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TITLE 1 

Metabolic power method underestimates energy expenditure in field sport movements using a 2 

GPS tracking system 3 

Abstract 4 

The purpose of this study was to assess the validity of a GPS tracking system to estimate 5 

energy expenditure (EE) during exercise and field sport locomotor movements. Twenty-6 

seven participants each completed one 90 minute exercise session on an outdoor synthetic 7 

futsal pitch. During the exercise session participants wore a 5 Hz GPS unit interpolated to 15 8 

Hz (SPI HPU, GPSports Pty Ltd, Australia) and a portable gas analyser (Metamax® 3B, 9 

Cortex Pty Ltd, Germany) which acted as the criterion measure of EE. The exercise session 10 

was comprised of alternating five minute exercise bouts of randomised walking, jogging, 11 

running or a field sport circuit (x3) followed by 10 minutes of recovery. One-way ANOVA 12 

showed significant (p<0.01) and very large underestimations between GPS metabolic power 13 

derived EE and VO2 derived EE for all field sport circuits (% difference ≈ -44%). No 14 

differences in EE were observed for the jog (7.8%) and run (4.8%) while very large 15 

overestimations were found for the walk (43.0%). The GPS metabolic power EE over the 16 

entire 90 minute session was significantly lower (p<0.01) than the VO2 EE, resulting in a 17 

moderate underestimation overall (-19%). The results of this study suggest that a GPS 18 

tracking system using the metabolic power model of EE does not accurately estimate EE in 19 

field sport movements or over an exercise session consisting of mixed locomotor activities 20 

interspersed with recovery periods; however is able to provide a reasonably accurate 21 

estimation of EE during continuous jogging and running. 22 
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Introduction 26 

The use of global positioning system (GPS) tracking technology is now commonplace in 27 

professional and semi-professional field sports around the world including cricket,1 rugby,2,3 28 

soccer 4 and Australian (Rules) football.5-7 Small, lightweight and non-invasive, GPS tracking 29 

systems provide information relating to training load and performance during competition.5 30 

Time-motion analysis has subsequently been used to evaluate the movement demands of field 31 

sport participation and to guide training prescription.8 Despite considerable time spent 32 

completing low intensity activities (e.g., standing, walking, jogging), it is the high intensity 33 

activities (e.g., running, sprinting, change of direction) that have been shown as critical to 34 

performance.9,10 Furthermore, these high intensity activities also contribute greatly to the 35 

energy demand. The energy expenditure associated with acceleration and deceleration, often 36 

at low movement velocities, may be underestimated when using time-motion analysis 37 

approaches based on velocity alone.11 38 

The assessment of energy expenditure (EE) in the field is of both theoretical and practical 39 

importance. The total energy cost of a training session or match has implications for 40 

recovery, including nutrition strategies to meet or manipulate desired energy balance. 41 

Unfortunately the assessment of the energy cost of high intensity exercise is problematic due 42 

to the contribution of both aerobic and anaerobic metabolism. While several indirect methods 43 

have been proposed to estimate energy cost, these approaches are not without their 44 

limitations. Most notably, these are typically laboratory based and performed during 45 

continuous and controlled exhausting bouts of exercise.12 Team sports such as soccer, rugby 46 

and Australian football, however, are played in the field and are characterised by frequent 47 

intermittent high-intensity running efforts.13 In an attempt to overcome some of these 48 

challenges, di Prampero and colleagues14 proposed a theoretical model to estimate energy 49 

expenditure (EE) during sprint running using uphill running at a constant velocity as an 50 
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analogue and as the basis for calculating instantaneous metabolic power. Accelerated running 51 

on flat terrain is considered energetically equivalent to running at a constant velocity up an 52 

equivalent slope. If acceleration is known, then energy cost can be determined. Measures of 53 

velocity and acceleration can subsequently be used to calculate metabolic power output at 54 

any given moment.14,15 55 

The metabolic power model takes into account the acceleration of the athlete to give a more 56 

complete assessment of the demands of field sport by incorporating the energy cost, 57 

compared to traditional time-motion analysis which describes and summarises the movement 58 

demands but not the energy cost. The potential benefit of using EE to provide a more 59 

complete assessment of field sport demands is evident during sprinting from a stationary 60 

start. Initially velocity is low, yet acceleration and therefore EE is high. As such, traditional 61 

time-motion analysis based upon velocity alone would underestimate EE. An accurate 62 

estimation of EE would provide a more comprehensive method of measuring the demands of 63 

field sport.  64 

Several recent studies have investigated the ability of the metabolic power model to estimate 65 

