurons participating in 

both memory retrieval and encoding is significantly increased (Reijmers et al., 2007; Denny et al., 

2014). In fact the term “memory engram” originally referred to the hypothetically encoded 

information stored in the brain, which must participate in recall (Semon, 1904; Josselyn, 2010). 

Recent findings in the hippocampus support this idea by showing memory engram cells that are 

involved in memory encoding are both necessary (Tanaka et al., 2014) and sufficient (Liu et al., 

2012; Ramirez et al., 2013; Redondo et al., 2014) for recall of the learning event (contextual fear 

memory) in the future. Although these findings show that memory encoding neurons are also 

involved in retrieval, they fail to describe what percentage of initially activated cells is finally 

incorporated into the engram. Not necessarily all the activated cells during the initial encoding will 

be part of the final engram for that particular memory. Along with this idea, recently Denny et al 

(2014) have shown that only a very small percentage of neurons (DG and CA3) that are involved 

in encoding are reactivated during memory expression. This suggests that a small percentage of 

cells involved in the initial encoding may be required for successful memory recall.  
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It would be interesting to test the overlap between the encoding and the memory recall 

ensembles in our model; however, this is not feasible due to the limitation of Arc temporal 

dynamics. In this body of research, instead, we asked whether adaptive learning facilitates stable 

engram formation. We have shown that early odor preference learning creates more stable 

rewarded odor representations in both the OB and aPC (Shakhawat et al., 2014b). We took a simple 

approach and asked how many cells are repeatedly activated by the rewarded odor. The percentage 

of the cells that are repeatedly activated by a rewarded odor may potentially be the cells that drive 

learned behavior. We found an estimated ~300 aPC neurons are repeatedly activated for the 

rewarded odor, which is within the limit on which olfactory decision are based (Choi et al., 2011; 

Miura et al., 2012). Furthermore, we have shown that the likelihood of reactivating the same 

neurons to the rewarded odor increases following odor associative training (Shakhawat et al., 2014 

a,b).  Principle neurons that are activated twice by the rewarded odor peppermint were found to be 

~ 49% and ~40% of the total activated cells (cells activated once + cells activated twice) in the OB 

and aPC respectively ( Fig 3.1, 3.2 &3.4). This overlap ratio is significantly higher than the control 

group (~25%; Fig 3.1, 3.2 &3.4). Similar to the principle cells of the OB, the likelihood of the 

same granule cells being activated to the rewarded peppermint odor increases from ~25% to ~50% 

following learning (Fig 3.3). Increased stability of the odor representation was found to be 

preserved in adult rats as well (Shakhawat et al., 2014a). Following adult odor discrimination 

learning, the stable component of the rewarded odor representation in the aPC is significantly 

higher (~40%) than that in the control group (~25%) (Fig 4.1-4.3).  

In subsequent experiments we have shown that noradrenergic modulation is required for 

highly similar odor discrimination learning (Shakhawat et al., 2015). Less stability of the rewarded 

odor representation is seen when the adrenoreceptors are blocked either in the OB (~20% vs. ~40% 
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in the saline group) or the aPC (~20% vs. ~35%) ( Fig 5.1-5.2). A similar trend is also observed in 

granule cell odor representations (~17% in the drug group vs. ~38% in the saline group). Thus our 

data support the view that plasticity induced by learning results in a more stable representation of 

the memory (Shakhawat et al., 2014a,b).  

 

6.2.5 Representational variability indexed by Arc 

 Odor ensemble representation in the OB and aPC is found to be highly variable, which 

holds true for both pups and adult rats (Shakhawat et al., 2014a,b). The overlap between the 

neuronal ensembles activated by the same odor (in this case peppermint) varies from ~18% to 

~30%. Following learning, the overlap increases up to ~ 40% to ~50%. What accounts for such a 

big representational variability to a single odor even after learning? The rationale behind this high 

variability in Arc readout has recently been extensively discussed (Yuan and Harley, 2014). Odor 

representation in the OB is state-dependent and is subjected to multiple top-down cortical feedback 

inputs. It has been shown that neuromodulatory input (Rinberg et al., 2006; Mandairon and Linster, 

2009; Doucette et al., 2011), context (Kay and Laurent, 1999; Doucette and Restrepo, 2008; 

