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Key Points

• This is the first electrophysiological study of human enteric neurons in a pathological condition.

• This study aimed to investigate the effects of anticancer chemotherapy on functional and morphological

properties of human myenteric neurons.

• Intracellular electrophysiology combined with morphological identification of recorded neurons and immuno-

histochemistry were used to characterize myenteric neurons in fresh colon specimens from colorectal cancer

patients treated and untreated with chemotherapeutic agents.

• The results of this study demonstrated hyperexcitability of myenteric S neurons, increase in the number

of neurons with translocation of Hu protein from the cytoplasm to the nucleus, and increase in the

soma size of neuronal nitric oxide synthase-immunoreactive neurons from chemotherapy-treated

patients.

Abstract

Background Patients receiving anticancer chemother-

apy experience a multitude of gastrointestinal side-

effects. However, the causes of these symptoms are

uncertain and whether these therapeutics directly

affect the enteric nervous system is unknown. Our

aim was to determine whether the function and

morphology of myenteric neurons are altered in spec-

imens of the colon from chemotherapy-treated

patients. Methods Colon specimens were compared

from chemotherapy-treated and non-treated patients

following colorectal resections for removal of carci-

noma. Intracellular electrophysiological recordings

from myenteric neurons and immunohistochemistry

were performed in whole mount preparations.

Key Results Myenteric S neurons from chemother-

apy-treated patients were hyperexcitable; more action

potentials (11.4 � 9.4, p < 0.05) were fired in response

to depolarising current pulses than in non-treated

patients (1.4 � 0.5). The rheobase and the threshold to

evoke action potentials were significantly lower for

neurons from chemotherapy-treated patients com-

pared to neurons from non-treated patients

(p < 0.01). Fast excitatory postsynaptic potential

reversal potential was more positive in neurons from

chemotherapy-treated patients (p < 0.05). An increase

in the number of neurons with translocation of Hu

protein from the cytoplasm to the nucleus was

observed in specimens from chemotherapy-treated

patients (103 � 25 neurons/mm2, 37.2 � 7.0%,

n = 8) compared to non-treated (26 � 5 neurons/

mm2, 11.9 � 2.7%, n = 12, p < 0.01). An increase in

the soma size of neuronal nitric oxide synthase-

immunoreactive neurons was also observed in these

specimens. Conclusions & Inferences This is the first

study suggesting functional and structural changes in

human myenteric neurons in specimens of colon from

patients receiving anticancer chemotherapy. These

Address for Correspondence

Dr Kulmira Nurgali, Centre for Chronic Disease, College of
Health and Biomedicine, Victoria University, McKechnie St,
St Albans, VIC 3021, Australia.
Tel: +61 3 8395 8223;
e-mail: kulmira.nurgali@vu.edu.au
Received: 8 September 2015
Accepted for publication: 14 January 2016

© 2016 The Authors.
Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License,
which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

975

Neurogastroenterol Motil (2016) 28, 975–984 doi: 10.1111/nmo.12795

Neurogastroenterology & Motility

http://creativecommons.org/licenses/by/4.0/


changes may contribute to the causation of gastroin-

testinal symptoms experienced by chemotherapy-

treated patients.

Keywords chemotherapy, colorectal cancer, electro-

physiology, enteric neurons, human.

INTRODUCTION

Colorectal cancer (CRC) is the second most commonly

diagnosed cancer and is a major cause of cancer-related

deaths worldwide. Chemotherapy alone, or in combi-

nation with radiotherapy, is given before or after

surgery to most patients. Currently, the standard

first-line chemotherapy of metastatic CRC is 5-fluor-

ouracil (5-FU) combined with folinic acid plus either

oxaliplatin (FOLFOX) or irinotecan (FOLFIRI).1

Although these drugs increase survival rate and reduce

the risk of disease progression, both have acute and

long-term toxicities leading to a wide spectrum of side-

effects. Symptoms such as pain, paresthesia (tingling or

numbness), cold-induced dysesthesia (burning sensa-

tions), and a general loss of sensation2–6 have been

attributed to peripheral neuropathies resulting from

the neurotoxic effects of chemotherapeutic drugs.

