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Abstract
In the present paper, we investigate the problem of approximating the
Riemann-Stieltjes integral

∫ b
a f (λ)du(λ) in the case when the integrand f is n-time

differentiable and the derivative f (n) is either of locally bounded variation, or
Lipschitzian on an interval incorporating [a,b]. A priory error bounds for several
classes of integrators u and applications in approximating the finite Laplace-Stieltjes
transform and the finite Fourier-Stieltjes sine and cosine transforms are provided as
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1 Introduction
The concept of Riemann-Stieltjes integral

∫ b
a f (t)du(t), where f is called the integrand, u is

called the integrator, plays an important role in mathematics, for instance in the definition
of complex integral, the representation of bounded linear functionals on the Banach space
of all continuous functions on an interval [a,b], in the spectral representation of selfadjoint
operators on complex Hilbert spaces and other classes of operators such as the unitary
operators, etc.
However, the numerical analysis of this integral is quite poor as pointed out by the

seminal paper due to Michael Tortorella from  []. Earlier results in this direc-
tion, however, were provided by Dubuc and Todor in their  and  papers [, ]
and [], respectively. For recent results concerning the approximation of the Riemann-
Stieltjes integral, see the work of Diethelm [], Liu [], Mercer [], Munteanu [],
Mozyrska et al. [] and the references therein. For other recent results obtained in
the same direction by the first author and his colleagues from RGMIA, see [–]
and []. A comprehensive list of preprints related to this subject may be found at
http://rgmia.org.
In order to approximate the Riemann-Stieltjes integral

∫ b
a p(t)dv(t), where p, v : [a,b]→

R are functions for which the above integral exists, Dragomir established in [] the fol-
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lowing integral identity:

[
u(b) – u(a)

]
f (x) –

∫ b

a
f (t)du(t)

=
∫ x

a

[
u(t) – u(a)

]
df (t) +

∫ b

x

[
u(t) – u(b)

]
df (t), x ∈ [a,b] (.)

provided that the involved integrals exist. In the particular case when u(t) = t, t ∈ [a,b],
the above identity reduces to the celebratedMontgomery identity (see [, p.]) that has
been extensively used bymany authors in obtaining various inequalities of Ostrowski type.
For a comprehensive recent collection of works related to Ostrowski’s inequality, see the
book [], the papers [–, –] and []. For other results concerning error bounds
of quadrature rules related tomidpoint and trapezoid rules, see [–] and the references
therein.
Motivated by the recent results from [, , ] (see also [, ] and []) in the

present paper we investigate the problem of approximating the Riemann-Stieltjes integral∫ b
a f (λ)du(λ) in the case when the integrand f is n-times differentiable and the deriva-
tive f (n) is either of locally bounded variation, or Lipschitzian on an interval incorporating
[a,b]. A priori error bounds for several classes of integrators u and applications in ap-
proximating the finite Laplace-Stieltjes transform and the finite Fourier-Stieltjes sine and
cosine transforms are provided as well.

2 Some representation results
In this section, we establish some representation results for the Riemann-Stieltjes inte-
gral when the integrand is n-times differentiable and the integrator is of locally bounded
variation. Several particular cases of interest are considered as well.

Theorem  Assume that the function f : I → C is n-times differentiable on the interior I̊
of the interval I (n ≥ ) and the nth derivative f (n) is of locally bounded variation on I̊ . If
a,b ∈ I̊ with a < b, c ∈ [a,b] and u : [a,b] → C is of bounded variation on [a,b], then the
Riemann-Stieltjes integral

∫ b
a f (λ)du(λ) exists, we have the identity

∫ b

a
f (λ)du(λ) = Tn(f ,u,a, c,b) + Rn(f ,u,a, c,b), (.)

where

Tn(f ,u,a, c,b) :=
n∑

k=


k!
f (k)(c)

[
(b – c)ku(b) + (–)k+(c – a)ku(a)

]

–
n–∑
k=


k!
f (k+)(c)

∫ b

a
(λ – c)ku(λ)dλ (.)

and the remainder Rn(f ,u,a, c,b) can be represented as

Rn(f ,u,a, c,b) :=

n!

∫ b

a

(∫ λ

c
(λ – t)n df (n)(t)

)
du(λ). (.)