Restrepo et al., 2009), and other cortical top-down modulations (Chapuis et al., 2013; Rothermel 

and Wachowiak, 2014) may substantially influence odor representation even at the level of the 

OB. For example, Mandairon et al (2014) have recently shown that even visual information is 

encoded in the OB. Furthermore, this variability may also be the result of the variability in the 

odor environment (Babadi and Sompolinsky, 2014). Similarly, non-olfactory activity during 

discrimination tasks (participation in the odor sampling, when/where to lick, and receiving reward) 

has been shown to influence piriform cortical activity (Schoenbaum and Eichenbaum, 1995; 

Zinyuk et al., 2001). Another possibility for representational variability is that memory retrieval 
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initiates subsequent changes in the already consolidated engram for reconsolidation to occur 

(Dudai, 2000; Nader, 2003). Such remodeling of the memory engram may add extra variation in 

the learned odor representation for the second odor exposure.  

One of the major reasons behind the high variability in representation might be related to 

the Arc readout itself. Although Arc has been shown to be promoted by glutamatergic excitatory 

synaptic input (Cole et al., 1989), it may not be expressed in cells that fire spontaneously (Rinberg 

et al., 2006) or are activated via muscarinic inputs (Padmanabhan and Urban, 2010; Angelo and 

Margrie, 2011). Hence Arc readout may vary from the real time odor representation in the bulb 

and aPC. Despite the fact that animals are very fast in odor coding and perception (Uchida and 

Mainen, 2003; Wesson et al., 2008), the odor-evoked activity in the OB and aPC itself is dynamic 

and continues to emerge from first sniff to perception or olfactory decision making (Friedrich and 

Laurent, 2001; Rennaker et al., 2007; Schaefer and Margrie, 2007; Patterson et al., 2013). For 

example, it has been recently shown that initial odor representations which arise from first single 

sniff may vary from olfactory after-images (Broome et al., 2006; Patterson et al., 2013). Arc 

readout may not necessarily capture all representational variability at different time points of odor 

evoked activity pattern in the OB and aPC and this may induce additional variation in the odor 

representation.  

 

6.3 Limitation of Arc catFISH 

 Despite the numerous advantages of Arc catFISH as a technique to visualize spatiotemporal 

representations of sensory information at the single cell level (Yuan and Harley, 2014), it is unable 

to capture sensory representations that evolve through rate coding (McAdams and Maunsell, 

1999). Our data reveal that simple odor representations in the aPC are not spatially segregated, 
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though rats are able to discriminate that odor pair (Chapter 3). Pyramidal cells in aPC might 

disambiguate the simple odor pair using rate coding. Recent studies demonstrate pattern separation 

in the OB (Doucette et al., 2011; Gschwend et al., 2015), but it was not seen by the Arc catfish 

method used in this thesis (Shakhawat et al., 2015).   

 One of the challenges in Arc catFISH is the time consuming, manual counting methods 

used for analysis. To circumvent this problem a machine readable automated counting 3D-catFISH 

technique has been proposed (Chawla et al., 2004). Another limitation of this technique is the 

temporal constraint (~30 min) to visualize activity patterns for two consecutive events. This 

technical drawback limits our ability to monitor the activity pattern of cell assemblies for extended 

time periods at multiple intervals. The requirement to sum over a 5 min interval also precludes 

second to second temporal resolution. 

 

6.4 Arc catFISH – advantages of this technique for studying activity-dependent system 

level synaptic plasticity in the olfactory system 

Visualizing hippocampal ensembles activated by context-A twice shows ~70% overlap 

between two representations in naive animals (Guzowski et al., 2001; Marrone et al., 2014). In line 

with this idea, 50% ensemble- overlap was reported in the extrastriate visual cortex when the same 

visual stimulus is repeatedly presented to a naïve mouse (Rudinskiy et al., 2012). Interestingly, for 

odor stimulation, a single odor such as peppermint only results in ~30% overlap between the two 

aPC ensembles when given repeatedly (Shakhawat et al., 2014a). Such variability in the odor 

representation captured by Arc catFISH in naive animals leaves room to test how learning 

promotes pattern stability, separation, and completion in this system.  
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Another advantage of this technique is that it can be employed to study ensemble dynamics 

in pups. Currently available tetrode recording, or in vivo calcium imaging, though applicable in 

adult animals for studying the neural circuitry underlying learning (Ziv et al., 2013), is not suitable 

for such investigation in pups.  