Severe gastrointestinal side-effects include nausea,

vomiting, constipation, and diarrhoea.7–9 Gastroin-

testinal toxicity is one of the main reasons for dose

limitation of chemotherapy, often reducing the efficacy

of anticancer treatment. Chronic gastrointestinal side-

effects can persist for more than 10 years post treat-

ment, greatly affecting patients’ quality of life.10 The

traditional view is that gastrointestinal side-effects of

ant-cancer drugs are due to mucosal damage.11

Although mucosal damage undoubtedly plays a signif-

icant role in the acute symptoms associated with

chemotherapeutic treatment, the persistence of gas-

trointestinal symptoms suggests that chemotherapy

may damage the gastrointestinal innervation. The

enteric nervous system controls many major functions

of the gut, including motility, blood flow, secretion and

absorption of nutrients, electrolytes, and water.12 The

morphology and functions of enteric neurons are

compromised in various gastrointestinal pathologies.13

Because anticancer chemotherapeutics cause wide-

spread peripheral neuropathy, we hypothesized that

gastrointestinal side-effects associated with

chemotherapy may result from damage to the enteric

nervous system.

Few studies have examined the effects of anticancer

chemotherapies on the enteric nervous system. We

have previously shown changes in colonic motility and

reduction in the total number of neurons within the

myenteric plexus in mice treated in vivo with the

anticancer chemotherapeutic oxaliplatin.14 Similar

results were found in the colon of rats treated with

another platinum-based chemotherapeutic agent, cis-

platin.15 In addition, cisplatin-treated rats had reduced

gastric motility.15–17

Immunohistochemical methods have been exten-

sively used to document changes in the neurochemical

coding and morphology of human enteric neurons

under a variety of conditions.18–21 Electrophysiological

recordings of human enteric neurons in freshly dis-

sected preparations reveal functional properties, but

have only been reported in two published studies to

date, both from specimens of the colon.22,23 Studies

based on these techniques can demonstrate changes in

certain conditions, such as in inflammation, where

enteric neurons become hyperexcitable.24,25

This study aimed to investigate the effects of

anticancer chemotherapeutics on human myenteric

neurons. Using electrophysiology combined with

immunohistochemistry, the functional properties of

morphologically identified myenteric neurons

were compared in colon specimens from chemother-

apy-treated versus non-treated patients for the first

time.

MATERIALS AND METHODS

Specimens of the human colon were provided by the Victorian
Cancer Biobank (number of individual patients N = 13) and
Flinders Medical Centre (N = 8). All studies were approved by
the Victoria University Human Research Ethics and Southern
Adelaide Clinical Research Ethics Committees and have been
performed in accordance with the ethical standards laid down in
the 1964 Helsinki Declaration and its later amendments. Prior to
surgical removal of non-obstructive carcinoma, written informed
consent was obtained from all patients. Fresh specimens were
delivered after the surgery in Roswell Park Memorial Institute
(RPMI) culture medium or Krebs solution at 4 °C. Of all 21
specimens, nine were from patients who had received chemother-
apeutic treatments. Due to the limited number of samples
available, all specimens from chemotherapy-treated patients were
combined in a single chemotherapy-treated group. Patients
received 5-Fluorouracil alone (5-FU, N = 1), combined FOLFOX
regimen (Folinic acid, 5-FU, and oxaliplatin, N = 4) for 6 cycles
and neoadjuvant 5-FU in combination with radiotherapy treat-
ment (N = 4). Control specimens were obtained from patients
who had not received chemotherapy or radiotherapy prior to
surgery (N = 12, termed non-treated patients). The age of patients
at the time of surgery ranged between 39 and 89 years. Non-
treated patients averaged 72.9 � 3.0 years (10 male, 2 female) and
chemotherapy-treated patients averaged 57.4 � 4.7 years (7 male,
2 female). Specimens from non-treated patients (distal colon: 7,
proximal colon: 5) as well as specimens from chemotherapy-
treated patients (distal colon: 8, proximal colon: 1) were predom-
inantly from the distal colon. Aside from two specimens (both
from non-treated patients), all segments of the colon were from
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regions distal to the tumor, but the distances from the tumor were
not made available.