Both integrals in (.) are taken in the Riemann-Stieltjes sense.
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Proof Under the assumption of the theorem, we utilize the following Taylor’s representa-
tion

f (λ) =
n∑

k=


k!
f (k)(c)(λ – c)k +


n!

∫ λ

c
(λ – t)n df (n)(t) (.)

that holds for any c ∈ [a,b] and n≥ . The integral in (.) is taken in the Riemann-Stieltjes
sense.
We can prove this equality by induction.
Indeed, for n = , we have

f (λ) = f (c) +
∫ λ

c
df (t)

that holds for any function of locally bounded variation on I̊ .
Now, assume that (.) is true for an n≥  and let us prove that it holds for ‘n+’, namely

f (λ) =
n+∑
k=


k!
f (k)(c)(λ – c)k +


(n + )!

∫ λ

c
(λ – t)n+ df (n+)(t) (.)

provided that the function f : I → C is (n + )-times differentiable on the interior I̊ of the
interval I and the (n + )-th derivative f (n+) is of locally bounded variation on I̊ .
Utilizing the integration by parts formula for the Riemann-Stieltjes integral and the re-

duction of the Riemann-Stieltjes integral to a Riemann integral (see, for instance, []) we
have:

∫ λ

c
(λ – t)n+ df (n+)(t)

= (λ – t)n+f (n+)(t)|λc + (n + )
∫ λ

c
(λ – t)nf (n+)(t)dt

= –(λ – c)n+f (n+)(c) + (n + )
∫ λ

c
(λ – t)n df (n)(t). (.)

From (.), we have that

∫ λ

c
(λ – t)n df (n)(t) =

[
f (λ) –

n∑
k=


k!
f (k)(c)(λ – c)k

]
n!

which inserted in the last part of (.) provides the equality

∫ λ

c
(λ – t)n+ df (n+)(t) = –(λ – c)n+f (n+)(c)

+ (n + )!

[
f (λ) –

n∑
k=


k!
f (k)(c)(λ – c)k

]
. (.)

We observe that, by division with (n+)!, the equality (.) becomes the desired represen-
tation (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/154


Dragomir and Abelman Journal of Inequalities and Applications 2013, 2013:154 Page 4 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/154

Further on, from the identity (.) we obtain

∫ b

a
f (λ)du(λ) =

n∑
k=


k!
f (k)(c)

∫ b

a
(λ – c)k du(λ)

+

n!

∫ b

a

(∫ λ

c
(λ – t)n df (n)(t)

)
du(λ). (.)

Utilizing the integration by parts formula, we have for k ≥  that

∫ b

a
(λ – c)k du(λ) = (λ – c)ku(λ)|ba – k

∫ b

a
(λ – c)k–u(λ)dλ

= (b – c)ku(b) + (–)k+(c – a)ku(a) – k
∫ b

a
(λ – c)k–u(λ)dλ. (.)

For k = , we have
∫ b
a du(λ) = u(b) – u(a).

Therefore, by (.) we get

n∑
k=


k!
f (k)(c)

∫ b

a
(λ – c)k du(λ)

=
n∑

k=


k!
f (k)(c)

[
(b – c)ku(b) + (–)k+(c – a)ku(a)

]

–
n–∑
k=


k!
f (k+)(c)

∫ b

a
(λ – c)ku(λ)dλ

= Tn(f ,u,a, c,b) (.)

and by (.) the representation (.) is thus obtained.
This completes the proof. �

Remark  Assume that the function f : I → C is n-times differentiable on the interior I̊
of the interval I (n ≥ ) and the nth derivative f (n) is of locally bounded variation on I̊ . If
a,b ∈ I̊ with a < b and u : [a,b] → C is of bounded variation on [a,b], then, by choosing
c = a in the formulae above we have

dDn(f ,u,a,b) := Tn(f ,u,a,a,b)

=
n∑

k=


k!
f (k)(a)(b – a)ku(b) –

n–∑
k=


k!
f (k+)(a)

∫ b

a
(λ – a)ku(λ)dλ (.)

and

dRn(f ,u,a,b) := Rn(f ,u,a,a,b) =

n!

∫ b

a

(∫ λ

a
(λ – t)n df (n)(t)

)
du(λ). (.)

