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Abstract
Cognitive radio (CR) was developed for utilizing the spectrum bands efficiently. Spec-

trum sensing and awareness represent main tasks of a CR, providing the possibility

of exploiting the unused bands.

In this thesis, we investigate the detection and classification of Long Term Evolution

(LTE) single carrier-frequency division multiple access (SC-FDMA) signals, which are

used in uplink LTE, with applications to cognitive radio. We explore the second-order

cyclostationarity of the LTE SC-FDMA signals, and apply results obtained for the

cyclic autocorrelation function to signal detection and classification (in other words,

to spectrum sensing and awareness). The proposed detection and classification al-

gorithms provide a very good performance under various channel conditions, with a

short observation time and at low signal-to-noise ratios, with reduced complexity. The

validity of the proposed algorithms is verified using signals generated and acquired

by laboratory instrumentation, and the experimental results show a good match with

computer simulation results.
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Chapter 1

Introduction

1.1 Cognitive Radio

With the increasing demand for high data rate services, which require increased band-

width, the inadequacy of fixed radio spectrum allocation has become a serious prob-

lem. According to the current spectrum assignment policies, a specific band of spec-

trum is assigned to a certain wireless system. While this resolves the interference

problem between different systems, it leads to spectrum scarcity. On the other hand,

spectrum is available at various times and geographical locations, and the current

assignment basically renders its under-utilization.

Fig. 1.1: Spectrum usage (taken from [1]).

1
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It has been observed from the measurements depicted in Fig. 1.1 that the utiliza-

tion of the radio spectrum is not uniform. There is a high activity at some frequencies,

but most of the time the spectrum is underutilized. Studies have shown that the uti-

lization of the spectrum ranges from 15% to 85% [2] depending on the time of usage

and geographical location. The spectrum is assigned to different operators; this as-

signment is fixed. This type of allocation technique is known as static allocation.

According to the Federal Communications Commission (FCC), the usage of this fixed

spectrum is not efficient and creates so-called spectrum-holes or white spaces [3],

which refer to time intervals where portions of the frequency spectrum are unused.

The above facts make it necessary to start looking for new approaches for spectrum

management, outside of the static allocation. Dynamic spectrum access (DSA) refers

to communication techniques that exploit the spectrum-holes to increase the spec-

trum utilization. Cognitive radio (CR) [4] can be seen as one possible approach of

implementing DSA that aims to improve spectrum utilization in which the primary

(licensed) and the secondary (un-licensed) users co-exist simultaneously. The owner

of the channel is referred as the primary user (PU) and all other users are termed as

secondary users (SUs) or CR users. SUs are allowed to opportunistically access the

spectrum not used by PUs. SUs leave the occupied spectrum when PUs require it.

The SUs are then allocated another vacant spectrum, which is not occupied by the

PU.

Fig. 1.2 shows a general architecture for a CR network. The components of the

CR network architecture can be classified in two groups: the primary network (or

licensed network) and the secondary network (or CR network).
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Fig. 1.2: Network architecture for the CR network (taken from [1]).

The primary networks are infrastructured and the users have license to operate

in certain spectrum bands. PU activities are controlled through the primary base

stations. The secondary network does not have a license to operate in a certain

band. CR networks can be equipped with CR base stations that provide a single-hop

connection to SUs. CR networks may include spectrum brokers that distribute the

spectrum resources among different CR networks.

As shown in Fig. 1.2, the access to the spectrum by SUs is performed opportunis-

tically by using three different access types:

• CR network access: SUs can access their own CR base station on both licensed

and unlicensed spectrum bands because all interactions occur inside the CR

network.

• CR ad-hoc access: SUs can communicate with other SUs through ad-hoc con-

nections on both licensed and unlicensed spectrum bands.
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• Primary network access: SUs can access the primary base station through the

licensed band.

1.2 Spectrum Sensing and Awareness

In CR communications, spectrum sensing is performed before an SU starts using the

spectrum. By spectrum sensing, the spectrum-holes are determined in order to be

used efficiently. There are three major digital signal processing techniques for the

detection of the PUs, e.g., the energy detector, the matched filter detector, and the

cyclostationary feature detector [1, 2, 5]. In these techniques, weak signals of the PU

transmitter are detected on the basis of local observations at the SU. The detection

is formulated as a binary hypothesis-testing problem as

r(t) =


w(t),

hs(t) + w(t),

H0,

H1,

(1.1)

where r(t) is the signal received by the SU, s(t) is the signal transmitted by the PU,

w(t) is additive white Gaussian noise (AWGN) and h is the channel amplitude gain.

H0 is the null hypothesis, which describes the absence of the PU in a specific spectrum

band. In contrast, H1 is the alternative hypothesis, which describes the presence of

the signal [6].

Energy detection is the most common type of spectrum sensing technique because

it is easy to implement and requires no prior knowledge about the PU signal. The en-

ergy of the received signal is measured and compared against a threshold to detect the

presence of the signal. The disadvantage of the energy detector is that the threshold

value depends on the noise level. Therefore, performance of this detector will degrade

under noise uncertainty, and detection of weak signals will not be reliably performed.
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The matched filter detector is the optimal way for any signal detection, since it

maximizes the SNR of the received signal [7]. Its usage is not common in the CR,

as it requires prior information about the PUs, such as pulse shaping, packet format,

modulation type and order, which is unavailable. The performance could be improved

by using pilot symbols, preambles and synchronization codes of the PU signal.

An alternative method for the detection of primary signals is cyclostationary fea-

ture detection. Most man-made signals exhibit cyclostationarity, i.e., their time-

varying statistics are periodic functions of time. Modulated signals are cyclosta-

tionary, with a periodicity related to the symbol period, carrier frequency, or chip

rate [1, 2, 5]. On the other hand, the additive Gaussian noise does not exhibit cy-

clostationarity. This can be employed as a distinctive characteristic to detect the

presence of the modulated signals in noise. The cyclostationarity-based methods have

the advantage over the matched filter approach of not relying on prior information

of the received signal, and have the advantage over the energy detector of being less

sensitive to noise uncertainty. In this work, we focus on the cyclostationarity-based

approach for signal detection and classification (spectrum sensing and awareness). We

should note that in addition to knowing whether a signal is present or not, it is also

important for a CR to know the signal type. Based on this information, the SU sets

up its transmission parameters. The identification of the type of the signals in the air

represents part of spectrum awareness.

Orthogonal frequency division multiplexing (OFDM) represents one of the main

candidates for high data rate transmission for current and next generation wireless

applications, being adopted by various standards [8–10]. Despite its advantages, it has

different disadvantages when employed in the uplink, i.e., the high peak-to-average

power ratio (PAPR) and carrier synchronization problems. Hence, single carrier-

frequency division multiple access (SC-FDMA) has been introduced as an alternative,
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which provides similar performance, efficiency, and low signal processing advantages

of OFDM [11]. In addition, it avoids the PAPR and carrier synchronization problems

[12]. SC-FDMA has been adopted in the specifications of the long term evolution

(LTE) systems [13–15].

Recently, blind signal detection and classification has been intensively studied for

OFDM signals. Most of the proposed methods are cyclostationarity-based [10,16–18],

with some of them employing the detection of the cyclic prefix (CP)-induced peaks in

the CAF [16, 17]. Other methods involve the detection of cyclostationary signatures

that are artificially created and intentionally embedded in the OFDM signals [18] by

the redundant transmission of message symbols on more than one subcarrier. Sub-

carrier mapping permits cyclostationary signatures to be embedded in data-carrying

waveforms without adding significant complexity to existing transmitter designs. By

using this approach, signals can be uniquely classified by the CF created by the em-

bedded signature. However, there is a resultant reduction in the data rate caused by

the allocation of subcarriers for signature embedding, when these could otherwise be

used for data transmission. Other methods rely on the existence of pilot symbols for

channel estimation or synchronization [19]. It is assumed that these symbols are repli-

cated according to a predefined time/frequency distribution, which induces non-zero

correlation.

Although detection and classification of OFDM and SC signals have been exten-

sively studied [10,16–22], to the best of our knowledge there is not such work carried

out for SC-FDMA signals. Here we study the second-order cyclostationarity of SC-

FDMA signals. The analytical expressions for the cyclic autocorrelation function

(CAF) and set of CFs are obtained. Then we employ such findings for the detection

of the LTE SC-FDMA signals, as well as for their classification against SC and OFDM

signals. Simulations and experiments were carried out, and results reported for signal
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detection and classification.

1.3 Thesis Organization

The rest of the thesis is organized as follows.

• Chapter 2 presents the signal model for SC-FDMA signals, the study of second-

order cyclostationarity of these signals, and provides closed form expressions for

the CAF and CFs of these signals.

• In Chapter 3 we introduce the proposed signal detection algorithm. In addition,

performance of this algorithm is investigated by both simulations and experi-

ments.

• In Chapter 4 we present the proposed signal classification algorithm. Simulation

and experimental results are presented.

• Chapter 5 provides conclusions and suggestions for future work.

1.4 Major Contributions of the Thesis

• Chapter 2: Signal model for the SC-FDMA signals. The CAF and CF analytical

expressions for the SC-FDMA signal [Walid A. Jerjawi et al., IEEE Tran. on

Instrum. Meas. 2014].

• Chapter 3: Proposed algorithm for signal detection with simulation and ex-

perimental results [Walid A. Jerjawi et al., IEEE Tran. on Instrum. Meas.

2014].

• Chapter 4: Proposed algorithm for signal classification with simulation and

experimental results [Walid A. Jerjawi et al., IEEE I2MTC 2014].
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Here, we present the publications out of this work:

• Walid A. Jerjawi, Yahia A. Eldemerdash, and Octavia A. Dobre "Blind recog-

nition of SC-FDMA signals using second-order cyclostationarity," accepted to

IEEE I2MTC, 2014.

• Walid A. Jerjawi, Yahia A. Eldemerdash, and Octavia A. Dobre "Second-order

cyclostationarity-based detection of LTE SC-FDMA signals for cognitive radio,"

submitted to IEEE Tran. on Instrum. Meas., 2014.



Chapter 2

Second-Order Cyclostationarity of

the SC-FDMA-based LTE Signals

2.1 Introduction

SC-FDMA signals have been proposed as a promising alternative to OFDM for up-

link traffic in LTE systems due to the lower peak-to-average power ratio. On the

other hand, they offer the same degree of inter-symbol interference combat as OFDM

signals. In this chapter, a model of SC-FDMA signals is presented. Then, their

second-order cyclostationarity is studied and closed form expression for the CAF and

corresponding set of CFs are derived. Moreover, the CAF results obtained from both

analytical findings and computer simulations are presented. Finally, a description of

the structure of the LTE SC-FDMA signals is presented.

9



10

2.2 SC-FDMA Signal Model

to Parallel

Serial FFT

(N -points)
Subcarrier

Mapping

IFFT

(M -Points)

Parallel

to Serial

CP
Insertion

Pulse

Shaping

{
xbn

} {
Xb

k

} {
X̃b

l

} {
x̃bm

}
x(t)

Fig. 2.1: SC-FDMA signal generation [23].

Fig. 2.1 shows the generation of SC-FDMA signals. The b-th block of input data

symbols {xbn}N−1
n=0 has one of several possible modulation formats, such as QPSK,

16-QAM, and 64-QAM. The serially modulated data symbols are converted into N

parallel data streams and passed through an N -point fast Fourier transform (FFT)

block, which generates the frequency domain symbols {Xb
k}N−1

k=0 . Then, the output of

the FFT is passed through the subcarrier mapping block. This assigns the {Xb
k}N−1

k=0

symbols to M ≥ N subcarriers, usually in a localized mode (LFDMA) [23]. Note

thatM = NQ, with Q as the expansion factor and the unoccupied subcarriers are set

to zero. The output symbols in LFDMA, {X̃b
l }M−1
l=0 , are frequency domain samples,

which can be described as

X̃b
l =



Xb
l ,

0,

0 ≤ l ≤ N − 1,

N ≤ l ≤M − 1.

