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ABSTRACT 

Purpose.  

Salbutamol inhalation is permissible by WADA in athletic competition for asthma management and 

affects potassium regulation, which is vital for muscle function. Salbutamol effects on arterial 

potassium concentration ([K
+
]a) during and after high-intensity continuous exercise (HIcont) and 

intermittent exercise comprising repeated, brief sprints (HIint), and on performance during HIint are 

unknown and were investigated.  

Methods.  

Seven recreationally-active men participated in a double-blind, randomised, crossover design, 

inhaling 1000 µg salbutamol or placebo. Participants cycled continuously for 5 min at 40%V
.
O2peak and 

60%V
.
O2peak, then HIcont (90 s at 130%V

.
O2peak), 20 min recovery, then HIint (3 sets, 5x4 s sprints), with 

30 min recovery.  

Results.  

Plasma [K
+
]a increased throughout exercise and subsequently declined below baseline (P<0.001). 

Plasma [K
+
]a was greater during HIcont than HIint (P<0.001, HIcont 5.94±0.65 vs HIint set 1, 4.71±0.40 

mM); the change in [K
+
]a from baseline (Δ[K

+
]a) was 2.6-fold greater during HIcont than HIint (P<0.001). 

The Δ[K
+
] throughout the trial was less with salbutamol than placebo (P<0.001, treatment main effect, 

0.03±0.67 vs 0.22±0.69 mM, respectively); and remained less after correction for fluid shifts 

(P<0.001). The Δ[K
+
] during HIcont was less after salbutamol (P<0.05), but not during HIint. Blood 

lactate, plasma pH, and the work output during HIint did not differ between trials.  

Conclusions.  

Inhaled salbutamol modulated the [K
+
]a rise across the trial, comprising intense continuous and 

intermittent exercise and recovery, lowering Δ[K
+
] during HIcont. The limited [K

+
]a changes during HIint 

suggest salbutamol is unlikely to influence systemic [K
+
] during periods of intense effort in intermittent 

sports. 
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INTRODUCTION 

Skeletal muscle plays a key role in potassium (K
+
) homeostasis during exercise. Marked K

+ 
shifts 

occur from intracellular to extracellular fluid in contracting muscles and then into plasma; rapid and 

precise control of these K
+
 shifts is essential for maintaining muscle excitability and is regulated by the 

Na
+
,K

+
-ATPase (Na

+
,K

+
-pump, NKA) and other K

+
 transport proteins in skeletal muscle (Clausen 

2013b; McKenna et al. 2008; Sejersted and Sjøgaard 2000; McDonough and Youn 2005; Clausen 

2013a). Pronounced increases in circulating catecholamines occur during intense exercise (Kjaer 

1989), which activate NKA in skeletal muscle (Clausen 2003). Hence there is considerable interest in 

β2-agonist effects on K
+
 concentration ([K

+
]) and exercise performance in humans, with some 

evidence reported for both performance-enhancing and K
+
-lowering effects.  

Terbutaline infused intravenously reduced the arterial and femoral venous [K
+
] by 0.8mM at rest and 

during 8 minutes intense knee extensor exercise; and also reduced the initial [K
+
] rise during intense 

contractions (0.45 mM) and the post-exercise decline in femoral venous [K
+
] (Hallen et al. 1996). 

Terbutaline infusion during prolonged (1 h) knee extensor exercise reduced arterial and femoral 

venous [K
+
], but actually increased the muscle K

+
 loss (40%) during exercise due to augmented leg 

blood flow (Rolett et al. 1990). When administered by inhalation, the effects of terbutaline during 

intense exercise were less clear, but appears to reduce post-exercise venous [K
+
]. Terbutaline 

inhalation (3 mg) did not affect incremental treadmill exercise performance, but lowered post-exercise 

venous [K
+
] (~0.2-0.3 mM) (Larsson et al. 1997), whilst inhalation (450 µg) enhanced 30 s sprint 

cycling performance and reduced the post-exercise antecubital venous [K
+
] by up to 0.6 mM (Hostrup 

et al. 2014b). However, terbutaline is prohibited by the World Anti-Doping Agency (WADA), whereas 

salbutamol is permissible for athlete treatment, by inhalation only, up to 1600 µg.d
-1

 for the purposes 

of asthma management (WADA 2016).  

Numerous studies have investigated salbutamol effects on intense exercise performance and K
+
 

dynamics at rest, during and after exercise. Salbutamol lowers resting plasma [K
+
], whether 

administered intravenously (Leitch et al. 1976; Whyte et al. 1987; Tobin et al. 2006), by ingestion 

(Collomp et al. 2000; Edner and Jogestrand 1990; Hostrup et al. 2014a; Grove et al. 1995) or 

inhalation (Lipworth et al. 1989; Bennett and Tattersfield 1997; Clark and Lipworth 1996). However, 

salbutamol effects on [K
+
] during intense exercise remain unclear, due to previous methodological 

limitations. Firstly, interpretation is difficult from studies measuring only antecubital venous [K
+
] 
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(Hostrup et al. 2014a; Collomp et al. 2000; Grove et al. 1995; Newnham et al. 1993; Van Baak et al. 

