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1 Introduction and preliminaries
In recent years the study of fractional g-integral inequalities involving functions of inde-
pendent variables has been an important research subject in mathematical analysis be-
cause the inequality technique is also one of the very useful tools in the study of special
functions and theory of approximations. During the last two decades or so, several inter-
esting and useful extensions of many of the fractional integral inequalities have been con-
sidered by several authors (see, for example, [1-12]; see also the very recent work [13]).
The above-mentioned works have largely motivated our present study.

For our purpose, we begin by recalling the well-known celebrated functional considered
by Chebyshev [14] and defined by

b b b
T(,0)= / f(x)g(x)dx—<ﬁ / f(x)dx) (ﬁ / g(x)dx), 11)

where f(x) and g(x) are two integrable functions on [a, b]. If f(x) and g(x) are synchronous
on [a,b],i.e.,

(fe) —f ) (ex) —g(r) = 0 (1.2)

for any x,y € [a, b], then T(f,g) > 0.
The functional (1.1) has attracted many researchers’ attention due to diverse applications
in numerical quadrature, transform theory, probability and statistical problems. Among
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those applications, the functional (1.1) has also been employed to yield a number of integral
inequalities (see, e.g., [15-22]; for a very recent work, see also [23]).
In 1935, Griiss [24] proved the inequality

M-m)(N —n
T8 = ——F— ), (1.3)
where f(x) and g(x) are two bounded functions, i.e.,
m=<fx) <M, n<gx)<N (1.4)

for any m,M,n,N € R and x,y € [a, b].
Pélya and Szego [25] obtained the following inequality defined as

fabf2(x)dxfabg2(x)dx - l(\/@Jr\/E)z s
(fabf (x)dx f:g(x) dx)2 ~ 4\V mn MN )’ )

provided f, g satisfy (1.4) and m,n > 0.

Similarly, Dragomir and Diamond proved that (see [26], p.28, Eq. 2.1)

)N —
IT(f,9)| < 484 ;2’ ) / f(x)dx / g(x) dx, (1.6)

where f(x) and g(x) are two positive integrable functions so that
0<m<f(x) <M< oo, 0<n<gx)<N<oo 1.7)

for a.e. x € [a, b)].

Recently, Anber and Dahmani [2], by using the Riemann-Liouville fractional integral,
presented some interesting integral inequalities of Pdlya and Szego type. Here, motivated
essentially by the above work, we aim at establishing certain (presumably) new Pélya-
Szego type g-inequalities associated with fractional g-integral operators.

For our purpose, we need the following definitions and some properties.

Definition 1 A real-valued function f(¢) (¢ > 0) is said to be in the space C; (1, u € R) if
there exists a real number p > i such that f*)(¢) = 2¢(t), where ¢(t) € C(0,00).

Here, for the case n = 1, we use a simpler notation C}L =C,.

Definition 2 Let f(«) > 0, B and 7 be real or complex numbers. Then a g-analogue of
Saigo’s fractional integral I;"ﬁ'" is given for | 7| <1 by (see [27], p.172, Eq. (2.1))

B-1

at+f.
]aﬁfl{f(t) /(qt/t q)a IZ(q ’q)m(q ’q)m

@ D@ Dm

q<7]_.3)m(_l)mq_(2)(‘[/t — 1);”f(t)dqr. (1.8)
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The integral operatorl; A includes both the g-analogues of the Riemann-Liouville and

Erdélyi-Kober fractional integral operators given by the following relationships:

Lo} (= @))

ta—l
Fq(a)

/ (qr/t;@)a-1f(T)dyr (@ >0;0<g<1), (1.9)
0
and

Belro): (-5 o)

gl
- Fq(a)

/ (qr/t;q)aat"f(T)dyr (@ >0;0<q<1), (1.10)
0

where (a; q), is the g-shifted factorial.
The g-shifted factorial (a; q), is defined by

. . 1 (I’l = O))
(@@ = { 0 ag) (neN), (1.11)

where a,q € C, and it is assumed that a # g~ (m € Np).
The g-shifted factorial for negative subscript is defined by

1
5q)-n = . 1.12
G e —ag ) Amagn (12
We also write
(@ q) o0 := l_[(l - aqk) (a,q eC;lql < 1). (1.13)
k=0
It follows from (1.11), (1.12) and (1.13) that
(d; q)oo
(@@n=7—"—— ((neZ), (1.14)
(aq"; @)oo
which can be extended to # = a € C as follows:
(@q)q = % (oe eC;lql < 1), (1.15)
(ﬂqa; q)oo

where the principal value of g* is taken.
For f(t) = ¢ in (1.8), we get the known formula [28]

