
A new integrated potable reuse process for a small remote community in Antarctica  

Jianhua Zhanga,*, Adrian Knightb, Mikel Dukea, Kathy Northcottd, Michael Packerc, Peter J. Scalesb, Stephen R. 
Graya,* 

a Institute for Sustainability and Innovation, Victoria University, Melbourne, Australia 
b Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Australia  
c Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania, 7050, Australia 
d Veolia,  Bendigo Water Treatment Plant, Kangaroo Flat, Victoria, 3555, Australia 
*Corresponding Author 

 

Abstract 

To meet water reuse and discharge requirements in Davis Station, Antarctica, an advanced 

water treatment plant (AWTP) had been designed and tested for nine months. The key design 

factors for operating in small communities in remote areas included low maintenance 

requirement (low chemical inventory, minimal onsite labour), high LRVs for pathogens, 

robust operation, and high automation.  Based on these requirements, the seven-barrier 

AWTP included ozonation, ceramic microfiltration, biological activated carbon, reverse 

osmosis, ultraviolet radiation, calcite filtration and chlorination. The nine month test 

demonstrated that the plant was able to provide minimum LRVs of 12.5 for virus and 

bacteria, and 10 for protozoa. The overall estimated chemical consumption was lower than 

equivalent continuous operations elsewhere due to a reduced number of Clean in Place (CIP) 

cycles as compared to industry.  This was achieved by optimised integration of the barriers. 

Furthermore, there was no functional failure of major barriers and the automated online 

pressure decay test (PDT) validations for MF and RO were successful. Although some minor 

improvements, such as a reduced frequency of RO pre-filter cartridge replacement, are still 

needed, the new integrated plant has fulfilled the requirements of high pathogen LRVs, 

remote online control and validation, and relatively low chemical consumption. 
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1. Introduction  



Australia’s Davis Station, Antarctica, a small community in a remote area, was established in 

January 1957 and has been constrained by water shortages for more than fifty years. The 

water supply is reliant on an installed reverse osmosis (RO) plant that treats water from a 

small nearby tarn. However, the requirement for controlling environmental discharges has 

resulted in the salinity of the feed water to the RO plant increasing gradually, due to it also 

being the receiving water for the RO concentrate (Pekin, 2012). A further significant 

environmental issue at Davis Station is the environmental impact of ocean sewage outfall on 

the sensitive marine ecosystem, with pathogens and chemicals of concern identified as 

impacting on the environment (Stark et al., 2011).  

To achieve a sustainable water source and minimise the effects of wastewater discharge to the 

marine environment, a secondary wastewater plant including anaerobic and aerobic processes 

and membrane bioreactor, as well as an advanced water treatment plant (AWTP) for 

production of potable water have been proposed. The implementation of a potable water 

recycling plant at Davis Station needs to conform to the Australian Guidelines for Water 

Recycling: Augmentation of Drinking Water Supplies (Natural Resource Management 

Ministerial Council et al., 2008), as the station is under the control of the Australian 

Government. Further, similar to most remote communities, the availability of trained water 

operators for Davis Station is limited; the population is low and varies greatly seasonally; and 

the chemical inventory is minimised to reduce space requirements on the limited supply ship 

visits. Therefore, the operation and validation of the potential water recycling plant needs to 

be robust, highly automated and remotely operable, with low on site operator requirements 

and minimal chemical consumption.  

Compared to a large-scale municipal purified water recycling plant, in which  pathogens shed 

by a few people during a disease outbreak are diluted by the bulk flow, more stringent 

pathogen log reduction values (LRV) defined in Equation (1), are required for small scale 

communities (Barker et al., 2013). 

  𝐿𝐿𝐿𝐿𝐿𝐿 = − log �𝐶𝐶𝑝𝑝
𝐶𝐶𝑓𝑓
�     (1) 

where Cf and Cp are respectively the concentrations of pathogen in the feed and product 

water.  

This arises from the increased proportion of the small community that is likely to become 

sick during a disease outbreak, and the consequence is that 3 - 6 log higher LRV as shown in  



in Table 1 (Barker et al., 2013) is required to meet the Australian and World Health 

Organisation requirement for a DALY (disability-adjusted life year) of less than 10-6 days per 

person per year (Natural Resource Management Ministerial Council et al., 2008; World 

Health Organisation, 2011). Since one of the major purposes of the scheme is also to 

minimise the environmental impacts of sewage discharge, the introduced chemicals and 

disinfection by-products should also be critically controlled in the discharge to the Antarctic 

Ocean.   