(2.1)

Fig. 2.2 shows an example of SC-FDMA transmit symbols using the LFDMA

subcarrier mapping mode, with N = 4, Q = 2, and M = 8.
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Fig. 2.2: An example of SC-FDMA transmit symbols in frequency domain, using

LFDMA subcarrier mapping for N = 4, Q = 2, and M = 8.

The frequency domain samples are passed through an M -point1 inverse FFT

(IFFT) operation, and the time domain symbols {x̃bm}M−1
m=0 can be described as fol-

lows [12].

x̃bm = x̃bQn+q = 1
M

M−1∑
l=0

X̃b
l e
j2π m

M
l

= 1
QN

N−1∑
l=0

Xb
l e
j2πQn+q

QN
l,

(2.2)

where m = Qn+ q, 0 ≤ n ≤ N − 1, and 0 ≤ q ≤ Q− 1.

If q = 0, then (2.2) becomes

x̃bm = x̃bQn = 1
QN

N−1∑
l=0

Xb
l e
j2π n

N
l

= 1
Q

b
xn. (2.3)

If q 6= 0, (2.2) becomes [12]
1Note that M is assumed an even integer, according to the common practice for the FFT/IFFT,

as well as the wireless communications standards [24–26].
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x̃bm = x̃bQn+q = 1
QN

N−1∑
l=0

Xb
l e
j2πQn+q

QN
l = 1

QN

N−1∑
l=0

(
N−1∑
p=0

xbpe
−j2π p

N
l

)
ej2π

Qn+q
QN

l

= 1
QN

N−1∑
l=0

N−1∑
p=0

xbpe
j2π
(

(n−p)
N

+ q
QN

)
l

= 1
QN

N−1∑
p=0

xbp

(
N−1∑
l=0

e
j2π
(

(n−p)
N

+ q
QN

)
l

)
= 1

QN

N−1∑
p=0

xbp
1−ej2π(n−p)e

j2π q
Q

1−ej2π( (n−p)
N

+ q
QN )

= 1
QN

N−1∑
p=0

xbp
1−ej2π q

Q

1−ej2π( (n−p)
N

+ q
QN )

= 1
Q

(
1− ej2π

q
Q

)
1
N

N−1∑
p=0

xbp

1−ej2π( (n−p)
N

+ q
QN ) ·

(2.4)

As one can see from (2.3), the time domain LFDMA signal samples in the N -

multiple sample positions consist of copies of the input time symbols scaled by a factor

of 1/Q. Furthermore, from (2.4) it can be noticed that in between these positions, the

signal samples are the weighted sums of the time symbols in the input block.

To sum up, the SC-FDMA samples can be expressed in time domain as

x̃bm =



1
Q
xbn,

1
Q

(
1− ej

2πq
Q

)
1
N

N−1∑
p=0

xbp

1−ej2π( (n−p)
N

+ q
QN ) ,

m = nQ, n = 0, 1, . . . , N − 1,

m = nQ+ q, n = 0, 1, ..., N − 1,

q = 1, . . . , Q− 1.
(2.5)

Fig. 2.3 shows an example of the LFDMA signal for N=4, Q=2, and M=8. Note

that ybi represents x̃bm, with i = m−1
2 , m = Qn+ q, and q 6= 0.
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Fig. 2.3: An example of SC-FDMA transmit symbols in time domain using LFDMA

subcarrier mapping for N=4, Q=2, and M=8.

At the receiver, the SC-FDMA noise-free signal is expressed as2

rSC-FDMA(t) =
∞∑

b=−∞

M−1∑
m=0

x̃bmg(t−mT − bMT ), (2.6)

where b is the block index, m is the symbol index within a block, x̃bm is the symbol

transmitted within the m-th symbol period of block b, T is the symbol duration, and

g(t) is the overall impulse response of the transmit and receive filters.

2.3 Second-Order Signal Cyclostationarity: Defi-

nitions

A random process r(t) is said to be second-order cyclostationary if its mean and time-

varying autocorrelation function (AF) are almost periodic functions of time [27]. The

latter is expressed as a Fourier series as [27]

cr(t, τ) = E[r(t)r∗(t− τ)] =
∑
β∈κ

cr(β, τ)ej2πβt, (2.7)

where E [.] represents the expectation operator, the superscript * denotes complex

conjugation, and cr(β, τ) is the second-order cyclic autocorrelation function (CAF) at

cycle frequency (CF) β and delay τ, which can be expressed as [27]
2Note that for the simplicity of the analysis, the noise-free signal is considered here. The noise

and channel effects will be taken into account in Chapters 4 and 5.
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cr(β, τ) = lim
I→∞

I−1
∫ I/2

−I/2
cr(t, τ)e−j2πβt dt, (2.8)

and κ = {β : cr(β, τ) 6= 0} represents the set of CFs.

A discrete-time signal r(n) is obtained by periodically sampling the continous-time

signal r(t) at rate fs, and its CAF at CF β̃ and delay τ̃ is given by3 [27]

cr(β̃, τ̃) = cr(βf−1
s , τfs). (2.9)

The estimator for CAF at CF β̃ and delay τ̃ , based on Us samples, is given by [27]

ĉr(β̃, τ̃) = 1
Us

Us−1∑
u=0

r(u)r∗(u− τ̃)e−j2πβ̃u. (2.10)

2.4 AF, CAF, and Set of CFs for the SC-FDMA

Signals

The AF of the SC-FDMA signal can be expressed as

cr(t, τ) = E [rSC-FDMA(t)r∗SC-FDMA(t− τ)] . (2.11)

Therefore, by using (2.6), (2.11) can be written as

cr(t, τ) =
∞∑

b1=−∞

∞∑
b2=−∞

M−1∑
m1=0

M−1∑
m2=0

E
[
x̃b1
m1(x̃b2

m2)∗
]
g(t−m1T−b1MT )g∗(t−m2T−b2MT−τ),

(2.12)

where τ = µT + τs, µ = ±1,±2, ...,±(M − 1), with τs as a fraction of T (0 ≤ τs ≤ T ).

Based on (2.5) and (2.12), the AF of the SC-FDMA signal is investigated in the
3Note that these results are valid under the assumption of no aliasing in cyclic and spectral

frequency domains.
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following cases4:

Case (1): Zero delay (τ = 0)

Here we derive the analytical expression for the AF at delay equal to zero. This case

is illustrated in Fig. 2.4.

Fig. 2.4: SC-FDMA symbols for τ = 0.

From (2.12), one can notice that cr(t, 0) has non-zero significant values when

b1 = b2 = b (the same data block) and m1 = m2 = m (the same symbol within a

block). Based on this observation, (2.12) can be expressed as

cr(t; 0) =
∞∑

b=−∞

M−1∑
m=0

E
[
x̃bm(x̃bm)∗

]
g(t−mT − bMT )g∗(t−mT − bMT ). (2.13)

In this case, we split the sum over m in (2.13) into two sums4: the first one is

over m (even) = 2n, n = 0, ..., N − 1, and the second one is over m (odd)= 2n + 1,

n = 0, ..., N − 1. Therefore (2.13) becomes

c(1)
r (t; 0)

cr(t; 0) =

︷ ︸︸ ︷
∞∑

b=−∞
(
M−1∑
m=0
even

E[x̃bm(x̃bm)∗]g(t−mT − bMT )g∗(t−mT − bMT ))

c(2)
r (t; 0)

+

︷ ︸︸ ︷
∞∑

b=−∞
(
M−1∑
m=0
odd

E
[
x̃bm(x̃bm)∗

]
g(t−mT − bMT )g∗(t−mT − bMT )) .

(2.14)

Furthermore, by replacing (2.5) into (2.14), and with Q = 2, c(1)
r (t; 0) becomes

4With the signal model in (2.5), we consider Q = 2 for illustration. As such, q = 0, 1.
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c(1)
r (t; 0) = 1

4

∞∑
b=−∞

M−1∑
m=0

m=2n, even
n=0,...,N−1

E[xbn(xbn)∗]g(t−mT − bMT )g∗(t−mT − bMT )

= cx
4

∞∑
b=−∞

M−1∑
m=0

m=2n, even
n=0,...,N−1

g(t−mT − bMT )g∗(t−mT − bMT ),
(2.15)

where cx = E[xbn(xbn)∗] represents the correlation corresponding to the points in the

signal constellation.

By replacing (2.5) into (2.14), and with Q = 2, c(2)
r (t; 0) becomes

c(2)
r (t; 0) =

∞∑
b=−∞

M−1∑
m=0

m=2n+1, odd
n=0,...,N−1

(
1

2N (1− ejπ)
)2

×E
N−1∑
p=0

xbp(xbp)∗(
1−e

j2π

(
(n−p)
N

+ 1
2N

))(
1−e

−j2π

(
(n−p)
N

+ 1
2N

))


×g(t−mT − bMT )g∗(t−mT − bMT ))

= cx
2N2

∞∑
b=−∞

M−1∑
m=0

m=2n+1, odd
n=0,...,N−1

N−1∑
p=0

1

1−cos
(
π

(
2n−2p+1

N

))
×g(t−mT − bMT )g∗(t−mT − bMT ).

(2.16)

By evaluating the summation
N−1∑
p=0

1

1−cos
(
π

(
2n−2p+1

N

)) through numerical calculations,

we found that it equals N2

2 .

Therefore, (2.16) becomes

c(2)
r (t; 0) = cx

4

∞∑
b=−∞

M−1∑
m=0
odd

g(t−mT − bMT )g∗(t−mT − bMT ). (2.17)

By substituting (2.15) and (2.17) in (2.14), we obtain
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cr(t; 0) = cx
4

∞∑
b=−∞

M−1∑
m=0

g(t−mT − bMT )g∗(t−mT − bMT ), (2.18)

and with k = bM +m, the AF can be further written as

cr(t; 0) = cx
4 [g(t)g∗(t)]⊗

∞∑
k=−∞

δ(t− kT ). (2.19)

Case (2): Delay τ = µT + τs, µ = ±1,±3, ...,±(M − 1) (odd integer), τs = 0

In the following, we derive the analytical expression for the AF at τ = delay

µT, µ = ±1,±3,±(M − 1). An example is provided in Fig. 2.5 for µ = 1.

Fig. 2.5: SC-FDMA symbols for µ = 1.

In this case, there are two types of terms in the AF in (2.12): 1) when the symbols

belong to the same data block b1 = b2 (the corresponding term in cr(t; 0) is denoted

by c(1)
r (t; τ)), 2) when the symbols belong to two consecutive data blocks b1 6= b2, i.e.,

b2 = b1−1 when µ > 0 and b2 = b1 +1 when µ < 0 (the corresponding term in cr(t; 0)

is denoted by c(2)
r (t; τ).

1) For b1 = b2 and with m1 = m and m2 = m1 − µ, µ > 05, the corresponding

term in the AF in (2.12) is given by

c(1)
r (t; τ) =

∞∑
b=−∞

M−1∑
m=µ

E
[
x̃bm(x̃bm−µ)∗

]
g(t−mT − bMT )g∗(t−mT − bMT ). (2.20)

5The case of µ < 0 will be subsequently discussed.
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By splitting the summation in (2.20) over m odd and m even, c(1)
r (t; τ) is further

expressed as

c(1)
r (t; τ) =

∞∑
b=−∞

(
M−1∑
m=µ
odd

E
[
x̃bm(x̃bm−µ)∗

]
g(t−mT − bMT )g∗(t−mT − bMT )

+
M−1∑
m=µ+1

even

E
[
x̃bm(x̃bm−µ)∗

]
g(t−mT − bMT )g∗(t−mT − bMT )

)
,

(2.21)

where m =2n+ 1 in the first term and m =2n in the second term, n = 0, ..., N − 1.