The methods used in this study have been described previ-
ously.22 Briefly, full thickness specimens were placed in Krebs
solution at room temperature (mM: NaCl 118, KCl 4.6, CaCl2 3.5,
MgSO4 1.2, NaH2PO4 1, NaHCO3 25, D-Glucose 11, bubbled with
95% O2 and 5% CO2) and pinned in a Sylgard-lined Petri dish
(Dow Corning, Midland, MI, USA) to make a flat sheet prepara-
tion for dissection. The serosa, fat, mesentery, mucosa, and
submucosa were removed using sharp dissection techniques and
the myenteric plexus was exposed by peeling away the circular
muscle layer with forceps. The Krebs solution was changed at
least every 15 min.

Intracellular recording

Nine specimens were used for intracellular electrophysiology
analysis (non-treated: five specimens, chemotherapy-treated: four
specimens). Specimens were repinned in a recording chamber
with 50 lm gold plated, tungsten pins. Myenteric ganglia were
identified by creamy-white pigmentation. Extra pins (20 lm
diameter wire) were added nearby to stabilize ganglia for record-
ing. The chamber was mounted on a Zeiss Axiovert-200 inverted
microscope (Zeiss, Oberkochen, Germany). To recover from
dissection, the preparation was superfused with Krebs solution
containing 1 lM atropine and 1 lM nicardipine (35 °C) for 1 h.26

Conventional glass micropipettes were used to impale neurons.
They contained 5% 5,6-carboxyfluorescein in 20 mM Tris buffer
in 1 M KCl (pH 7.0)26 and had resistances of 100–150 MΩ. An
Axoclamp 2B amplifier (Axon Instruments, Foster City, CA, USA)
was used for recordings; signals were digitized at 1–10 kHz by a
Digidata 1440A interface (Molecular Devices, Sunnyvale, CA
USA) and stored on a computer using PClamp 10.0 (Molecular
Devices). To identify the morphology of the impaled cell,
carboxyfluorescein was injected by iontophoresis using hyperpo-
larizing current pulses (0.5 nA, 0.2 s duration at 2.5 Hz) for 2 min.
Cells labeled in this way could be visualized in situ using
fluorescence.22,26 Only neurons that were adequately filled with
carboxyfluorescein and had resting membrane potentials (RMPs)
more negative than �40 mV were analyzed. Input resistance (Rin)
was calculated from intracellular hyperpolarizing current pulses
(500 ms, 100–500 pA). A tungsten stimulating electrode (10–
50 lm tip diameter), connected to an ISO-Flex stimulator (AMPI,
Jerusalem, Israel), was either positioned between identified gan-
glia and 1 mm circumferential to the impaled cell. Axon tracts
were stimulated by a single-shot stimulus (0.4 ms; 10–60 V), so
that fast excitatory postsynaptic potentials (fEPSPs) could be
recorded in the impaled cell. Slow excitatory postsynaptic poten-
tials were rarely evoked even by trains of stimuli and were
therefore not studied. Axograph X software was used to analyze
data. Following recording, preparations were fixed in Zamboni’s
fixative (2% formaldehyde and 0.2% picric acid) overnight at 4 °C
and processed for immunohistochemistry.

Immunohistochemistry

Preparations were similarly dissected for immunohistochemistry.
They were stretched to a maximum length (nicardipine [3 lM]
was added to the Krebs solution to facilitate maximal stretching),
then fixed in Zamboni’s fixative (4 °C for 48 h), cleared using
dimethylsulfoxide (3 times for 10 min), then washed with phos-
phate buffered saline (PBS, 3 times for 10 min). Specimens were
incubated in primary antibodies: goat antineuronal nitric oxide
synthase (nNOS, 1 : 500, NB100-858; Novus Biologicals, Little-

ton, CO, USA), mouse anti-Hu (1 : 500, A21271; Molecular
Probes, Eugene, OR, USA) for 48 h, rinsed in PBS and incubated
in secondary antibodies: DyLight 405 donkey antigoat and
antimouse Alexa Fluor 594 (1 : 200; Jackson Immunoresearch
Laboratories, West Grove, PA, USA) for 4 h. Tissues were viewed
on an IX71 Olympus microscope (Olympus, Tokyo, Japan) or an
Eclipse Ti confocal microscope (Nikon, Tokyo, Japan).

Images of four randomly selected ganglia, showing myenteric
neurons immunoreactive (IR) for Hu and nNOS, were captured by
confocal microscopy at 209 magnification. The number of
neurons within each image was counted to calculate the total
number of neurons/mm2. The soma-dendritic area (lm2) of nNOS-
IR neurons was measured by tracing neuronal profiles, using
Image J software (NIH, Bethesda, MD, USA). The average size of
neurons was calculated from 10 cells per image.