 

The high LRV requirements for this plant and the need to remove chemical of concerns from 

the final ocean discharge means that a conventional water recycling plant consisting of 

biological wastewater treatment - ultrafiltration (or MBR) – RO – advanced oxidation is 

unsuitable for this application, as this process is unable to meet the pathogen LRV 

requirements or to extensively remove chemicals of concern from the RO brine.  Under the 

Australian regulatory environment no single pathogen barrier is able to be credited with more 

than 4 LRV (Department of Health & Human Services, Victoria, 2013), and credited LRV for 

reverse osmosis is limited to 2 or less because of the need for on-line verification. 

Furthermore, the LRV ascribed to biological processes is low and variable, and requires on-

site validation which is not practical for Davis Station.   

 

Therefore, to satisfy all critical requirements, seven barriers were selected for the AWTP that 

included: 

a) Ozonation, which provides pathogen inactivation, boosts dissolved organic carbon 

(DOC) bio-degradability, degrades chemicals of concern (CoC) and lowers cleaning 

chemical consumption for the downstream ceramic micro-filtration (MF) by 

increasing backwash efficiency (Dow et al., 2015; Duke et al., 2013) 

b) Ceramic microfiltration membranes (MF), which act as a pathogen barrier, lower 

chemical consumption by using direct contact with ozone to reduce fouling and the 

need for chemical cleaning, and have much better robustness and long-term integrity 

than polymeric membranes 

c) Biological activated carbon (BAC) filter, which digests DOC to reduce the organic 

fouling potential of the reverse osmosis (RO) feed so as to reduce the replacement 

frequency and CIP for RO membrane array, and also removes additional trace organic 

compounds from the RO brine discharged to the Antarctic Ocean.  However, the BAC 

will increase the concentration of particulates in the BAC effluent and thereby 



increases the frequency of replacing the cartridge filter upstream the RO array, but the 

RO brine will better meet the water quality objectives for this site.   

d) RO, which is a barrier for pathogens and CoCs, and reduces the salinity of the treated 

water 

e) Ultraviolet radiation (UV), which is a barrier for pathogens, especial protozoa 

f) Calcite filtration, used to increase water stability 

g) Chlorination, which is a barrier for pathogens and provides a long term chlorine 

residual to suppress pathogen regrowth  

Table 1 Claimed LRVs for the potable reuse plant and CCPs for each barrier 

Barrier CCPs 
LRV* 

Virus Bacteria  Protozoa 

Ozonation CT 2 2 0 

Ceramic MF PDT 1 1 4 

BAC Turbidity 0 0 0 

RO Conductivity and PDT 1.5 1.5 2 

UV Dosing 4 4 4 

Calcite Filter pH 0 0 0 

Chlorination CT 4 4 0 

Total claimed LRVs 12.5 12.5 10 
* The LRVs are credited based on health regulator guidelines e.g. the USEPA Long Term 2 Enhanced Surface 
Water Treatment Rule, Guidelines for validating treatment processes for pathogen reduction, (Department of 
Health & Human Services, Victoria, 2013). 

In this study, the AWTP was tested and assessed based on the key design requirements during 

nine months of operation. All the CT values were calculated for a temperature of 19°C, as the 

treatment plant will be housed in a 19˚C temperature controlled room at Davis Station. The 

assessment provides a reference for small scale potable reuse plant design, i.e., barrier 

selection, requirements and critical control point (CCP) selection as shown in Table 1 (Gray 

et al., 2015a). Furthermore, some new technologies, such as the combination of ozonation, 

ceramic MF and BAC, and pressure decay tests (PDT) for online RO integrity validation, 

were used in this plant. This study also demonstrated the effectiveness of these technologies.  

2. Experimental and Demonstration method 

A schematic of the AWTP flowsheet is shown in Figure 1.  The small AWTP that will 



operate at Davis Station was constructed and trials run at Selfs Point Wastewater Treatment 

Plant (WWTP), Hobart, Tasmania, Australia. The secondary effluent before disinfection was 

used as the feed to the AWTP. During the plant operating period, the DOC range in the feed 

water was 7.5 to 9.4 mg/L, and TN was stable at 2.0 mg/L, except for a few spikes as high as 

8- 16 mg/L due to upstream maintenance activities. 