2000), as this can underestimate arterial [K
+
] by as much as 2 mM during intense exercise, due to 

substantial K
+
 clearance by forearm muscles (Lindinger 1995; McKenna et al. 1997; Lindinger et al. 

1995; Kowalchuk et al. 1988). Secondly, numerous studies measured [K
+
] in blood drawn only after 

completion of exercise (Hostrup et al. 2014a; Kalsen et al. 2014; Larsson et al. 1997; Grove et al. 

1995; Hostrup et al. 2014b), when plasma [K
+
] is falling precipitously (McKenna et al. 1997; Sejersted 

and Sjøgaard 2000). Nonetheless, despite these limitations, there is evidence suggesting salbutamol 

may affect both K
+
 dynamics and performance under certain conditions. 

Salbutamol typically does not enhance performance during endurance exercise (Koch et al. 2015; 

Pluim et al. 2011), when K
+
 disturbances are modest (Sejersted and Sjøgaard 2000), with some 

exceptions, where venous [K
+
] was also reduced by ~0.2-0.4 mM (Van Baak et al. 2000; Collomp et 

al. 2000). Performance during a 30 s cycle sprint was enhanced by oral salbutamol (4-8 mg) (Le 

Panse et al. 2007; Collomp et al. 2005; Hostrup et al. 2014a), with the post-exercise antecubital 

venous [K
+
] reduced (Hostrup et al. 2014a). However, salbutamol inhalation is more relevant for 

athletes than ingestion. Salbutamol inhalation (200, 800 µg) failed to affect either time to fatigue 

cycling at 85%VO2peak (~21-23 min) or the end-exercise antecubital venous [K
+
] (Goubault et al. 

2001), possibly indicating the exercise intensity and salbutamol dose were too low. No studies have 

investigated inhaled salbutamol effects on sprint exercise performance, but inhalation of other β2-

agonists have shown beneficial effects. A combination of inhaled β2-agonists (1600 µg salbutamol, 36 

µg formoterol, 200 µg salmeterol) improved performance during a 200 m swim sprint lasting ~57-58 s 

and reduced post-exercise antecubital venous [K
+
] (Kalsen et al. 2014). Inhalation of the β2-agonist 

albuterol (180 µg) increased peak power during a 15 s cycle sprint (Signorile et al. 1992), whilst 

terbutaline inhalation (450 µg) enhanced 30 s cycle sprint power and reduced post-exercise venous 

[K
+
] (Hostrup et al. 2014b). Investigation of the effects of inhaled salbutamol at a higher dose within 

WADA approved limits, on arterial [K
+
] during and in recovery from intense exercise is warranted.  

Numerous sports with high-participation rates feature intermittent high intensity exercise, comprising 

repeated brief sprints and short recovery intervals, including various football codes, basketball, netball 

and field hockey (Bishop et al. 2011). The antecubital venous [K
+
] reported during intense intermittent 

exercise varies, reaching 4.3 mM during squash (Struthers et al. 1988), 5.1 mM during soccer 

(Krustrup et al. 2006), and 5.5-6 mM during repeated intermittent sprint testing (Wylie et al. 2013; 
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Mohr et al. 2011; Mohr et al. 2007; Duffield and Marino 2007; Mohr et al. 2006). However, the effects 

of salbutamol inhalation on arterial K
+
 regulation and on performance during repeated brief sprints are 

unknown, and are of interest since [K
+
] lowering during intense exercise might be associated with 

enhanced performance. We therefore investigated the effects of inhaled salbutamol (1000 µg) on K
+
 

dynamics in arterial plasma, during and in recovery from both high intensity continuous exercise and 

intermittent exercise. We hypothesised that salbutamol inhalation will decrease arterial plasma [K
+
] at 

rest, during intense continuous and intermittent exercise and in recovery, and lessen the changes in 

[K
+
] from baseline, as well as enhance intermittent sprint performance.  
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METHODS 

Participants 

Seven healthy, recreationally-active but not well-trained males (age 23 ± 6 yr, height 175 ± 13 cm, 

body mass 71.6 ± 10.4 kg, 57.7 ±12.9 ml.kg
-1

.min
-1 

mean ± SD) volunteered for the study after giving 

written informed consent. Participants were typically involved in community level sporting and 

recreational activities comprising football, gymnasium, swimming and/or other aerobic activities on 

around 4 d/week. Participants were asked not to undertake any heavy training and to maintain their 

normal diet during the period of the trials. Participants refrained from caffeine, alcohol and intense 

exercise in the 24 hr prior to the experimental trials. All experiments and procedures were approved 

by the Victoria University Human Research Ethics committee. 