Drugs

All drugs used in this study and 5,6-carboxyfluorescein were
purchased from Sigma-Aldrich (Castle Hill, NSW, Australia). Both
nicardipine and atropine were dissolved in sterile water and stored
at 10�2 M.

Statistics

For electrophysiology results, where the properties of neurons
were compared, n is the number of cells and N is the number of
tissue samples, which was equivalent to the number of patients.
In some instances, more than one neuron was recorded from a
single patient; values are presented as means for all cells � SD.
For immunohistochemistry results, n and N are the same; values
are represented as means � SEM to demonstrate how the sample
mean represents the population mean. Results were compared
using an unpaired t-test without variance correction. Differences
were considered statistically significant at p < 0.05. All authors
had access to the study data and had reviewed and approved the
final manuscript.

RESULTS

The effects of chemotherapeutic treatment on
the electrophysiological properties of colonic
myenteric neurons

Enteric neurons can be classified as S or AH cells based

on their electrophysiological properties.12 S cells had

no visible inflection on the falling phase of their action

potentials, lacked a long after-hyperpolarization fol-

lowing a single action potential and showed fast EPSPs

in response to focal electrical stimulation of nearby

nerve tracts. A long after-hyperpolarization was

recorded in only one neuron; this neuron also had an

inflection on the falling phase of its action potential;

features identifying it as an AH type II enteric neurons.

Three additional neurons had inflections on the falling

phase of their action potentials but lacked a long after-

hyperpolarization. These neurons were multiaxonal

dendritic Dogiel type II neurons. Due to the scarcity of

© 2016 The Authors.
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AH neurons, only S neurons confirmed by the presence

of a fast EPSP and uniaxonal morphology were ana-

lyzed in this study.

The RMP and Rin of S type I myenteric neurons in

colonic specimens from non-treated (RMP:

�59.7 � 11.5 mV, Rin: 100.5 � 78.2 MΩ, n = 5, N = 5)

or chemotherapy-treated (RMP: �57.3 � 1.6 mV; Rin:

132.7 � 125.6 MΩ, n = 5, N = 4) patients were not

significantly different. Myenteric S neurons fired action

potentials when stimulated with depolarizing current

pulses (Fig 1A and B). Injection of depolarizing currents

(500–800 pA, 1.0 s) into neurons from non-treated

patients evoked one to two action potentials. The

number of action potentials averaged over the first 1 s

period of depolarization was 1.4 � 0.5 (n = 5, N = 5,

example Fig 1A). S neurons in colonic specimens from

chemotherapy-treated patients fired continuous bursts

of action potentials in response to depolarizing current

pulses (20–500 pA, 1–5 s). The number of action poten-

tials in 1 s averaged 11.4 � 9.4 (n = 5, N = 4). Thus, S

cells from chemotherapy-treated patients were signifi-

cantly more excitable than those from non-treated

patients (p < 0.05). The patients’ ages used for the

analysis of neuronal excitability were: 86, 62, 79, 74,

62 in the non-treated group and 79, 78, 60, 47 in

chemotherapy-treated group. Preparations were from

the distal (N = 3) and ascending (N = 2) colons in the

non-treated group and all (N = 5) from the distal colon in

the chemotherapy-treated group; all sampleswere distal

to non-obstructive carcinoma.Thus, neuronal excitabil-

ity did not appear to depend on the age of patients or the

location of the cells, although given the low numbers of

patients studied it is not possible to reach a firm

conclusion. Carboxyfluorescein filling identified that

all of the neurons included in this analysis were

uniaxonal Dogiel type I neurons (Fig 1A’–B”).
The threshold currents required to evoke an action

potential (rheobase) were calculated when the cell was

manually clamped at�70 mV. The rheobase of neurons

from chemotherapy-treated patients (221 � 215 pA,

n = 5, N = 4) was significantly lower than non-treated

patients (591 � 106 pA, n = 5, N = 5, p < 0.01,

Fig. 2A). Similarly, the threshold potentials at which

action potentials were evoked were more negative in

neurons from chemotherapy-treated patients

(�44.2 � 8.2 mV n = 5, N = 4) compared to neurons

from non-treated patients (�25.3 � 8.2, n = 5, N = 5,

p < 0.01, Fig. 2B). Anodal-break action potentials did

not occur in neurons from either group.