The AWTP was contained in four shipping containers. At Davis Station, it is anticipated that 

the plant will operate intermittently with almost continuous operation during the summer 

months, and operation every second day over winter.  To simulate these conditions, a virtual 

feed tank of 3500 L was created in the plant operating software, and filled at a rate of less 

than 20 L/min – the flowrate from the virtual tank to the AWTP.  The level of the virtual tank 

was calculated from the amount of feed into the virtual tank minus the amount out.  The level 

in the virtual tank controlled plant start-up and shut-down in normal operation, with the plant 

put online when the virtual tank level reached 3,500 litres and offline when the level dropped 

to 500 litres.  The recovery of the RO system was set to 70% during the test and the overall 

recovery of AWTP was between 65 and 67.5%, due to use of RO permeate for the ceramic 

MF backwash. 

 
Figure 1: Schematic of the potable reuse plant 

Ozone production was via a Wedeco OCS-GSO system and set at 19-20 mg per litre waste 

water, with approximately 11.7-14 mg/L ozone dosed into the liquid phase. The ozone system 

included a 480 L contact tank with an internal tank, a circulating venturi dosing system 

operating at a circulation flowrate of 2 m3/min, a pressure swing absorption (PSA) oxygen 

generator and an ozone generator. The ozone system started approximately 10 to 15 min 

earlier than the feed pump to build up the ozone concentration in the ozone contact tank.  

The MF barrier comprised two 0.1 µm Metawater® ceramic membranes operated 



alternatively (duty/standby) in dead end mode. The operating flux was approximately 50 Lm-

2h-1 and a PDT was used to ensure membrane integrity after each online period. 

The BAC barrier used Acticarb® BAC GA1000N activated carbon with an Empty Bed 

Contact Time (EBCT) of 20 min, and head loss and volume of treated water was used to 

trigger the backwash of the BAC filter, which occurred during offline periods. 

Five FILMTEC BW30-4040 RO elements were used in the RO array, and the designed 

transmembrane pressure and permeate flow were 9.4 bar and 14 L/min, respectively. The RO 

system incorporated a recycle stream to increase the overall recovery to 70%, with a single 

pass recovery of approximately 50%. The membrane integrity was monitored by both 

conductivity and PDTs.  The PDT was conducted based on the method described by Zhang et 

al. (Zhang et al., 2016). The RO PDT was used to achieve the required LRV for protozoa and 

a LRV of 2 across the RO membranes was claimed.  The LRV verification and the pressure 

of the PDT are related via Equation (2) (Allgeier et al., 2005).   






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
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⋅⋅∆

⋅⋅
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LRV
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where Qp is the filtrate flow, ALCR is the air-liquid conversion ratio, Patm is the atmosphere 

pressure, ΔPtest is the testing pressure, Vsys is the tested system volume, and VCF is the 

volumetric concentration factor. 

For this system the initial pressure used for the PDT was 85 kPa and a pressure decay rate 

below 3.7 kPa/min indicated a protozoa LRV of 2 could be claimed for the RO system.  

Two UV units (Wedeco Spectron 6) were used in series to achieve a minimum UVC dose of 

189 mJ/cm2, as required for 4 LRV of virus.  Each UV unit was able to achieve an Ultraviolet 

C dose of > 400 mJ/cm2, and the two units were operated to ensure water quality was 

maintained if one failed during service.  

The calcite filter (Puretec®) had an EBCT value of 5 min to achieve Ca2+ concentration no 

less than 20 mg/L, and its need for replenishment was monitored by filtrate pH.  

The designed free chlorine dose was 0.9 mg/L with a residual no less than 0.7 mg/L after 30 

min of contact time. Both doses were monitored by online chlorine meters. The CCPs for all 

the barriers are listed in Table 1. All CCPs related instrumentation, except for the pressure 



transmitters and flowrate meters, were verified weekly. 

The ozone mass transfer efficiency to the feed water was estimated by measuring the 

difference between the gas flow rate from the ozone destroyer between operation in dry mode 

(ozone generator not operating) and operation mode. The 10% residence time for CT value 

calculation, T10 (10% of the feed passes through the contactor) for the ozone contact tank and 

UV units were measured using the step dose method (USEPA, 1991) with rhodamine WT 

dye.  