Fq(ﬂ + 1)Fq(ﬂ - :3 +n+ 1) xu_ﬁ
Tyl =B+ (n+a+n+1) '

1P} = (1.16)

Lemma 1 (Choi and Agarwal [28]) Let 0 < g < 1andf:[0,00) — R be a continuous func-
tion with f(t) > 0 for all t € [0, 00). Then we have the following inequalities:
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(i) The Saigo fractional q-integral operator of the function f(¢) in (1.8)
];x,ﬁ,n {f(t)} >0 (1.17)

foralla>0and B,n e Rwitha + B >0 and n < 0;
(i) The g-analogue of Riemann-Liouville fractional integral operator of the function f (¢)
of order a in (1.9)

Li{fe}=o (1.18)
forall a > 0;
(iii) The g-analogue of Erdélyi-Kober fractional integral operator of the function f(¢) in
(1.10)
ff®}=o0 (1.19)

foralla >0 and n eR.

2 Certain fractional g-integral inequalities

In this section, we establish certain Pdlya-Szegé type integral inequalities for the syn-
chronous functions involving the hypergeometric fractional integral operator (1.8), some
of which are presumably (new) ones. For our purpose, we begin with providing the fol-
lowing lemma involving a g-analogue of Saigo’s fractional integral operator.

Lemma 2 Let 0 < g <1, u and v be two continuous and positive integrable functions on
[0, 00) with

0<m <u(t) <M < oo, 0<m <v(t)<Ny<oo (t€l0,t],£>0). (2.1)
Then the following inequality holds true:
" DU @) _ 1 < MN,  [mny )2 2.2)
U @@y T ANV e V MN,

foralla >0,and B,n e Rwitha + B>0,and n<0.

Proof From (2.1), for t € [0,¢], £ > 0, we have

% <3 (2:3)
which yields

(Nlu(t) - mlv(r)) <0. (2.4)
Analogously, we have

m o u) (2.5)

M, ~ v(r)’
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from which one has

(nlu(r) —Mlv(t)) <0. (2.6)
Multiplying (2.4) and (2.6), we obtain

(My Ny + mymy)u(T)v(t) = Mymy v (t) + Nymu(t). (2.7)

Now, multiplying both sides of (2.7) by

th @5 a5 D o
/6; @) E N L O ) L C Y Cy T
) qt q) 1m:0 @@ (=D)"g 2 (r/t-1)g

and taking g-integration of the resulting inequality with respect to t from 0 to ¢ with the
aid of Definition 2, we get

(MN7 + mlnl)lf;’ﬁ'” {u(t)v(t)} > Mlmllg’ﬁ'” {VQ(I)} + Nlnlls"ﬁ'"{uz(t)}. (2.8)

Applying the AM-GM inequality, i.e., a + b > 2+/ab, a,b € R*, we have

(MiNy + iy ) I9P u(v(e)} > 2\/M1m11f;’ﬁ‘"{vz(t)}Nlnll,‘;'ﬂ’"{uz(t)}. (2.9)

This implies that after little simplification

A UR O A VO /m \/W
U ueve)y i 1N1 (2.10)

This completes the proof of Lemma 2. O

Theorem 1 Let 0 < g <1, f and g be two positive integrable functions on [0,00) and m,
M, n, N be positive real numbers with inequality (2.1) holds. Then the following inequality
holds true:

F(l — :3 + n) .
T prasary i VO]

(”; m)N - ”’zf;ﬂn ()15 {g(0)} @.11)

foralla >0,and B,n e Rwitha + >0, and n<0.

Proof Let f and g be two positive integrable functions on [0, 00). Then, for all 7, p € (0,¢)
with £ > 0, we have

Az, p) = (f(r) = f(p) (g(x) — g(p)), (2.12)

or, equivalently,

A(r, p) = f(0)g(z) + f(p)g(p) - f(2)g(p) - f(p)g(2). (2.13)
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Now, multiplying both sides of (2.13) by

I @@ @
(o) 475D IZ @ D@D

m=0

) q(n—ﬁ)m(_l)mq*(rf)(r/t -7

and taking g-integration of the resulting inequality with respect to 7 from 0 to ¢ with the
aid of Definition 2, we get

-1 @5 m @)
/(qmq“ 12 @% Do G Do

m=0
q(n—ﬂ)m(_l)mq—(?) (t/t -1 Az, p)dyT

r'(1-8+n)
ri-grad+a+n)

- gL} - f ()P {g(0)). (2.14)

= 1P f (g} + £ f(p)g(p)