Pre-screening and familiarisation 

Participants initially visited the laboratory for pre-screening of plasma electrolytes, respiratory function 

and cardiac rhythm; and undertook pre-testing and familiarisation with all procedures. To exclude 

participants with electrolyte abnormalities, an antecubital venous blood sample was taken for 

determination of resting plasma [K
+
] and for other electrolytes; all participants displayed electrolytes 

within normal limits. To exclude any participant with existing lung disease or asthma, the forced 

expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) were measured using a flow 

turbine (Medical Graphics Corporation, St. Paul, Min, USA); all participants had an FEV1/FVC ratio 

exceeding 80% (84±7%, mean±SD). No participants exhibited ECG abnormalities under resting or 

exercise conditions.  

For familiarisation purposes, participants performed a maximal intensity, sprint exercise test 

comprising four, 5-second “all-out” sprints, performed on a custom air-braked cycle ergometer 

(Repco, Melbourne, Australia) (McKenna et al. 1993). This ergometer was also used for the 

intermittent exercise trials. After 30 min of rest, subjects then performed an incremental exercise test 

on an electronically braked cycle ergometer (Lode, Groningen, Netherlands) to determine peak 

oxygen uptake (V
.
O2peak) and allow calculation of exercise workrates for the experimental trials. 

Subjects cycled at 65-80 rpm for three min at each of 60, 90, 120 and 150 W, with workrate then 

increased by 25 W each min, until volitional fatigue, defined as an inability to maintain pedal cadence 
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above 60 rpm. The regression of V
.
O2 versus power output was then used to determine the power 

output corresponding to 40%, 60% and 130% V
.
O2 peak for use on the same cycle ergometer in the 

subsequent experimental trials. All respiratory measurements were as previously described 

(Atanasovska et al. 2014) . Heart rate and rhythm were monitored at rest and during incremental 

exercise using a 12-lead ECG (Model X- Scribe Stress Test System, Mortara Instrument Inc, 

Milwaukee, WI, USA).  

Experimental Exercise Trials 

In two subsequent visits, participants inhaled either salbutamol or a placebo and then performed an 

exercise trial with invasive measures. These trials were performed in a double-blind, randomized, 

cross-over design, separated by two weeks to ensure complete washout of salbutamol. Each 

experimental trial comprised the initial salbutamol or placebo inhalation, 30 min of rest, then on the 

Lode electronically braked cycle ergometer, submaximal cycling exercise for 5 min at both 40% V
.
O2 

peak and 60% V
.
O2 peak, followed by continuous high intensity cycling for 90 s at 130% V

.
O2 peak (HIcont). 

The V
.
O2

 
during 40%, 60% and 130% V

.
O2peak bouts did not differ between salbutamol and placebo 

trials, being 1.55 ±0.29 vs 1.66 ±0.31; 2.14 ±0.43 vs 2.08 ±0.31; and 3.19 ±0.83 vs 3.17 ±0.38 L.min
-1

, 

respectively. After 20 min passive supine recovery on an adjacent couch, subjects then performed 

high intensity intermittent exercise (HIint) on the custom air-braked cycle ergometer. The HIint test 

comprised three sets of five, 4-s “all out” sprints whilst seated on the cycle ergometer, with each sprint 

separated by 20 s passive recovery; each set had an intervening 4.5 min passive recovery where 

participants remained quietly seated on the cycle ergometer. Due to technical difficulties during one 

trial, mechanical data is reported for 6 subjects. Participants then transferred to an adjacent couch for 

a final 30 min supine recovery period.  

Salbutamol and placebo administration 

Subjects inhaled 1000 µg salbutamol using a standard metered dose inhaler used for asthma 

treatment (Asmol inhaler, Alphapharm, Queensland, Australia) and a standard spacer device 

(Volumatic spacer, Allen and Hanburys Melbourne, Australia) was used to allow optimal delivery of 

the drug to the lung. The inhaler delivers 100 µg of salbutamol with each actuation (i.e. 10 actuations 

gives 1000 µg) and inhalation time was ~2 min (10 breaths). This spacer technique was utilised to 
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maximise respiratory drug delivery, although complete uptake of salbutamol cannot be concluded as 

any residual salbutamol in the spacer, mouth or remaining in the lung was not measured (Mandelberg 

et al. 1999). Salbutamol administration was performed 30 min prior to exercise commencement, 

allowing for maximum pharmacological activity (Hopkins 1999). The placebo was delivered by a 

similar metered dose inhaler containing the propellant only (Allen and Hanburys, Melbourne, 

Australia). The 1000 µg salbutamol dose was utilised to modulate K
+
 homeostasis and enhance 

intense intermittent exercise performance, as this fell comfortably within the WADA limit of 1600 µg.d
-1

 

salbutamol by inhalation (WADA 2016) exceeded the 600 µg.d
-1

 typically recommended for asthmatic 

athletes and the 800 µg previously used for submaximal exercise (Goubault et al. 2001).  