To minimise labour requirements, clean-in-place (CIP) of the ceramic MF membranes with 

manual chemical addition to the CIP tank was not practiced. However, 100 mg/L NaClO 

solution was used for chemically enhanced backwash (CEB) instead of 50 mg/L as 

recommended by the manufacturer. The backwash pressure was also reduced to 1.6 bar from 

the manufacturer recommendation of 4 bar, which minimised hydraulic shock and vibration 

within the treatment system during backwash. To reduce the chemical inventory and storage 

capacity, only 90 L of 600 mg/L NaOH and 90 L of 550 mg/L HCl solutions were used for 

the RO CIP.  

Two samples were taken for each barrier weekly for analysing DOC (measured by a 

Shimadzu, TOC_V with TNM-1 unit), total nitrogen (TN measured by Shimadzu, TOC_V 

with TNM-1 unit), total phosphate (TP, measured by Shimadzu ICP2000), calcium (measured 

individually by Shimadzu ICP2000) and other metals (measured by Shimadzu ICP2000) for 

comparison with the Australian Drinking Water Guideline (ADWG). E.coli and total 

coliforms were tested weekly by plate counting for samples of plant feed, ozone effluent, 

ceramic MF filtrate, BAC filtrate, RO permeate and product water. The Somatic coliphage in 

the plant feed, ozonation effluent, ceramic MF filtrate, BAC filtrate and product water were 

analysed 5 times during the operation period.  

Biodegradable dissolved organic carbon (BDOC) of feed, ozonation effluent, ceramic MF 

filtrate and BAC filtrate were analysed three times during the trial by the Joret method, and 

were performed by Research Laboratory Services Pty Ltd.  

The chemical consumption and plant operation time were calculated based on the data 

recorded by the control system (SCADA). 

The data presented in this study were the combination of online and offline data, which were 



aligned within a five minute time interval. 

3. Results and Discussion 

3.1 Assessment of Ozonation System 

3.1.1 Ozone production, ozone dosing and contact time (T10) 

In Table 2, the ozone produced and dosed (including dissolved and consumed ozone) into the 

feed (20 L/min) are shown. In larger-scale plants, the ratio of dosed ozone to DOC is 

normally below unity (Gottschalk et al., 2009). However, as seen in Table 1, the ratio in this 

demonstration plant was about 1.4 - 1.9 mg O3/mg DOC. In a large scale plant, ozone is used 

to remove odour, colour and UV-absorbance, and increases biodegradable organic carbon 

ahead of biological stages (Camel and Bermond, 1998). Here, besides the major purposes of 

the large scale plant, the ozone was also used as disinfectant to achieve the required LRVs 

shown in Table 1.  

The percentage of produced ozone dosed into the ozone system (using Venturi injection) was 

between 60.4% to 73.3% as shown in Table 2, which is higher than that of the bubble 

columns (30 - 55%) with similar ozone doses (Xu et al., 2002).   

Table 2 Ozone production and ozone dosed into waste water 

Date Produced ozone 
(mg/L) 

Dosed ozone 
(mg/L) 

Percentage 
(dosed/produced) O3:DOC 

27/11/14 20.7 13.5 65.0% 1.6 
27/01/15 20.6 14.9 71.9% 1.8 
10/02/15 19.3 11.7 60.4% 1.4 
25/02/15 20.3 14.9 73.3% 1.9 

Since the residence time used in the CT value calculation was based on the residence time for 

10% of the feed to pass through the contact tank (T10), the T10 of the ozone contact tank was 

measured. The measured T10 values were 4.7 and 4.9 min (average T10 = 4.8 min) based on 

two hydraulic residence time tests using rhodamine WT fluorescent dye, as shown in Figure 

2.  The T10 value was about one fifth of the mean hydraulic residence time (24 min) 

calculated based on the feed flow rate and contact tank volume.   