This give the representation

∫ b

a
f (λ)du(λ) = dDn(f ,u,a,b) + dRn(f ,u,a,b). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/154
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Now, if we choose c = a+b
 , then we have

Mn(f ,u,a,b) := Tn

(
f ,u,a,

a + b


,b
)

=
n∑

k=


k!k

f (k)
(
a + b


)
(b – a)k

[
u(b) + (–)k+u(a)

]

–
n–∑
k=


k!
f (k+)

(
a + b


)∫ b

a

(
λ –

a + b


)k

u(λ)dλ (.)

and

MRn(f ,u,a,b) := Rn

(
f ,u,a,

a + b


,b
)

=

n!

∫ b

a

(∫ λ

a+b


(λ – t)n df (n)(t)
)
du(λ), (.)

which provide the representation

∫ b

a
f (λ)du(λ) =Mn(f ,u,a,b) +MRn(f ,u,a,b). (.)

Finally, if we choose c = b, then we have

uDn(f ,u,a,b) := Tn(f ,u,a,b,b)

=
n∑

k=


k!
f (k)(b)(–)k+(b – a)ku(a)

+
n–∑
k=

(–)k+

k!
f (k+)(b)

∫ b

a
(b – λ)ku(λ)dλ (.)

and the remainder

uRn(f ,u,a,b) := Rn(f ,u,a,b,b)

=
(–)n+

n!

∫ b

a

(∫ b

λ

(t – λ)n df (n)(t)
)
du(λ). (.)

Making use of (.) we get

∫ b

a
f (λ)du(λ) = uDn(f ,u,a,b) + uRn(f ,u,a,b). (.)

3 Error bounds
In order to provide sharp error bounds in the approximation rules outlined above, we need
the following well-known lemma concerning sharp estimates for the Riemann-Stieltjes
integral for various pairs of integrands and integrators (see, for instance, []).

Lemma  Let p, v : [a,b]→ C two bounded functions on the compact interval [a,b].

http://www.journalofinequalitiesandapplications.com/content/2013/1/154
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(i) If p is continuous and v is of bounded variation, then the Riemann-Stieltjes integral∫ b
a p(t)dv(t) exists and

∣∣∣∣
∫ b

a
p(t)dv(t)

∣∣∣∣ ≤ max
t∈[a,b]

∣∣p(t)∣∣ b∨
a
(v), (.)

where
∨b

a(v) denotes the total variation of v on the interval [a,b].
(ii) If p is Riemann integrable and v is Lipschitzian with the constant L > , i.e.,

∣∣v(t) – v(s)
∣∣ ≤ L|t – s| for each t, s ∈ [a,b],

then the Riemann-Stieltjes integral
∫ b
a p(t)dv(t) exists and

∣∣∣∣
∫ b

a
p(t)dv(t)

∣∣∣∣ ≤ L
∫ b

a

∣∣p(t)∣∣dt(≤ L sup
t∈[a,b]

∣∣p(t)∣∣(b – a)
)
. (.)

All the above inequalities are sharp in the sense that there are examples of functions for
which each equality case is realized.

Utilizing this result concerning bounds for the Riemann-Stieltjes integral, we can pro-
vide the following error bounds in approximating the integral

∫ b
a f (λ)du(λ).

Theorem  Assume that the function f : I → C is n-times differentiable on the interior I̊
of the interval I (n ≥ ) and the nth derivative f (n) is of locally bounded variation on I̊ . If
a,b ∈ I̊ with a < b, c ∈ [a,b] and u : [a,b] → C is of bounded variation on [a,b], then we
have the representation (.),where the approximation term Tn(f ,u,a, c,b) is given by (.)
and the remainder Rn(f ,u,a, c,b) satisfies the inequality

∣∣Rn(f ,u,a, c,b)
∣∣ ≤ 

n!

[


(b – a) +

∣∣∣∣c – a + b


∣∣∣∣
]n b∨

a

(
f (n)

) b∨
a
(u), (.)

for any c ∈ [a,b].
If the nth derivative f (n) is Lipschitzian with the constant Ln >  on [a,b], then we have

∣∣Rn(f ,u,a, c,b)
∣∣ ≤ 

(n + )!
Ln

[


(b – a) +

∣∣∣∣c – a + b


∣∣∣∣
]n+ b∨

a
(u), (.)

for any c ∈ [a,b].

Proof Utilizing the property (i) from Lemma , we have successively

∣∣Rn(f ,u,a, c,b)
∣∣ = 

n!