By further writing m as a function of n, (2.21) becomes

c(1)
r (t; τ) =

∞∑
b=−∞

(
N−1∑
n=µ−1

2

E
[
x̃b2n+1(x̃b2n+1−µ)∗

]
g(t− (2n+ 1)T − bMT )

×g∗(t− (2n+ 1)T − bMT )

+
N−1∑
n=µ+1

2

E
[
x̃b2n(x̃b2n−µ)∗

]
g(t− 2nT − bMT )g∗(t− 2nT − bMT )

)
.

(2.22)

By replacing (2.5) into (2.22), with Q = 2, one can write

c(1)
r (t; τ) =

∞∑
b=−∞

(
N−1∑
n=µ−1

2

E

 1
2N

N−1∑
p=0

xbp

(
xbn1

)
∗

1−e
jπ

(
2n−2p+1

N

)


×g(t− (2n+ 1)T − bMT )g∗(t− (2n+ 1)T − bMT )

+
N−1∑
n=µ+1

2

E

 1
2N

N−1∑
p=0

xbn(xbp)∗

1−e
−jπ

(
2n2−2p+1

N

)


×g(t− 2nT − bMT )g∗(t− 2nT − bMT )
)
.

(2.23)

E[xbp(xbn1)∗] in the first term has non-zero significant values when p = n1. By

expressing x̃b2n+1−µ = xbn1 from the first branch of (2.5), one can also observe that
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2n1 = 2n+ 1− µ. As such, n− p = µ−1
2 . On the other hand, E[xbn(xbp)∗] in the

second term has non-zero significant values when n = p. By expressing x̃b2n−µ =
1

2N

N−1∑
p=0

xbp

1−ejπ(
2n2−2p+1

N ) from the second branch of (2.5), one can also observe that

2n− µ = 2n2 + 1. As such, this occurs when n2 − p = −µ+1
2 .

Based on the above discussion, one can re-write (2.23) as

c(1)
r (t; τ) = cx

2N
1

1−ejπ
µ
N

∞∑
b=−∞

(
N−1∑
n=µ−1

2

g(t− (2n+ 1)T − bMT )g∗(t− (2n+ 1)T − bMT )

+
N−1∑
n=µ+1

2

g(t− 2nT − bMT )g∗(t− 2nT − bMT )
)
.

(2.24)

With m = 2n+1 in the first term and m = 2n in the second term, one can re-write

(2.24) as

c(1)
r (t; τ) = cx

2N
1

1−ejπ
µ
N

∞∑
b=−∞

(
M−1∑
m=µ
odd

g(t−mT − bMT )g∗(t−mT − bMT )

+
M−1∑
m=µ+1

even

g(t−mT − bMT )g∗(t−mT − bMT )
)
.

= cx
2N

1
1−ejπ

µ
N

∞∑
b=−∞

M−1∑
m=µ

g(t−mT − bMT )g∗(t−mT − bMT ),

(2.25)

and with k = bM +m, (2.25) can be further written as

c(1)
r (t; τ) = cx

2N
1

1−ejπ
µ
N

[g(t)g∗(t)]⊗
∞∑

k=−∞
δ(t− kT ),

(2.26)

where ⊗ denotes the convolutional operator.
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By following the above procedure, one can find the expression for c(1)
r (t; τ) for

µ < 0 as

c(1)
r (t; τ) = cx

2N
1

1−e−jπ
µ
N

[g(t)g∗(t)]⊗
∞∑

k=−∞
δ(t− kT ). (2.27)

Based on (2.26) and (2.27), one can easily express

c(1)
r (t; τ) = cx

2N
1

1−ejπ
|µ|
N

[g(t)g∗(t)]⊗
∞∑

k=−∞
δ(t− kT ).

2) For b1 = b, b2 = b− 1, and with m1 = m and m2 = M − µ+m, where µ > 05,

(2.12) becomes

c(2)
r (t; τ) =

∞∑
b=−∞

µ−1∑
m=0

E
[
x̃bm(x̃b−1

M−µ+m)∗
]
g(t−mT − bMT )g∗(t−mT − bMT ).

Note that E
[
x̃bm(x̃b−1

M−µ+m)∗
]
is zero (the symbols belong to different blocks) and

there is no contribution of c(2)
r (t; τ) to cr(t; τ).

Similarly, one can show that c(2)
r (t; τ) for b1 = b and b2 = b + 1, µ < 0, does not

contribute to cr(t; τ).

To summarize, for delays τ = µT , µ = ±1,±3, ...,± (M − 1) (odd integer), the

AF is expressed as

cr(t; τ) = cx
2N

1

1−ejπ
|µ|
N

[g(t)g∗(t)]⊗
∞∑

k=−∞
δ(t− kT ).

(2.28)

Case (3): Delay τ = µT + τs, µ = ±2,±4, ...,±(M − 2) (even integer), τs = 0

In the following, we derive the analytical expression for the AF at delay τ = µT,

µ = ±2,±4,±(M − 2). An example is provided in Fig. 2.6 for µ = 2.
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Similarly to case (2), one can easily show that the term in cr(t; τ), which corre-

sponds to different data blocks (b1 6= b2) in (2.12), is zero. As such, we consider here

only the term that corresponds to the same data block.

Fig. 2.6: SC-FDMA symbols for µ = 2.

With b1 = b2 = b, m1 = m, and m2 = m1 − µ, µ > 05, (2.12) becomes

cr(t; τ) =
∞∑

b=−∞

M−1∑
m=µ

E
[
x̃bm(x̃bm−µ)∗

]
g(t−mT − bMT )g∗(t−mT − bMT ). (2.29)

By splitting the summation in (2.29) over m even and m odd, cr(t; τ) becomes

cr(t; τ) =
∞∑

b=−∞

(
M−1∑
m=µ
even

E
[
x̃bm(x̃bm−µ)∗

]
g(t−mT − bMT )g∗(t−mT − bMT )

+
M−1∑
m=µ+1

odd

E
[
x̃bm(x̃bm−µ)∗

]
g(t−mT − bMT )g∗(t−mT − bMT )

)
,

(2.30)

where m = 2n in the first term and m = 2n+ 1 in the second term, n = 0, ..., N − 1.

By further writing m as a function of n, (2.30) becomes
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cr(t; τ) =
∞∑

b=−∞

(
N−1∑
n=µ

2

E
[
x̃b2n(x̃b2n−µ)∗

]
g(t− 2nT − bMT )g∗(t− 2nT − bMT )

+
N−1∑
n=µ

2

E
[
x̃b2n+1(x̃b2n+1−µ)∗

]
g(t− (2n+ 1)T − bMT )g∗(t− (2n+ 1)T − bMT )

)
,

(2.31)

and by replacing (2.5) into (2.31), with Q = 2 one can write

cr(t; τ) =
∞∑

b=−∞

(
N−1∑
n=µ

2

1
4E
[
xbn(xbn−µ2 )∗

]
g(t− 2nT − bMT )g∗(t− 2nT − bMT )

+
N−1∑
n=µ

2

E
 1
N2

N−1∑
p1=0

N−1∑
p2=0

xbp1 (xbp2 )∗(
1−e

jπ

(
2n−2p1+1

N

))(
1−e

−jπ

(
2n′−2p2+1

N

))


×g(t− (2n+ 1)T − bMT )g∗(t− (2n+ 1)T − bMT )
)
.

(2.32)

Clearly, E
[
xbn(xbn−µ2 )∗

]
= 0 for any µ 6= 0 (independent symbols), and cr(t, τ) can be

expressed as

cr(t; τ) =
∞∑

b=−∞

N−1∑
n=µ

2

E
 1
N2

N−1∑
p1=0

N−1∑
p2=0

xbp1 (xbp2 )∗(
1−e

jπ

(
2n−2p1+1

N

))(
1−e

−jπ

(
2n′−2p2+1

N

))


×g(t− (2n+ 1)T − bMT )g∗(t− (2n+ 1)T − bMT )
)
.

(2.33)

Furthermore, cr(t; τ) in (2.33) is non-zero if and only if p1 = p2 = p. By expressing

x̃b2n+1−µ in (2.31) based on (2.5), one can see that 2n′ + 1 = 2n + 1 − µ. As such,

n′ = n− µ
2 . Based on this observation, (2.33) becomes
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cr(t; τ) = cx
∞∑

b=−∞

N−1∑
n=µ

2

 1
N3

N−1∑
p=0

1(
1−e

jπ

(
2n−2p+1

N

))(
1−e

−jπ

(
2n−2p−µ+1

N

))


×g(t− (2n+ 1)T − bMT )g∗(t− (2n+ 1)T − bMT ).

(2.34)

By evaluating (2.34) numerically, one obtains that

cr(t, τ) = 0, ∀µ = ±2, ...,±(M − 2). (2.35)

Similarly, one can show that (2.35) holds for µ < 0.

Case (4): Delay τ = ±τs, 0 < τs < T

Fig. 2.7: SC-FDMA symbols for τ = τs.

In this case, cr(t; τ) is a combination between Cases (1) and (2), i.e.,

cr(t; τ) = T−τs
T

cx
4 [g(t)g∗(t)]⊗

∞∑
k=−∞

δ(t− kT ) + τs
T
cx
2N

1
1−ej

π
N

[g(t)g∗(t)]⊗
∞∑

k=−∞
δ(t− kT )

=
(
T−τs

4T + τs
2NT

1
1−ej

π
N

)
cx [g(t)g∗(t)]⊗

∞∑
k=−∞

δ(t− kT ).

(2.36)

Case (5): Delay τ = µT + sgn(µ)τs, µ = ±1,±3, ...,±(M − 1) (odd integer),

0 < τs < T, and sgn(µ) represents the signum function of a real number µ.
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Fig. 2.8: SC-FDMA symbols for τ = µT + τs, µ = 1.

Similarly to Cases (2) and (3), one can show that cr(t; τ) is as in (2.28) with a

weighting factor T−τs
T

, i.e.,

cr(t; τ) = T−τs
T

cx
2N

1

1−ejπ
|µ|
N

[g(t)g∗(t)]⊗
∞∑

k=−∞
δ(t− kT ). (2.37)

Note that when τs = 0, cr(t; τ) is as given in (2.28).

Case (6): Delay τ = µT + sgn(µ)τs, µ = ±2,±4, ...,±(M − 2) (even integer),

0 < τs < T

Fig. 2.9: SC-FDMA symbols for τ = µT + τs, µ = 2.