 
Figure 2: T10 measurements for the ozone contact tank (recovery from 0 to 33%) 

3.1.2 Ozone system performance  

As the first barrier, ozonation was employed to convert non-biodegradable (or slowly 

biodegradable carbon) to biodegradable dissolved organic carbon (BDOC), degrade CoCs 

and to serve as a disinfection barrier. As seen in Table 3, the BDOC content in the 

wastewater increased from 29-32% before ozonation to 56-59% after ozonation. Comparison 

with the ozone dosing in Table 2 shows more than 95% of the ozone was consumed or 

degraded during 24 min contact with the wastewater. 

Table 3 Influence of ozonation on BDOC in the wastewater 

Days 
Ozone 

Residual 
(mg/L) 

Feed  Post-ozonation 
DOC 

Reduction  
(%) 

Reduction + 
Conversion 

(%) DOC 
(mg/L) 

BDOC 
(mg/L) 

BDOC/
DOC 
(%) 

DOC 
(mg/L) 

BDOC 
(mg/L) 

BDOC/
DOC 
(%) 

127 0.015 8.9 2.6 29 8.7 4.9 56 2.2 28 
183 0.136 8.7 2.4 28 8.1 4.5 56 6.9 31 
15 0.478 8.5 2.7 32 7.5 4.4 59 11.7 32 

As the ozone residual increased from 0.015 to 0.478 mg/L, the DOC reduction increased 

from 2.2% to 11.7%. However, ratios of the total DOC reduction and conversion to original 

DOC were approximately the same at different ozone residuals. Fahmi et al. found that the 

DOC reduction was mainly from BDOC mineralisation by ozonation (Fahmi et al., 2003). 

Therefore, high ozone residual facilitates BDOC decomposition.  
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Figure 3: LRV of ozonation barrier to E. coli and ozone residual in the wastewater 

Figure 3 shows the CT value and measured LRV based on naturally occurring E. coli and 

Somatic Coliphage, where 0.26 mg·min/L is the CT value required by the USEPA Long 

Term 2 Enhanced Surface Water Treatment Rule (LT2) to achieve 2 LRV for virus. It can be 

found that the measured LRVs were greater than 2.5, regardless of the ozone CT value. 

However, no clear relationship between the ozone CT value and pathogen LRVs was found.  

 
a. Influence of feed ammonia and DOC on ozone residual 
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b. Feed turbidity vs ammonia concentration and ozone residual  

Figure 4: Parameters affecting the ozone residual 

In Figure 4, ammonia, DOC and turbidity values for the feed water are shown, as they may 

influence the ozone residual.  Since the ammonia and DOC concentrations were not measured 

online, the online ozone residual data in Figure 4a were selected based on the sampling time 

(±10 min).  It was established that the concentration of DOC in the feed water did not show 

any clear relationship with residual ozone. Interestingly, it can be found that the ozone 

residual showed the similar trend to the ozone residual. However, the higher ammonia 

concentration should theoretically lead to more ozone depletion due to the slow oxidation 

(von Gunten, 2003). In Figure 4b, the relationship of turbidity to ammonia concentration and 

ozone residual are shown. It can be found that the ammonia concentration was relatively high 

when the turbidity was low. Furthermore, as the feed turbidity increased, the ozone residual 

in the wastewater declined. Therefore, it seems that the turbidity shows a dominant influence 

on ozone residual in this study. Thus, pre-filtration to remove suspended solids seems 

important to maintain high ozone residual concentrations. 

The relatively high turbidity values for feed to the ozone system may lead to the 

discrepancies seen between the LRV obtained for E.coli and Somatic coliphage for the range 

of residual ozone CT values achieved compared to those specified by the USEPA rule.  The 

USEPA rule was developed for surface waters with low turbidity and low DOC values 

compared to the feed to the AWTP, and these differences in feed water quality may lead to 

the resultant differences in LRV obtained for low ozone residual CT value.    
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3.2 Ceramic MF barrier 

3.3.1 Pathogen rejection and validation 

During the test, the E. Coli and Somatic coliphage were respectively less than 40 and 10 

MPN (most probable number)/100 mL in the ozonated water (MF feed), and were not found 

in the MF filtrate.  

 
Figure 5: MF rejection of coliforms. Solid diamonds for coliform data that was <1 MPN/100 

ml for MF filtrate; Open diamonds for coliform data ≥1 MPN for MF filtrate. 