Blood sampling and analyses 

A cannula was inserted into the radial artery (Arrow Quick Flash, Radial Artery 20G, USA), for arterial 

(a) blood sampling during all phases of the experimental trials. Participants then rested supine for 20 

min to allow for stabilisation of fluid shifts and of [K
+
]. Blood sampling times and posture for each 

phase comprised: (i) baseline sample taken after 20 min rest and prior to salbutamol or placebo 

inhalation during supine rest; (ii) at 5, 10, 20 and 30 min after salbutamol or placebo inhalation during 

supine rest; (iii) during the final 30 s of each workrate during submaximal and HIcont whilst seated on 

the cycle ergometer; (iv) during the fourth bout of each set of sprints during HI int whilst seated on the 

ergometer; and (vi) at 1, 2, 5, 10 and 30 min in supine recovery after HIint. A second cannula was 

inserted into the antecubital vein (v) of the other arm (Optiva, I.V. Catheter 20 gauge, Italy), with 

samples taken at similar time points, for determination of [K
+
]v for comparison with the literature. 

Two samples were taken at each time point. First a 2 ml blood sample was drawn into a heparinised 

blood gas syringe for immediate analyses of plasma pH and [K
+
] using an automated analyser (Rapid 

Point 405, Siemens Medical Solutions Pty Ltd, Bayswater, Australia). A 3 ml blood sample was then 

collected in a plain syringe, ejected into a tube containing lithium heparin and after mixing immediately 

separated into two eppendorf tubes. Approximately 1 ml was then separated and used for analysis of 

haematocrit (Hct) and haemoglobin concentration ([Hb]) using an automated analyser (Sysmex K- 

800 TOA Medical Electronics Kobe, Japan); and of blood glucose ([glucose]) and lactate 

concentrations ([Lac]) using an automated analyser (2300 STAT plus, YSI Inc. Yellow Spring, ON, 

USA). The remaining 2 ml was immediately centrifuged for 1.5 min at 4500 rpm in a non-refrigerated 
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centrifuge (Eppendorf Centrifuge, model 5415C, Englesdorf, Germany), and plasma separated and 

stored in an eppendorf tube at -20° C for later analysis of plasma [K
+
].  

Calculations 

The change in plasma [K
+
]a from baseline (Δ[K

+
]a) was calculated at each time for each trial to control 

for any small intra-individual [K
+
]a differences between salbutamol and placebo trials. As [K

+
]a is 

affected by fluid losses from plasma during exercise, the decline in plasma volume (∆PV) from 

baseline was also calculated from [Hb] and [Hct]. The plasma [K
+
] during and after exercise was 

corrected for ∆PV to represent hemoconcentration changes, as earlier described (McKenna et al. 

1997; McKenna et al. 1993).  

Statistical Analyses 

A linear mixed model (treatment*time) was used to assess the effects of exercise and salbutamol on 

electrolytes and fluid shifts. Time-by-treatment interactions are indicated only when significant. Effect 

size for potassium variables was calculated using Cohen’s d. Data are presented as mean ± standard 

deviation (SD). Statistical significance was accepted at P<0.05. Statistical analyses were conducted 

using SPSS version 22. 



11 

RESULTS 

Arterial plasma [K
+
] ([K

+
]a) 

Plasma [K
+
]a was increased above baseline during each of submaximal exercise, HIcont, and HIint sets 

1-3 (P<0.001, time main effect, Figure 1). The peak [K
+
]a during HIcont was also greater than during 

each set of HIint (HIcont 5.94±0.65 vs 4.71±0.40 mM for RS1, time main effect, P<0.001). In the 

recovery periods, [K
+
]a declined to baseline after HIcont, but after HIint fell below baseline after sets 1 

and 2 (P<0.05), and after set 3 at 5 min (P<0.01) and 10 min recovery (P<0.05, Figure 1). Plasma 

[K
+
]a did not, however, differ significantly between salbutamol and placebo trials, with a very low effect 

size also found (d=0.13). 

Change in arterial plasma [K
+
] from baseline (Δ[K

+
]a) 

The Δ[K
+
]a was calculated to account for small, non-significant variations in resting [K

+
]a within an 

individual between trials. The Δ[K
+
]a was increased above baseline during each of submaximal 

exercise, HIcont, and HIint sets 1-3 (P<0.001, time main effect, Figure 1). The Δ[K
+
]a was considerably 

higher during HIcont than during each set of HIint (P<0.001); during HIcont Δ[K
+
]a was 2.01 ±0.71 mM, 

2.6-fold greater than during HIint set 1, 0.78±0.35 mM (P<0.001). During recovery, the Δ[K
+
]a became 

negative relative to baseline after HIint set 1 and 2 (P<0.05) and after set 3 at 5 min (P<0.01) and 10 

min recovery (P<0.05, Figure 1). The Δ[K
+
]a was less in salbutamol than the placebo trial (0.03±0.67 

vs 0.22±0.69, respectively, P<0.001, treatment main effect, Figure 1), consistent with a large effect 

size found (d=1.56). The Δ[K
+
]a was less in salbutamol than placebo during HIcont but not during HIint 

(HIcont 1.77±0.77 vs 2.24±0.60 mM, P<0.05; HIint set 1 0.77±0.27 vs 0.78±0.44 mM, respectively, 

paired t-test). 