 

6.5 Synthetic vs elemental perception of odors 

 A point of general interest in olfactory physiology is whether odor representation in the OB 

and PC is analytic (elemental) or synthetic (configural) (Wilson and Stevenson, 2003b; Gottfried 

et al., 2006; Kadohisa and Wilson, 2006). Whether the olfactory system perceives a given odor in 

an analytic or synthetic format is still unclear and often confusing (Kay et al., 2005). The question 

of where that computation occurs, whether it is in the OB or in the olfactory cortex, remains to be 

explored. Recent studies in newborn rabbits indicate that the ratio of the components in an odor 

mixture is the determinant factor of how the olfactory system (mainly the bulb and posterior 

piriform cortex) perceives an odor (elemental vs. synthetic) (Schneider et al., 2015). However, a 

different study in the OB suggests that the spatial activity pattern that emerges due to an odorant 

mixture is not always a good marker for specifying component recognition in the mixtures 

(Grossman et al., 2008). Although different computation/theoretical models have been proposed 

to resolve these issues in this field (Olsson, 1994; Linster and Cleland, 2004), clear important links 

between the ensemble activity and the behavioral outcome are still missing (Migliore et al., 2010).  

 We have shown that when a mixture of vanillin and peppermint (50:50) is used as the 

rewarded odor, trained rats respond to both components just as to the mixture (Fig 4.2), suggesting 

a unified perception of this mixture and its components, similar to what has been proposed by 

Linster and Smith (1997). After learning, significantly more overlap (~44%) is observed between 
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the two odor ensembles activated by peppermint and vanillin alone (Fig 4.2). This supports the 

idea that associative training of the odor mixture with a reward leads to the merging of the 

component ensembles in the aPC. Therefore, the odor processing in the aPC is synthetic in nature. 

It would be interesting to look at whether the ensemble overlap between the component and the 

mixture also increases with learning. If true, this would index pattern completion.  

 

6.6 Future challenges to meet 

6.6.1 Role of adrenoreceptors in odor preference learning 

Although we have shown that α2-adrenoreceptors, in addition to β-adrenoceptors, are 

involved in early odor preference learning, further investigation is necessary to segregate their role 

in the different steps of learning. Whether they involved during encoding, consolidation, and/or 

memory expression requires more systematic investigation. It would be interesting to test whether 

mice with homozygous deletion of dopamine-β-hydroxylase (DBH; Sanders et al., 2006), which 

lack NE, have difficulties in early odor preference learning and whether α- or β-adrenoceptor 

activation can rescue the learning deficiency. Interestingly, Thomas and Palmiter (1997) have 

shown that Dbh-/- mice have deficits in active-avoidance learning.  Furthermore, using the same 

transgenic mice, Zhang et al (2005) have also assessed the critical role of adrenergic signaling in 

contextual and spatial memory retrieval in the hippocampus. An early odor preference learning 

model has been recently established in mice (Roth et al., 2013). The mouse model will enable 

behavioral studies with genetic manipulations and open new avenues for molecular dissections of 

the underlying learning circuitry.  

Another interesting question is the interaction between different modulators during 

learning. As we have found that multiple adrenoreceptors act synergistically to induce odor 
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learning in pups, it is plausible to speculate that NE might interact with other neuromodulators, 

such as ACh, in the olfactory system. A recent computational model proposed that NE and ACh 

together can enhance the signal-to-noise ratio and may facilitate synchronization among mitral 

cells (Li et al., 2015). Although this computational model suggests that NE plays a role in the 

regulation of cholinergic function, behavioral evidence for such a claim is still missing and 

warrants further investigation.  

 

6.6.2 Causality of CREB in neonate odor preference learning 

 Increased pCREB expression in the MC following the pairing of the α2-adrenoceptor 

agonist clonidine and a novel odor suggests that CREB is a common factor that different signalling 

pathways converge on. A causal role for CREB in β-adrenoceptor-mediated early odor preference 

learning has been shown by McLean’s lab using OB infusion of a Herpes simplex virus that carries 

either CREB or mutant CREB genes (Yuan et al., 2003b). Mutant CREB prevents normal learning 

induced by pairing an optimal dose of isoproterenol with an odor. The causal role of CREB in α2-

adrenoceptor mediated learning can be tested similarly using CREB knock-in or knock-out mice. 