The total coliform population rejection calculated based on the total coliform population in 

the MF feed and MF filtrate is shown in Figure 5. If the detected coliform population was less 

than 1 MPN/100 mL in the MF filtrate, the data point is shown by a solid marker in Figure 5 

and 0 MPN/100 mL was used in the calculation of rejection. As shown by the open 

diamonds, two total coliform rejections less than 100% (91.5% and 99.6%) were detected in 

the first month after the pilot plant had been offline for 1 month (from December, 2014 to 

January, 2015), but disappeared in the second month. Therefore, it is proposed that there was 

coliform growth on the filtrate side of the ceramic membrane when the whole plant was put 

offline for about one month. However, during the total operating period, the rejection of total 

coliforms was not less than 90% (LRV>1). It was also proposed that the ozone residual in the 

MF feed might contribute to further inactivation of coliforms, but from November, 2014 to 

May, 2015, the ozone residual in the MF feed was also zero most of time. Therefore, it can be 

confirmed that the ceramic MF membrane was able to achieve at least 1 LRV for coliform by 

size exclusion only. 
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The Department of Health Services, California, has approved the Metawater® ceramic MF 

membrane for removal of 4 LRV for protozoa, 1 LRV for virus and 1 LRV for bacteria when 

the pressure decay rate is <1.4 kPa/min under a PDT pressure of 1.4 bar. In Figure 6, the 

decay rates are shown. It was found that the decay rates were all less than 1.4 kPa/min, except 

for three tests. This may be due to an  issue caused by the valves on the filtrate side of the 

membrane not completely sealing during the PDT tests, as the decay rates reverted to being 

<1.4 kPa/min without any remediation of the ceramic MF. Therefore, the pressure decay rate 

of a blank test was measured with all valves closed on both sides of a pressurised membrane, 

and the PDT rates were corrected by subtracting the blank test decay rate. Figure 6 (on the 

right side of the vertical red line) shows that the PDT rates were all less than the 0.2 kPa/min 

with the correction, well below the required limit. 

 
Figure 6: Ceramic MF PDT results 

3.3.2 Interaction with ozonation for DOC reduction 

It has been reported that ceramic ZrO2 membranes may act catalytically with ozone (Zhu et 

al., 2011) to boost the oxidation effect of ozone on organic matter. However, it was found for 

the Metawater® alumina membrane that if a chlorine free potable water was used as feed,  

there was no obvious ozone residual change observed in MF feed and filtrate as shown in 

Figure 7. Therefore, the catalytic effects of the ceramic membrane might be too weak to 

boost the decomposition of ozone (Batakliev et al., 2014).  

Although the membrane material did not improve ozone decomposition, a DOC reduction 
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across the ceramic membrane is indicated, except for four pairs of samples which were taken 

just after backwash.  The associated data is shown in Figure 8. Therefore, it was proposed 

that enhanced oxidation still occurred on the membrane surface, induced by the organic 

matter absorbed on the membrane surface (Staehelin and Hoigne, 1985). In Table 4, it was 

also observed that the total DOC reduction of 5.7 - 9.3% was almost all from BDOC 

reduction.  This is consistent with the findings of Fahmi, et al. (Fahmi et al., 2003), and 

demonstrates enhanced oxidation (bioactivity will be supressed by ozone) by the alumina 

(metal oxide) in the ceramic MF to organic matter (Batakliev et al., 2014).  Thus, the 

combination of ozone and ceramic MF is able to reduce the organic load on the downstream 

RO membranes, as well as acting as a barrier for pathogens. 

 
Figure 7: Ozone residual in MF feed and filtrate (dechlorinated potable water as the plant 

feed) 

Figure 9 plots the relationship between the ozone residual in the feed and filtrate of the MF.   

The data indicates that for any given ozone residual in the MF feed, there was a fixed upper 

limit for the residual in the MF filtrate. Since it was demonstrated that the alumina MF 

membrane had no effect on ozone decomposition based on a potable water feed, the upper 

limit might have resulted from interaction of ozone and organic matter absorbed on the 

membrane surface. To achieve an ozone residual greater than zero in the MF filtrate, a 

minimum feed ozone residual greater than 0.21 mg/L was required based on the fitting 

equation to the data in Figure 9. 
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Figure 8: DOC reduction across MF  

 