∣∣∣∣
∫ b

a

(∫ λ

c
(λ – t)n df (n)(t)

)
du(λ)

∣∣∣∣
≤ 

n!
max
λ∈[a,b]

∣∣∣∣
∫ λ

c
(λ – t)n df (n)(t)

∣∣∣∣
b∨
a
(u) (.)

for any c ∈ [a,b].

http://www.journalofinequalitiesandapplications.com/content/2013/1/154
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For c,λ ∈ [a,b], denote

B(λ, c) :=
∣∣∣∣
∫ λ

c
(λ – t)n df (n)(t)

∣∣∣∣. (.)

By the property (i) from Lemma  applied for f (n) we have for c < λ that

B(λ, c) ≤ max
t∈[c,λ]

|λ – t|n
λ∨
c

(
f (n)

)

= (λ – c)n
λ∨
c

(
f (n)

) ≤ (λ – c)n
b∨
a

(
f (n)

)

≤ (b – c)n
b∨
a

(
f (n)

)

and for c > λ that

B(λ, c) ≤ max
t∈[λ,c]

|λ – t|n
c∨
λ

(
f (n)

)

= (c – λ)n
c∨
λ

(
f (n)

) ≤ (c – λ)n
b∨
a

(
f (n)

)

≤ (c – a)n
b∨
a

(
f (n)

)
.

Therefore,

max
λ∈[a,b]

B(λ, c) ≤ max
{
(b – c)n, (c – a)n

} b∨
a

(
f (n)

)

=
[
max{b – c, c – a}]n b∨

a

(
f (n)

)

=
[


(b – a) +

∣∣∣∣c – a + b


∣∣∣∣
]n b∨

a

(
f (n)

)
, (.)

for any c ∈ [a,b].
Utilizing (.) and (.), we deduce the desired inequality (.).
By the property (ii) from Lemma  applied for f (n), we have that

B(λ, c)≤ Ln
∣∣∣∣
∫ λ

c
|λ – t|n dt

∣∣∣∣ = Ln
n + 

|λ – c|n+,

c,λ ∈ [a,b], which produces the bound

max
λ∈[a,b]

B(λ, c) ≤ Ln
n + 

max
λ∈[a,b]

|λ – c|n+

=
Ln
n + 

max
{
(b – c)n+, (c – a)n+

}

http://www.journalofinequalitiesandapplications.com/content/2013/1/154
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=
Ln
n + 

[
max{b – c, c – a}]n+

=
Ln
n + 

[


(b – a) +

∣∣∣∣c – a + b


∣∣∣∣
]n+

(.)

for any c ∈ [a,b].
Utilizing (.) and (.), we deduce the desired inequality (.). �

The best error bounds we can get from Theorem  are as follows.

Corollary  Under the assumptions of Theorem  we have the representation

∫ b

a
f (λ)du(λ) =Mn(f ,u,a,b) +MRn(f ,u,a,b), (.)

where Mn(f ,u,a,b) is defined in (.) and the error MRn(f ,u,a,b) satisfies the bound

∣∣MRn(f ,u,a,b)
∣∣ ≤ 

nn!
(b – a)n

b∨
a

(
f (n)

) b∨
a
(u). (.)

Moreover, if the nth derivative f (n) is Lipschitzian with the constant Ln >  on [a,b], then
we have

∣∣MRn(f ,u,a,b)
∣∣ ≤ 

n+(n + )!
Ln(b – a)n+

b∨
a
(u). (.)

The case of Lipschitzian integrators may be of interest as well and will be considered in
the following.

Theorem  Assume that the function f : I → C is n-times differentiable on the interior I̊
of the interval I (n ≥ ) and the nth derivative f (n) is of locally bounded variation on I̊ . If
a,b ∈ I̊ with a < b, c ∈ [a,b] and u : [a,b] → C is Lipschitzian on [a,b] with the constant
K >  then we have the representation (.), where the approximation term Tn(f ,u,a, c,b)
is given by (.) and the remainder Rn(f ,u,a, c,b) satisfies the inequality

∣∣Rn(f ,u,a, c,b)
∣∣ ≤ 

n!
K

∫ b

a
|λ – c|n

∣∣∣∣∣
λ∨
c

(
f (n)

)∣∣∣∣∣dλ

≤ 
(n + )!