EE compared to a direct measure of EE.16-18 Buglione and di Prampero17 as well as Stevens et 66 

al.18 compared EE during continuous and shuttle runs and found an overestimation of EE 67 

during constant velocity running and an underestimation during shuttle running, particularly 68 

over a short distance and at high velocity. In a more applied context, the metabolic power 69 

model has been adapted to provide an estimation of EE in soccer,4,19,20 rugby league21 and 70 

Australian football.22 Based on instantaneous GPS derived velocity data, Gaudino et al.4 and 71 

Osgnach et al.19 found that the distance covered in soccer competition and training at a high 72 

intensity using a metabolic power definition was greater than distance covered at a high 73 

intensity based upon a velocity based threshold. This was in contrast to Coutts et al.22 who 74 

found that distance covered in Australian football competition at high intensity was less when 75 
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using a metabolic power definition compared to a velocity based threshold. Buchheit et al.16 76 

have recently investigated the validity and reliability of the metabolic power model during 77 

soccer drills with the ball, concluding that EE was largely underestimated, especially during 78 

the recovery phases. As such, the authors questioned the usefulness of the method, preferring 79 

locomotor data to describe the mechanical demands of training and competition, and to 80 

subsequently guide training prescription related to distance, speed and 81 

acceleration/deceleration. 82 

These conflicting results, both in movement context and sports, suggest that further 83 

investigation is warranted. The recent introduction of metabolic power estimates in some 84 

commercially available GPS time-motion analysis software (GPSports, Canberra, Australia; 85 

GPEXE©, Exelio srl, Udine, Italy) further support the need to assess the usefulness of the 86 

metabolic power model to estimate EE in exercise and field sport locomotor movements. 87 

Therefore, the aim of this study was to assess the validity of a GPS tracking system, with 88 

software implementation of the metabolic power model,14,19 to estimate EE during continuous 89 

walking, jogging and running, and typical field sport movements. Validity was assessed using 90 

measures of accuracy, agreement and precision in comparison to a criterion measure.  91 
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Methods 92 

Twenty-seven healthy adults (15 males and 12 females, age 21.6 ± 2.7 years; height 173.8 ± 93 

11.6 cm; mass 69.2 ± 11.6 kg) were recruited for this study. To be eligible, participants were 94 

required to be engaged in field sport activity at least once per week. Ethical approval for the 95 

study protocol was granted by the University Human Ethics Committee and written informed 96 

consent was obtained from all participants. 97 

Each participant completed one 90 minute exercise session on an outdoor pitch. To measure 98 

velocity and acceleration, participants wore a 5 Hz GPS unit interpolated to a 15 Hz sampling 99 

rate (SPI HPU, GPSports Pty Ltd, Australia) for the duration of the exercise session. To 100 

reduce inter-unit variability the same unit was used for all participants. The SPI HPU was 101 

worn in a manufacturer supplied harness on the upper back. During collection of data, 102 

reception from at least six satellites was maintained to ensure acceptable accuracy. The data 103 

from the GPS unit was downloaded into proprietary software (Team AMS, version 104 

R1_2014_3, GPSports Pty Ltd, Australia) and a player profile, which included body mass, 105 

was created for each participant. Energy expenditure was calculated within the software from 106 

GPS derived velocity data and metabolic power estimates based on the di Prampero model,14 107 

with adaptations from Osgnach et al.19 Energy expenditure data for each minute was exported 108 

from Team AMS software to Microsoft Excel. 109 

Indirect open-circuit calorimetry (Metamax® 3B, Cortex Pty Ltd, Germany) was used to 110 

measure VO2 derived EE to validate the GPS tracking system. The Metamax® 3B was worn 111 

for the duration of the exercise sessions and did not restrict or burden the participant. During 112 

the exercise session the Metamax® 3B was fastened to the chest with a harness and attached 113 

via a facemask. Prior to the beginning of each session the Metamax® 3B was calibrated 114 

according to manufacturer instructions. Breath-by-breath data was summarised into five 115 

second intervals using Metasoft® Studio. The data was then exported to Microsoft Excel and 116 
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from this the EE in kJ for each minute was derived. The one minute sample intervals for the 117 