Similarly to Cases (2) and (3), one can show that cr(t; τ) is the same as (2.28)

with weighting factor τs
T

and µ+ 1 instead of µ, i.e.,

cr(t; τ) = τs
T
cx
2N

1

1−ejπ
|µ+1|
N

[g(t)g∗(t)]⊗
∞∑

k=−∞
δ(t− kT ). (2.38)

Note that when τs = 0, cr(t; τ) is as given in (2.35).
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Case (7): Delay τ = µT + sgn(µ)τs, | µ |≥M

One can easily show that cr(t; τ) is zero, as the symbols belong to different data

blocks,

cr(t; τ) = 0. (2.39)

Based on (2.19), (2.28), (2.35), (2.36), (2.37), (2.38), and (2.39), the AF expression

can be written as

cr(t; τ) =



(
T−τs

4T + τs
2NT

1
1−ej

π
N

)
cx [g(t)g∗(t)]⊗

∞∑
k=−∞

δ(t− kT ),

for τ = ±τs, 0 ≤ τs < T,

T−τs
T
A(µ) [g(t)g∗(t)]⊗

∞∑
k=−∞

δ(t− kT ),

for τ = µT + sgn(µ)τs, µ = ±1,±3, . . . ,±(M − 1), 0 ≤ τs < T,

τs
T
A(µ+ 1) [g(t)g∗(t)]⊗

∞∑
k=−∞

δ(t− kT ),

for τ = µT + sgn(µ)τs, µ = ±2,±4, . . . ,±(M − 2), 0 ≤ τs < T,

0, otherwise,
(2.40)

where A(µ) = cx
2N

1

1−ejπ
|µ|
N

·

By taking the Fourier transform of (2.40), one can obtain
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={cr(t; τ)} =



(
T−τs

4T + τs
2NT

1
1−ej

π
N

)
cxT

−1 ∫∞
−∞ g(t)g∗(t)e−j2πβtdt

∞∑
k=−∞

δ(β − kT−1),

for τ = ±τs, 0 ≤ τs < T,

T−τs
T
A(µ)T−1 ∫∞

−∞ g(t)g∗(t)e−j2πβtdt
∞∑

k=−∞
δ(β − kT−1),

for τ = µT + sgn(µ)τs, µ = ±1,±3, . . . ,±(M − 1), 0 ≤ τs < T,

τs
T
A(µ+ 1)T−1 ∫∞

−∞ g(t)g∗(t)e−j2πβtdt
∞∑

k=−∞
δ(β − kT−1),

for τ = µT + sgn(µ)τs, µ = ±2,±4, . . . ,±(M − 2), 0 ≤ τs < T,

0, otherwise.
(2.41)

From (2.41), one can notice that ={cr(t, τ)} 6= 0 if only if β = kT−1, with k

integer. By taking the inverse Fourier transform of (2.41) and using (2.7), one can

show that cr(β; τ) can be expressed as
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cr(β; τ) =



(
T−τs

4T + τs
2NT

1
1−ej

π
N

)
cxT

−1 ∫∞
−∞ g(t)g∗(t)e−j2πβtdt,

for τ = ±τs, β = kT−1, k integer, 0 ≤ τs < T,

T−τs
T
A(µ)T−1 ∫∞

−∞ [g(t)g∗(t)] e−j2πβtdt,

for τ = µT + sgn(µ)τs, µ = ±1,±3, . . . ,±(M − 1) and β = kT−1,

k integer, 0 ≤ τs < T,

τs
T
A(µ+ 1)T−1 ∫∞

−∞ [g(t)g∗(t)] e−j2πβtdt,

for τ = µT + sgn(µ)τs, µ = ±2,±4, . . . ,±(M − 2) and β = kT−1,

k integer, 0 ≤ τs < T,

0, otherwise.
(2.42)

The analytical closed-form expression for the CAF and set of CFs for the discrete

SC-FDMA signals r(n) = r(t)|t=nfs , fs = ρ/T , with ρ as the oversampling factor, can

be written according to (2.9) as
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cr(β̃; τ̃) =



(
ρ−τ̃s

4ρ + τ̃s
2Nρ

1
1−ej

π
N

)
ρ−1

∞∑
n=−∞

g(n)g∗(n)e−j2πβ̃n, 0 < τ̃s < ρ,

for τ̃ = ±τ̃s, and β̃ = kρ−1, k integer,

ρ−τ̃s
ρ
A(µ)ρ−1

∞∑
n=−∞

g(n)g∗(n)e−j2πβ̃n,

for τ̃ = µρ+ sgn(µ)τ̃s, µ = ±1,±3, . . . ,±(M − 1) and β̃ = kρ−1, k integer,

0 ≤ τ̃s < ρ,

τ̃s
ρ
A(µ+ 1)ρ−1

∞∑
n=−∞

g(n)g∗(n)e−j2πβ̃n,

for τ̃ = µρ+ sgn(µ)τ̃s, , µ = ±2,±4, . . . ,±(M − 2) and β̃ = kρ−1, k integer,

0 ≤ τ̃s < ρ,

0, otherwise,
(2.43)

where τ̃ = τ
Ts

and τ̃s = τs
Ts
, with Ts as the sampling period.

Figs. 2.10 and 2.11 show the magnitude of the theoretical and estimated CAF at

zero CF versus positive delays for the SC-FDMA signal in (2.6), respectively. The

parameters of the transmitted SC-FDMA signal are: 1.4 MHz double-sided band-

width, FFT size N = 64, IFFT size M = 128, Q = 2, 16-QAM modulation with unit

variance constellation, a root raised cosine pulse shape with a roll-off factor of 0.35

at transmit-side, ρ = 4, a Butterworth low-pass filter of order 13 used as the receive

filter, and observation time 20 ms.

Figs. 2.12 and 2.13 show the magnitude of theoretical and estimated CAF at zero

delay versus cycle frequency, respectively. Moreover, Figs. 2.14 and 2.15 show the

magnitude of theoretical and estimated CAF at delay ρ versus cycle frequency. As

one can notice, simulations results confirm theoretical findings.
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Fig. 2.10: Theoretical results for the CAF magnitude at zero CF (β̃ = 0) versus

positive delays, τ̃ , for SC-FDMA signals.
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Fig. 2.11: Simulation results for the CAF magnitude at zero CF (β̃ = 0) versus

positive delays, τ̃ , for SC-FDMA signals.



30

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

β̃

|c
r
S
C

−
F

D
M

A
(β̃
;0
)
|

Fig. 2.12: Theoretical results for the CAF magnitude at zero delay (τ̃ = 0) versus

cycle frequency, β̃, for SC-FDMA signals.
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Fig. 2.13: Simulation results for the CAF magnitude at zero delay (τ̃ = 0) versus

cycle frequency, β̃, for SC-FDMA signals.
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Fig. 2.14: Theoretical results for the CAF magnitude at τ̃ = ρ versus cycle frequency,

β̃, for SC-FDMA signals.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

β̃

|ĉ
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Fig. 2.15: Simulation results for the CAF magnitude at τ̃ = ρ versus cycle frequency,

β̃, for SC-FDMA signals.
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2.5 CAF and Set of CFs for the SC-FDMA with

CP

To combat the inter-symbol interference caused by the channel delay spread in the

SC-FDMA transmission, a cyclic prefix (CP) of L symbols is added at the beginning

of every M information symbols (L< M) for each block. According to the standard

signals [24–26], L is assumed a multiple integer of Q. The structure of an SC-FDMA

block with CP is presented in Fig. 2.16.

Fig. 2.16: SC-FDMA transmission block.

The received noise-free SC-FDMA signal can be expressed as

rSC-FDMA(t) =
∞∑

b=−∞

[
M+L−1∑
u=0

z̃bug(t− uT − b(M + L)T )
]
, (2.44)

where u is the symbol index within a block and z̃bu is the symbol transmitted within

the u-th symbol period of block b.

The symbols z̃bu are expressed as

z̃bu =



x̃bM−L+u,

x̃bu−L,

0 ≤ u ≤ L− 1,

L ≤ u ≤M + L− 1.

(2.45)

Furthermore, with (2.11) and (2.44), the AF of the SC-FDMA signal with CP can



33

be expressed as

cr(t, τ) =
∞∑

b1=−∞

∞∑
b2=−∞

M+L−1∑
u1=0

M+L−1∑
u2=0

E
[
z̃b1
u1(z̃b2

u2)∗
]
g(t− u1T − b1(M + L)T )

g∗(t− u2T − b2(M + L)T − τ).
(2.46)

The AF of SC-FDMA is investigated in the following cases:

Case (1): Zero delay(τ = 0)

By following the same steps as in Section 3.3, one can show that4

cr(t, 0) = cx
4

∞∑
b=−∞

M+L−1∑
u=0

g(t− uT − b(M + L)T )g∗(t− uT − b(M + L)T ). (2.47)

With k = b(M + L) + u in (2.9), one can write

cr(t, 0) = cx
4 [g(t)g∗(t)]⊗

∞∑
k=−∞

δ(t− kT ). (2.48)

Case (2): Delay τ = µT + τs, µ = ±1,±3, ...,±(M −L− 1) (odd integer), τs = 0

In the following, we derive the analytical expression for the AF at delay τ = µT,

µ = ±1,±3, ...,±(M − L− 1). An example of this case is provided in Fig. 2.17.

Along the same line as in Section 3.3, one can easily show that the terms in cr(t, τ)

which correspond to different data blocks (b1 6= b2) are zero. As such, we consider

here the contribution of the terms corresponding to the same data block.
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Fig. 2.17: SC-FDMA symbols for 1 ≤ µ ≤M − L− 1.

In such a case, with b1 = b2 = b, u1 = u, and u2 = u1−µ, µ > 05, (2.46) becomes

cr(t; τ) =
∞∑

b=−∞

M+L−1∑
u=µ

E
[
z̃bu
(
z̃bu−µ

)∗]
g(t− uT − b(L+M)T )g∗(t− uT − b(L+M)T ).

(2.49)

Furthermore, by emphasizing the possible summation over the CP symbols, (2.49)

becomes

cr(t; τ) =
∞∑

b=−∞

(
L−1∑
u=µ

E
[
z̃bu
(
z̃bu−µ

)∗]
g(t− uT − b(L+M)T )g∗(t− uT − b(L+M)T )

+
M+L−1∑
u=L

E
[
z̃bu
(
z̃bu−µ

)∗]
g(t− uT − b(L+M)T )g∗(t− uT − b(L+M)T )

)
,

(2.50)

and by considering u odd and u even, (2.50) is further expressed as

c(1)
r (t; τ)

cr(t; τ) =

︷ ︸︸ ︷
∞∑

b=−∞

(L−1∑
u=µ
odd

E
[
z̃bu
(
z̃bu−µ

)∗]
g(t− uT − b(L+M)T )g∗(t− uT − b(L+M)T )

)

c(2)
r (t; τ)

+

︷ ︸︸ ︷
∞∑

b=−∞

( L−1∑
u=µ+1

even

E
[
z̃bu
(
z̃bu−µ

)∗]
g(t− uT − b(L+M)T )g∗(t− uT − b(L+M)T )

)
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c(3)
r (t; τ)

+

︷ ︸︸ ︷
∞∑

b=−∞

( M+L−1∑
u=L+1

odd

E
[
z̃bu
(
z̃bu−µ

)∗]
g(t− uT − b(L+M)T )g∗(t− uT − b(L+M)T )

)

c(4)
r (t; τ)

+

︷ ︸︸ ︷
∞∑

b=−∞

( M+L−1∑
u=L
even

E
[
z̃bu
(
z̃bu−µ

)∗]
g(t− uT − b(L+M)T )g∗(t− uT − b(L+M)T )

)
.

(2.51)

With m = M − L+ u and by using (2.45), c(1)
r (t; τ) becomes

c(1)
r (t; τ) =

∞∑
b=−∞

(
M−1∑

m=M−L+µ
odd

E
[
x̃bm

(
x̃bm−µ

)∗]
g(t− (m−M + L)T − b(L+M)T )

×g∗(t− (m−M + L)T − b(L+M)T )
)
,

and by following the same steps as in Section 3.3, one can show that

c(1)
r (t; τ) = cx

2N
1

1−ejπ
µ
N

∞∑
b=−∞

(
M−1∑

m=M−L+µ
odd

g(t− (m−M + L)T − b(L+M)T )

×g∗(t− (m−M + L)T − b(L+M)T )
)
.

(2.52)

Furthermore, by following the same steps as for c(1)
r (t; τ), c(2)

r (t; τ) becomes

c(2)
r (t; τ) = cx

2N
1

1−ejπ
µ
N

∞∑
b=−∞

(
M−1∑

m=M−L+µ
even

+1
g(t− (m−M + L)T − b(L+M)T )

×g∗(t− (m−M + L)T − b(L+M)T )
)
.