Again, multiplying both sides of (2.14) by

1 @5 D@D - (o
/t; Q) E =B 1)) (p/t - 1)
) qp Da-1 @ om@m 7 (=D"q 2 (p/t -1);

m=0

and taking g-integration of the resulting inequality with respect to p from 0 to ¢ and using
(1.8), we get

g2 — @5 D)@ D
(qt/t; @a-1(gp/t; g)a-
r2(e) // aeltia)eap/ta) I{Z (9% D@ Do

m=0
2
g Pm(-1yg(2) } (T/t=1)"(p/t = 1) A(r, p) dy dyp

_ F(l - ;3 + 77) —B you, B _972.p,
= T rarn)’ o VOLO} =207 f0g0) (2.15)

By using the Cauchy-Schwarz inequality for double integrals, we have

2p+1) SN ALY ) I O/ Y
r2(oz) / / (G716 Da-1(qp 115 )a- I{Z (q% DG )

m=0

2
i q(n—ﬁ)M(_l)mq‘(yzn) } (t/t=1)(p/t = 1)/ A(r, p) dgT dyp

£26+D) o (@5 DT D
[ 2(e) / / (21 D@05 Do I{Z @ D) (@5 D

m=0

qrz ﬁ)m(_l)mq (2)} (‘L’/t—l)gn(p/t—l)qu(T)ququ

t_2 p+1) > (qa+ﬁ;q)m(q_n;q)m
* () / /(qr/t Da-1(GP/5 P I{Z (@% QG Qm

m=0
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2
- grPm(—1yng(3) } (t/t=1); (p/t - 1);nf2(f) dgtdyp

-2(B+1) o a+pf. ~1.
~ t /f(qmqal p/tq)al{z(q 5D @ Dim

F2(a q% DG Dm

m=0

g )} (/=1 (plt - 1)) g (¥) dy dgp

t_2 p+1) > (qa+ﬁ;q)m(q_n;q)m
* () / /(qr/t Da-1(GP/5 P I{Z (@% QG Q)

m=0

2
qw—ﬂ)m(_l)mq—(’z")] (c/t =)o/t = 1)7'g*(x) dgt dgp

s — (@5 D@D
2r2(> [ rtsarcstaore ")“:V; @G5

2 }
g1y @) } (v/t 1) (ot = 1) g(v)g(p) dyT dqp} : (216)

Applying Definition 2, we get

2(8+1)
1"2(01)

00 a+f. ~,
/ (qt/t;9)a-1(qp!6 @)a- 1{2 (q(qaigmg;’)q)m

m=0

2
. q(n—ﬁ)m(_l)mq—(’zn) } (t/t =17 (p/t = 1) A(z, p)dyT dyp

52[ ( L=p+n) )tﬁlg’ﬁ”’{fz(t)}—(I,‘;"ﬂ'”{f(t)})z}z

rA-g)rd+a+n

1

. F(l—ﬂ + 77) —B 70,8, 2 (1B, 2]2
[F(l—ﬁ)l“(1+a+n)t Mgt @) - (e} (2.17)

By applying Lemma 2, we get

ra-g+n) B g (02
F(l—ﬁ)r(1+a+n)t I ")

SR

M+m?
- S (o)), (2.18)

After little simplification, we get

rd-8+n) PP} - (1P (0)})’

ra-grd+a+n)

M +m)? o
5( 4;]\”; —1)(1q'ﬂ"7{f(t)})2 (2.19)
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or

rd-pg+n) —B o Bon [ £2 o,p, 2
ra-pgr (1+a+n)t o) - (o))

= (]Zm;? (I {r})*. (2.20)

Similarly, we get

ra-8+n) g2y (v, i
Tl pTAsary’ W el -07""e®))

N — 2
< ( M\';) (1P {g(6)}). (2.21)

Finally, by adding (2.14), (2.17), (2.20) and (2.21), side by side, we arrive at the desired result
(2.11). O

In the sequel, we can present another inequality involving the g-fractional integral op-
erator given in (1.8), asserted by the following lemma.

Lemma 3 Let 0 < g <1, u and v be two continuous and positive integrable functions on
[0, 00) with (2.1) holds. Then the following inequality holds true:

(1%/3:'7 {Lt2 (t)})(lyvlsv{{VZ ®)) MlNl mlnl
it ‘- (2.22)
EP AN )@ ~ 4\ Nl

foralla,y >0,and B,n,8, e Rwitha+8>0,y +5>0,and n,¢ <0.