GPS and VO2 derived EE were synchronised using Microsoft Excel. 118 

The test protocol was completed in one 90 minute session on an outdoor synthetic futsal 119 

pitch. Participants refrained from eating and consuming caffeine for at least 2 hours prior to 120 

the exercise session and refrained from exercise for 12 hours prior. Prior to the beginning of 121 

the exercise session, the participant was required to be seated for 10 minutes to determine 122 

resting measurements of EE for the VO2 derived EE. Mean resting EE was calculated from 123 

this 10 minute period, which was subtracted from all subsequent measures of EE during the 124 

90 minute exercise session. Removing resting EE in this way ensured that all subsequent data 125 

used for analysis were directly related to the exercise undertaken, and is consistent with the 126 

approach used by Buglione and di Prampero.17 127 

The exercise session comprised of six bouts of exercise, each followed by 10 minutes of rest. 128 

The exercise bouts were 5 minutes each of walking, jogging, running and three bouts of a 129 

simulated field sport circuit. In total, 30 min of exercise (distance = 2460 m) was completed 130 

with 60 min of recovery. The order of exercise bouts was randomised for each participant. 131 

The walk, jog and run bouts were designed to replicate continuous exercise. Participants were 132 

required to move in an anti-clockwise direction around the pitch for the entire five minutes at 133 

a dictated velocity. The velocity of the walk, jog and run were 4 km·h-1, 8 km·h-1 and 12 134 

km·h-1, with total distance covered in each 5 min bout equal to 333.3, 666.7 and 1000 m, 135 

respectively. Velocities were based upon standardised ranges developed by previous work for 136 

field sport athletes.23 The field sport circuit used in this study (Figure 1A) was a modified 137 

version of a circuit24 designed to replicate the intermittent movement patterns of field sports. 138 

Movements in the circuits were performed at self-selected speeds, guided by movement 139 

descriptors (i.e., walk, jog, stride, sprint) and required acceleration and deceleration (Figure 140 

1B). Five repetitions of the circuit were completed in each five minute bout (5 x 92 m = 460 141 
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m), with a short rest period (approximately 10 - 15 s) at the end of each circuit before the 142 

commencement of the next repetition on the minute. 143 

To evaluate the GPS metabolic power method for estimation of EE, the total energy cost of 144 

the exercise needed to be measured to provide a valid criterion method. The contribution of 145 

both aerobic and anaerobic energy metabolism therefore needed to be considered. It is 146 

acknowledged that the time course of oxygen consumption will lag behind the instantaneous 147 

metabolic power requirement and will be different dependent on the locomotor activity at any 148 

given time. At the commencement of even submaximal exercise, anaerobic metabolism will 149 

contribute to the energy supply until such time as a steady state VO2 is reached. In the case of 150 

higher intensity intermittent exercise, with movements that include acceleration and 151 

deceleration, the contribution of anaerobic metabolism will be greater, but also more difficult 152 

to measure. To account for this methodological problem, the EE during 10 min of recovery 153 

after each 5 min exercise bout was included in the VO2 derived EE. While the mechanisms 154 

and contributing components of the excess post-exercise oxygen consumption (EPOC)25 are 155 

not completely agreed upon,26 it is reasonable to assume that any elevation in VO2 above rest 156 

during the 10 min recovery period was a result of the preceding exercise bout.27 As such, the 157 

overall energy cost of each exercise bout was taken as the EE expenditure (minus resting 158 

VO2) during the 5 minutes of exercise and the 10 minutes of recovery. Data were therefore 159 

combined as exercise plus recovery (15 min in total) to account for the overall energy cost 160 

associated with the exercise interval, and overcome the limitation of non-steady state during 161 

intermittent, high intensity exercise.  162 

Statistical analysis 163 

Data were analysed in two formats as i) total session EE (90 min) and ii) six bouts of 15 min 164 

(walk, jog, run, 3 x circuit). All data analysed and reported relates to the cost of exercise 165 

above resting values (i.e., average resting baseline EE subtracted from minute-by-minute 166 
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exercise and recovery data). Energy expenditure values for GPS metabolic power derived EE 167 

and VO2 derived EE for the entire 90 minute session were compared using a paired samples t-168 

test. Level of agreement, accuracy and precision were obtained by calculating the 95% limits 169 

of agreement (95% LoA), mean bias, percent (%) difference and effect size (Cohen’s d, with 170 

associated descriptors),28,29 and root mean square error (RMSE), respectively. To determine 171 

whether differences between mean biases existed between the six exercise bouts, a one-way 172 