(2.53)
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With m = u− L and using (2.45), c(3)
r (t; τ) becomes

c(3)
r (t; τ) =

∞∑
b=−∞

(
M−1∑
m=1
odd

E
[
x̃bm

(
x̃bm−µ

)∗]
g(t− (m+ L)T − b(L+M)T )

×g∗(t− (m+ L)T − b(L+M)T )
)
,

(2.54)

and by following the same steps as in Section 3.3, one can show that

c(3)
r (t; τ) = cx

2N
1

1−ejπ
µ
N

∞∑
b=−∞

(
M−1∑
m=1
odd

g(t− (m+ L)T − b(L+M)T )

×g∗(t− (m+ L)T − b(L+M)T )
)
.

(2.55)

Furthermore, by following the same steps as in c(3)
r (t; τ), c(4)

r (t; τ) becomes

c(4)
r (t; τ) = cx

2N
1

1−ejπ
µ
N

∞∑
b=−∞

(
M−1∑
m=0
even

g(t− (m+ L)T − b(L+M)T )

×g∗(t− (m+ L)T − b(L+M)T )
)
.

(2.56)

Finally, by substituting (2.52), (2.53), (2.55), and (2.56) in (2.51), and using u =

m −M + L in the the expressions of c(1)
r (t; τ) and c(2)

r (t; τ) and u = m + L in the

expressions of c(3)
r (t; τ) and c(4)

r (t; τ), (2.51) becomes

cr(t; τ) = cx
2N

1
1−ejπ

µ
N

∞∑
b=−∞

(
M+L−1∑
u=µ

g(t− uT − b(L+M)T )g∗(t− uT − b(L+M)T )
)
.

(2.57)

Note that cr(t; τ) for µ < 0 can be solved by following the above procedure, and

it can be shown to be expressed as
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cr(t; τ) = cx
2N

1
1−e−jπ

µ
N

∞∑
b=−∞

(
M+L−1∑
u=0

g(t− uT − b(L+M)T )g∗(t− uT − b(L+M)T )
)
,

(2.58)

and with k = b(L+M) + u, cr(t; τ) can be further written as

cr(t; τ) = cx
2N

1

1−ejπ
|µ|
N

[g(t)g∗(t)]⊗
∞∑

k=−∞
δ(t− kT ). (2.59)

Case (3): Delay τ = µT + τs, µ = ±2,±4, ...,±(M − L) (even integer), τs = 0

By following the same procedure as in Case (3) of Section 3.3, one can show that AF

equals zero, i.e.,

cr(t; τ) = 0. (2.60)

Case (4): Delay τ = ±τs, 0 ≤ τs < T

By following Case (4) of Section 3.3, one can show that cr(t; τ)

cr(t; τ) =
(
T−τs

4T + τs
2NT

1
1−ej

π
N

)
cx [g(t)g∗(t)]⊗

∞∑
k=−∞

δ(t− kT ) (2.61)

Case (5): Delay τ = µT + sgn(µ)τs, µ = ±1,±3, ...,±(M − L− 1) (odd integer),

0 < τs < T

By following Case (5) of Section 3.3, one can show that cr(t; τ) is as in (2.59), with a

weighting factor of T−τs
T

, i.e.,

cr(t; τ) = T−τs
T

cx
2N

1

1−ejπ
|µ|
N

[g(t)g∗(t)]⊗
∞∑

k=−∞
δ(t− kT ). (2.62)
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Case (6): Delay τ = µT + sgn(µ)τs, µ = ±2,±4, ...,±(M − L) (even integer),

0 < τs < T

By following Case (6) of Section 3.3, one can show that cr(t; τ) is as in (2.59), with a

weighting factor of τs
T

and µ replaced by µ+ 1, i.e.,

cr(t; τ) = τs
T
cx
2N

1

1−ejπ
|µ+1|
N

[g(t)g∗(t)]⊗
∞∑

k=−∞
δ(t− kT ). (2.63)

Case (7): Delay τ = µT + τs, µ = ±(M −L+ 1), ...,±(M +L−1) (odd and even

integers), 0 ≤ τs < T

In the following, we derive the analytical expression for the AF at delay τ = µT +

τs, µ = ±(M − L), ...,±(M + L− 1).

The analytical expression for the AF at delay τ = µT + τs, µ = ±(M − L +

1), ...,±(M + L− 1) can be expressed as

a) Delay τ = ±MT + τs, τs = 0

Fig. 2.18: SC-FDMA symbols for µ = M.

By following the same procedure as in Case (1) with block length of L, cr(t, τ) can

be expressed as

cr(t, τ) =
∞∑

b=−∞

L−1∑
u=0

cx
4 [g(t− uT − b(M + L)T )g∗(t− uT − b(M + L)T )]

= cx
4

L−1∑
u=0

[g(t− uT )g∗(t− uT )]⊗
∞∑

b=−∞
δ(t− b(M + L)T ).

(2.64)
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b) Delay τ = µT + sgn(µ)τs, µ = ±M, 0 < τs < T

By following the same procedure as in Cases (4)

cr(t, τ) =
(
T−τs

4T + τs
2NT

1
1−ej

π
N

)
cx
L−1∑
u=0

[g(t)g∗(t)]⊗
∞∑

k=−∞
δ(t− kT ) (2.65)

c) Delay τ = µT + sgn(µ)τs, µ = ±(M − L+ 1),±(M − L+ 3), ...,±(M + L− 1)

(odd integer), 0 ≤ τs < T

By following the same procedure as in Cases (2) and (5), cr(t, τ) can be expressed

as

cr(t, τ) = T−τs
T

cx
2N

1

1−ejπ
|µ|
N

∞∑
b=−∞

L−1∑
u=0

[g(t− uT − b(M + L)T )g∗(t− uT − b(M + L)T )]

= T−τs
T

cx
2N

1

1−ejπ
|µ|
N

L−1∑
u=0

[g(t− uT )g∗(t− uT )]⊗
∞∑

b=−∞
δ(t− b(M + L)T ).

(2.66)

d) Delay τ = µT + sgn(µ)τs, µ = ±(M − L)± (M − L+ 2),±(M − 2),±(M + 2),

...,±(M + L− 2) (even integer), 0 ≤ τs < T

By following the same procedure as in Cases (3) and (6), cr(t, τ) can be expressed

as

cr(t; τ) = τs
T
cx
2N

1

1−ejπ
|µ+1|
N

L−1∑
u=0

[g(t− uT )g∗(t− uT )]⊗
∞∑

k=−∞
δ(t− b(M + L)T ).

(2.67)

Case (8): Delay τ = µT + sgn(µ)τs, | µ |≥M + L

One can easily see that cr(t, τ) for such a case is zero (different data blocks),

cr(t; τ) = 0. (2.68)
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Based on (2.48), (2.59), (2.60), (2.61), (2.62), (2.64), (2.65), (2.66), (2.67), and

(2.68), the closed-form of the AF of SC-FDMA signal can be expressed as

cr(t; τ) =



(
T−τs

4T + τs
2NT

1
1−ej

π
N

)
cx [g(t)g∗(t)]⊗

∞∑
k=−∞

δ(t− kT ),

for τ = ±τs, 0 ≤ τs < T

T−τs
T
A(µ) [g(t)g∗(t)]⊗

∞∑
k=−∞

δ(t− kT ),

for τ = µT + sgn(µ)τs, µ = ±1,±3, . . . ,±(M − L− 1), 0 ≤ τs < T,

τs
T
A(µ+ 1) [g(t)g∗(t)]⊗

∞∑
k=−∞

δ(t− kT ).

for τ = µT + sgn(µ)τs, µ = ±2,±4, . . . ,±(M − L), 0 ≤ τs < T,(
T−τs

4T + τs
2NT

1
1−ej

π
N

)
cx
L−1∑
u=0

[g(t− uT )g∗(t− uT )]⊗
∞∑

k=−∞
δ(t− b(M + L)T ),

for τ = µT + sgn(µ)τs, µ = ±M, 0 ≤ τs < T

T−τs
T
A(µ)

L−1∑
u=0

[g(t− uT )g∗(t− uT )]⊗
∞∑

b=−∞
δ(t− b(M + L)T ),

for τ = µT + sgn(µ)τs, µ = ±(M − L+ 1),±(M − L+ 3),

. . . ,±(M + L− 1), 0 ≤ τs < T,

τs
T
A(µ+ 1)

L−1∑
u=0

[g(t− uT )g∗(t− uT )]⊗
∞∑

b=−∞
δ(t− b(M + L)T ),

for τ = µT + sgn(µ)τs, µ = ±(M − L+ 2), . . . ,±(M − 2),±(M + 2),

. . . ,±(M + L− 2), 0 ≤ τs < T,

0, otherwise,
(2.69)

where A(µ) = cx
2N

1

1−ejπ
|µ|
N

·

By taking the Fourier transform of (2.69), one can show that
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={cr(t; τ)} =



(
T−τs

4T + τs
2NT

1
1−ej

π
N

)
cxT

−1 ∫∞
−∞ [g(t)g∗(t)] e−j2πβtdt

∞∑
b=−∞

δ(β − kT−1),

for τ = ±τs, 0 ≤ τs < T

T−τs
T
A(µ)T−1 ∫∞

−∞ [g(t)g∗(t)] e−j2πβtdt
∞∑

b=−∞
δ(β − kT−1),

for τ = µT + sgn(µ)τs, µ = ±1,±3, ...,±(M − L− 1), 0 ≤ τs < T,

τs
T
A(µ+ 1)T−1 ∫∞

−∞ [g(t)g∗(t)] e−j2πβtdt×
∞∑

b=−∞
δ(β − kT−1),

for τ = µT + sgn(µ)τs, µ = ±2,±4, ...,±(M − L), 0 ≤ τs < T,(
T−τs

4T + τs
2NT

1
1−ej

π
N

)
cx [(M + L)T ]−1 ∫∞

−∞
L−1∑
u=0

[g(t− uT )g∗(t− uT )] e−j2πβtdt

×
∞∑

b=−∞
δ(β − [b(M + L)T ]−1),

for τ = µT + sgn(µ)τs, µ = ±M, 0 < τs < T

T−τs
T
A(µ) [(M + L)T ]−1 ∫∞

−∞
L−1∑
u=0

[g(t− uT )g∗(t− uT )] e−j2πβtdt

×
∞∑

b=−∞
δ(β − [b(M + L)T ]−1),

for τ = µT + sgn(µ)τs, µ = ±(M − L+ 1),±(M − L+ 3), ...,±(M + L− 1),

0 ≤ τs < T,

τs
T
A(µ+ 1) [(M + L)T ]−1 ∫∞

−∞
L−1∑
u=0

[g(t− uT )g∗(t− uT )] e−j2πβtdt

×
∞∑

b=−∞
δ(β − [b(M + L)T ]−1),

for τ = µT + sgn(µ)τs, µ = ±(M − L+ 2), . . . ,±(M − 2),±(M + 2), . . . ,

±(M + L− 2), 0 ≤ τs < T,

0, otherwise.
(2.70)