Proof To prove Lemma 2, we start from the condition

Z—ll < % (r €[0,6],¢>0), (2.23)
we get
%(Vz(t)) < u(t)v(t) (t € [0,t],t> O). (2.24)
1

Now, multiplying both sides of (2.24) by

—5-1

— (@ D)ulg ™59
I RS Dy vy

.q(é“—é)n(_l)nq—(g)(p/t_1); (,0 1= (O,t);t>0),
and integrating with respect to p from 0 to ¢, we get

%Ifm RO} < I udve)). (2.25)

Multiplying (2.24) and (2.25), we get the desired result (2.22). This completes the proof
of Lemma 2. O
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Theorem 2 Let 0 < g <1, f and g be two positive integrable functions on [0, 00) and there
exist positive real numbers m, n, M, N with inequality (2.1) holds. Then we have

ra-56+¢)
FrA-)ra+y+ {)

_5 Otﬁ ]"(1_’3+n) .
"{f( } F(l—ﬁ)r(1+a+n)t I {{f(t)g(t)}

- IO g0) - 1 g0} (o)

<(M m)(N n)
24/ m

foralla,y >0,and B,n,86,; e Rwitha+ >0,y +8>0,and n,¢ <0.

P {F0)} 1 (g(0)) (2.26)

Proof Multiplying both sides of (2.14) by

o=

qy*a q)n(q 5q)n
) ‘”)”q“nz; DG

. q@fé)n(_l)nq*(z) (p/t - 1); (p € (0,8);t > 0),

and integrating with respect to p from 0 to ¢, we get

811 ptopt
— (gp/t; @)y -1(qT/t; @)a-
Fq(y)r (05)/0 /(; qpit;q)y-1\qg q)a-1

(g ﬁ’q)m(q "3 @)m (qy+5;4)n(q_§;4)n —B)m m, ~( m
Z()Zo q q)m q,9 ) (q)/;q)n(q;q)n .q(ﬂ 2 (—1) q (2)(T/t_1)q

g "(-1)"q @ (p/t - 11A(T, p) dy dyp

FA-0+8) sap FA=B+n) 5 s
TSRS 1P f(t)g(t)} + - Arasasn)’ I {f(gt)}
=P O e@) - e o). (2.27)

By using the Cauchy-Schwarz inequality for double integrals, we have

p-1p-1
r (J/)Fq(oc)/ / (@p/t; @)y 1(qT/t; q)a-

o @5 D@D @D T D gy vm () .
. : -1 2 -1
ZZ % DG Dim (@ Dn (@ n q (-1)"q (t/t )q

m=0 n=0

g1y g O (p/t - 1);A(t, p) dgt dyp

—§-1,-pB-1
[ t(y)tF (a)/ /(QP/t 9)y-1(qt/tq)a-
I q

@D @ D @5 DT D i, ym () (o
ZZ G D@D (@D (T Dn q (=D)"q 2 (x/t - 1);

m=0 n=0

e 1y g @ (p/t - 1> (p) dyt dgp
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tfs lt B-1
/ / (gp/t;q)y-1(qT/t; q)o-

q(a)

@5 @ Do @5 DTS Din pymg_m () m
: ~1)"q D (/e -1
,;2; @ D@D @D G D N A
q“"D"q O (p/t - 1) (1) dyr dyp
(8-1p-B-1
T ()T

/ (gp/t;q)y-1(gT/t; @)a

[e¢]

i B, y+3. ¢, -
ZZ @ D@ Dm (@5 D@ Dn Py B e -1y
n=0

@S DG Dm (@5 DG D

m=

1
2

q(-1)"q @ (p/t - 12 (1) (p) dy dqp}

-8-14-p-1
. t; 5
T a)//qp/ Dy1(qT/t; Qo

@D T D @ DT D o g e
ZZ DG Dn @ DD (-1)"q " (e/t -1)g

m=0 n=0

_q; Bn( l)ﬂq*(z)(p/t l)ngz(/o)d Td‘lp

t—s 1t B-1
f / (qp/t;q)y1(qT/t; @)o-

q(“

@ D@D @5 DTS D gy () m
. — 2 It —
MZ‘); @ DG D @D G Dn I A

41" @ (p/t - 1)1g (1) dyT dyp
F8-1p-B-1

T, Jo / (@p/t:0)y-1(qT 1t @)amr

@D d 5D @5 DT SDs (g v 2 n
Z()ZO q q)m qq) (qy;q)n(q;q)n ’ (1=F) (_1) q ( )('L'/t—l)q

1

4 (-1"q O (p/t - 1)ig(1)g(p) d rdqp} : (2.28)

Applying Definition 2, we get

tfé 1t B-1
()l (oc)/ / (@0/t;@)y1(qT/t:q)a-

@5 D@ Do @5 D@D pyng w0 (e qym
r;; @D @D @D @D D,

g& 1)1 (p/t - 1);A(z, p)dyt dyp

F(l 5+§) —Baﬁ 2 F(l—ﬁ+7’]) By 8. [ 2
52[F(I S)F(1+y+§) o) F1-B)rd+a+n) Vo)
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1