Han et al (2007) showed that microinjecting CREBWT in the lateral amygdala of the CREB-

deficient mice rescues fear memory that would otherwise be impaired in this mutant strain. Results 

from this study leads to the conclusion that cells that over express CREB are more likely to be 

recruited by fear learning compared to other cells in the region. Similarly we could also test this 

hypothesis in our model. The question would be whether early odor preference memory 

preferentially recruits cells that overexpress CREB. Tests could be done by checking the 

preferential recruitment of Arc in the cells that overexpress CREBWT (Han et al., 2007) following 

either training or testing. 
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6.6.3 Furthering our understanding of olfactory circuit dynamics using Arc catFISH 

Odor-selective excitation and inhibition between mitral cells and granule cells suggested 

by this leads to the question of whether PG would show similar changes to mitral and granule cells 

following learning assuming they could express Arc. Schoppa and Westbrook (2001) discovered 

a synchronized oscillation among mitral cells that project to the same glomerulus. According to a 

recent computational model, periglomerular cells and granule cells differentially influence mitral 

cells’ spiking (Arruda et al., 2013). Thus, Arc catFISH readout of PG cell activity following 

learning would help us to shed light on whether ensembles of PG cell activity are synchronous 

with and/or coupled to MC and GC activity.  

Genetic deletion of NMDA/NR1 subunits and optogenetic inhibition of aPC pyramidal 

neurons, similar to that recently proposed in the striatum (Land et al., 2014), will help us to unravel 

the underlying synaptic mechanisms involved in pattern separation, completion and increased 

stability of odor representations in the aPC following odor learning. Similar manipulation in the 

hippocampus impairs pattern separation and completion (Gilbert et al., 2001; Nakazawa et al., 

2002; Gold and Kesner, 2005; McHugh et al., 2007; Willshaw et al., 2015). Neurotoxin lesion in 

DG results in impaired pattern separation, leading to the idea that the DG is involved in detecting 

subtle differences among similar objects (Gilbert et al., 2001). Similarly control manipulation of 

aPC (sodium channel blocker administration or optogenetic inhibition of aPC neurons) together 

with Arc catFISH will ascertain aPC role in all those sensory phenomena.  

Odors may be perceived differentially in the two hemispheres, and a few studies suggest 

that the right hemisphere is dominant in odor perception in humans (Zucco and Tressoldi, 1989; 

Jones-Gotman and Zatorre, 1993; Levy et al., 1997b). On the other hand recent studies reveal a 

transient asymmetry in piriform cortical oscillation during odor discrimination learning, with a 
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transient bias to the left hemisphere (Cohen et al., 2015). This dispute in the current literature could 

be resolved by looking at the ensemble activity of the two hemispheres using Arc catFISH. 

It has been shown that Alzheimer patients have impaired pattern separation and completion 

ability (Ally et al., 2013; Wesnes et al., 2014). Olfactory performance (odor habituation and 

identification), particularly performance associated with piriform cortical function, has been 

shown to be impaired in both human Alzheimer patients (Li et al., 2010) and in an animal model 

of Alzheimer’s (Wesson et al., 2010; Wesson et al., 2011). Human amyloid β precursor protein 

expression in the piriform cortex abnormally elevates the local field potential in Tg257 mice 

(Wesson et al., 2011). Arc catFISH could be employed in the alzheimer disease (AD) mouse model 

to test whether their circuit dynamics are disrupted along with their ability to discriminate odors.  

 

6.6.4 The role of norepinephrine in adult odor learning 

We have shown that adrenoceptor blockade in either the OB or the aPC impairs similar 

odor discrimination learning and odor representation in the connected projection area (for example, 

aPC representation is affected when the adrenoreceptors are blocked in the OB) (Fig 5.1-5.2). 