By taking the inverse Fourier transform of (2.70) and using (2.7), one can show
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that cr(β; τ) can be expressed as

cr(β; τ) =



(
T−τs

4T + τs
2NT

1
1−ej

π
N

)
cxT

−1 ∫∞
−∞ [g(t)g∗(t)] e−j2πβtdt,

for τ = ±τs, 0 ≤ τs < T, and β = kT−1, k integer,

T−τs
T
A(µ)T−1 ∫∞

−∞ [g(t)g∗(t)] e−j2πβtdt,

for τ = µT + sgn(µ)τs, where µ = ±1,±3, . . . ,±(M − L− 1), 0 ≤ τs < T,

and β = kT−1, k integer,

τs
T
A(µ+ 1)T−1 ∫∞

−∞ [g(t)g∗(t)] e−j2πβtdt,

for τ = µT + sgn(µ)τs, where µ = ±2,±4, . . . ,±(M − L), 0 ≤ τs < T,

and β = kT−1, k integer,(
T−τs

4T + τs
2NT

1
1−ej

π
N

)
cx [(M + L)T ]−1 ∫∞

−∞
L−1∑
u=0

[g(t− uT )g∗(t− uT )] e−j2πβtdt,

for τ = µT + sgn(µ)τs, µ = ±M, 0 ≤ τs < T, and β = b[(M + L)T ]−1, b integer,

T−τs
T
A(µ) [(M + L)T ]−1 ∫∞

−∞
L−1∑
u=0

[g(t− uT )g∗(t− uT )] e−j2πβtdt,

for τ = µT + sgn(µ)τs, µ = ±(M − L+ 1),±(M − L+ 3), . . . ,±(M + L− 1),

0 ≤ τs < T, and β = b[(M + L)T ]−1, b integer,

τs
T
A(µ+ 1) [(M + L)T ]−1 ∫∞

−∞
L−1∑
u=0

[g(t− uT )g∗(t− uT )] e−j2πβtdt,

for τ = µT + sgn(µ)τs, µ = ±(M − L+ 2), . . . ,±(M − 2),±(M + 2), . . . ,

±(M + L− 2), 0 ≤ τs < T, and β = b[(M + L)T ]−1, b integer,

0, otherwise.
(2.71)

The analytical closed-form expression for the CAF and set of CFs for the discrete

SC-FDMA signals r(n) = r(t)|t=nfs , fs = ρ/T , with ρ as the oversampling factor, can

be written according to (2.10) as
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cr(β̃; τ̃) =



(
ρ−τ̃s

4ρ + τ̃s
2Nρ

1
1−ej

π
N

)
cxρ
−1

∞∑
n=−∞

[g(n)g∗(n)] e−j2πβ̃n,

for τ̃ = ±τ̃s, 0 ≤ τ̃s < ρ, and β̃ = kρ−1, k integer,

ρ−τ̃s
ρ
A(µ)ρ−1

∞∑
n=−∞

[g(n)g∗(n)] e−j2πβ̃n,

for τ̃ = µρ+ sgn(µ)τ̃s, where µ = ±1,±3, . . . ,±(M − L− 1), 0 ≤ τ̃s < ρ,

and β̃ = kρ−1, k integer,

τ̃s
ρ
A(µ+ 1)ρ−1

∞∑
n=−∞

[g(n)g∗(n)] e−j2πβ̃n,

for τ̃ = µρ+ sgn(µ)τ̃s, where µ = ±2,±4, . . . ,±(M − L), 0 ≤ τ̃s < ρ,

and β̃ = kρ−1, k integer,(
ρ−τ̃s

4ρ + τ̃s
2Nρ

1
1−e±j

π
N

)
cx [(M + L)ρ]−1 L−1∑

u=0

∞∑
n=−∞

[g(n− uρ)g∗(n− uρ)] e−j2πβ̃n,

for τ̃ = µρ+ sgn(µ)τ̃s, µ = ±M, 0 ≤ τ̃s < ρ, and β̃ = b[(M + L)ρ]−1, b integer,

ρ−τ̃s
ρ
A(µ) [(M + L)ρ]−1 L−1∑

u=0

∞∑
n=−∞

[g(n− uρ)g∗(n− uρ)] e−j2πβ̃n,

for τ̃ = µρ+ sgn(µ)τ̃s, µ = ±(M − L+ 1),±(M − L+ 3), . . . ,±(M + L− 1),

0 ≤ τ̃s < ρ, and β̃ = b[(M + L)ρ]−1, b integer,

τ̃s
ρ
A(µ+ 1) [(M + L)ρ]−1 L−1∑

u=0

∞∑
n=−∞

[g(n− uρ)g∗(n− uρ)] e−j2πβ̃n,

for τ̃ = µρ+ sgn(µ)τ̃s, µ = ±(M − L+ 2), . . . ,±(M − 2),±(M + 2), . . . ,

±(M + L− 2), 0 ≤ τ̃s < ρ, and β̃ = b[(M + L)ρ]−1, b integer,

0, otherwise,
(2.72)

where τ̃s = τs
Ts

and Ts is the sampling period.

Figs. 2.19 and 2.20 show the magnitude of theoretical and estimated CAF versus
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positive delays and at zero CF, respectively, for the SC-FDMA signals in the absence

of noise. We consider SC-FDMA signals with a 1.4 MHz double-sided bandwidth,

FFT size N = 64, IFFT size M = 128, Q = 2, and 16-QAM modulation with unit

variance constellation. The CP duration equals 1/4 of the useful SC-FDMA symbol

duration, a root raised cosine pulse shape with a roll-off factor of 0.35 is employed

at the transmit-side, ρ = 4, a Butterworth low-pass filter of order 13 is used as the

receive filter, and observation time equals 20 ms.

Figs 2.21 and 2.22 show the magnitude of theoretical and estimated CAF at zero

delay versus cycle frequency, While, Figs. 2.23 and 2.24 depict the magnitude of

theoretical and estimated CAF at delay ρ versus cycle frequency.

From these figures, one can easily notice that the estimated CAF magnitude of

SC-FDMA signals are in agreement with the theoretical findings. Note that the non-

zero values that appear in simulation results, which theoretically are zero, are due to

a finite observation time; these are not statistically significant.
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Fig. 2.19: Theoretical results for the CAF magnitude at zero CF (β̃ = 0) versus

positive delays, τ̃ , for SC-FDMA signals.
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Fig. 2.20: Simulation results for the CAF magnitude at zero CF (β̃ = 0) versus

positive delays, τ̃ , for SC-FDMA signals.
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Fig. 2.21: Theoretical results for the CAF magnitude at zero delay (τ̃ = 0) versus

cycle frequency , β̃, for SC-FDMA signals.
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Fig. 2.22: Simulation results for the CAF magnitude at zero delay (τ̃ = 0) versus

cycle frequency , β̃, for SC-FDMA signals.
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Fig. 2.23: Theoretical results for the CAF magnitude at delay τ̃ = ρ versus cycle

frequency, β̃, for SC-FDMA signals.
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Fig. 2.24: Simulation results for the CAF magnitude at delay τ̃ = ρ versus cycle

frequency, β̃, for SC-FDMA signals.
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2.6 SC-FDMA Implementation in LTE Uplink

Long Term Evolution (LTE) is the most popular standard that uses SC-FDMA at the

physical layer of its uplink (UL) traffic. SC-FDMA signals have been proposed as a

promising alternative to orthogonal frequency division multiplexing (OFDM) for UL

traffic in LTE due to the lower peak-to-average power ratio (PAPR). On the other

hand, they offer the same degree of Inter-symbol interference combat as OFDM [23].

Based on the previous discussion, the basic transmitter architecture of SC-FDMA

is very similar to orthogonal frequency division multiple access that is used in LTE

downlink (DL). Significantly, because the SC-FDMA waveform is essentially a single-

carrier, the PAPR is lower. Therefore, less power consumption occurs in user equip-

ment terminals.

In this section, we describe the physical layer implementation of SC-FDMA in

LTE uplink.

2.7 LTE UL Frame and Resource Structure

2.7.1 Generic Frame Structure

An element shared by the LTE DL and UL is the generic frame structure. The LTE

specifications define both the frequency division duplex (FDD) and the time division

duplex (TDD) modes of operation. This work deals exclusively with describing FDD

specifications.

The generic frame structure applies to both the DL and the UL for FDD operation

is shown in Fig. 2.25. The frame time duration is 10 msec, and each frame is divided

into 20 slots, with the slot duration equal to 0.5 msec. Each subframe contains two

slots which yield 1.0 msec.
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Fig. 2.25: The FDD uplink frame structure in the LTE SC-FDMA-based systems [15].

2.7.2 LTE Uplink Resource Structure

The LTE uplink resource grid for one time slot is illustrated in Fig. 2.26. Each element

in the resource grid is called a resource element and is uniquely defined by the index

pair (k, l) in a slot, where k and l are the indices in the frequency domain, k ∈{
0, 1, 2, ..., NUL

RBN
RB
SC − 1

}
, and time domain, l ∈

{
0, 1, 2, ..., NUL

symb − 1
}
, respectively.

The number of resource block is NUL
RB , while NRB

SC is the number of subcarriers in a

resource block. The consecutive SC-FDMA symbols in the time domain is NUL
symb,

where NUL
symb depends on the CP length and the useful symbol duration. NRB

SC equal

12 subcarriers for the LTE signals with a 4f = 15 kHz subcarrier spacing. Thus,

a physical resource block in the uplink consists of NUL
symb × NRB

SC resource elements,

corresponding to one slot of NUL
symb = 7 (short CP) or NUL

symb = 6 (long CP) time

domain symbols, and NRB
SC × 4f = 180 kHz in the frequency domain. The ratio

between the CP length and the useful SC-FDMA symbol duration Tcp/Tu equals 1/4

for long CP, while for short CP this is 10/128 for the first SC-FDMA symbol in the

slot and 9/128 for the remaining SC-FDMA symbols in the slot.
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Fig. 2.26: The slot structure and resource grid in the FDD uplink frame [15].

Table 2.1 shows the set of allowed values for resource block numbers, occupied

subcarriers and transmission bandwidths.

Table 2.1: LTE SC-FDMA parameters.
Bandwidth (MHz) 1.4 3 5 10 15 20

Number of resource blocks 6 15 25 50 75 100

Number of occupied subcarriers 72 180 300 600 900 1200

IFFT size 128 256 512 1024 1536 2048
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2.8 Summary

In this chapter, the signal model of the SC-FDMA signal is provided, the second order

cyclostationarity of the SC-FDMA signal is investigated, and closed-form expressions

for the CAF and CFs are derived. Furthermore, we compare analytical findings with

simulation results, which are in agreement. Finally, a description of the structure of

the SC-FDMA-based LTE signals is discussed.



Chapter 3

Proposed Algorithm for the

Detection of the LTE SC-FDMA

Signals

3.1 Introduction

In this chapter, results obtained in Chapter 2 for the CAF of SC-FDMA signals are

exploited to develop a cyclostationarity-based algorithm for their detection. The de-

tection performance is evaluated through computer simulations and laboratory exper-

iments. We first introduce the SC-FDMA signal features, then describe the proposed

algorithm, and finally, present the algorithm performance.

3.1.1 Signal Feature Used for Detection

The SC-FDMA signals are detected in the frequency bands allocated to the LTE

system [26]; accordingly, the values of M and N are known. The signal is down-

converted and oversampled, and the baseband discrete-time signal, r(u), 0 ≤ u ≤

52
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Us−1, is exploited for detection. Based on the theoretical results presented in Chapter

2, one can see that the CAF magnitude of the received LTE SC-FDMA has the

following properties:

• It has non-zero values at CF zero and for delays around ±ρM , with the latter

due to the existence of the CP.

• It is non-zero at CFs equal to ±ρ−1 and for delays around zero.

These particular properties are exploited for the LTE SC-FDMA signal detection.

Under hypothesis H1, we assume that the LTE SC-FDMA is present, while under H0

it is not.

3.1.2 Cyclostationarity Test Used for Decision-Making

Based on the underlying theory of the cyclostationarity test introduced in [28], which

verifies if CAF has a CF at β̃ for delay τ̃ , we develop a test for two CFs (β̃1 = 0

and β̃2 = ρ−1) and two delays (τ̃1 = ρM and τ̃2 = 0), such that we exploit the above

mentioned properties of the LTE SC-FDMA signals.