K
[
(b – c)n+ + (c – a)n+

] b∨
a

(
f (n)

)
(.)

for any c ∈ [a,b].
If the nth derivative f (n) is Lipschitzian with the constant Ln >  on [a,b], then we have

∣∣Rn(f ,u,a, c,b)
∣∣ ≤ 

(n + )!
KLn

[
(b – c)n+ + (c – a)n+

]
(.)

for any c ∈ [a,b].

http://www.journalofinequalitiesandapplications.com/content/2013/1/154
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Proof Utilizing the property (ii) from Lemma , we have successively

∣∣Rn(f ,u,a, c,b)
∣∣ = 

n!

∣∣∣∣
∫ b

a

(∫ λ

c
(λ – t)n df (n)(t)

)
du(λ)

∣∣∣∣
≤ 

n!
K

∫ b

a

∣∣∣∣
∫ λ

c
(λ – t)n df (n)(t)

∣∣∣∣dλ

=

n!
K

∫ b

a
B(λ, c)dλ (.)

for any c ∈ [a,b], where as above B(λ, c) := | ∫ λ

c (λ – t)n df (n)(t)|, for c,λ ∈ [a,b].
By the property (i) from Lemma  applied for f (n), we have for c < λ that

B(λ, c)≤ max
t∈[c,λ]

|λ – t|n
λ∨
c

(
f (n)

)
= (λ – c)n

λ∨
c

(
f (n)

)

and for c > λ that

B(λ, c)≤ max
t∈[λ,c]

|λ – t|n
c∨
λ

(
f (n)

)
= (c – λ)n

c∨
λ

(
f (n)

)

which gives that

B(λ, c)≤ |λ – c|n
∣∣∣∣∣

λ∨
c

(
f (n)

)∣∣∣∣∣ ≤ |λ – c|n
b∨
a

(
f (n)

)

for c,λ ∈ [a,b].
This implies that

∫ b

a
B(λ, c)dλ ≤

∫ b

a
|λ – c|n

∣∣∣∣∣
λ∨
c

(
f (n)

)∣∣∣∣∣dλ

≤
b∨
a

(
f (n)

)∫ b

a
|λ – c|n dλ

=


n + 
[
(b – c)n+ + (c – a)n+

] b∨
a

(
f (n)

)
(.)

for c ∈ [a,b].
Making use of (.) and (.) we deduce the desired inequality (.).
By the property (ii) from Lemma  applied for f (n) we have that

B(λ, c)≤ Ln
∣∣∣∣
∫ λ

c
|λ – t|n dt

∣∣∣∣ = Ln
n + 

|λ – c|n+

c,λ ∈ [a,b], which produces the bound
∫ b

a
B(λ, c)dλ ≤ Ln

n + 

∫ b

a
|λ – c|n+ dλ =

Ln
(n + )(n + )

[
(b – c)n+ + (c – a)n+

]
(.)

for c ∈ [a,b].
Utilizing (.) and (.), we deduce the desired inequality (.). �

http://www.journalofinequalitiesandapplications.com/content/2013/1/154
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The following particular case provides the best error bounds.

Corollary  Under the assumptions of Theorem ,we have the representation (.),where
Mn(f ,u,a,b) is defined in (.) and the error MRn(f ,u,a,b) satisfies the bound

∣∣MRn(f ,u,a,b)
∣∣ ≤ 

n!
K

∫ b

a

∣∣∣∣λ –
a + b


∣∣∣∣
n
∣∣∣∣∣

λ∨
a+b


(
f (n)

)∣∣∣∣∣dλ

≤ 
n(n + )!

K(b – a)n+
b∨
a

(
f (n)

)
. (.)

Moreover, if the nth derivative f (n) is Lipschitzian with the constant Ln >  on [a,b], then
we have

∣∣MRn(f ,u,a,b)
∣∣ ≤ 

n+(n + )!
KLn(b – a)n+. (.)

4 Applications
. We consider the following finite Laplace-Stieltjes transform defined by

(L[a,b]g)(s) :=
∫ b

a
e–st dg(t), (.)

where a,b are real numbers with a < b, s is a complex number and g : [a,b] → C is a
function of bounded variation.
It is important to notice that, in the particular case g(t) = t, t ∈ [a,b], (.) becomes the

finite Laplace transformwhich has various applications in other fields ofMathematics; see,
for instance, [, , –] and [] and the references therein. Therefore, any approxi-
mation of themore general finite Laplace-Stieltjes transform can be used for the particular
case of finite Laplace transform.
Since the function fs : [a,b] → C, fs(t) := e–st is continuous for any s ∈ C, the transform

(.) is well defined for any s ∈ C.
We observe that the function fs has derivatives of all orders and

f (k)s (t) = (–)kske–st for any s ∈ C, t ∈ [a,b] and k ≥ . (.)