Change in plasma volume (ΔPVa) and in Δ[K
+
]a after correction for ΔPVa  

As hemoconcentration with exercise affects [K
+
]a, the change in arterial plasma volume from rest 

(ΔPVa) was also calculated. The ΔPVa fell throughout the trial and remained negative at 10 min 

recovery after HIint (P<0.05 time main effect); ΔPVa was slightly less during HIcont than during set 1 of 

HIint (-10.0±3.4 % vs -7.2±2.8 %, respectively, P<0.05, time main effect). The ΔPVa was lower (more 

negative) with salbutamol (-6.0±0.6 vs -4.0±0.6 %, P<0.05, treatment main effect). 

The ΔPVa was then used to correct Δ[K
+
]a (Δ[K

+
]a(corr)), to determine whether the salbutamol effects 

observed for Δ[K
+
]a remained after accounting for fluid shift differences. The Δ[K

+
]a(corr) was similarly 
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(to Δ[K
+
]a) increased during exercise, being higher than baseline during 60%V

.
O2peak, HIcont and HIint 

set 1 and higher than other pre-exercise rest times (i.e. 5-30 min rest) for 40%V
.
O2peak and HIint sets 2 

and 3; the Δ[K
+
]a(corr) during HIcont exceeded that during HIint (P<0.05, time main effect, data not 

shown). The Δ[K
+
]a(corr) was similarly depressed in recovery, after HIint set 1 and 2 (P<0.05) and after 

set 3 at 2, 5 and 10 min (P<0.001, time main effect). The Δ[K
+
]a(corr) was less in salbutamol than 

placebo (3.80±0.58 vs 3.97±0.61 mM, respectively, P<0.005, treatment main effect); the time-by-

treatment interaction for Δ[K
+
]a(corr) was close to significance (P=0.06). 

Venous plasma [K
+
] ([K

+
]v) 

The plasma [K
+
]v was increased during exercise above baseline at 60%V

.
O2peak (P<0.005), HIcont 

(P<0.001), set 1 of HIint (P<0.005), and above other pre-exercise times during 40%V
.
O2peak (above 10-

30 min rest) and set 2 of HIint (above rest 20-30 min) (P<0.05, time main effect, Table 1). The [K
+
]v fell 

below baseline after HIint sets 1 (P<0.05) and 2 (P<0.001) (data not in Table) and after set 3 at each 

of 2 (P<0.005), 5, 10 (P<0.001) and 30 min recovery (P<0.05). The [K
+
]v during HIcont was greater than 

during each set of HIint (P<0.001, Table 1). No differences were found between salbutamol and 

placebo trials for [K
+
]v (Table 1), although a large effect size was found (d=0.60). 

Arterial blood lactate and plasma pH  

Blood [Lac
-
]a was increased above baseline, during HIcont and each set of HIint (5.03±1.24 vs 

5.56±1.18 mM for HIcont and set 1, respectively) and all recovery periods to 10 min (P<0.001) and at 

30 min (P<0.01) (time main effect, data not shown). Plasma pHa fell below baseline during exercise at 

60%V
.
O2peak, HIcont, each set of HIint and throughout the trial to 10 min recovery (P< 0.001, time main 

effect, data not shown). No effects of salbutamol were found on either blood [Lac
-
]a or plasma pHa. 

Work output during HIint and VO2 

No significant differences were found between trials for work output during each set of HIint 

(salbutamol, 15.18± 3.56, 15.42 ± 2.89, 14.77 ± 3.02 kJ vs placebo, 15.59 ± 2.81, 15.58 ± 2.46, 15.34 

± 2.24 kJ, for sets 1, 2 and 3, respectively), for total cumulative work (salbutamol 45.36 ± 9.20 vs 

placebo 46.51 ± 7.18 kJ), or for pulmonary VO2 (data not shown). 
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DISCUSSION 

We investigated whether salbutamol inhalation affected arterial plasma K
+
 regulation during and 

following intense continuous and intermittent exercise in healthy adult males. We utilised salbutamol 

intake by inhalation, as this is a commonly used practice and a dose of 1000 µg that is also WADA-

permissible for competitions. Intermittent repeated sprints were utilised as an exercise model, due to 

the prevalence of participation in sports requiring intermittent efforts, with intense continuous exercise 

also examined. We measured for the first time salbutamol inhalation effects on each of arterial [K
+
], 

the changes in [K
+
]a from baseline (Δ[K

+
]a, i.e. rise during exercise, decline during recovery), as well 

as the Δ[K
+
]a after correction for fluid shifts (Δ[K

+
]a corr), with three important findings. First, 

salbutamol inhalation modulated K
+
 homeostasis, evidenced by the smaller mean rise in [K

+
]a above 

baseline of 0.17 mM across all rest, exercise and recovery time periods (treatment main effect). This 

effect remained after accounting for fluid shifts, indicating that this was due to actions of salbutamol 

and not simply to a hemoconcentration effect. Second, whilst the Δ[K
+
]a during HIcont was reduced by 

salbutamol, the Δ[K
+
]a during HIint was unaffected. Third, the Δ[K

+
]a during HIcont intense was 2.6-fold 

larger than during HIint, most likely due to the differing duration and recovery characteristics of these 

two exercise modalities. This is also the first time [K
+
] changes have been compared across these two 

exercise modalities within the same individual. Despite salbutamol inhalation modulating systemic K
+
, 

the small rise in [K
+
]a during HIint, together with the lack of salbutamol effect on both the Δ[K

+
]a and 

work output during HIint, suggest that salbutamol is unlikely to be of performance enhancing benefit 

during sports utilising repeated, high-intensity, intermittent sprints.  