Fast excitatory postsynaptic potentials, were pre-

sent, either evoked or spontaneous, in all S neurons.

Their amplitudes were compared with the cell manu-

ally clamped at �70 mV. Differences were not signif-

icant between the amplitudes of spontaneous fEPSPs

recorded at �70 mV in neurons from chemotherapy-

treated (average = 6.8 � 2.3 mV [6.4 mV, 4.7 mV,

9.2 mV] n = 3, N = 3) and non-treated patients (aver-

age = 3.9 � 1.5 mV [4.3 mV, 5.9 mV, 2.6 mV, 3.0 mV]

n = 4, N = 4, p = 0.1). Average intervals between

spontaneously occurring fEPSPs in neurons from

50 mV

0.5 nA

500 ms

50 mV

0.5 nA

500 ms

cfs cfs+ Hu + nNOS 

cfs cfs+ Hu + nNOS 

B′B B′′

A′A A′′

Figure 1 Electrophysiological properties of

colonic myenteric neurons from non-treated

and chemotherapy-treated patients. Action

potentials were evoked with depolarizing

current pulses. (A) A neuron from a colonic

specimen of a non-treated patient fired a

single action potential in response to a

depolarizing current. (A’) Intracellular

injection of carboxyfluorescein during

recording confirmed that this cell had Dogiel

type I, uniaxonal morphology. (A”)

Immunohistochemistry demonstrated that

this neuron was Hu-immunoreactive but did

not contain nNOS immunoreactivity. (B) A

neuron from a chemotherapy-treated patient

fired multiple action potentials in response

to a smaller depolarising current pulse. (B’)

Intracellular injection of carboxyfluorescein

confirmed the neuronal morphology of the

cell. (B”) This neuron was Hu-

immunoreactive, but not nNOS-

immunoreactive, scale bar = 100 lm.
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chemotherapy-treated (average = 0.7 � 0.1 s [0.7 s,

0.6 s, 0.8 s] n = 3, N = 3) and non-treated (aver-

age = 2.7 � 2.4 s [0.5 s, 4.9 s, 4.6 s, 0.9 s] n = 4,

N = 4) patients were also not significantly different

(p = 0.2). The reversal potential for fEPSPs was calcu-

lated by plotting evoked fast EPSP amplitude at a range

of holding potentials (Fig. 3A). Fast EPSP reversal

potential was more positive for neurons from

chemotherapy-treated patients (average = �24.5 �
2.9 mV [�26.3 mV, �26.1 mV, �21.2 mV], n = 3,

N = 3) than in myenteric neurons from non-treated

patients (average = �38.4 � 6.4 mV [�32.1 mV,

�46.6 mV, �40.1 mV, �34.7 mV], n = 4, N = 4,

p < 0.05, Fig. 3B). The mean amplitude of evoked

fEPSPs, measured at a holding potential of �70 mV,

tended to be smaller in neurons from non-treated

patients (average = 7.2 � 3.2 mV [4.9 mV, 11.9 mV,

5.9 mV, 6.0 mV] n = 4, N = 4) compared to neurons

from chemotherapy-treated patients (aver-

age = 14.5 � 5.1 mV [20.4 mV, 12.0 mV, 11.1 mV]

n = 3, N = 3), but this did not reach significance with

the available sample sizes (p = 0.06).

Morphological changes in myenteric neurons
from chemotherapy-treated patients

Preparations were labeled as whole mounts with a pan-

neuronal marker, Hu antibody (Fig. 4A and A’). The

total number of Hu-IR neurons/mm2 was similar in

chemotherapy-treated patients (263.6 � 17.8 neurons/

mm2, n = 8) and non-treated patients (216.1 � 26.2

neurons/mm2, n = 12, p = 0.1). In most cells, the Hu

antibody evenly labeled the cytoplasm and nucleus of

the cell but in some instances more intense staining of

the nucleus was noted, suggesting translocation of Hu

protein to the nucleus (Fig. 4A and A’, arrowheads).