However, direct visualization of the drug target region is elusive due to tissue damage. One way 

to visualize the area being directly manipulated is to optogenetically control the activity of the LC 

during odor guided behavior. However, results of such experimentation may not necessarily help 

us to discern the region-specific role of the noradrenergic system because of the global impact that 

will occur if the LC is activated optogenetically. LC optogenetic stimulation can be combined with 

local adrenoceptor blockade to dissect more region-specific roles of the LC-NE in odor learning.  
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6.6.5 Exploring neighbouring areas of the olfactory system 

The olfactory tubercle (OT) critically mediates odor valence learning (Gadziola et al., 

2015). A recent study using c-fos mapping in the OT, discovered two distinct sub-regions that are 

differentially activated by aversive and appetitive odors following odor associative training 

(Murata et al., 2015). Whereas the anteromedial domain of the OT is preferentially involved in 

approaching behavior, the lateral domain is activated during aversive behavior (Murata et al., 

2015). These suggest the OT, like the aPC, also undergoes activity-dependent changes to support 

corresponding odor-guided behavior. Arc catFISH could be employed to study how ensemble 

stability in each sub-region of the OT changes following learning. A comprehensive comparison 

between the PC and the OT could be performed to define their differential roles in odor learning.  

 

6.6.6 Remote odor memory 

 Our preliminary data suggest that rats can still remember the rewarded vs unrewarded odor 

after 30 days of training. Future experiments could be designed to look at the rewarded odor 

representations 30 days after learning. Will it still be in the aPC, or will it redistribute to other 

cortical areas similar to what has been proposed in hippocampal-dependent learning and memory 

(Frankland et al., 2006; Goshen et al., 2011)? It has been shown that 30 days following fear 

conditioning in context A, similar conditioned responses occurs for both context A and a novel 

context B. This phenomenon is termed “memory generalization”. Consistent with this behavioral 

generalization, significant overlap between ensembles activated by context A and context B was 

also observed 30 days following  fear conditioning (Denny et al., 2014). Arc catFISH would be 

able to tell us whether ensemble representation changes in the case of remote memory. 
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Description: An intra-bulbar infusion of 4% methylene blue dye targeting centre of the bulb.  

Coronal and horizontal view indicate successful targeting of cannulae position. 

 

 

 

 

 

 

 

 

 

 

Appendix-A: Cannula placement verification 
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Description: 2 μl of riboprobe were run in 1% agarose gel (containing ethidium bromide of 0.5 

µg/ml) to check the integrity of the Arc riboprobes used for catFISH. The gel were run at 200 V in 

0.5-1 X TBE for 20 min.  
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Appendix-B: Gel electrophoresis analysis for Arc riboprobe 
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Description: Rule learning training were performed before similar odor discrimination task. In  

this case water deprived rats were subject to orange vs ppt discrimination task before the surgery 

was performed on experimental rats. Another separate group of rats were allowed to discrimnate 

orange vs mineral oil (MO) which shows a learning curve very much similar to orange vs ppt.  
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Description: A pilot study was performed to find an odor pair that is difficult to discriminate. 

Compare to easy discriminable odor pair ( e.g. Orange vs ppt & Orange vs MO) other two odor 

pair { e.g. 0.001% 1-hept: 1-Oct (50:50) vs 1- Hept and 0.01% 1-hept: 1-Oct (70:30)  vs 0.01% 1 

hept: 1-Oct (40:60) }  require extra number of trials to reach the learning threshold.  
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Appendix-D: Establishing Similar Odor pair 
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Description: One block of testing was performed to test the memory recall following saline or 

drug infusion. Table indicate successful memory recall ( ~ 86%-93% correct response rate) despite 

any treatment (Saline /Drug) in the OB/ aPC.  

 

 

 

 

 

 

 

Appendix-E: Memory recall (Orange vs. Peppermint) after saline/drug infusion 
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Description: To ensure counting methodoly, an experimental blind person ( Dr. Gheidi) perform 

counting on an Arc catFISH slide. Counting results were very much similar to what was found 

originally by the experimenter (Amin Shakhawat).  
 

Appendix-F: Comparison between Dr. Ali Gheidi and Amin Shakhawat’s counting respectively  
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Description: (A) Addition of 500 μM clonidine enabled odor preference learning in the 1 mg/kg 

isoproterenol group and the saline s.c. injected group **p<0.01. *p<0.05. Error bars, 

mean±SEM. (B) Combined dose curves including 50 μM clonidine, 500 μM clonidine and no 

infusion group. Note the shifts in the effective doses of isoproterenol when clonidine was co-

applied.  

Appendix-G: α2-adrenoceptor co-activation enables odor learning with suboptimal doses of isoproterenol 

A 

B 