Salbutamol modulated systemic K
+
 homeostasis 

Salbutamol inhalation resulted in a smaller rise in [K
+
]a above baseline (mean -0.17 mM) across all 

exercise and recovery time periods. Whilst plasma [K
+
]a itself was not significantly lowered across all 

times with salbutamol, this most likely reflects minor (non-significant) variations in the resting [K
+
]a 

between trials, as well as the apparent different effects that occurred during HIcont and HIint, with a 

lesser rise in [K
+
]a after salbutamol found during exercise at 130% V

.
O2peak (-0.47 mM, -21%), but not 

during HIint. Together these suggest that the actions of salbutamol in lowering Δ[K
+
]a were dominant 

during rest, continuous exercise and during recovery, but not during intermittent exercise. These 

salbutamol effects also appeared to persist over the entire time frame of the experiment, incorporating 
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all exercise and recovery periods up to 114 min after inhalation; with the Δ[K
+
]a being ~0.3 mM less 

after salbutamol, both after 20 min rest pre-exercise and at 30 min recovery, relative to placebo. Since 

the effect size for salbutamol effects on [K
+
]a was very low (d=0.13), it is unlikely that a lowering of 

plasma [K
+
]a would have been detected after salbutamol with a larger sample size. In contrast, the 

large effect size seen for Δ[K
+
]a (d=1.56), is consistent with the significant salbutamol treatment main 

effect detected. This suggests the lack of salbutamol effect on [K
+
]a was due to variations in the 

resting [K
+
]a and differences in response to HIcont and HIint, as noted above, rather than sample size 

limitations, whereas the significant lowering of Δ[K
+
]a found with salbutamol likely reflected real 

effects. 

The smaller Δ[K
+
]a during HIcont after salbutamol inhalation does indicate improved K

+
 regulation, 

which could be due to reduced K
+
 released into and/or greater K

+
 clearance from plasma. Substantial 

K
+
 release occurs from contracting muscles during exercise and is primarily responsible for the 

increased [K
+
]a (Sostaric et al. 2006; Hallen et al. 1996; Medbø and Sejersted 1990; Juel et al. 1999), 

suggesting the salbutamol K
+
-lowering effect could occur via direct effects on contracting muscles. 

Salbutamol stimulates NKA in isolated skeletal muscle from rats (Clausen 2003), an effect that was 

not synergistic with muscle stimulation (Clausen and Flatman 1980). Terbutaline was recently shown 

to protect against an exercise-induced decline in NKA activity (Hostrup et al. 2014b) and other β-

adrenergic agonists also induced K
+
-lowering effects during continuous exercise in humans (Hallen et 

al. 1996; Rolett et al. 1990); this effect was reversed with β-blockers, resulting in greater elevations in 

K
+ 

(McKelvie et al. 1997; Katz et al. 1985). However, whilst terbutaline lowered [K
+
]a it also enhanced 

K
+
 loss from contracting muscles due to a greater leg blood flow (Rolett et al. 1990), suggesting the 

K
+
-lowering effect of β2-agonists occurred in non-contracting muscles and/or other tissues. It is 

unclear whether a greater muscle K
+
 loss occurs similarly with salbutamol and also whether this effect 

occurs during two-legged cycling rather than single leg knee extension where blood flows can differ 

considerably. We cannot resolve this here, as the K
+
 release from the active leg was not measured. 

Potassium clearance during exercise also occurs via uptake by other non-contracting or relatively 

inactive muscles, and also splanchnic K
+
 uptake (Lindinger 1995; Sejersted and Sjøgaard 2000; 

Clausen 2003). It is likely that salbutamol inhalation increased NKA activity in inactive muscles and 

possibly in contracting muscles, which lowered the rise in [K
+
] during intense continuous exercise.  
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A novel finding was the lack of effect of inhaled salbutamol on Δ[K
+
]a during HIint. This might in part be 

explained by the similar Δ[K
+
]a immediately prior to HIint, suggesting that muscle NKA activation and 

K
+
 reuptake into contracting muscle had already been stimulated by prior continuous exercise, without 

further effects of the β2-adrenergic agonist. Both the low peak [K
+
]a attained and the lack of 

salbutamol effect on Δ[K
+
]a during HIint are consistent with the lack of effect of salbutamol on work 

output during individual sprints or cumulative work during HIint. Since a similar practical effect of warm 

up and early exercise bouts on stimulating muscle NKA activation would also likely occur during 

competitive field-based team sports, it is therefore likely that salbutamol inhaled at this dose would 

exert little influence on systemic K
+
 during intense periods of effort in such sports.  