The total number of neurons with Hu translocation

(Fig. 4B) and the percentage of neurons with Hu

translocation (Fig. 4C) were significantly greater in

preparations from chemotherapy-treated patients com-

pared to non-treated patients (chemotherapy-treated:

103 � 25 neurons/mm2, 37.2 � 7.0%, n = 8; non-trea-

ted: 26 � 5 neurons/mm2, 11.9 � 2.7%, n = 12,

p < 0.01). The occurrence of Hu translocation appeared

independent of age (linear regression analysis, data not
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Figure 2 Myenteric S neurons from colonic

specimens of chemotherapy-treated patients

are hyperexcitable compared to neurons

from non-treated patients. (A) Neurons from

non-treated patients required a larger

depolarizing current to evoke action

potentials (rheobase) compared to neurons

from chemotherapy-treated patients. (B) The

action potential threshold was less negative

in neurons from non-treated patients (n = 5,

N = 5) compared to neurons from

chemotherapy-treated patients (n = 5,

N = 4, **p < 0.01, data expressed as

mean � SD).
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Figure 3 The reversal potentials of fast

excitatory postsynaptic potentials (fEPSPs)

were less negative in neurons from

chemotherapy-treated patients. (A) The

holding potential of the cell was set by

manual current clamp; fast EPSP amplitude

increased at hyperpolarized potentials. (B)

The extrapolated reversal potential of fEPSP

in neurons from non-treated patients (n = 4,

N = 4) was more negative than in cells from

chemotherapy-treated (n = 3, N = 3)

patients (*p < 0.05).
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shown). None of the neurons recorded electrophysio-

logically had detectable Hu translocation. However,

two neurons (that were not included in the analysis)

failed to generate action potentials in response to large

depolarizing current pulses (>1 nA); both had intensely

Hu-labeled nuclei consistent with Hu translocation;

these cells were both from non-treated patients (Fig. 5).

Preparations were also labeled with anti-nNOS

antibody, a marker for inhibitory motor neurons and

some interneurons (Fig. 6A and A’). The number of

myenteric neurons expressing nNOS, as well as their

proportion in colon specimens from chemotherapy-

treated patients (104.6 � 13.0 neurons/mm2,

41.5 � 4.4%, n = 7), did not differ from specimens

from non-treated patients (90.4 � 15.9 neurons/mm2
,

39.9 � 4.6%, n = 9, p = 0.5, Fig. 6B). However, the

soma-dendritic area of nNOS-IR neurons (measured

from vertical projections) from chemotherapy-treated

patients (840.7 � 79.8 lm2, n = 4) was significantly

greater than those from non-treated patients

(601.4 � 53.2 lm2, n = 8, p < 0.05, Fig. 6C). Hu

translocation in nNOS-IR neurons was not more

frequent than in preparations from chemotherapy-

treated patients (20.8 � 7.5, n = 5) compared to non-

treated patients (14.6 � 2.5, n = 5, p = 0.5). Of the

neurons in the electrophysiology analysis, 2/5 neurons

from chemotherapy-treated patients expressed detect-

able nNOS immunoreactivity; both neurons fired

multiple action potentials in response to a depolarizing

current pulse.

DISCUSSION

This study has provided evidence that the electrophys-

iological and morphological features of human myen-

teric neurons are altered in patients treated with

chemotherapeutic agents. These changes include: (i)

hyperexcitability of S neurons with uniaxonal Dogiel

type I morphology, (ii) changes in the reversal potential

of fast EPSPs, (iii) increased number and proportion of

neurons with translocation of Hu protein from the

cytoplasm into the nucleus, and (iv) increase in average

soma size of nNOS-IR neurons.

Our results demonstrated that the threshold for

action potential firing was more negative in

chemotherapy-treated patients compared to non-trea-

ted, suggesting greater excitability in the former group.

In addition, the number of action potentials in

response to a standardized current pulse was signifi-

cantly greater in S neurons from chemotherapy-treated

patients compared to non-treated patients. Further-

more, smaller depolarizing currents were needed to
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Figure 4 Whole mount preparations of

myenteric neurons from non-treated and

chemotherapy-treated patients labeled with

the pan-neuronal marker Hu. (A and A’)

Translocation of Hu protein to the cell

nuclei was noted in some cells (arrowheads)

(scale bar = 100 lm). The total number of

neurons counted per field of view with Hu

translocation (B) and the overall percentage

of neurons with Hu translocation (C) were

significantly greater in the myenteric plexus

from colonic specimens of chemotherapy-

treated patients (n = 8, N = 8) compared to

non-treated patients (n = 9, N = 9)

(**p < 0.01).
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evoke an action potential when RMP was manually

clamped at �70 mV. Thus, in combination, these data

provide evidence of hyperexcitability of enteric neu-

rons in chemotherapy-treated patients. The excitabil-

ity of S neurons must be determined by their

complement of ion channels; these may be modulated

by a variety of intracellular and extracellular factors.