ANOVA was conducted. Games-Howell post hoc tests (due to heterogeneity of variance) 173 

were used to identify where these differences lay. 174 

To determine whether differences between device precision (RMSE) were evident between 175 

exercise bouts, Hartley’s F-max tests30 were undertaken. Due to the multiple comparisons 176 

being conducted for the F-max test and ANOVA the alpha level was adjusted to 0.01 and 177 

critical values determined from existing reference tables.30  178 

Analyses were performed using Microsoft Excel (Microsoft, Washington, USA, 2013), SPSS 179 

(IBM, New York, USA, version 22.0) and Prism software (GraphPad Software, Inc, version 180 

6, 2014). Data are reported as mean and standard deviation. 181 

Results 182 

The GPS metabolic power derived EE for the 90 minute session (1244.8 ± 226.1 kJ) was 183 

significantly lower (p <0.01) than the VO2 derived EE (1511.5 ± 271.3 kJ). There was a mean 184 

bias toward the VO2 derived EE (266.7 ± 151.0 kJ, RMSE = 305.1 kJ, % difference = -185 

19.4%), representing a moderate effect (d = 1.07). The 95% LoA for the session ranged from 186 

-562.7 to 29.3 kJ. Figure 2A (raw data) and 2B (corrected for resting metabolism) illustrates 187 

minute by minute data for the 90 min session. 188 

The EE (above resting) associated with each exercise bout for both GPS metabolic power 189 

derived EE and VO2 derived EE is presented in Figure 3. Table 1 presents indices of 190 
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accuracy, agreement and precision for each of the six bouts. Results from the ANOVA 191 

revealed that EE was significantly higher for the GPS metabolic power compared to the VO2 192 

derived EE during the walk (% difference = 43.0%, d = 2.11), however it was significantly 193 

lower in each of the circuit bouts (-42.2 – -45.8%, d = 1.97 – 2.24). There were no significant 194 

differences between EE measured using the GPS metabolic power and VO2 derived EE for 195 

the jog (7.8%, d = 0.44) or run (4.8%, d = 0.28).  196 

Hartley’s test’s revealed that RMSE values for all three circuit bouts were significantly 197 

higher compared to the walk, jog and run. There were no significant differences in RMSE 198 

between circuit bouts or between the walk, jog and run. The mean bias for all three circuits 199 

was significantly higher than the walk, jog and run. The walk had a significantly higher mean 200 

bias compared to the run and jog, but a significantly lower mean bias compared to the 201 

circuits. There were no significant differences in mean bias between the jog and run, and 202 

between the three circuit bouts.  203 

Bland-Altman plots (Figure 4) highlight the improved accuracy and agreement between GPS 204 

metabolic power derived estimation of EE and VO2 derived EE during the jog and run, and to 205 

a lesser extent the walk, compared to the circuit bouts. 206 

  207 
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Discussion 208 

The purpose of this study was to assess the validity of a GPS tracking system, with associated 209 

software implementation of the metabolic power model,14,19 to predict EE during exercise and 210 

field sport locomotor movements. The major finding was that the GPS metabolic power 211 

model was unable to accurately estimate EE during walking (a very large overestimation) or 212 

intermittent movement patterns that are typical of field sports (a very large underestimation). 213 

However, the GPS derived estimation of EE was reasonably accurate during steady state 214 

jogging and running.  215 

Two previous studies have assessed the validity of the metabolic power model for the 216 

estimation of EE during continuous and intermittent shuttle runs.17,18 These reports concluded 217 

that there was an underestimation in EE during shuttle running, particularly over short 218 

distances at higher velocities.17,18 In a more applied approach, Buchheit et al.16 recently 219 

reported an underestimation in EE during soccer training drills with the ball (23% lower 220 

during the soccer circuit and 85% lower during recovery). These findings are all consistent 221 

with our results for the intermittent, variable intensity field sport circuits. In contrast, 222 

however, Stevens et al.18 found that the metabolic power model overestimated EE (6 – 11%) 223 

during steady state continuous running at velocities between 7.5 km·h-1 and 10 km·h-1 224 

whereas no differences were observed at velocities of 8 km·h-1 and 12 km·h-1 in the current 225 

study. Figure 2 suggests we may have reached a similar conclusion (i.e., the estimated EE 226 

being greater than the measured VO2) had the recovery EE not been included in our 227 

calculations. 228 

The difficulty associated with a validation study of this nature is the measurement of EE 229 

during exercise that includes intermittent high intensity exercise and acceleration and 230 

deceleration during running and sprinting. Stevens et al.18 used steady state oxygen 231 

consumption for the measurement of EE, and while appropriate for continuous running at 232 
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submaximal running velocities, the approach may not be suitable for shuttle running. 233 