We also observe that

∥∥f (n+)s
∥∥
[a,b],∞ := sup

t∈[a,b]

∣∣f (n+)s (t)
∣∣ = |s|n+ sup

t∈[a,b]

∣∣e–st∣∣

= |s|n+ sup
t∈[a,b]

e–tRe s = |s|n+ ×
⎧⎨
⎩e–aRe s if Re s ≥ ,

e–bRe s if Re s < .

To simplify the notations, we denote by

β[a,b](s) :=

⎧⎨
⎩e–aRe s if Re s ≥ ,

e–bRe s if Re s < .
(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/154
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On utilizing Theorem , we have the representation

(L[a,b]g)(s) = Gn(g,a, c,b)(s) +Zn(g,a, c,b)(s), (.)

where

Gn(g,a, c,b)(s)

:=
n∑

k=

(–)k

k!
ske–sc

[
(b – c)kg(b) + (–)k+(c – a)kg(a)

]

+
n–∑
k=

(–)k

k!
sk+e–sc

∫ b

a
(λ – c)kg(λ)dλ (.)

and the remainder Zn(g,a, c,b)(s) can be represented as

Zn(g,a, c,b)(s) :=
(–)n+

n!
sn+

∫ b

a

(∫ λ

c
(λ – t)ne–st dt

)
dg(λ). (.)

Here, s ∈C and c ∈ [a,b].
Since g is of bounded variation on [a,b] and the derivative f (n)s is Lipschitzian with the

constant

Ln :=
∥∥f (n+)s

∥∥
[a,b],∞ = |s|n+β[a,b](s)

then by Theorem  we have the bound

∣∣Zn(g,a, c,b)(s)
∣∣

≤ 
(n + )!

|s|n+β[a,b](s)
[


(b – a) +

∣∣∣∣c – a + b


∣∣∣∣
]n+ b∨

a
(g), (.)

for any s ∈C and c ∈ [a,b].
As above, the best approximation we can get from (.) is for c = a+b

 , namely, we have
the representation

(L[a,b]g)(s) = MGn(g,a,b)(s) +MZn(g,a,b)(s), (.)

where

MGn(g,a,b)(s)

:=
n∑

k=

(–)k

kk!
ske–s

a+b
 (b – a)k

[
g(b) + (–)k+g(a)

]

+
n–∑
k=

(–)k

k!
sk+e–s

a+b


∫ b

a

(
λ –

a + b


)k

g(λ)dλ (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/154
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and the remainder MZn(g,a,b)(s) can be represented as

MZn(g,a,b)(s) :=
(–)n+

n!
sn+

∫ b

a

(∫ λ

a+b


(λ – t)ne–st dt
)
dg(λ). (.)

The error MZn(g,a,b)(s) satisfies the bound

∣∣MZn(g,a,b)(s)
∣∣

≤ 
n+(n + )!

|s|n+β[a,b](s)(b – a)n+
b∨
a
(g), (.)

for any s ∈C.
Now, if we restrict the function g to belong to the class of Lipschitzian functions with the

constant K >  on the interval [a,b], then the error in the representation (.) will satisfy
the bound

∣∣Zn(g,a, c,b)(s)
∣∣ ≤ 

(n + )!
K |s|n+β[a,b](s)

[
(b – c)n+ + (c – a)n+

]

for any s ∈C and c ∈ [a,b].
Finally, the error MZn(g,a,b)(s) from the representation (.) satisfies the inequality

∣∣MZn(g,a,b)(s)
∣∣ ≤ 

n+(n + )!
K |s|n+β[a,b](s)(b – a)n+

for any s ∈C.
. We consider now the finite Fourier-Stieltjes sine and cosine transforms defined by

(Fs,[a,b]g)(u) :=
∫ b

a
sin(ut)dg(t), (Fc,[a,b]g)(u) :=

∫ b

a
cos(ut)dg(t), (.)