One possibility is that the increase in firing to depo-

larizing current pulses, lower threshold potential, and

smaller rheobase were caused by a change in properties

of voltage-sensitive Na+ currents caused by chemother-

apy. Previous studies reported chemotherapy-induced

hyperexcitability in dorsal root ganglion (DRG) sensory

neurons.27 It has been proposed that metabolites of

chemotherapeutic agents, such as oxalate from oxali-

platin, may modify the properties of voltage-gated

Na+ channels resulting in a prolonged open state,28

thus causing cellular hyperexcitability. Oxaliplatin
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Figure 5 Intracellular recording from a myenteric neuron with Hu-translocation. (A) Depolarization with a large current pulse failed to evoke an

action potential in this neuron. (B) Intracellular injection of carboxyfluorescein confirmed the neuronal morphology. The arrow indicates the nucleus.

(B’ and B”) Immunohistochemical labeling revealed translocation of Hu protein to the nucleus (arrows) (scale bar = 50 lm). Images were viewed on a

Nikon confocal microscope (Eclipse Ti) with 20 9 objective.
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Figure 6 Nitrergic myenteric neurons in

specimens of the colon from non-treated and

chemotherapy-treated patients. (A and A’)

Neurons were labeled for with nNOS

antibody in whole mount preparations (scale

bar = 100 lm). (B) The total number of

nNOS-immunoreactive neurons per field of

view was not significantly different in the

myenteric plexus of the colons from non-

treated (n = 9, N = 10) vs chemotherapy-

treated (n = 7, N = 10) patients. (C) The

soma areas of nNOS-immunoreactive

neurons were significantly larger in colon

specimens from chemotherapy-treated

patients (n = 4, N = 4) vs non-treated

patients (n = 8, N = 8) (*p < 0.05).
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modulates Na+ channel properties in nerve conduction

studies especially in sensory nerve fibers in patients

suffering from post-chemotherapy neuropathy,

although it tends to decrease excitability after long-

term exposure in contrast to this study where

increased excitability of enteric neurons was evi-

dent.29,30 In clinical studies, abnormalities in Na+

currents were detected in 78% of patients with chronic

symptoms of chemotherapy-induced peripheral neu-

ropathy.30 While there is an evidence of hyperexcitabil-

ity of sensory neurons and peripheral nerves after

treatment with platinum-based chemotherapy,2

peripheral sensory neuropathy associated with 5-FU

treatment is rare31 and has not been extensively

studied. However, gastrointestinal dysmotility induced

by 5-FU treatment outlasts mucosal inflammation.32

Our study is the first demonstrating hyperexcitability

of enteric neurons from patients treated with 5-FU

alone or in combination with oxaliplatin or radiother-

apy. Enteric neuronal hyperexcitability, leading to

long-term intestinal dysfunction, has been demon-

strated in animal models of intestinal inflamma-

tion.24,25,33 The hyperexcitability of enteric neurons

observed in our study may contribute to the intestinal

dysfunctions associated with chemotherapy. Approxi-

mately, 40% of patients receiving standard-dose

chemotherapy and 100% of patients receiving high-

dose chemotherapy for gastrointestinal cancers experi-

ence pain, bloating, diarrhea and/or constipation

throughout the course of treatment.34 Gastrointestinal

side-effects are a predominant reason for dose limita-

tion, presenting a constant challenge for efficient and

tolerable treatment of CRC.8 Chronic gastrointestinal

side-effects can persist for more than 10 years after

treatment is stopped, greatly affecting patients’ quality

of life.10

Our study also suggested that fast EPSPs in myen-

teric neurons from chemotherapy-treated patients tend

to be slightly larger in amplitude (although this was

not significant with the small sample size). The

reversal potential of electrically-evoked fEPSPs was

less negative in neurons from chemotherapy-treated

patients compared to controls. Both of these changes to

cholinergic neurotransmission would be expected to

increase excitability of enteric neural circuits. They are

comparable with previously reported ectopic activity

observed at motor and autonomic neuromuscular

junctions after chemotherapy, which were attributed

to the changes in Na+ channel properties.28 The

mechanisms underlying changes in fast synaptic trans-

mission in enteric neurons remain to be elucidated.