Buglione and di Prampero17 used oxygen consumption and blood lactate levels to give a 234 

measurement of aerobic and anaerobic EE during non-steady state exercise. To overcome the 235 

estimation of EE during non-steady state exercise in our study, 10 minutes of recovery was 236 

included in the data analysis to capture the EPOC and to account for the overall EE 237 

associated with each 5 minute exercise bout. At the completion of the 10 minute recovery 238 

bout, the EE was found to be plateauing and nearing baseline levels (Figure 2B). Therefore, 239 

including the 10 minutes of recovery represented a direct measure of the EE associated with 240 

the exercise bout. Not measuring blood lactate levels may be considered a limitation of the 241 

current study, although to include two measures that might simultaneously account for 242 

anaerobic non-oxidative metabolism during exercise would not be appropriate. While the 243 

EPOC is greater than the O2 deficit (i.e., a result of metabolic factors in addition to 244 

phosphagen restoration and lactate removal),25 its occurrence and magnitude can be directly 245 

attributed to the exercise performed26,27 and therefore represents a necessary component of 246 

the energy cost associated with each exercise bout. From a practical perspective, if the energy 247 

cost of exercise is to be estimated (e.g., for the purposes of energy balance and nutrition 248 

strategies), the total energy consumption linked to the physical activity needs to be accounted 249 

for, irrespective of its source of origin. Therefore, on the basis that this is a reasonable 250 

assumption and that the measured energy cost is accurate, there are likely to be two main 251 

factors that would lead to the results found in this study; the ability of the GPS device to 252 

measure velocity and acceleration accurately and / or the ability of the metabolic power 253 

model to accurately estimate EE.  254 

As the estimation of EE is based upon GPS data, the validity of this estimation may be 255 

limited by the GPS tracking system’s ability to measure velocity and acceleration accurately.  256 
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Recent studies investigating the validity and reliability of GPS tracking systems incorporating 257 

faster sampling rates (e.g. 10 Hz) to measure velocity have reported improved accuracy31,32 258 

compared to previous investigations,33,34 especially with regards to movements performed at 259 

higher speeds. Despite this, the intermittent and variable nature of the acceleration and 260 

velocity within the field sport circuit will influence the ability of the GPS tracking system to 261 

accurately estimate EE based on these measures11,35. However the magnitude of the errors 262 

observed in the current study are unlikely to be explained by possible errors in GPS accuracy. 263 

The very large overestimation of EE during the walk and the very large underestimation 264 

during the field sport circuit suggests a level of systematic bias in the metabolic power 265 

method. 266 

There are a number of assumptions and limitations outlined by di Prampero et al.14,15 that 267 

may impact the validity of the metabolic power model. Firstly it is assumed that the 268 

biomechanics (e.g. movements of the limbs, stride frequency, mechanical efficiency) of 269 

accelerated running are similar to constant speed running up an incline and the economy of 270 

accelerated and decelerated running is similar between individuals, including body 271 

inclination. Secondly, it is assumed that the overall mass of the runner is concentrated in the 272 

centre of mass, which disregards the variable contribution of the limbs. Finally energy 273 

estimates are based on reference values associated with running on flat terrain and do not take 274 

into account air resistance or changes of direction. The metabolic power method represents a 275 

theoretical model and as such attempts have been made to both justify14,15,17,19 and 276 

challenge16 these assumptions. Of primary interest to the practitioner, however, is whether the 277 

approach provides a reasonably accurate estimate of EE in situations of practical importance. 278 

Our results suggest this may not be the case. 279 

Practical Applications 280 
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The GPS metabolic power approach used to estimate EE in this study demonstrated 281 

unacceptable accuracy during intermittent and variable intensity movements. Consequently, 282 

this approach appears to have limited utility in field sports where movements require frequent 283 

changes in velocity, acceleration and direction. In contrast, the approach seems to be more 284 

suitable to continuous steady state activities such as jogging and running. While the method 285 

has some appeal in that it can provide a single estimate of exercise session load and the 286 

associated energy expenditure, both of which can guide exercise prescription, recovery and 287 

nutrition strategies, further improvements are required before the method can be used with 288 

confidence in the field. 289 

Metabolic power has been reported in the literature to describe and quantify movement 290 

demands19-22 and may be considered another example of an arbitrary measure of external load 291 

available to practitioners.  However the potential loss of the underlying mechanical origins of 292 

the load (i.e., speed vs acceleration/deceleration)16 as well as compounding errors (i.e., those 293 

associated with both GPS technology and the metabolic power method) advise caution in its 294 