where a, b are real numbers with a < b, u is a real number and g : [a,b] → C is a function
of bounded variation.
Since the functions fs;u, fc;u : [a,b] → R, fs;u(t) := sin(ut), fc;u(t) := cos(ut) are continuous

for any u ∈R, the transforms (.) are well defined for any u ∈R.
Utilizing the well-known formulae for the nth derivatives of sine and cosine functions,

namely,

if y = sin(Ax + B) then
dny
dxn

= An sin

(
Ax + B –

nπ



)

and

if y = cos(Ax + B) then
dny
dxn

= An cos

(
Ax + B –

nπ



)
,

then we have

f (k)s;u (t) = uk sin
(
ut –

kπ


)
and f (k)c;u (t) = uk cos

(
ut –

kπ


)

for any u ∈R and k ≥ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/154
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We observe that, in general, we have the bounds

∥∥f (n+)s;u
∥∥
[a,b],∞ = sup

t∈[a,b]

∣∣∣∣un+ sin
(
ut –

(n + )π


)∣∣∣∣ ≤ |u|n+

and

∥∥f (n+)c;u
∥∥
[a,b],∞ = sup

t∈[a,b]

∣∣∣∣un+ cos
(
ut –

(n + )π


)∣∣∣∣ ≤ |u|n+

for any u ∈R, the closed interval [a,b] and n≥ .
On utilizing Theorem , we have the representation

(Fs,[a,b]g)(u) =Ks,n(g,a, c,b)(u) +Ws,n(g,a, c,b)(u), (.)

where

Ks,n(g,a, c,b)(u)

:=
n∑

k=


k!
uk sin

(
uc –

kπ


)[
(b – c)kg(b) + (–)k+(c – a)kg(a)

]

–
n–∑
k=


k!
uk+ sin

(
uc –

(k + )π


)∫ b

a
(λ – c)kg(λ)dλ (.)

and the remainderWs,n(g,a, c,b)(u) can be represented as

Ws,n(g,a, c,b)(u)

=

n!
un+

∫ b

a

(∫ λ

c
(λ – t)n sin

(
ut –

(n + )π


)
dt

)
dg(λ). (.)

Since g is of bounded variation on [a,b] and the derivative f (n)s is Lipschitzian with the
constant

Ln :=
∥∥f (n+)s

∥∥
[a,b],∞ ≤ |u|n+

then by Theorem  we have the bound

∣∣Ws,n(g,a, c,b)(u)
∣∣

≤ 
(n + )!

|u|n+
[


(b – a) +

∣∣∣∣c – a + b


∣∣∣∣
]n+ b∨

a
(g), (.)

for any u ∈R and c ∈ [a,b].
As above, the best approximation we can get from (.) is for c = a+b

 , namely, we have
the representation

(Fs,[a,b]g)(u) = MKs,n(g,a,b)(u) +MWs,n(g,a,b)(u), (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/154
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where

MKs,n(g,a,b)(u)

:=
n∑

k=


Kk!

uk sin
(
a + b


u –
kπ


)
(b – a)k

[
g(b) + (–)k+g(a)

]

–
n–∑
k=


k!
uk+ sin

(
a + b


u –
(k + )π



)∫ b

a

(
λ –

a + b


)k

g(λ)dλ (.)

and the remainder MWs,n(g,a,b)(u) can be represented as

MWs,n(g,a,b)(u)

=

n!
un+

∫ b

a

(∫ λ

a+b


(λ – t)n sin
(
ut –

(n + )π


)
dt

)
dg(λ) (.)

for any u ∈R.
Here, the error satisfies the bound

∣∣MWs,n(g,a,b)(u)
∣∣ ≤ 

n+(n + )!
|u|n+(b – a)n+

b∨
a
(g) (.)

for any u ∈R.
Now, if we restrict the function g to belong to the class of Lipschitzian functions with

the constant K >  on the interval [a,b], then the error in the representation (.) will
satisfy the bound:

∣∣Ws,n(g,a, c,b)(u)
∣∣ ≤ 

(n + )!
K |u|n+[(b – c)n+ + (c – a)n+

]
, (.)

for any u ∈R and c ∈ [a,b].
Finally, the error from the representation (.) satisfies the inequality

∣∣MWs,n(g,a,b)(u)
∣∣ ≤ 

n+(n + )!
K |u|n+(b – a)n+ (.)

for any u ∈R.
Similar results may be stated for the finite Fourier-Stieltjes cosine transform, however

the details are left to the interested reader.
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