The test used for decision-making is as follows:

• The CAF of the received signal r(u) is estimated (from Us samples) at each

tested frequency β̃i and delay τ̃i, i = 1, 2, and a vector ĉi is formed as

ĉi = [Re{ĉr(β̃i; τ̃i)} Im{ĉr(β̃i; τ̃i)}], (3.1)

where Re {.} and Im {.} are the real and the imaginary parts, respectively.

• A statistic Ψi , i = 1, 2, is computed for each tested frequency β̃i and delay τ̃i

as [28]
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Ψi = Usĉi
∑̂−1

i
ĉᵀi , (3.2)

where the superscripts -1 and ᵀ denote the matrix inverse and transpose,

respectively, and ∑̂i
1 is an estimate of the covariance matrix

∑
i

=

 Re {(Q2,0 +Q2,1) /2} Im {(Q2,0 −Q2,1) /2}

Im {(Q2,0 +Q2,1) /2} Re {(Q2,1 −Q2,0) /2}

 , (3.3)

with

Q2,0 = lim
Us→∞

UsCum[ĉr(β̃i; τ̃i), ĉr(β̃i; τ̃i)], (3.4)

With the CUM[.] as cumulant operator, and

Q2,1 = lim
Us→∞

UsCum[ĉr(β̃i; τ̃i), ĉ∗r(β̃i; τ̃i)]. (3.5)

For a zero-mean process, the covariancesQ2,0 andQ2,1 are given respectively as [28]

Q2,0 = lim
Us→∞

U−1
s

Us−1∑
l=0

∞∑
ξ=−∞

Cum [f (l; τ̃i) , f (l + ξ; τ̃i)] e−j2π2β̃ile−j2πβ̃iξ, (3.6)

and

Q2,1 = lim
Us→∞

U−1
s

Us−1∑
l=0

∞∑
ξ=−∞

Cum [f (l; τ̃i) , f ∗ (l + ξ; τ̃i)] e−j2π(−β̃i)ξl, (3.7)

where f (l; τ̃i) = r(l)r∗(l + τ̃i) is the second-order (one-conjugate) lag product.

Moreover, the estimators of the covariance Q2,0 and Q2,1 are given respectively

by [28]
1Note that although Q2,0 and Q2,1 depend on i, this dependency was not shown for simplicity

of notation.
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Q̂2,0 = (UsUsw)−1
(Usw−1)/2∑

s=−(Usw−1)/2
W (s)Fτ̃i(β̃i − sU−1

s )Fτ̃i(β̃i + sU−1
s ), (3.8)

and

Q̂2,1 = (UsUsw)−1
(Usw−1)/2∑

s=−(Usw−1)/2
W (s)F ∗τ̃i(β̃i + sU−1

s )Fτ̃i(β̃i + sU−1
s ), (3.9)

where W (s) is a spectral window of length Usw and Fτ̃i(β̃i) =
Us−1∑
u=0

r(u)r∗(u −

τ̃i)e−j2πβ̃iu.

• With the test statistics Ψ1 and Ψ2 calculated based on the estimated CAF at

β̃1 = 0 and τ̃1=ρM and at β̃2 = ρ−1 and τ̃2 =0, respectively, we form a new test

statistic, Υ = Ψ1 +Ψ2. For decision-making, we compare Υ against a threshold,

Γ. If Υ ≥ Γ, we decide that the LTE SC-FDMA is present (hypothesis H1);

otherwise, it is not (hypothesis H0). By using the fact that the statistics Ψ1 and

Ψ2 have asymptotic chi-square distribution with two degrees of freedom [28], it

is straightforward to find that Υ asymptotically follows a chi-square distribution

with four degrees of freedom. The threshold Γ is obtained from the tables of this

chi-squared distribution for a given value of probability of false alarm (Pfa), i.e.,

Pfa = Pr {Ψ ≥ Γ | H0} [29]. A summary of the proposed detection algorithm is

provided below.

C. Complexity Analysis of the Proposed Detection Algorithm

The computational complexity of the algorithm is basically determined by the

calculation of the test statistic Υ, which entitles computation of Ψ1 and Ψ2. In order

to obtain the number of operations required for that, in the following we investigate

the complexity of estimating the CAF at β̃i and τ̃i, ĉr(β̃i, τ̃i), i = 1, 2,. As such,

according to (2.7), the estimation of CAF at β̃1 = 0 and τ̃1 = ρM requires Us complex
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Summary of the proposed detection algorithm
Input: The observed samples r(u), u = 0, ..., Us − 1, and ρ, M , and target Pfa.
- Calculate ĉr(0, ρM) and ĉr(ρ−1, 0) using (2.7).
- Calculate Ψ1 using ĉr(0, ρM), according to (3.2).
- Calculate Ψ2 using ĉr(ρ−1, 0), according to (3.2).
- Calculate Υ = Ψ1 + Ψ2.
- Calculate Γ based on Pfa.
if Υ ≥ Γ then

- LTE SC-FDMA is present (H1 true).
else

- LTE SC-FDMA is not present (H0 true).
end if

multiplications and Us− 1 complex additions, while 2Us complex multiplications and

Us−1 complex additions are required for β̃2 = ρ−1 and τ̃2 = 0. Furthermore, based on

(3.3), (3.8), (3.9), and the expression of Ψi in (3.2), one can find that the number of

complex multiplications, complex additions, and real operations needed to calculate

Ψi is (Us/2)log2Us+2Usw, Uslog2Us+2(Usw−1), and 9Usw+26, respectively. Moreover,

by considering Ψ1, Ψ2, Υ, as well as the comparison between Γ and Υ, and using the

fact that the number of complex multiplications requires 6 floating point operations

(flops), the number of complex additions requires 2 flops, and real operations requires

1 flop, the total number of flops required by the algorithm equals 10Uslog2Us+22Us+

50Usw + 42 2. For example, with Us =64000 (12.8 ms observation time) and Usw =

0.006Us, the proposed algorithm requires 11,645,343 flops, while with Us =32000 (6.4

ms observation time), the proposed algorithm requires 5,502,692 flops. Practically

speaking, with a microprocessor that can execute up to 79.2 billion flops per second3,

a decision can be performed in approximately 0.147 ms when the observation time is

12.8 ms and in 0.069 ms when the observation time is 6.4 ms. Apparently, there is a
2Note that the common terms which appeared in the computation of the statistic were counted

only once.
3[Online]. Available: http://ark.intel.com/Product.aspx?id=47932&processor=i7-980X&spec-

codes=SLBUZ.
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tradeoff between complexity and performance, i.e., a longer observation time will lead

to an increased complexity, but also to an improved performance, as it will be shown

in Section V.

3.2 Simulation and Experimental Results

3.2.1 Simulation Setup

The performance of the algorithm proposed for the detection of the LTE SC-FDMA

signals used in the uplink transmission is investigated here. Unless otherwise men-

tioned, the following parameter values were employed for the SC-FDMA signals [26]:

1.4 MHz bandwidth, N = 72, M = 128, ρ = 4. The subcarrier spacing was set to

4f = 15 kHz, L/M =1/4 for long CP, and L/M=10/128 for the first symbol in

the slot and L/M =9/128 for the remaining symbols for short CP. An RRC with

0.35 roll-off factor was employed at the transmit-side and 16-QAM modulation with

unit variance was considered. The impairments which affected the received signals

were: 500 kHz carrier frequency offset and uniformly distributed phase and timing

offsets over [−π, π) and [0, 1), respectively. We considered the additive white Gaussian

noise (AWGN), and ITU-R pedestrian and vehicular A channels [30]. The maximum

Doppler frequencies equal 9.72 Hz and 194.44 Hz for the pedestrian and vehicular

fading channels, respectively. The out-of-band noise was removed at the receive-side

with a 13 order low-pass Butterworth filter, and the SNR was set at the output of

this filter. The probability of detection Pd, is used as a performance measure; this is

estimated based on 1000 Monte Carlo trials. Unless otherwise mentioned, the sensing

times of 6.4 ms and 12.8 ms were used, and the probability of false alarm was equal

to Pfa= 0.01.
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3.2.2 Experimental Setup

A measurement station was set up as depicted in Fig. 3.1. This consists of: 1) a

processing and control unit, namely, a personal computer (PC), 2) an Agilent vector

signal generator (VSG N5182A), and 3) a Keithley vector signal analyzer (VSA 2080).

The three components were interfaced via Ethernet. By using the LTE SC-FDMA

signal emulation built into the VSG and the Agilent Studio toolkit, the VSG generated

an RF analog signal, which was transmitted to the VSA through a cable. The received

analog RF signal was down-converted to intermediate frequency, and then converted to

a digital signal, as well as to baseband. Finally, by using the Keithley SignalMeister,

the signal captured with the VSA was transferred to the PC, where the detection

algorithm was applied. The signal parameters were the same as used in the computer

simulations.

Fig. 3.1: Measurement station.

3.2.3 Algorithm Performance

The performance of the proposed algorithm is investigated in terms of the probability

of detection, Pd, for the LTE SC-FDMA signals. This probability is plotted versus

the probability of false alarm, Pfa, in Fig. 3.2, while it is depicted versus SNR in
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Figs. 3.3-3.6. Results obtained from both computer simulations (black color) and

experiments (red color) are shown, for the AWGN (solid line), ITU-R pedestrian A

(dashed line), and ITU-R vehicular A fading (dashed-dot line) channels. As can be

easily seen, there is a very good agreement between experimental and simulation

findings.

In Fig. 3.2, results for Pd versus Pfa are presented at different SNRs, for the ITU-R

pedestrian A fading channel and with 12.8 ms observation time. Clearly, the detection

performance improves with an increase in SNR. For example, with -10 dB SNR, Pd

reaches 1 at Pfa around 0.1, while with -5 dB SNR, this occurs at Pfa around 0.35.

Fig. 3.3 shows Pd versus SNR for the LTE SC-FDMA signal with long CP, and

considering the three channels, as well as the observation times of 6.4 ms and 12.8

ms. As expected, the best performance is obtained in the AWGN channel, followed

by the pedestrian and vehicular A channels. While results achieved in the pedestrian

A channel are close to those in AWGN, a longer observation time is required to reach

the same performance in the vehicular A channel. Also as expected, Pd improves

as the observation time increases. Fig. 3.4 depicts Pd versus SNR for the vehicular

A channel, with different observation times. As previously noticed, the detection

performance enhances with an increase in the observation time. Fig. 3.5 presents the

detection performance for LTE SC-FDMA signals with long and short CPs for the

pedestrian and vehicular A channels. As expected, a reduction in the CP duration

adversely affects the performance under the same conditions. This is explained by the

reduction in the correlation resulting from the reduced CP duration. Furthermore,

we investigate Pd versus SNR for different oversampling factors ρ in Fig. 3.6 for the

pedestrian A channel, with observation times of 6.4 ms and 12.8 ms. As expected, the

detection performance improves with an increase in ρ for a certain observation time, as

the number of samples increase, which in turn leads to more accurate estimates. Fig.
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3.7 presents the performance of signal detection for 1.4 MHz (N = 72, M = 128) and

5 MHz (N = 300, M = 512) LTE SC-FDMA signals versus SNR. As can be noticed,

the performance is better in the latter case, as an increased number of samples is

achieved over a certain observation time with a given oversampling factor, which in

turn leads to more accurate estimates.
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Fig. 3.2: The probability of detection versus Pfa for LTE SC-FDMA signals with

long CP propagation through pedestrian A channel for different SNRs with 12.8 ms

observation time. Simulation (black color) and experimental (red color) results.
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Fig. 3.3: The probability of detection versus SNR for the LTE SC-FDMA signals with

long CP affected by AWGN (solid line), pedestrian A (dashed line), and vehicular A

(dashed-dot line) channels, respectively. Simulation (black color) and experimental

(red color) results.
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Fig. 3.4: The probability of detection versus SNR for LTE SC-FDMA signals with

long CP propagation through vehicular A channel for different observation times.