—ar g0l o) |

F1-6+¢) -5 o, r(1-pg+n) B AL 2
[F(l S)F(1+y+£)t g+ FTA-prArarn) I ew)

1

— 20 {g()) 174 {g(t)}] : (2.29)

Applying Definition 2, we get

rd-g+n) b,
FL-prrarn’ 4 LOI-EHT@ 0]

(M — m)? D,
= S @O o)), (2:30)
and
ra-56+¢)
ra-8)ra+y+¢)

< W s ol g o). 2a

CIPPO) -1 (fo) )

Similarly, for the function g(¢), we get

ra-g+n) ;B rss
rA-grd+a+n 1

N2
= %(13 @) (7" e @}), (2.32)

(g} -1 {g0)}17"{g(1)}

and
ri-6+¢)
FrA-8)rad+y+¢)

= (AZ M) (If,'“{g(t)})(l"‘ﬁ”{g(t)}) (2.33)

_sla B {g (t)} I};’M {g(t)}l(qy'ﬂ’ﬂ {g(t)}

Finally, in view of (2.27) to (2.33), we arrive at the desired result (2.26). This completes the
proof of Theorem 2. a

Remark 1 It may be noted that the inequality in (2.26) when ¢ = 1 reduces immediately
to that in (2.11).

3 Special cases and concluding remarks

By virtue of the unified nature of Saigo’s fractional g-integral operator (1.8), alarge number
of new and known integral inequalities involving g-analogues of the Riemann-Liouville
and Erdélyi-Kober fractional integral operators are seen to follow as special cases of our
main result. Indeed, by suitably specializing the values of parameters «, 8, n (and vy, §,
¢ in addition of Theorem 2), inequalities (2.11) and (2.26) in Theorems 1 and 2, respec-
tively, would yield further Griiss type integral inequalities involving the above-mentioned
integral operators.

Page 11 0f 13
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If we put B8 = 0 (and § = 0 in addition in Theorem 2), using (1.10), inequalities (2.11) and
(2.26) gives the following results involving g-analogues of the Erdélyi-Kober fractional
integral operators, which are believed to be new.

Corollary 1 Let 0 < g <1, f and g be two positive integrable functions on [0,00) and m,
M, n, N be positive real numbers with inequality (2.1) holds. Then the following inequality

holds true:
BRNCLL P M= m)N 1) o o
I‘(1+a+n)1‘? OHOHE A/ mMnN Lo}y {g®} 3.1)

foralla >0,and n € Rwithn<O0.

Corollary 2 Let 0 < g <1, f and g be two positive integrable functions on [0, 00) and there
exist positive real numbers m, n, M, N with inequality (2.1) holds. Then we have

ra+e¢)
Frl+y+¢)

- OV (@) - 157 (e @) 157 {f(0))

- (M — m)(N - n)
- 2JmMuN

foralla,y >0,and n,¢ e Rwithn,¢ <O0.

e {f (g} + [t + ”)n)Ig'V f(6)g®)

Frl+a+
1 o {g0) (3.2)

Similarly, if we set n = 0 and replace B by —« in Theorem 1 (and ¢ = 0 and replace § by
—y in addition in Theorem 2), using (1.9), inequalities (2.11) and (2.26) gives the follow-
ing results involving g-analogues of the Riemann-Liouville and Erdélyi-Kober fractional
integral operators, which are also believed to be new.

Corollary 3 Let 0 < q < 1, f and g be two positive integrable functions on [0, 00) and m,
M, n, N be positive real numbers with inequality (2.1) holds. Then the following inequality

holds true:
o o (M—Wl)(N—I’l)a o
T ot 020} = = e O} @) (3.3)
foralla > 0.

Corollary 4 Let 0 < g <1, f and g be two positive integrable functions on [0, 00) and there
exist positive real numbers m, n, M, N with inequality (2.1) holds. Then we have

I {f(g(6)} + 17 {f (g (t)}

1
ra+y)

-l g0} - I {0} {f®)

_ M-m©N -n)
= 2J/mMnN

foralla,y >0.

'l+a)

o1 {g@)} (3.4)



Agarwal et al. Journal of Inequalities and Applications (2015) 2015:345 Page 13 0f 13

We conclude this paper by emphasizing, again, that our main result here, being of a
very general nature, can be specialized to yield numerous interesting fractional integral
inequalities including g-analogues of some known results (see, for example [13]).
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