These findings further advance earlier studies investigating salbutamol effects on [K
+
], that measured 

[K
+
] only in antecubital venous blood during leg exercise (Hostrup et al. 2014a; Collomp et al. 2000; 

Grove et al. 1995; Newnham et al. 1993; Van Baak et al. 2000), or in samples drawn only after 

completion of, rather than during exercise (Hostrup et al. 2014a; Kalsen et al. 2014; Hostrup et al. 

2014b; Larsson et al. 1997; Grove et al. 1995); and/or utilised oral salbutamol (Collomp et al. 2000; 

Van Baak et al. 2000; Hostrup et al. 2014a; Goubault et al. 2001). The magnitude of the sampling site 

effect is substantial, with the venous [K
+
] being 1.28 mM less than arterial [K

+
] during HIcont, further 

indicating the importance of arterial sampling, or sampling directly from the vein draining the 

contracting musculature for interpreting K
+
 regulation. Although no significant reduction in venous [K

+
] 

was found with salbutamol, the large effect size (d=0.6) suggests that a venous [K
+
]-lowering effect 

may not have been detected with the sample size utilised. 

The salbutamol-induced reduction in Δ[K
+
]a across all times strongly suggests that the K

+
-lowering 

effects of inhaled salbutamol persisted in recovery after HIint. This is consistent with the contributory 

effects of muscle excitation, increased cellular [Na
+
], neuro-humoral changes combined with 

salbutamol stimulation of muscle NKA (Clausen 2003). The [K
+
] undershoot during recovery from 

exercise was prevented when the activating effects of catecholamines on muscle K
+
 uptake were 

suppressed by propranolol (Gullestad et al. 1995). Hence salbutamol-stimulated K
+
 uptake into 

skeletal muscles via NKA is the likely mechanism for the lesser Δ[K
+
]. The salbutamol lowering effect 

on Δ[K
+
]a incorporates recovery from HIint and presumably indicates ongoing effects of salbutamol and 

possibly diminished or ceased contraction-mediated NKA stimulation. We cannot confirm the tissues 

responsible for this systemic Δ[K
+
]-lowering with salbutamol, but it is likely to be a combination of K

+
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uptake by the previously contracting leg musculature and inactive muscle; as well as increased K
+ 

clearance in the splanchnic bed and other tissues. The salbutamol-lowering of Δ[K
+
] effect remained 

after accounting for fluid shifts, indicating that this was due to actions of salbutamol and not simply to 

a hemoconcentration effect.  

The lowering of arterial [K
+
] post-exercise to around 3.5 mM suggests that risks of hypokalaemia 

should be considered in susceptible individuals, particularly after taking salbutamol. There is, 

however, considerable inconsistency in the literature on the post-exercise effects of β2-agonists on 

[K
+
]. After oral salbutamol, there was no additional post-exercise decline in antecubital venous [K

+
] 

after prolonged cycling to exhaustion (Van Baak et al. 2000), or at 5-10 min recovery after repeated 

30 s sprints or repeated bouts of high intensity cycling, although greater reductions were evident at 1 

or 2 min after some individual bouts (Hostrup et al. 2014a). Similarly, after salbutamol inhalation (800 

µg), there was no further change in antecubital venous [K
+
] at 2-10 min after exhaustive cycling at 

85% VO2peak (Goubault et al. 2001). Alternately, inhaled terbutaline reduced antecubital venous [K
+
] at 

10 min after an incremental TM test (Larsson et al. 1997) and immediately after repeated 30 s cycle 

ergometer sprints through to 60 min in recovery (Hostrup et al. 2014b). After a combination of inhaled 

salbutamol, formoterol and salmeterol, antecubital venous [K
+
] was decreased at 5 and 10 min after a 

200 m swim ergometer sprint test (Kalsen et al. 2014). Finally, after intravenous terbutaline infusion, 

arterial [K
+
] was decreased compared to control at 3.5 min after knee extensor exercise, but in 

contrast, for femoral venous [K
+
], the rate of decline post-exercise was less and the post-exercise [K

+
] 

were higher after terbutaline (Hallen et al. 1996). Further research is required to more fully understand 

salbutamol effects on post-exercise K
+
 regulation. 

Modest arterial K
+
 disturbances during high intensity intermittent exercise 

This is the first report of arterial [K
+
] during HIint, comprising brief sprints repeated in bursts to simulate 

intense activity undertaken in many team sports (Bishop et al. 2011). The small Δ[K
+
]a during HIint of 

only ~0.7 mM above baseline to [K
+
]a around 4.7 mM sharply contrasts the 2.6-fold greater peak rise 

of ~2 mM in [K
+
]a to ~6 mM during 90 s HIcont. The contrast in [K

+
]a between modalities is further 

indicated by the similar Δ[K
+
]a (~0.7 mM) during both HIint and continuous exercise at a moderate 

exercise intensity of only 60%V
.
O2peak. The cumulated sprint exercise duration during HIint was 60 s (3 

sets x 5x4 s sprints), allowing [K
+
]a of ~4.7 mM to be contrasted against the far higher [K