use at this time. Future research should investigate whether the poor validity in field sport 295 

movements observed in the current study is due to the ability of the GPS tracking system to 296 

accurately measure velocity and acceleration, the ability of the metabolic power model to 297 

estimate EE or a combination of both. The use of other criterion measures that are able to 298 

measure both aerobic and anaerobic EE directly may also help with assessing the validity of 299 

the approach. 300 

Conclusion 301 

The results of the current study suggest that a GPS tracking system incorporating the 302 

metabolic power model is unable to provide an accurate estimation of EE during field sport 303 

movements or during an exercise session consisting of mixed locomotor activities 304 

interspersed with recovery periods. Despite some concerns regarding the accuracy of GPS 305 
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technology, the shift from very large overestimations (i.e., the walk) to very large 306 

underestimations (i.e., the circuit) with increasing intensity suggest a systematic error in the 307 

metabolic power method. Further developments in GPS hardware and software, including 308 

increased sampling rates, and developments and improvements in the metabolic power model 309 

used to estimate EE may improve the estimation of EE in field sports in the future.   310 
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Table 1. Accuracy (mean bias, % difference, effect size (Cohen’s d), agreement (95% LoA) and precision (RMSE) of energy expenditure 399 

measurements for each 15 minute bout (5 minute exercise plus 10 minute recovery). Data compare GPS metabolic power derived energy 400 

expenditure against VO2 derived energy expenditure as the criterion measure. Positive values indicate an overestimation by the GPS metabolic 401 

power model and negative values an underestimation. 402 

Exercise Bout 

Mean Bias (± SD diff) 

(kJ) 

% Difference 

(%) 

Effect Size 

(d) 

95% LoA 

(kJ) 

RMSE 

(kJ) 

Walk 40.7 ± 18.0^ 43.0 2.11 5.4 to 76.0 44.4 

Jog 17.1 ± 27.9# 7.8 0.44 -37.6 to 71.7 32.3 

Run 15.6 ± 27.8# 4.8 0.28 -38.8 to 70.0 31.4 

Circuit 1 -102.3 ± 33.4* -42.2 1.97 -167.7 to -36.9 107.4† 

Circuit 2 -111.4 ± 35.1* -45.8 2.24 -180.3 to -42.6 116.6† 

Circuit 3 -106.5 ± 33.4* -44.0 2.07 -172.0 to -40.9 111.4† 

^ indicates significant difference from jog, run and circuit 1, circuit 2 and circuit 3, p <0.01 403 

* indicates significant difference from walk, jog and run, p <0.01 404 

# indicates significant difference from walk, circuit 1, circuit 2 and circuit 3, p <0.01 405 

† indicates significant difference from walk, jog and run, p <0.01 406 

SD diff, standard deviation of the difference; 95% LoA, 95% limits of agreement; RMSE, root mean square error 407 

Cohen’s d interpreted as small (>0.2 – 0.6), moderate (>0.6 – 1.2), large (>1.2 – 2.0), very large (>2.0 – 4.0)29 408 

  409 
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Figure Legends 410 

Figure 1. A. Field sport circuit designed to replicate the intermittent movement patterns of 411 

field sports. Modified from Bishop, Spencer, Duffield, & Lawrence, (2001); B. Speed profile 412 

(GPS data) of the field sport circuit over five repetitions. 413 

 414 

Figure 2. GPS metabolic power (GPS-MP) estimate of minute by minute energy expenditure 415 

(kJ) compared against indirect calorimetry (VO2) for the 90 minute exercise session. A. Total 416 

energy expenditure including resting energy expenditure; B. Energy expenditure minus 417 

resting values. Exercise bouts were randomised, yet are ordered here for ease of 418 

interpretation. 419 

 420 

Figure 3. Comparison between GPS metabolic power (GPS-MP) estimates of energy 421 

expenditure (kJ) and indirect calorimetry (VO2) for each 15 minute bout (5 minute exercise 422 

plus 10 minute recovery) for exercise and field sport circuits. Data are Mean ± SD. * 423 

significant difference (p < 0.01). 424 

 425 

Figure 4. Bland-Altman plots illustrating the difference between energy expenditure (kJ) 426 

determined by the GPS metabolic power model and VO2 (y-axis), and the criterion measure 427 

of energy expenditure (VO2; x-axis) for each 15 minute bout (5 minute exercise plus 10 428 

minute recovery). Dotted lines: mean bias; dashed lines: 95% limits of agreement. 429 

 430 

 431 