Simulation (black color) and experimental (red color) results.
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Fig. 3.5: The probability of detection versus SNR for LTE SC-FDMA signals with

long and short CP propagating through pedestrian A (dashed line) and vehicular A

(dashed-dot line) channels with 12.8 ms observation time. Simulation (black color)

and experimental (red color) results.
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Fig. 3.6: The probability of detection versus SNR for the LTE SC-FDMA signals

with long CP affected by pedestrian A channel, when ρ = 8 (solid line), 4 (dashed

line), and 2 (dashed-dot line). Simulation (black color) and experimental (red color)

results.
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Fig. 3.7: The probability of detection for the 1.4 MHz LTE SC-FDMA and 5 MHz

LTE SC-FDMA signals versus SNR with long CP affected by pedestrian A channel.

Simulation (black color) and experimental (red color) results.

3.3 Summary

In this chapter, an algorithm based on the second-order cyclostationarity was de-

veloped for the detection of SC-FDMA signals. Experiments were carried out us-

ing computer simulations and signals generated by laboratory equipment to evaluate

the performance of the proposed algorithm under diverse scenarios, involving various

channel conditions, SNRs, and observation times. The algorithm does not require

frequency and timing synchronization, and estimation of signal and noise power. The

algorithm can be implemented in real time, with a tradeoff between complexity and

performance.



Chapter 4

Classification of SC-FDMA,

OFDM, and SC Signals

4.1 Introduction

In this chapter we develop an algorithm to classify SC-FDMA, OFDM and SC signals

based on their second-order cyclostationarity. The results obtained in Chapter 2 for

the CAF of the SC-FDMA signal are exploited to develop this algorithm. We first

introduce the discriminating signal features, then describe the proposed algorithm,

and finally present the algorithm performance.

4.2 Proposed Signal Classification Algorithm

Based on the theoretical results presented in Chapter 2, we can draw the following

conclusions on the CAF magnitude of the SC-FDMA signal:

• The CAF magnitude has non-zero values at delays around zero and ±ρM , with

the latter due to the existence of the CP.

64
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• The CAF magnitude is non-zero at CFs equal to ±ρ−1 and for delays around

zero, as well as at CFs integer multiples of [(M + L) ρ]−1 and for delays around

a ±ρM.

Based on the second-order cyclostationrity features of OFDM and SC signals [16],

we can draw the following conclusion on the CAF magnitude of the OFDM and SC

signals:

• The CAF magnitude of OFDM signals has non-zero values at delays around zero

and ±ρK, with the latter due to the existence of the CP. Here K represents the

number of subcarriers.

• For OFDM signals, the CFs are integer multiples of D−1, where D = ρK(1 +

TcpT
−1
u ), with Tcp and Tu as the CP duration and useful symbol duration, re-

spectively.

• For SC signals, the CAF magnitude is non-zero at CFs equal to ±ρ−1 and for

delays around zero.

These properties are exploited to identify the SC-FDMA signal versus the OFDM and

SC. In the bandwidth of interest and after down-conversion, oversampling at rate ρ

times the bandwidth is carried out. The corresponding binary decision tree algorithm

is presented in Fig. 4.1. At Node 1, we discriminate SC-FDMA and OFDM versus

SC signals, and at Node 2 we identify SC-FDMA versus OFDM signals. At each

node, a test static is estimated based on the corresponding CAF and compared with

a decision threshold [28].
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Fig. 4.1: The flowchart of the proposed algorithm for signal classification.

4.3 Classification Performance of the Proposed Al-

gorithm

In this section, the joint detection and classification performance of the proposed

algorithm is evaluated through computer simulation and using waveforms generated

and acquired by laboratory instrumentation.

4.3.1 Simulation Setup

SC-FDMA, OFDM, and SC signals were considered with a 16-QAM constellation

with unit variance. Unless otherwise mentioned, the following parameters values

were employed for the SC-FDMA: double-sided bandwidth B = 1.4 MHz, N = 72,

M = 128, subcarrier spacing 4f = 15 kHz, Tcp/Tu =1/4 for long CP, and for short

CP Tcp/Tu =10/128 for the first symbol in the slot and Tcp/Tu= 9/128 for the

remaining symbols. Note that the LTE standard was followed for parameter set-up.

Furthermore, the OFDM and SC signals used a bandwidth B = 1.25 MHz. For the
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OFDM signal K = 128 and Tcp/Tu =1/4. The root raised cosine pulse shape with a

roll-off factor 0.35 was used at the transmit-side for SC-FDMA and SC signals, and

the root cosine window with 0.025 roll-off factor was utilized for the OFDM signals.

The impairments which affected the received signals were: 500 kHz carrier frequency

offset and uniformly distributed phase and timing offsets over [-π,π) and [0,1),

respectively. The considered channels were AWGN and ITU-R pedestrian and

vehicular A fading [30], with the delay spread profile of the fading channels specified

in Table 4.1. The Jakes’s model was used to generate multipath fading [31]. The

maximum Doppler spread of the pedestrian and vehicular fading channels were 9.72

Hz and 194.44 Hz, respectively. The out-of-band noise was removed at the

receive-side with a 13 order low-pass Butterworth filter, and the SNR was set at the

output of this filter. Observation times of 6.4 ms and 12.8 ms were used, and the

decision threshold was set to 19.807 at Node 1 and 18.42 at Node 2. The probability

of correct classification Pcc(i|i), i = SC-FDMA, OFDM, and SC, were obtained from

1,000 Monte Carlo simulation.

Table 4.1: Tapped-delay-line implementation of ITU-R models [30].

Pedestrian A channel Vehicular A channel

Tap no. Delay (ns) Power (dB) Delay (ns) Power (dB)

1 0 0 0 0

2 110 -9.7 310 -1

3 190 -19.2 710 -9

4 410 -22.8 1090 -10

5 NA NA 1730 -15

6 NA NA 2510 -20
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4.3.2 Algorithm Performance

The probability of correct classification, Pcc(i|i), i = SC-FDMA, OFDM, and SC are

respectively plotted versus SNR in Figs. 4.2-4.6 based on computer simulation (black

colors) and experiments (red colors). Three channels are considered: AWGN (solid

line), ITU-R pedestrian A (dashed line), and ITU-R vehicular A (dash-dot line), for

the observation times of 6.4 ms and 12.8 ms. As can be seen, there is a very good

agreement between experimental and simulation results. Regardless of the sensing

time, the SC-FDMA with long CP and SC classification performance is similar for

the AWGN and pedestrian fading channels, but degrades for the vehicular fading

channels. For the latter case, neither 6.4 ms nor 12.8 ms is sufficient to provide an

acceptable performance regardless of the SNR. Fig. 4.4, for the 12.8 ms observation

time, the OFDM classification performance is similar for all three channels. On the

other hand, for the 6.4 ms sensing time, the performance has a similar behavior as

for SC-FDMA and SC.

Moreover, we investigated the effect of the observation time on the classification

performance for SC-FDMA signals with long CP in Fig. 4.5. As can be noticed,

a longer sensing time is required to attain a reasonable performance. For example,

256 ms is needed to achieve a probability of correct classification approaching one at

around 9 dB SNR. Fig. 4.6 presents the classification performance for SC-FDMA sig-

nals with long and short CPs. As expected, a reduction in the CP duration adversely

affects the classification performance under the same conditions. This is explained

by the reduction in the correlation resulting from the reduced CP duration. Both

simulation and experimental results are in agreement.
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Fig. 4.2: The probability of correct classification versus SNR for SC-FDMA signals

with long CP affected by AWGN (solid line), ITU-R pedestrian A (dashed line), and

vehicular A (dashed-dot line) fading channels, respectively.
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Fig. 4.3: The probability of correct classification versus SNR for SC signals propaga-

tion through AWGN (solid line), ITU-R pedestrian A (dashed line), and vehicular A

(dashed-dot line) fading channels.
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Fig. 4.4: The probability of correct classification versus SNR for OFDM signals prop-

agation through AWGN (solid line), ITU-R pedestrian A (dashed line), and vehicular

A (dashed-dot line) fading channels.
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Fig. 4.5: The probability of correct classification versus SNR for SC-FDMA signals

with long CP propagation through vehicular A fading channels for different observa-

tion times.
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Fig. 4.6: The probability of correct classification versus SNR for SC-FDMA signals

with long and short CP propagation through AWGN (solid line), ITU-R pedestrian

A (dashed line) fading channels with 12.8 ms observation time.

The confusion matrix shown in Table 4.2 and Table 4.3 for SC-FDMA with long

CP and SC-FDMA with short CP, respectively, for 12.8 ms observation time and -2

dB SNR in pedestrian A channel further illustrate the classification performance.

Table 4.2: Confusion matrix for 12.8 ms observation time and -2 dB SNR in ITU-R

pedestrian A channel with using SC-FDMA (long CP).

Table 4.3: Confusion matrix for 12.8 ms observation time and -2 dB SNR in ITU-R

pedestrian A channel with using SC-FDMA (short CP).
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4.4 Summary

In this chapter, an algorithm based on the second-order cyclostationarity was devel-

oped for the classification of SC-FDMA, OFDM, and SC signals. Experiments were

carried out using computer simulations and signals generated by laboratory equip-

ment to evaluate the performance of the proposed algorithm under diverse scenarios,

involving various channel conditions, SNRs, and observation times. The algorithm

does not require frequency and timing synchronization, and estimation of signal and

noise power. A good performance was obtained at relatively low SNRs and with a

relatively short observation time.



Chapter 5

Conclusions and Future Work

In this thesis, the second-order cyclostationarity of SC-FDMA-based signals, which

are employed in the uplink LTE, is studied. Furthermore, this is exploited to develop

two algorithms for signal detection and classification, respectively, which exhibit a

good performance.

The following are the major contributions of this thesis:

- The SC-FDMA signal is studied and mathematically modelled.

- The second-order cyclostationarity of the SC-FDMA signal is investigated, and

closed-form expressions for the CAF and CFs are derived.

- These findings are used to select discriminating signal features and develop

algorithms for detection and classification of SC-FDMA signals, respectively.

- The detection and the classification performance of the proposed algorithms are

evaluated first through computer simulations. The algorithms have the advantage of

avoiding the need for frequency and timing synchronization, and estimation of signal

and noise powers.
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- Experiments are additionally conducted to verify the theoretical findings and the

simulation outcomes. These involve an Agilent vector signal generator (VSG

N5182A) and a Keithley vector signal analyzer (VSA 2080). Results from

experiments agreed with theoretical and simulation results, providing a strong

support for the developments introduced in this thesis.

5.1 Future work

While LTE SC-FDMA signals are considered in this thesis, in the LTE standard there

is supplementary information, such as preambles and pilots, which induces second-

order cyclostationarity and provides additional discriminating features that can be

used for signal detection and classification. This leads to a more complex signal

model, which is planned to be investigated in future work. In addition, cooperative

techniques will be exploited for signal detection and classification. Instead of con-

sidering a single reading for each CR, different CRs can share their measurements to

improve the detection/classification. Moreover, the applicability of the signal features

for parameter estimation will be studied. Recently, multiple-input multiple-output

(MIMO) systems have been included in advanced standards of wireless systems, e.g.,

LTE Advanced. The problem of detecting SC-FDMA in MIMO scenarios is a topic

of interest, which will be investigated in the future.
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