+
]a attained 
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during continuous sprint exercise, of 7 mM during a 30 s cycle sprint (McKenna et al. 1997; Lindinger 

et al. 1995; McKelvie et al. 1997), 8 mM after 60 s intense treadmill running (Medbø and Sejersted 

1990) and 7 mM after 90s intense rowing exercise (Atanasovska et al. 2014). Whilst work duration 

and intensity were not matched between the HIcont and HIint exercise bouts, these [K
+
]a differences are 

likely explained by several other factors. A lesser K
+
 release from contracting muscles would be 

anticipated due to the lesser contraction time with short sprint durations, with less time for K
+
 overflow 

from the muscle interstitium into the venous circulation before rapid K
+
 re-accumulation into the 

muscle cells during recovery. This K
+
 release might also have been attenuated by already increased 

muscle NKA activation due to the preceding exercise bouts, as muscle NKA is highly activated by 

even brief intense contractions (McKenna et al. 2003). The recovery periods with intermittent 

exercise, with 20 s recovery between sprints within each set and 2.5 min recovery between sets, 

would also each have facilitated subsequent muscle cellular K
+
 reuptake. These effects might be 

partially offset by a smaller endogenous catecholamine response anticipated during intermittent 

compared to continuous exercise. The low [K
+
]a and [K

+
]v during HIint explains the broadly similar 

venous [K
+
] measured in intermittent sports or repeated short sprints (Krustrup et al. 2006; Wylie et al. 

2013; Mohr et al. 2011; Mohr et al. 2007; Duffield and Marino 2007; Mohr et al. 2006; Struthers et al. 

1988). 

Conclusions 

Inhalation of 1000 µg salbutamol modulated K
+
 dynamics, with lesser changes from baseline in 

arterial plasma [K
+
] during rest, exercise and recovery periods. However, the rise in [K

+
] above 

baseline was reduced with salbutamol during high intensity continuous exercise, but not during 

intense intermittent repeated sprint exercise. Thus, when exercise bouts are brief and interspersed 

with recovery periods, even with a cumulative total of sixty seconds of all-out effort, salbutamol does 

not appear to alter plasma K
+ 

regulation, likely in part due to the low arterial [K
+
] attained. This was 

consistent with a lack of performance benefit in HIint and suggests that inhaled salbutamol is unlikely 

to confer an advantage during sporting competitions that comprise repeated bouts of brief sprints.  
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Table legends. 

 

Table 1. Antecubital venous plasma [K
+
] at rest, during continuous exercise at 40%, 60% and 130% V

.

O2peak (HIcont) and recovery, during high intensity intermittent exercise (HIint) comprising repeated 

sprints (3 sets x 5 repetitions x 4 s) and 30 min recovery, with salbutamol and placebo inhalation. 

Values are mean ± SD, n = 7. 
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Figure legends. 

 

Figure 1. Effects of salbutamol (○) and placebo (▼) inhalation on (A) arterial plasma [K
+
]a and (B) 

changes in [K
+
]a from baseline (Δ[K

+
]a). Plasma [K

+
]a measured at rest (Baseline – 30 min); during 

continuous exercise for 5 min at each of 40%V
.
O2peak and 60%V

.
O2peak and for 90 s high intensity at 

130% V
.
O2peak (HIcont), then 19 min recovery (+19 min); during high intensity intermittent exercise (HIint) 

comprising 3 sets of repeated sprint exercise (RSE1- RSE3, each set with 5 repetitions x 4 s); and in 

corresponding recovery after Sets 1, 2 (Post1, Post 2) and 3 from 1 to 30 min recovery (+30). Shaded 

bars denote exercise periods. 

Values are mean ± SD, n = 7.  

* P<0.05; ** P<0.01, *** P<0.001, different to baseline (time main effect) 

† HIcont
 
greater than

 
HIint, P<0.001 (time main effect)

 

‡
 
salbutamol less than placebo, P<0.01 (treatment main effect).  

& Δ[K
+
]a during HIcont

 
less after salbutamol, P<0.05 

 

 

Figure 2. Effects of salbutamol (○) and placebo (▼) inhalation on A) change in plasma volume from 

baseline (ΔPV), (B) plasma pHa and (C) blood [Lac
-
]a at rest, during continuous exercise at 40%, 60% 

and 130% V
.
O2peak (HIcont) and recovery, during high intensity intermittent exercise (HIint) comprising 

repeated sprints (3 sets x 5 repetitions x 4 s) and 30 min recovery.  

Values are mean ± SD, n = 7. 

 * P<0.05; ** P<0.01, *** P<0.01 different to baseline (time main effect) 

† HIcont
 
greater than

 
HIint P<0.01 (time main effect)

 

‡
 
salbutamol less than placebo (P<0.01, treatment main effect).  
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List of Abbreviations: 

HIcont high-intensity continuous exercise 

HIint high-intensity intermittent exercise 

VO2peak peak oxygen consumption 

[K
+
]a arterial potassium concentration  

Δ[K
+
]a change in [K+]a from baseline  

[K
+
]v Venous plasma [K

+
]  

ΔPVa change in arterial plasma volume from rest  

NKA Na+,K+-ATPase  
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