Table 4 DOC and BDOC change across ceramic MF membrane 

Days 
DOC BDOC DOC Reduction 

(%) MF Feed MF Filtrate MF Feed MF Filtrate 

15 7.5 6.8 4.4 3.8 9.3 

127 8.7 8.2 4.9 4.4 5.7 

183 8.1  7.6 4.5 4.0 6.2 

 

 
Figure 9: Ozone residual in MF feed vs ozone residual in MF filtrate (data presented only for 

results with measureable ozone residual in the MF filtrate) 
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3.3.2 Backwash and chemical consumption  

The backwash and irreversible fouling performance of the No. 1 ceramic membrane are 

shown in Figure 10.  The time when each CEB was performed is also indicated.  From 

between operating days 0 and 144, 1 ML of total wastewater was treated, with 0.5 ML treated 

by each ceramic membrane. With the help of ozonation (Duke et al., 2013), Figure 10 

indicated that the backwash and CEB were able to effectively minimise the build-up of 

irreversible fouling, as the feed pressure following backwash only showed minor increases of 

< 8 kPa above the initial clean membrane feed pressure (initial feed pressure is given by the 

line in Figure 10) and the trend did not continuously increase. The total theoretical chemical 

consumption for CEB of two membranes during these 144 days was 144 g or 0.144 mg of 

NaClO per litre of treated water. Furthermore, if the backwash pressure could be increased to 

4 bar as recommended by the supplier, the chemical consumption of the ceramic membrane 

could be further optimised and lower chemicals consumptions expected.  

 
Figure 10: MF backwash and irreversible fouling  

3.3 BAC barrier 

A major purpose of the BAC barrier was to reduce trace organics, and to reduce BDOC, to 

subsequently reduce the organic fouling potential for the RO membranes, 

In Table 5, the DOC and BDOC changes across the BAC are shown. BDOC reduction 

increased almost linearly with time, consistent with increasing bioactivity of the BAC with 
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absorption. With the help of ozonation, the BDOC removed by BAC increased approximately 

20% once the biological activity on the BAC stabilised, while the same BAC removal 

efficiency of non-BDOC was maintained.  A data summary is shown in Table 5. Since the 

presence of biodegradable compounds at µg/L concentrations can lead to RO membrane bio-

fouling(Vrouwenvelder and van der Kooij, 2001), the BAC effluent BDOC values >1 mg/L 

are characteristic of water that will support biofouling.  Therefore, an increase in the EBCT 

of the BAC barrier to further reduce the BDOC of the BAC effluent may be required to lower 

the bio-fouling potential of the RO feed. 

Table 5 Non-BDOC and BDOC reduction across BAC 

Days 
Influent  Effluent Non-BDOC 

Reduction 
(%) 

BDOC 
Reduction 

(%) 
DOC 

(mg/L) 
BDOC 
(mg/L) 

DOC 
(mg/L) 

BDOC 
(mg/L) 

15 6.8 3.8 3.9 1.9 33.3 50.0 
127 8.2 4.4 4 1.5 34.2 65.9 
183 7.6 4 3.6 1.1 30.5 72.5 

 

3.4  RO barrier 

The RO barrier was used for removal of pathogens and CoC. The salt rejection of the RO 

barrier was 98.0±0.5%, shown in Figure 11.  The resultant LRV was calculated as 1.68-1.84.  

This LRV was sufficient for bacteria and virus rejection, but the required 2 LRV for protozoa 

could not be validated by salt rejection.  

 
Figure 11: Salt rejection across RO barrier and LRV based on the salt rejection 
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Figure 12. PDT rate for RO system 

A pressure decay test with an initial pressure of 85 kPa (45 kPa transmembrane pressure + 40 

kPa back pressure) was used to detect possible membrane defects larger than 3 µm (Zhang et 

al., 2013).  The pressure decay rates of the RO barrier are shown in Figure 12. The RO decay 

rates were well below the maximum value of 2.9 kPa/min.  

 

 
Figure 13: Effect of CIP on normalised permeate flowrate for RO membrane 
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specific permeate flow of 1.49 L/min·bar, the specific permeate flow recovered to 96.5% of 

that of the new RO membranes after CIP. The chemical consumption of CIP per litre of 

permeate was 0.09 mg NaOH and 0.08 mg HCl, based on the CIP recipe described in the 

experimental section. Based on a maximum wastewater production of 4.32 ML annually at 

Davis Station, Antarctica, and 70% recovery from RO, it is estimated that CIP would be 

needed 5 times annually and consume 675 g 40 wt% NaOH solution and 762 g 32.5 wt% 

hydrochloric acid.  