They may result from direct effects of oxaliplatin or its

metabolites on ion channels, or be indirectly mediated

via other cells or mechanisms such as oxidative stress

or inflammation. In the case of peripheral neuropathy,

chemotherapeutics have multiple effects on neu-

rons.9,35

Hu immunolabeling has been used as a pan-neuronal

marker of the enteric nervous system in laboratory

animals36,37 and humans.38,39 Typically, the cytoplasm

and nucleus of neurons are uniformly labeled, with

little or no staining of axons. In our study, Hu

translocation from the cell body to the nucleus was

observed as increased intensity of nuclear immunoflu-

orescence. This phenomenon occurred in a higher

proportion of neurons in the colon of chemotherapy-

treated patients than non-treated patients. Hu proteins

are a family of RNA-binding proteins, expressed from

the Elavl (Elav-like) genes. Elavl1, which encodes HuR

protein is expressed in a wide range of tissues,40 but

Elavl2, Elavl3, and Elavl4 (which encode HuB, HuC,

and HuD proteins) are exclusively expressed in neu-

rons.41 Hu proteins regulate post-transcriptional gene

expression through alternate splicing and RNA edit-

ing42, and stabilize mRNA by binding to uracil-rich

RNA sequences (AU and GU). Continuous shuttling of

Hu proteins between the nucleus and cytoplasm has

been implicated in their critical roles in control of

nuclear export, stabilization, and cell survival.43 Their

role in post-transcriptional regulation adapts the pro-

teome to changes in environmental conditions. Like

other RNA-binding proteins, Hu proteins change their

expression level and subcellular location in response to

stressful stimuli. Toxic neuropathy, associated with

antiretroviral treatment, induced overexpression of

HuD in DRG and spinal cord neurons.44 Altered

intracellular localization of Hu proteins has been

reported in response to DNA damaging agents such

as ultraviolet light, heat shock, and actinomycin

D.45,46 Increased translocation of neuronal Hu proteins

from the cytoplasm to the nucleus was observed in

myenteric neurons after intestinal ischemia/reperfu-

sion damage.47

Studies in the central nervous system demonstrated

that Hu proteins promote the synthesis of the excita-

tory neurotransmitter glutamate48 and play important

roles in neural plasticity, maintenance, and survival.41

In our study, myenteric neurons with Hu translocation

to the nuclei failed to evoke action potentials, suggest-

ing that intracellular localization of Hu proteins plays

important role in cellular functioning.

In this study, nNOS-IR cells in the colon samples

from chemotherapy-treated patients were larger than

those in non-treated patients. This is similar to our

previous observations in chemotherapy-treated mice.14

It was notable that Hu translocation, induced by
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chemotherapy, was less marked in nNOS-IR enteric

neurons than in cells that lacked nNOS. This suggests

that nNOS-expressing cells may be differentially

affected by oxaliplatin treatment, with a tendency to

increase in size rather than translocate Hu. Moreover,

functional properties of these neurons were different.

Unlike neurons with Hu translocation, nNOS-IR neu-

rons were hyperexcitable. In our recent study of mice

treated with oxaliplatin, nNOS-IR cells increased as a

proportion of all neurons, reflecting either selective

survival or changes in gene expression.14

CONCLUSIONS

Intracellular recording from human enteric neurons is

technically challenging; the number of cells that could

be recorded in this study was correspondingly small.

The technical difficulty may be why relatively few

studies have been published using this approach.22,23,49

Direct investigation of human enteric neurons,

in vitro, is invaluable as a tool to translate discoveries

in laboratory animals to human patients.50,51 To our

knowledge, this is the first paper to suggest functional

changes to human enteric neurons in a pathological

condition, using this direct recording approach. The

mechanisms underlying chemotherapy-induced

changes are still to be identified. Future studies in

animal models will be invaluable in the attempt to

understand the effects of chemotherapy on bowel

function.
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