The replacement of the RO feed pre-filter cartridge (see Figure 1 for location), required the 

greatest manual intervention in the plant as it required replacement every 2 weeks.   The 

study indicated that a self-cleaning filter would be a more desirable option for remote areas 

that lack frequent operator visits. 

3.5 Other barriers 

The dose of the two UV units and the lamp output decay with time are shown in Figure 14. 

Although the UV intensity of each lamp decayed with time, each unit could still achieve the 

minimum required UVC dose. 

The Ca2+ in the product water is shown in Figure 15.  The calcite filter was replenished twice 

during testing, when the pH of the product stream was less than 6.5.  In excess of 0.6 ML of 

permeate passed through the filter between replenishments, which required slurry of 32.5 litre 

calcite (density 1.5 kg/L) be loaded into the filter. Therefore, the estimated calcite 

consumption was 80 mg/L (or 32 mg/L Ca2+), which met the minimum 20 mg/L Ca2+ target 

value. Based on the designed production, 240 kg calcite would be consumed annually at 

Davis Station, Antarctica.  

The dosing of chlorine barrier was set to 0.9 mg/L. Therefore, the annual consumption of 

12.5 wt% NaClO will be 22 kg in the station. 



 
Figure 14: UV dose and output decay of UV units 

 
Figure 15: Calcium ion concentration in the product water 
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needed, as SCADA coding errors accounted for more than 90% of the unscheduled plant shut 

downs.   

During the test period, there was no functional failure of the major barriers, and there was no 

E.Coli or Somatic Coliphage detected after the ceramic MF barrier. Data for CoCs and dis-

infection by-products are not reported here, but both were effectively and reliably removed 

with product water concentrations all below the threshold limits required by the ADWG 

(Gray et al., 2015b).  The concentrations of the metals and organics of concern to health in 

the product water were all well below the values in ADWG. Furthermore, most of the faults 

that occurred during operations could be rectified remotely.  

Operator involvement was still required for weekly instrument verification and cartridge filter 

replacement. 

4. Conclusion 

A direct potable reuse plant with new integrated barriers designed for a small remote 

community was tested for its robustness, online validation, high pathogen LRVs and COCs 

removal. The test duration was approximately 9 months. The total operating availability was 

about 44% of the maximum plant requirements, although the plant was designed to operate in 

batch mode.  Automated online pathogen verification was achieved. There was no functional 

failure of major barriers. Most control system faults could be solved remotely. Therefore, the 

plant is considered suitable for use in remote areas.  

The ozone residual in the ozonation effluent was found to be closely related to the feed 

turbidity, rather than DOC and ammonia levels in the feed. The data indicated that pre-

filtration is needed to achieve detectable ozone residual.  Nevertheless, 2 LRV for E.coli and 

virus was achieved based on a minimum ozone dose.   

The combination of ozonation and ceramic MF membranes enhanced DOC reduction across 

the ceramic MF membrane by up to 20% and with the help of upstream ozonation, the DOC 

removal efficiency of BAC improved by approximately 20%.  

The PDT for the RO membrane was able to validate 2 LRV for protozoa, but required a blank 

test to identify leaks and validate to 2.5 LRV. 

Based on the test conditions, the overall estimated annual chemical consumption of the plant 



to treat 4.32 ML wastewater or produce about 3.0 ML of potable water was 675 g 40 wt% 

NaOH, 762g 32.5 wt% HCl, 27 kg 12.5 wt% NaClO, and 240 kg calcite. These quantities are 

sufficiently low to be easily accommodated on the annual supply ship to Antarctica.  Low 

chemical use will also be important for other remote sites, where transport of supplies is 

infrequent and expensive. 

There were several operational issues identified during the test, such as rapid fouling of the 

RO system pre-filter. However, these issues can be relatively easy resolved by selection of 

appropriate equipment and perhaps redesign of the process units (i.e. longer EBCT for the 

BAC).  

The AWTP was able to be verified online and largely realised low maintenance requirements 

(low chemical inventory, low onsite labour involvement), high LRVs for pathogen, high 

levels of robustness, and automated operation.  
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